Support vector machine

Two different approaches to regression/classification

- Assume something about P(x,y)
- Find f which maximizes likelihood of training data | assumption
 - Often reformulated as minimizing loss

Versus

- Pick a loss function
- Pick a set of hypotheses H
- Pick f from H which minimizes loss on training data

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

Expected loss of f:

- Bayes optimal classifier:
- Model of logistic regression:

Loss function:

Our description of logistic regression was the former

- Learn: f:X ->Y
 - X features
 - Y target classes

$$Y \in \{-1, 1\}$$

Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

Bayes optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

Model of logistic regression:

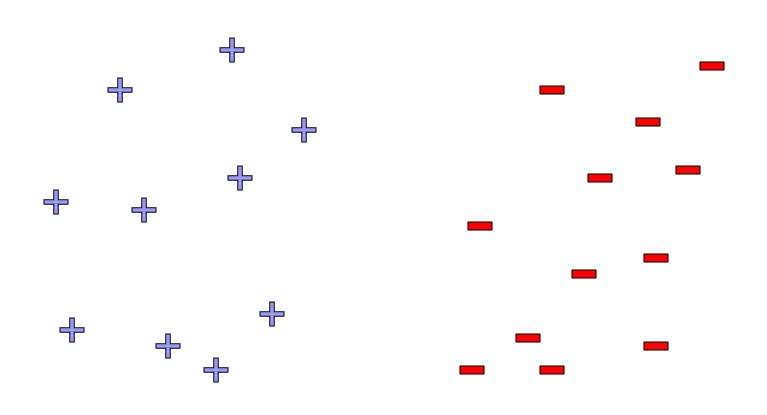
$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

Loss function:

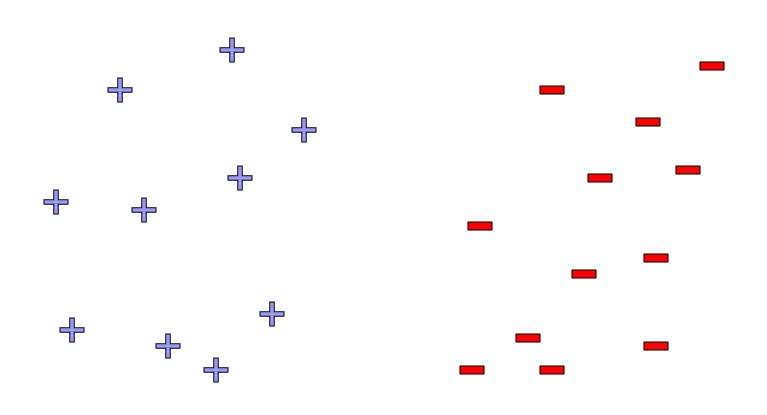
 $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$

What if the model is wrong? What other ways can we pick linear decision rules?

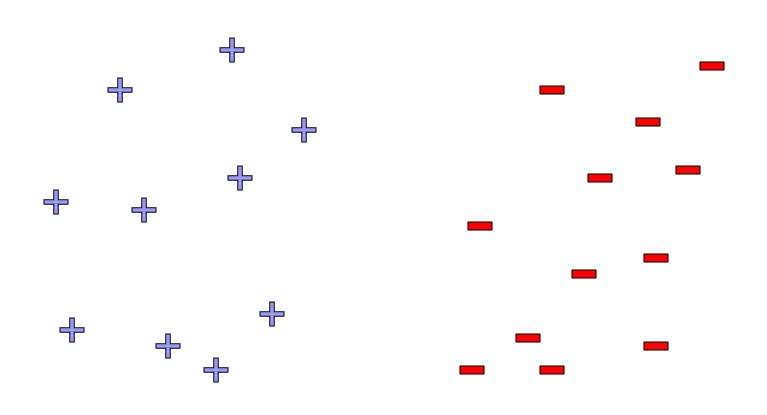
Linear classifiers – Which line is better?

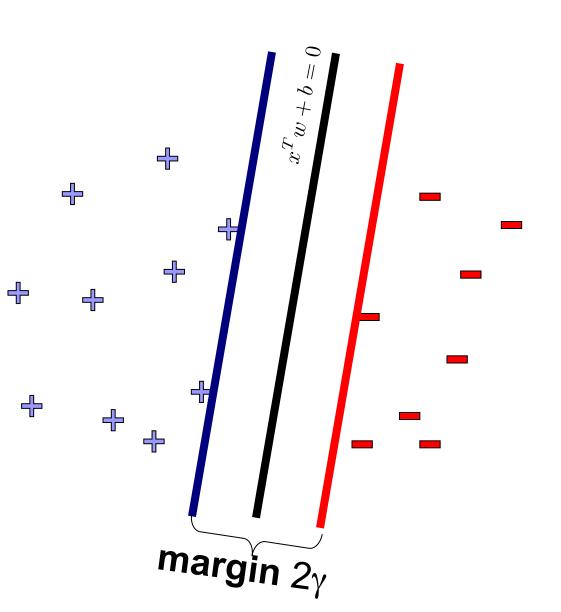


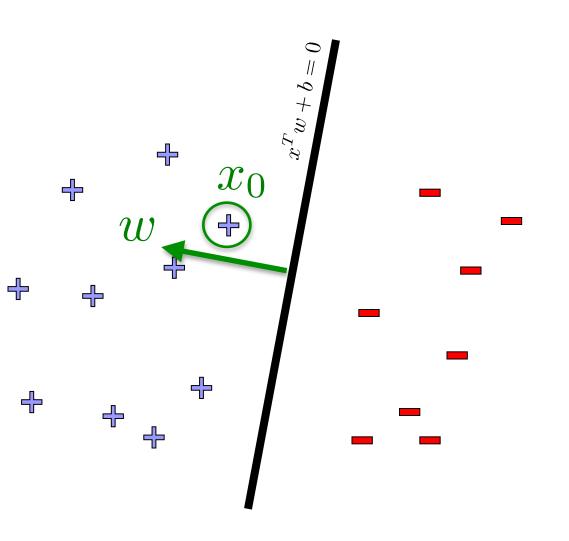
Linear classifiers – Which line is better?



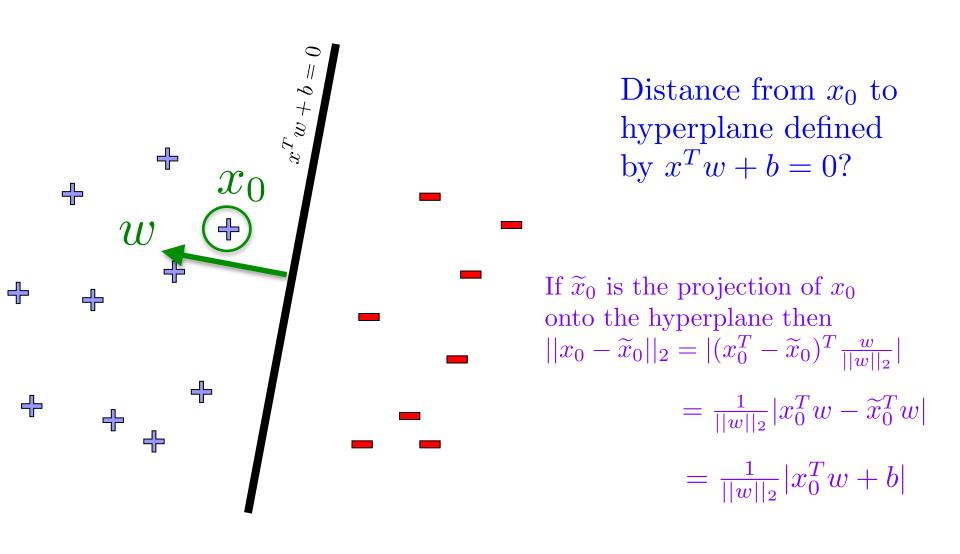
Linear classifiers – Which line is better?

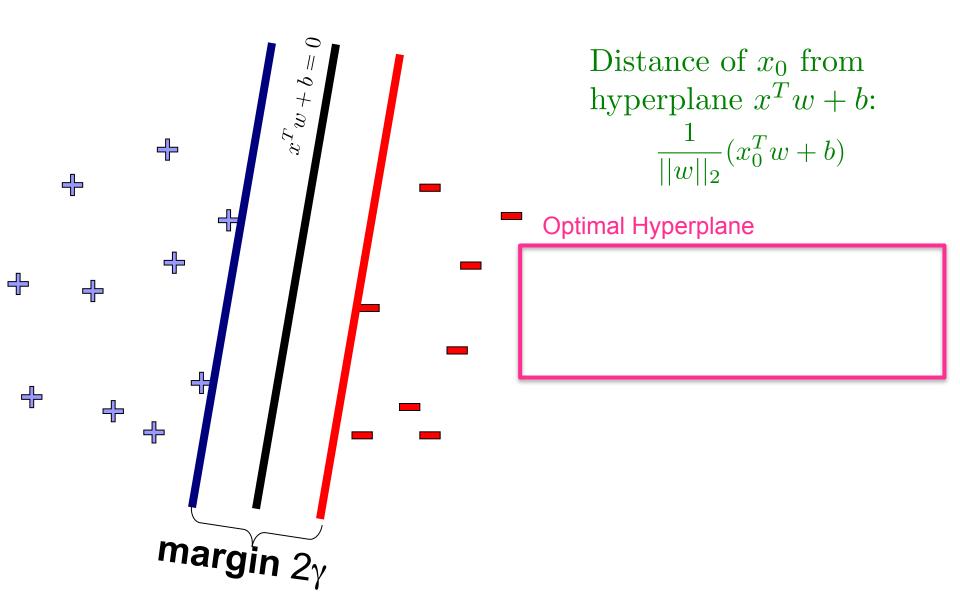


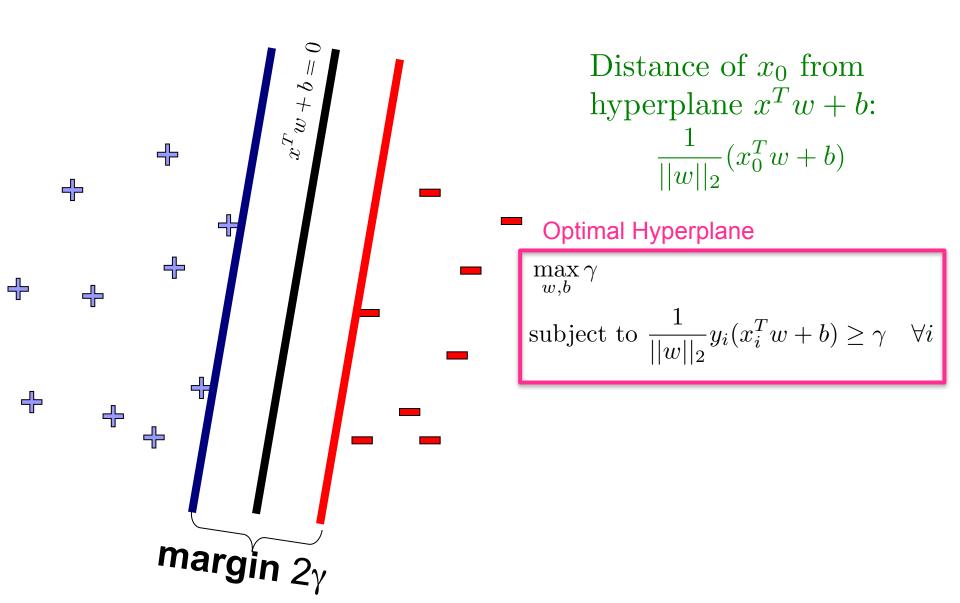


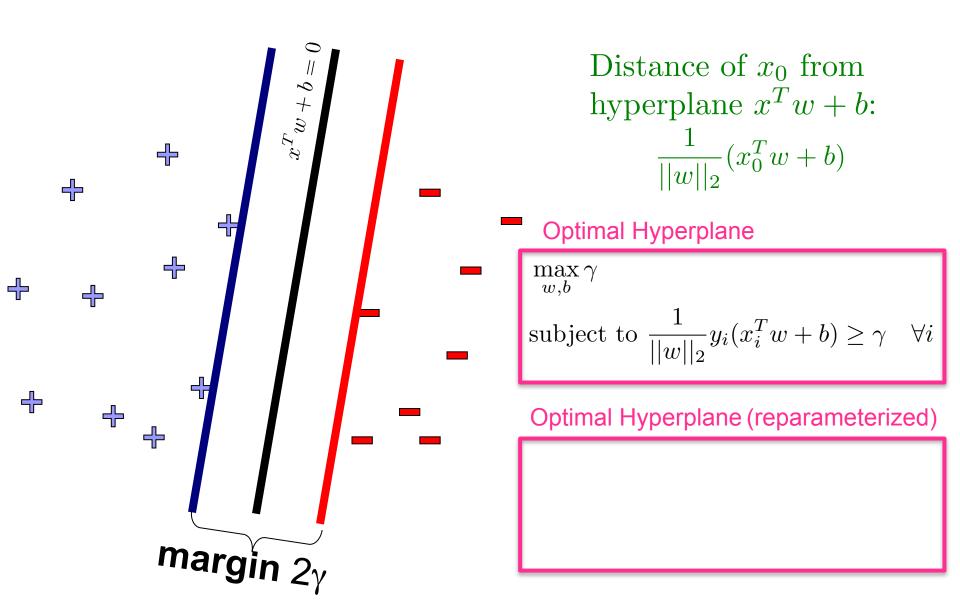


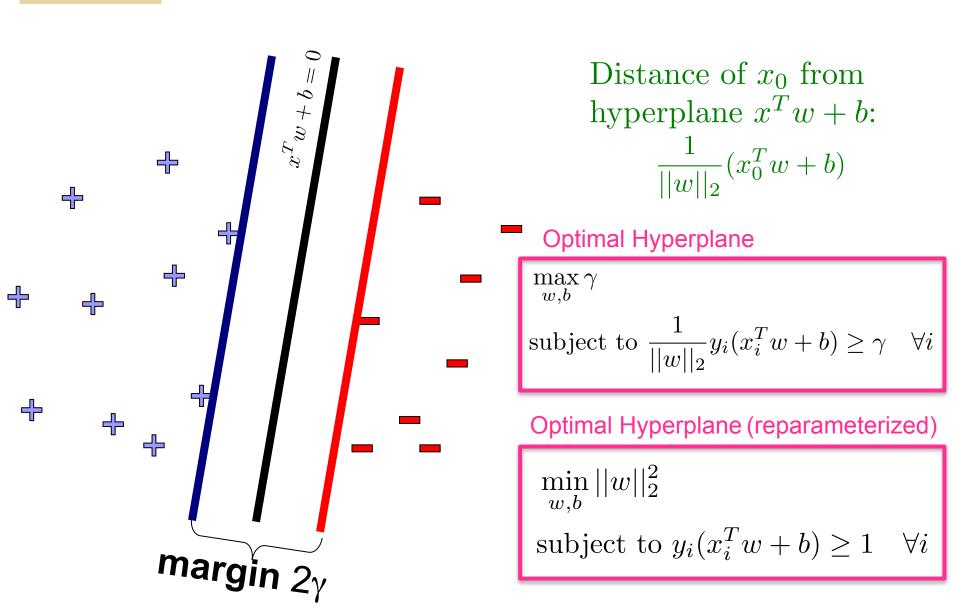
Distance from x_0 to hyperplane defined by $x^T w + b = 0$?

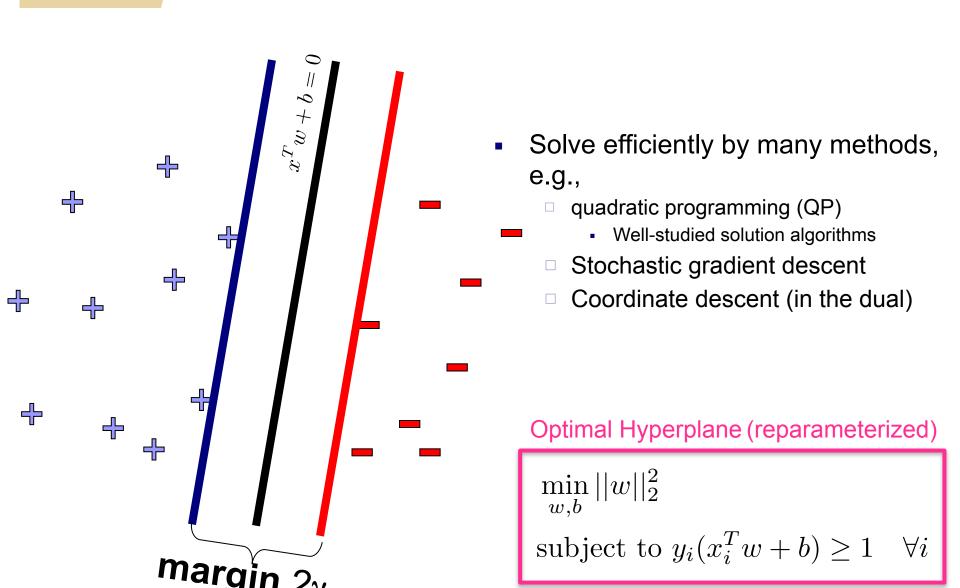




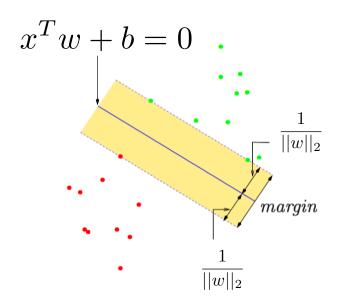








What are support vectors



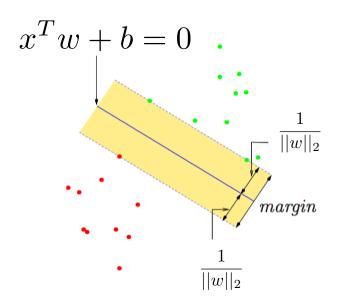
If data is linearly separable

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Note: the solution of this can be written in terms of very few of the training points. These points are known as support vectors.

What if the data is not linearly separable?



If data is linearly separable

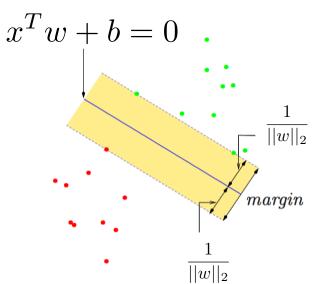
$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

Two options:

- 1. Introduce slack to this optimization problem
- 2. Lift to higher dimensional space

What if the data is not linearly separable?



$$x^T w + b = 0$$

$$\xi_2^* \qquad \xi_5^*$$

$$\frac{1}{||w||_2}$$

$$\frac{1}{||w||_2}$$

If data is linearly separable:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

If data is not linearly separable, some points don't satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

SVM as penalization method

Original quadratic program with linear constraints:

$$\min_{w,b} ||w||_2^2$$

$$y_i(x_i^T w + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0, \sum_{j=1}^n \xi_j \le \nu$$

• Using same constrained convex optimization trick as for lasso: For any $\nu \geq 0$ there exists a $\lambda \geq 0$ such that the solution the following solution is equivalent:

$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2$$

SVMs: optimizing what?

SVM objective:

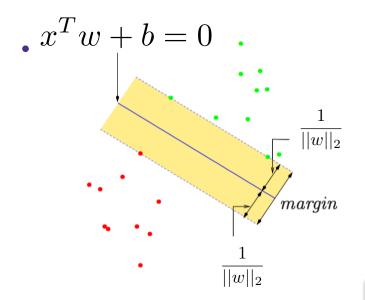
$$\sum_{i=1}^{n} \max\{0, 1 - y_i(b + x_i^T w)\} + \lambda ||w||_2^2 = \sum_{i=1}^{n} \ell_i(w, b)$$

$$\nabla_{w}\ell_{i}(w,b) = \begin{cases} -x_{i}y_{i} + \frac{2\lambda}{n}w & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ \frac{2\lambda}{n} & \text{otherwise} \end{cases}$$

$$\nabla_{b}\ell_{i}(w,b) = \begin{cases} -y_{i} & \text{if } y_{i}(b + x_{i}^{T}w) < 1\\ 0 & \text{otherwise} \end{cases}$$

Kernel methods

What if the data is not linearly separable?



some points don't satisfy margin constraint:

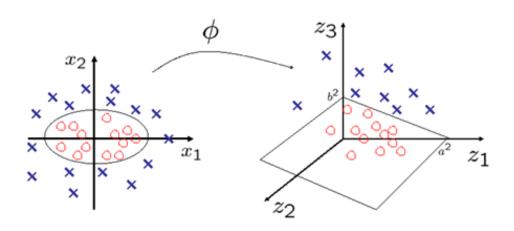
$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Two options:

- 1. Introduce slack to this optimization problem
- 2. Lift to higher dimensional space

What if the data is not linearly separable?

Use features of features of features...



Creating Features

Transformed data:

 $h: \mathbb{R}^d \to \mathbb{R}^p$ maps original features to a rich, possibly high-dimensional space

in d=1:
$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$$

for d>1, generate

$$\{u_j\}_{j=1}^p \subset \mathbb{R}^d$$

$$h_j(x) = (u_j^T x)^2$$

$$h_j(x) = \frac{1}{1 + \exp(u_j^T x)}$$

$$h_j(x) = \cos(u_j^T x)$$

Creating Features

Transformed data:

 $h: \mathbb{R}^d \to \mathbb{R}^p$ maps original features to a rich, possibly high-dimensional space

in d=1:
$$h(x) = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_p(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$$

for d>1, generate

$$\{u_j\}_{j=1}^p \subset \mathbb{R}^d$$

$$h_j(x) = (u_j^T x)^2$$

$$h_j(x) = \frac{1}{1 + \exp(u_j^T x)}$$

$$h_j(x) = \cos(u_j^T x)$$

Feature space can get really large really quickly!

©2018 Kevin Jamieson

Degree-d Polynomials

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

So, if we can represent our algorithms/decision rules as dot products and we can find a kernel for our feature map then we can avoid explicitly dealing with $\phi(x)$.

Linear Regression as Kernels

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree exactly d}$

$$d = 1 : \phi(u) = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1 v_1 + u_2 v_2$$

$$d = 2 : \phi(u) = \begin{bmatrix} u_1^2 \\ u_2^2 \\ u_1 u_2 \\ u_2 u_1 \end{bmatrix} \quad \langle \phi(u), \phi(v) \rangle = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 u_2 v_1 v_2$$

Feature space can get really large really quickly!

General d: Dimension of $\phi(u)$ is roughly p^d if $u \in \mathbb{R}^p$

Feature expansion can be written **implicitly** $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$

Examples of Kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^p$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^p$$

Gaussian (squared exponential) kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(u, v) = \tanh(\gamma \cdot u^T v + r)$$

The Kernel Trick

Pick a kernel K

For a linear predictor, show $w = \sum_i \alpha_i x_i$

Change loss function/decision rule to only access data through dot products

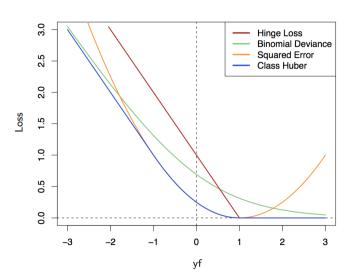
Substitute $K(x_i, x_j)$ for $x_i^T x_j$

Loss Functions

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i$$

$$x_i \in \mathbb{R}^d$$

$$y_i \in \mathbb{R}$$



Loss functions:

$$\sum_{i=1}^{n} \ell_i(w)$$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

 $0/1 \text{ loss: } \ell_i(w) = \mathbb{I}[\operatorname{sign}(y_i) \neq \operatorname{sign}(x_i^T w)]$

Hinge Loss: $\ell_i(w) = \max\{0, 1 - y_i x_i^T w\}$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_w^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

$$= \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

Why regularization?

Typically,
$$\mathbf{K} \succ 0$$
. What if $\lambda = 0$?
$$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Why regularization?

Typically,
$$\mathbf{K} \succ 0$$
. What if $\lambda = 0$?

$$\widehat{\alpha} = \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

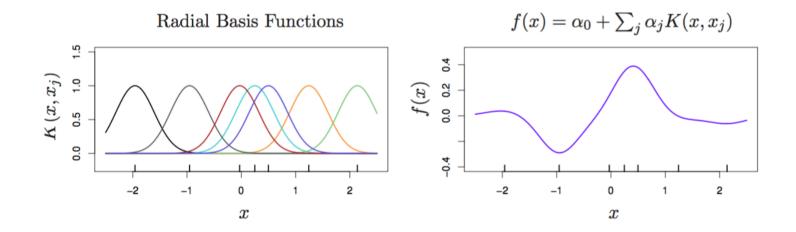
Unregularized kernel least squares can (over) fit any data!

$$\widehat{\alpha} = \mathbf{K}^{-1} \mathbf{y}$$

The Kernel Trick for SVMs

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

This is like weighting "bumps" on each point



RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

The bandwidth sigma has an enormous effect on fit:

$$\sigma = 10^{-2} \lambda = 10^{-4}$$

$$- \text{True } f(x)$$

$$- \text{Fitted } \widehat{f(x)}$$

$$- \text{Data}$$

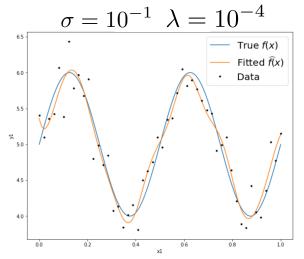
$$- \text{Data}$$

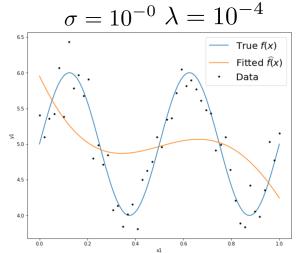
$$- \text{True } f(x)$$

$$- \text{Data}$$

$$- \text{True } f(x)$$

$$- \text{Data}$$





$$\widehat{f}(x) = \sum_{i=1}^{n} \widehat{\alpha}_i K(x_i, x)$$

RBF Kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

The bandwidth sigma has an enormous effect on fit:

