

Overview of classical ML: classification methods and decision trees

Cong Ma

Statistical models for classification

• So far, we have focused on regression, e.g., with least-squared loss

$$\ell(y; h(\mathbf{x})) = (y - h(\mathbf{x}))^2$$

Are there natural statistical models for classification?

$$\ell(y; h(\mathbf{x})) = \begin{cases} 1 & y \neq h(\mathbf{x}), \\ 0 & \text{otherwise} \end{cases}$$

• Can have {0,1}, {1,2, ..., K}

Risk in classification

• In classification, risk is $R(h) = \mathbb{E}_{X,Y}[1\{Y \neq h(X)\}]$

$$\mathbb{E}_{X,Y}[1\{Y \neq h(X)\}] = \mathbb{E}_X \mathbb{E}_{Y|X}[1\{Y \neq h(X)\} \mid X = x]$$

$$= \mathbb{E}_X \mathbb{P}_{Y|X}[Y \neq h(X) \mid X = x]$$

$$= \mathbb{E}_X \left[\sum_{i=1}^K \mathbb{P}(Y = i \mid X = x) 1\{h(x) \neq i\} \right]$$

$$= \mathbb{E}_X \left[\sum_{i:h(x)\neq i} \mathbb{P}(Y = i \mid X = x) \right]$$

$$= \mathbb{E}_X \left[1 - \mathbb{P}(Y = h(X) \mid X = x) \right].$$

Bayes' optimal classifier

Assuming the data is generated iid according to

$$(\mathbf{x}_i, y_i) \sim P(\mathbf{X}, Y)$$

• The hypothesis h* minimizing $R(h) = \mathbb{E}_{\mathbf{X},Y}[[Y \neq h(\mathbf{X})]]$ is given by the most probable class

$$h^*(\mathbf{x}) = \underset{y}{\operatorname{arg\,max}} P(Y = y \mid \mathbf{X} = \mathbf{x})$$

- This hypothesis is called the Bayes' optimal predictor for the classification loss
- Thus, natural approach is again to estimate P(Y|X)

Natural estimator for P(Y|X)

- Fix some x in X
- Find out all x_i that are equal to x; suppose we have m such samples
- A natural estimator would be

What's the problem of this?

Overview of classical ML: classification methods and decision trees

Logistic regression

Cong Ma

We need a model for $P(Y=1 \mid X = x)$

• What about a linear model?

Link function for logistic regression

Link function

$$\sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})}$$

Logistic regression

 Logistic regression (a classification method) replaces the assumption of Gaussian noise (squared loss) by independently, but not identically distributed Bernoulli noise:

$$P(y \mid \mathbf{x}, \mathbf{w}) = \text{Bernoulli}(y; \sigma(\mathbf{w}^{\top} \mathbf{x}))$$

Key observation

Decision boundary is linear!

- What's the decision boundary?
- Why is it linear?

$$\mathbb{P}(Y = 0 | w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\mathbb{P}(Y = 1 | w, X) = 1 - \mathbb{P}(Y = 0 | w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = \exp(w_0 + \sum_k w_k X_k)$$

Linear Decision Rule!

$$\log rac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = w_0 + \sum_k w_k X_k$$

How to fit logistic regression

Have a bunch of iid data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}$$

$$P(Y = -1|x, w) = \frac{1}{1 + \exp(w^T x)}$$

$$P(Y = 1|x, w) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$

This is equivalent to:

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}$$

MLE for logistic regression

$$\mathbf{w}^* \in \arg\max_{\mathbf{w}} P(D \mid \mathbf{w}) = \arg\max_{\mathbf{w}} \prod_{i=1}^n P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \arg\max_{\mathbf{w}} \sum_{i=1}^n \log P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \arg\min_{\mathbf{w}} \sum_{i=1}^n \log \left(1 + \exp\left(-y_i \mathbf{w}^\top \mathbf{x}_i\right)\right)$$

Negative log likelihood (=objective) function is given by n

$$\hat{R}(\mathbf{w}) = \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \mathbf{w}^{\top} \mathbf{x}_i \right) \right)$$

• The logistic loss is convex! → optimization with (stochastic) gradient descent

Logistic loss (log loss)

Gradient for logistic regression

• Loss for data point (\mathbf{x}, y)

$$\ell(h_{\mathbf{w}}(\mathbf{x}), y) = \log(1 + \exp(-y\mathbf{w}^{\top}\mathbf{x}))$$

• Gradient
$$\nabla_{\mathbf{w}} \ell(h_{\mathbf{w}}(\mathbf{x}), y) = \frac{1}{1 + \exp(-y\mathbf{w}^{\top}\mathbf{x})} \cdot \exp(-y\mathbf{w}^{\top}\mathbf{x}) \cdot (-y\mathbf{x})$$

$$= \frac{\exp(-y\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(-y\mathbf{w}^{\top}\mathbf{x})} \cdot (-y\mathbf{x})$$

$$= \frac{1}{1 + \exp(y\mathbf{w}^{\top}\mathbf{x})} \cdot (-y\mathbf{x})$$

Optimization: logistic regression

- Initialize w
- For t = 1, 2, ... do
 - Pick data point (x, y) uniformly at random from data D
 - Compute probability of misclassification with current model

$$\hat{P}(Y = -y \mid \mathbf{w}, x) = \frac{1}{1 + \exp(y\mathbf{w}^{\top}\mathbf{x})}$$

- Take gradient step $\mathbf{w} \leftarrow \mathbf{w} + \eta_t \cdot y\mathbf{x} \cdot \hat{P}(Y = -y \mid \mathbf{w}, \mathbf{x})$

Logistic regression and regularization

- Use regularizer to control model complexity
- Instead of solving MLE

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \mathbf{w}^{\top} \mathbf{x}_i \right) \right)$$

- Estimate MAP/solve regularized problem
 - L2 (Gaussian prior)

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \mathbf{w}^{\top} \mathbf{x}_i \right) \right) + \lambda \|\mathbf{w}\|_2^2$$

- L1 (Laplace prior)

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \mathbf{w}^{\top} \mathbf{x}_i \right) \right) + \lambda \|\mathbf{w}\|_{1}$$

Extension to multi-class logistic regression

Maintain one weight vector per class and model

$$P(Y = i \mid \mathbf{x}, \mathbf{w}_1, \dots, \mathbf{w}_c) = \frac{\exp(\mathbf{w}_i^\top x)}{\sum_{j=1}^c \exp(\mathbf{w}_j^\top \mathbf{x})}$$

- Not unique can force uniqueness by setting w_1 = 0
 - this recovers logistic regression as special case
- Corresponding loss function (cross-entropy loss)

$$\ell(y; \mathbf{x}, \mathbf{w}_1, \dots, \mathbf{w}_c) = -\log P(Y = y \mid \mathbf{x}, \mathbf{w}_1, \dots, \mathbf{w}_c)$$

Illustration: logistic regression 3-class classifier

Dataset (Iris Data Set) and demo code: https://bit.ly/3bJ98CQ

STAT 37710 / CMSC 35400 / CAAM 37710 Machine Learning

Generative Models for Classification

Cong Ma

Discriminative modeling

Discriminative models aim to estimate conditional distribution

$$P(y \mid \mathbf{x})$$

Generative models aim to estimate joint distribution

$$P(y, \mathbf{x})$$

Can derive conditional from joint distribution, but not vice versa.

Typical approaches to generative modeling

- Estimate prior on labels P(y)
- Estimate conditional distribution P(x | y) for each class y
- Obtain predictive distribution using Bayes' rule: P(y | x) = P(y) P(x | y) / Z

Example: hand-written digits

Gaussian Bayes classifiers (GBC)

• Model class label as generated from categorical variable

$$P(Y = y) = p_y, \ y \in \mathcal{Y} = \{1, \dots, c\}$$

Model features as multivariate Gaussians

$$P(\mathbf{x} \mid y) = \mathcal{N}(\mathbf{x}; \mu_y, \Sigma_y)$$

How do we estimate the parameters?

MLE for GBC

- Given data $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- MLE for class label distribution

$$\hat{P}(Y=y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{n}$$

MLE for feature distribution:

$$\hat{P}(\mathbf{x} \mid y) = \mathcal{N}(\mathbf{x}; \hat{\mu}_y, \hat{\Sigma}_y^2)$$

$$\hat{\mu}_y = \frac{1}{\text{Count}(Y = y)} \sum_{j:y_j = y} \mathbf{x}_j, \quad \hat{\Sigma}_y = \frac{1}{\text{Count}(Y = y)} \sum_{j:y_j = y} (\mathbf{x}_j - \hat{\mu}_y) (\mathbf{x}_j - \hat{\mu}_y)^\top$$

Discriminant functions for GBC

- Given $P(Y=+1)=p_+$; $P(\mathbf{x}\mid y)=\mathcal{N}(\mathbf{x};\mu_y,\Sigma_y)$
- GBC is given by

$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})}$$

$$= \log \frac{p_{+}}{1 - p_{+}} + \frac{1}{2} \log \frac{\left|\hat{\Sigma}_{-}\right|}{\left|\hat{\Sigma}_{+}\right|} + \frac{1}{2} \left[\left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{-})\right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}_{+}^{-1} (\mathbf{x} - \hat{\mu}_{+})\right)\right]$$

Fisher's linear discriminant analysis (LDA), c = 2

- Suppose we fix $p_+ = 0.5$
- Further, assume covariances are equal: $\Sigma_+ = \Sigma_- = \Sigma$
- Then the discriminant function for GBC could be simplified as

$$f(\mathbf{x}) = \log \frac{p_{+}}{1 - p_{+}} + \frac{1}{2} \left[\log \frac{\left| \hat{\Sigma}_{-} \right|}{\left| \hat{\Sigma}_{+} \right|} + \left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{-}) \right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}_{+}^{-1} (\mathbf{x} - \hat{\mu}_{+}) \right) \right]$$

$$= \frac{1}{2} \left[\left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{-}) \right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{+}) \right) \right]$$

$$= \frac{1}{2} \left[\left((\mathbf{x} - \hat{\mu}_{-})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{-}) \right) - \left((\mathbf{x} - \hat{\mu}_{+})^{\top} \hat{\Sigma}_{-}^{-1} (\mathbf{x} - \hat{\mu}_{+}) \right) \right]$$

Fisher's LDA

Assuming

- binary classification $\mathcal{Y} = \{-1, +1\}$
- equal class probabilities $p_+=0.5$
- equal covariances $\Sigma_+ = \Sigma_- = \Sigma$

• Fisher's LDA predicts

$$y = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$$
 where $\mathbf{w} = \hat{\Sigma}^{-1} (\hat{\mu}_{+} - \hat{\mu}_{-})$ and $b = \frac{1}{2} \left(\hat{\mu}_{-}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{-} - \hat{\mu}_{+}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{+} \right)$

LDA vs logistic regression

Fisher's LDA uses the discriminant function

$$f(\mathbf{x}) = \log \frac{P(Y = +1 \mid \mathbf{x})}{P(Y = -1 \mid \mathbf{x})} := \mathbf{w}^{\top} \mathbf{x} + b$$

$$\Leftrightarrow P(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))} = \sigma(f(\mathbf{x}))$$

• Therefore, the class probability of LDA is

$$P(Y = +1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$$

This is of the same form as logistic regression.

Fisher's LDA vs logistic regression

Fisher's LDA

- Generative model, i.e., models P(X,Y)
- Assumes normality of X
- not very robust against violation of this assumption

Logistic regression

- Discriminative model, i.e., models P(Y | X) only
- Makes no assumptions on X
- More robust