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Statistical models for classification

* So far, we have focused on regression, e.g., with least-squared loss

Ly h(x)) = (y — h(x))*

* Are there natural statistical models for classification?

E(y;h(x)) _ {1 y # h(x),

0 otherwise

 Can have {0,1},{1,2, ..., K}



Risk in classification

* |n classification, riskis (h) = Ex y|[1{Y # h(X)}]

Exy[1{Y # h(X)}] = ExBy x[1{Y # h(X)} | X
= ExPy x[Y #h(X)| X =

=Ex ZIP’(Y =i | X =z)1{h(z) # i}

=Ex | Y PY=i|X=u)
| ith(z)#1 i
=Ex[1-PY =h(X)| X =2z)].




Bayes’ optimal classifier

* Assuming the data is generated iid according to
(x5, 9:) ~ P(X,Y)

* The hypothesis h* minimizing R(h) = Ex y[|Y # h(X)]] is given by the
most probable class

h*(x) =argmax P(Y =y | X = x)

Y

 This hypothesis is called the Bayes’ optimal predictor for the
classification loss

* Thus, natural approach is again to estimate P(Y|X)



Natural estimator for P(Y | X)

* Fixsome x in X
* Find out all x_i that are equal to x; suppose we have m such samples

* A natural estimator would be

* What’s the problem of this?
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We need a model for P(Y=1 | X =X)

 What about a linear model?

Y=1

Y-AXis

Y-AXis

A 4

X-Axis



Link function for logistic regression

e Link function

o

WTX

) =

1

1 + exp(—w " x)

sigmoid

10



Logistic regression

* Logistic regression (a classification method) replaces the
assumption of Gaussian noise (squared loss) by independently, but
not identically distributed Bernoulli noise:

P(y | x,w) = Bernoulli(y; o(w ' x))



Key observation

 Decision boundary is linear!
- What’s the decision boundary?

- Why isit linear?
1

P(Y = Olw, X) =
= 0 ) = A oxp(wo + 55 i Xe)

exp(wo + ), wrXk)

P =1lw, X) =1 =P = 0w, X) = 5 wo + 5, weXr)

P(Y = 1|w, X)
P(Y = 0w, X)

= exp(wo + Z wy, X)
k

Linear Decision Rule!

P(Y = 1w, X) :w0+zkak
k

P(Y = 0|w, X)

log



How to fit logistic regression

Have a bunch of iid data: {(azi,yi) ?:1 Ti & Rd, Y; € {—1, 1}
i
P(Y = -1 =
( [, w) 1 + exp(wTx)
exp(w’! z)

PYY = 1|z, w) = 1 + exp(w'x)

This is equivalent to:

1
P(Y = y|z,w) =

1 + exp(—yw?!x)




MLE for logistic regression

w* € argmax P(D | w) = arg maxHP(yi | x;, W)
W Vo=l

= arg maleog P(y; | x;, w)

w i=1

= arg minz log (1 + exp (_inTXi))
Vo=t

* Negative log likelihood (=objective) function is given by n

R(w) = Z log (1 +exp (—yiw ' x;))

1=1

* The logistic loss is convex! = optimization with (stochastic) gradient descent



Logistic loss (log loss)




Gradient for logistic regression

e Loss for data point (x,%)

U(hw(x),y) = log (1 + exp (—yw ' x))

1

T 14+ exp(—yw ' x
exp (—ywTx)
— T | (—yX)
1 4+ exp (—yw ' x)

1
= B (—yx)

1 +exp(yw'x

T

* Gradient Vo /l(hy(x),y) ) cexp (—yw ' x) - (—yx)




Optimization: logistic regression

* Initialize w

e Fort=1,2,...do
- Pick data point (x, y) uniformly at random from data D
- Compute probability of misclassification with current model

1

P(Y = — —
( Y ‘ va) 1 _I_ exp(yWTX)

- Take gradientstep w < w47, -yx- P(Y = —y | w, x)



Logistic regression and regularization

* Use regularizer to control model complexity
* Instead of solving MLE

mvénz log (1 + exp (_inTXi»
=1

 Estimate MAP/solve regularized problem
- L2 (Gaussian prior)

m“lrnz log (1 + exp (_inTXi)) + AH“’H;
1=1
- L1 (Laplace prior)

m“i’nZlog (1 + exp (_inTxi)) + Aljwl];
i=1



Extension to multi-class logistic regression

* Maintain one weight vector per class and model

PlY =i|x,wy,...,W,.) =

> i—y exp(w

* Not unique - can force uniqueness by settingw_1=0
- this recovers logistic regression as special case

* Corresponding loss function (cross-entropy loss)

0(y; X, Wi,...,We) =—log P(Y =y | x,w1,..., W)



Illustration: logistic regression 3-class classifier

Sepal width

Sepal length

Dataset (Iris Data Set) and demo code: https://bit.ly/3bJ98CQ,

18
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Discriminative modeling

* Discriminative models aim to estimate conditional distribution

Py | x)

* Generative models aim to estimate joint distribution

P(y,x)

* Can derive conditional from joint distribution, but not vice versa.



Typical approaches to generative modeling

 Estimate prior on labels P(y)
» Estimate conditional distribution P(x | y) for each class y

* Obtain predictive distribution using Bayes’ rule: P(y | x) =P(y) P(x |y) / Z

0 1 2 3 4 5 6 7 8 9
0 I 2 3 4 §8 6 7 1t 9%
O | « 3 4 § &6 7 % 9
© ) 2 3 4 5 €6 72 B 7§

Example: hand-written digits



Gaussian Bayes classifiers (GBC)

* Model class label as generated from categorical variable
PY =y)=py, yecY={1,...,¢}

 Model features as multivariate Gaussians
P(x | y) = N(x; py, Ey)

 How do we estimate the parameters?



MLE for GBC

e Givendata D = {(x1,v1),--.,(Xn,yn)}

 MLE for class label distribution
- ~ Count(Y = y)

n

=
h<
||
Y
||
3>
<
|

 MLE for feature distribution:

p(X ‘ y) :N(X;ﬂyaii)

1 . 1 ) o
by = L Yy = _ _
Hy Count(Y = y) Z % J Count(Y = y) Z (%5 — fiy) (%5 — fiy)

JYi=y JYi=y




Discriminant functions for GBC

* Given P(Y =+1) =pi 5 P(x|y) = N(x; 1y, Zy)
* GBCis given by

P(Y = +1 | x)
=1
S
1
= log P+ + —log ——+
1—p+ 2 Z-I—




Fisher’s linear discriminant analysis (LDA), c =2

* Suppose we fix py =0.5
* Further, assume covariancesareequal: ¥, =¥_ =%

* Then the discriminant function for GBC could be simplified as
2|
2|

= [T 57 e ) = (e )T 57 e )

D+

f(x) = log 5 e

+ % log + ((X — ) BT (x - ﬁ—)) B ((X ~ ) (e ﬂ+)>



Fisher’'s LDA

* Assuming
- binary classification Y={-1,+1}
- equal class probabilities  p4+ = 0.9
- equal covariances Yy =X_=X

* Fisher's LDA predicts

y = sign(f(x)) = sign(w x +b)

A
A A

where w=X"'(4y —/i_) and b=



LDA vs logistic regression

 Fisher’s LDA uses the discriminant function
PY =+1|x)
PY = —1]x)

1
1+ exp (—f(x))
* Therefore, the class probability of LDA is

P(Y =+1|x)=0(w'x+Db)

f(x) =log =w' x+b

& P(Y =+1|x%) =

= o(f(x))

This is of the same form as logistic regression.



Fisher’s LDA vs logistic regression

* Fisher’s LDA

- Generative model, i.e., models P(X)Y)
- Assumes normality of X
- notvery robust against violation of this assumption

* Logistic regression
- Discriminative model, i.e., models P(Y | X) only
- Makes no assumptions on X
- More robust



