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 What’s a decision tree?

* Regression tree:
- How to grow a tree: decrease in squared error
- How to prune a tree
- How to predict given a tree

* Classification tree
- How to grow a tree: misclassification rate, information gain, Gini index
- How to predict

* Summary



Tree based methods

* Divide the input space into a number of simple regions

* Use simple prediction rules in each region



Adaptive feature selection

* Prediction based on (a sequence of) decision rules

watermelon




Regression trees

Trees

Build a binary tree, splitting along axes




» The goal is to find boxes Ry, ..., Ry that minimize the
RSS, given by

J
2: 2: (yz _ @Rj)Qa

J=1 ’iERj

where ¢ R, 18 the mean response for the training
observations within the jth box.



More details of the tree-building process

Unfortunately, it is computationally infeasible to consider
every possible partition of the feature space into J boxes.

For this reason, we take a top-down, greedy approach that
is known as recursive binary splitting.

The approach is top-down because it begins at the top of
the tree and then successively splits the predictor space;
each split is indicated via two new branches further down
on the tree.

It is greedy because at each step of the tree-building
process, the best split is made at that particular step,
rather than looking ahead and picking a split that will lead
to a better tree in some future step.
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How to grow a regression tree

Ri(j,s) = {X|X, < s} and Ra(j,s) = {X|X; > ).

Then we seek the splitting variable 3 and split point s that solve

min{min Z (y; — ¢1)* + min Z (yi—cg)ﬂ.

.ja S C1 ) C2 .
x;€ER1(7,) x;€ER2(7,s)



Pruning a tree

The process described above may produce good predictions
on the training set, but is likely to overfit the data, leading
to poor test set performance. Why?

A smaller tree with fewer splits (that is, fewer regions
Rq,...,Ry) might lead to lower variance and better
interpretation at the cost of a little bias.

One possible alternative to the process described above is
to grow the tree only so long as the decrease in the RSS
due to each split exceeds some (high) threshold.

This strategy will result in smaller trees, but is too
short-sighted: a seemingly worthless split early on in the
tree might be followed by a very good split — that is, a
split that leads to a large reduction in RSS later on.
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Tree pruning

* Greedily grow the tree is prone to overfitting

* Tree pruning phase

- Searching over all trees - and find the one with the best fit to data and

smallest size
mTin - Z L(Sy) + A|T]

veT
» We can prune back tree branches (i.e. merge a pair of leaf nodes)

recursively to choose the tree that minimizes the above objective
- Due to the greedy nature for the growth phase, the combined growth +
pruning process is not guaranteed to find the optimal tree



Learning decision trees

> Start from empty decision tree
> Split on next best attribute (feature)
- Use, for example, information gain to select attribute
- Spliton argmaxIG(X;) = argmax H(Y) — H(Y | X;)
> Recurse Z Z
> Prune X<t

M
fz)= > emlI(z € Ry).

W



Classification tree

* How to split a node?

* How to predict in the end?
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Another Measure: Gini Index

O Gini index: Used in CART, and also in IBM IntelligentMiner
QO If a data set D contains examples from n classes, gini index, gini(D) is defined as
0 gini(D) =1 - X}, p}
Q pj is the relative frequency of class j in D
Q If a data set D is split on A into two subsets D, and D,, the gini index gini(D) is
defined as
0 gini (D) = % gini(D,) + 'l’;—zl' gini(D,)
O Reduction in Impurity:
0 Agini(A) = gini(D) — gini,(D)

Q The attribute provides the smallest gini,;. (D) (or the largest reduction in
impurity) is chosen to split the node (need to enumerate all the possible splitting
points for each attribute)
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Computation of Gini Index

O Example: D has 9 tuples in buys_computer = “yes” and 5 in “no”

2 2
gini(D) =1 —(1%] —(%) =0.459

0 Suppose the attribute income partitions D into 10 in D;: {low, medium} and 4 in D,

. . 10 . . 4 . .
d ginlincomee{low,medium} (D) = g (D7) + aglnl(Dz)

(3ot
14 10 10 14 4 4
= Giniincomee{high} (D)
3 GiNigoy highy 1S 0-458; GiNiggiym highy 1S 0-450
@ Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index
Q All attributes are assumed continuous-valued

O May need other tools, e.g., clustering, to get the possible split values
O Can be modified for categorical attributes
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Recall: decision trees

 Decision Trees are

- low bias, high variance models - W -
= Unless you regularize a lot. .. N
= . .butthen often worse than Linear Models

- highly non-linear xisn,
= Can easily overfit vi<u - ox<n

= Different training samples can lead to very different trees

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a

~ ~ ~ ~ two-dimensional feature space by recursive binary splitting, as used in A
2 2 2 1i l f b bi litti d in CART
ED — hD X ) = ]ED |:hD X) — i| —|—ED <h/D X) — ED’ hD’ X ) applied to some fake data. Top left panel shows a general partition that cannot
(y ( ) ( ) Y ( ) < ) be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
\a ~~ o~ ~ ' - 7

responding to the partition in the top right panel, and a perspective plot of the
expected error bias variance prediction surface appears in the bottom right panel.




How to improve decision trees?

* What’s the problem of decision tree?
- Low bias but high variance

* We'd like to keep the low bias, but decrease the variance
- Key idea: build multiple trees and take the average
- We know averaging reduces variance (Caveat!)



Average over multiple different datasets

 Goal: reduces variance P(X,y)
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“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf
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Bagging

 Goal: reduces variance D
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“Bagging Predictors” [Leo Breiman, 1994]
http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf



http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf

Bagging = Bootstrap Aggregating

 Learns a predictor by aggregating the predictors learned over

multiple random draws (bootstrap samples) from the training data
- Abootstrap sample of sizemfrom D : {(x;,v;),i =1,...,n} is

{(x\,y),i=1,...,m}

where each (x;, y;) is drawn uniformly at random from D (with replacement)



Bagged trees

Algorithm:

1. Obtain B bootstrap resamples of our training sample
2. For each resample, grow a large (low bias, high variance) tree
3. Average/aggregate predictions from all of the trees

a. Regression: take the mean of the B predictions

b. Classification: take the majority vote of the B predictions



Aggregating weak predictors

* Imagine we have a model we can fit to the training data to produce

a predictor that we use to predict £(Y|X=x)
- E.g. adecision tree or logistic regression

* With bagging, we
- compute B different bootstrap samples

- learn a predictor for each one
- aggregate the predictors to form the target predictor



Bootstrap

» Assume you have a sample X7, ..., X,, of points and, say, an
estimate O of a true parameter © of this population. You
would like to know the distribution of the estimate © (for
example, because you want to construct confidence sets).

» You now draw a subsample of m points of the original sample
(with our without replacement), and on this subsample you
compute an estimate of the parameter you are interested in.

» You repeat this procedure B times, resulting in B bootstrap
estimates O, ..., Op.

» This set now gives an “indication” about how your estimate is
distributed, and you can compute its mean, its variance,
confidence sets, etc.



Bagging

» As in bootstrap, you generate B bootstrap samples of your
original sample, and on each of them compute the estimate
you are interested in: ©4,...,0p

» As your final estimate, you then take the average:
Opeg = mean(0©q, ..., 0p).

» The advantage of this procedure is that the estimate ©,, can
have a much smaller variance than each of the individual
estimates (:)b:

» |f the estimates @b were i.i.d. with variance o2, then the
variance of ©y,, would be ¢%/B .

» If the estimates are identically distributed but have a
(hopefully small) positive pairwise correlation p, then the
variance of ébag is po? + (1 — p)"g. If pis small and B is
large, this is good.



Decorrelate the trees

» Key: we’d like “diversity” in the trees we build, or further
decorrelate the trees we build

* Use random features in splitting the nodes!



Random Forests

* Goal: reduce variance
- Bagging can only do so much
- Resampling training data

* Random Forests: sample data & features!
- Sample &’
- Train DT

= At each node, sample features

- Average predictions



Random Forests

* Extension of bagging to sampling features

* Generate bootstrap D’ from D

- Train DT top-down on D’
- Each node, sample subset of features for splitting

= Can also sample a subset of splits as well

* Average predictions of all DTs

“Random Forests — Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf
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Algorithm for random forest

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}5.
To make a prediction at a new point z:
Regression: ff(w) = Ele Ty(x).

Classification: Let Cy(x) be the class prediction of the bth random-forest
tree. Then CE(z) = majority vote {Cy(z)}P.
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Average performance over many datasets
Random Forests perform the best

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008
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AdaBoost for binary classification

We begin by describing the most popular boosting algorithm due to
Freund and Schapire (1997) called “AdaBoost.M1.” Consider a two-class
problem, with the output variable coded as Y € {—1,1}. Given a vector of
predictor variables X, a classifier G(X) produces a prediction taking one
of the two values {—1,1}. The error rate on the training sample is

| N
IT = — ;I(yi #+ G(z;)),

and the expected error rate on future predictions is Exy I(Y # G(X)).

» Purpose of Boosting: sequentially apply the weak classification algorithm to repeatedly
modified versions of the data, thereby producing a sequence of weak classifiers



Weak learner to strong learner?

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 — ~

« 2001 Friedman: “Practical for arbitrary losses”



Figure for AdaBoost

|

|

Training Sample JEEEE

FINAL CLASSIFIER

G(z) = sign [zﬁ‘,{zl ame(x)]

[}

- Gu(@)

- Gs()

- Gala)

\J

Gi(z)

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
stons of the dataset, and then combined to produce a final prediction.



Given: (X1, V1 )s. ... (Xm. V) Where x; € 3%” y, e{—1,+1}.

Initialize| Dy (i) = 1/m fori=1,. Initial Distribution of Data

Forr=1,....T:

e | Train weak learner using distribution D;. |
[Get weak hypothesis ; : 2" — {—1, —I—l}]

e Aim: select i, with low weighted error:

Train model

& = Priup, [h(x;) # yi].| < Error of model

1 1_81‘ . e
= z1n - ) Coefficient of model
1

e Update, fori=T1,...,m

e Choose|oy

[\

D, (i — 04 yihy (X L
[D,+1(i): t(z)exp(Zta;y t(x))J Update Distribution

where Z; is a normalization factor (chosen so that D, ; will be a distribution).

Output the final hypothesis:

T
H(x) = sign (Z octht(x)> .| <— Final average

Theorem: training error drops exponentially fast

http://rob.schapire.net/papers/explaining-adaboost.pdf
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Boosting fits an additive model

The success of boosting is really not very mysterious. The key lies in ex-
pression (10.1). Boosting is a way of fitting an additive expansion in a set
of elementary “basis” functions. Here the basis functions are the individual

classifiers G,,(x) € {—1,1}. More generally, basis function expansions take
the form

f(.’)?) = Z 6’mb(x§7m)a (10.3)

where (3,,,m = 1,2,..., M are the expansion coefficients, and b(z;vy) € IR
are usually simple functions of the multivariate argument x, characterized

by a set of parameters v. We discuss basis expansions in some detail in
Chapter 5.



Typically these models are fit by minimizing a loss function averaged
over the training data, such as the squared-error or a likelihood-based loss
function,

{,Bm,»ym}M Z L (yz, Z ,me(a:z,’ym)) (10.4)

Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize fo(z) = 0.

2. Form=1to M:

(a) Compute
N
(«Bm, 'Ym) - argrgng L(yia fm—l(xi) + ,Bb(.’l,',,,, 7))
"=l

(b) Set fin(z) = fim—1(z) + Bmb(z; Ym)-

36



Boosting for regression

Ly, f(z)) = (y — f(x))?,

one has

L(yza fm—l(:ri) + /Bb(mz’}/)) — (yz - fm—l(mz') - 6b($t7))2
— (Ti‘m — 5b($2~ 7))2’ (107)

where 7im = yi — fm—1(z;) is simply the residual of the current model



AdaBoost with exponential loss

We now show that AdaBoost.M1 (Algorithm 10.1) is equivalent to forward
stagewise additive modeling (Algorithm 10.2) using the loss function

L(y, f(z)) = exp(—y f(z)). (10.8)

A i

For AdaBoost the basis functions are the individual classifiers G,,(z) €
{—1,1}. Using the exponential loss function, one must solve

(Bm,Gm) = arg I[glgl Z exp[—yi(fm—-1(zi) + BG(z:))]

for the classifier G,, and corresponding coefficient [3,, to be added at each
step. This can be expressed as

N

(B, Gm) = argmain ™ exp(—Fy: G(s)) (10.9)
=1

(

7

with w\™ = exp(—y; fm—1(zi)). Since each w!™ depends neither on f3



Why does boosting work?

» AdaBoost can be understood as a procedure for greedily minimizing
the exponential loss over T rounds:

U(yi, h(x;)) = exp(—yih(x;))  where h(x;) = Zatht(xi)

- Why?

“Prediction games and arcing classifiers” [Leo Breiman, 1999]
https://www.stat.berkeley.edu/~breiman/games.pdf
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Interpretation of Adaboost

* Choosing the first classifier

(o, hy1) = arg minZZ(yi, ah(x;)) = arg minZexp(—yi - ah(x;))

ah iy oh g

* Update atround t
t—1
hi_1(x) = ZOzTﬁT(X)
T=1

(g, hy) = arg minZE(yi, hi—1(x) + ah(x;))

wh =1

— arg minZeXp(—yi ' (ilt—1<X> + ah(x;)))

ah =1



Interpretation of Adaboost

(v, he) = argmin Y ~exp(—y; - (he—1(x;) + ah(x;)))

osh g

m
= argmin ) _ exp(—yihe—1(xi)) exp(—yi - @h(x;))
a,h T4 ~ ~~ -
RE

* Correcting the label for misclassified points
- Giving those points higher weights when training classifier in future iterations

* We will solve h and a separately



Solving for h

e Fixa, h,=arg min2w§t) exp(—y; - ah(x;))
o=



Solving for a

* Now solve for



AdaBoost weight update

 Putting things together,

. 1 1 —err;
h; = arg min w, 1[h(x;) # yi] o = — In t
h Zzn | W (t) Z 2 err;,

\ . J/
~

errﬁt

* Therefore, weights for next round are

Wi = exp(—y; (he—1 (%) + ashy(x))
— gxp(_yz’ht—l(xz’)Z’ eXp(—Oétyz'ilt(Xz'))

N

wl®




Why do we care about exponential loss?

* Fisher consistent loss

It is easy to show (Friedrhan et ai., 20605 that

: N 1 Pi(Y=:1]%)
*(g) = E Yiz)y = 21
f(@) = argmin By (7)) = 3108 5y — 1y

(10.16)



Gradient boosting

* Consider a generic loss function
- E.g. squared loss, exponential loss

* Given current predictor h;_1(x) , we aim to find new predictor h(x) so
that the sum h;_;(x) + h(x) pushes the loss towards its minimum as
quickly as possible

* Gradient boosting: choose h in the direction of the negative
gradient of the loss



Gradient boosting

Gicadiod Boosting

A
v

Stact wtA an mitial  wodel 29, '\h), UQ:;,Li Yi

 Fit a model to the negative gradients

, for b=1,2, -

» XGBoost is a python package for “extreme’

. . colemlate nagodine gradiewts
gradient boosting

-q(x) = = dL(ys, . (x))
BlanxD

§it & wodad h, (eg. tree) to negacive
Grodiouds - - argmin 7 2 L(-90)n)

- Folk wisdom: knowing logistic regression and
XGBoost gets you 95% of the way to a winning
Kaggle submission for most competitions

- State-of-the-art prediction performance e 0O = 1,00 + 8.0,

= Won Netflix Challenge whas Bis o shep s parauckec
= Won numerous KDD Cups we find  compitationally Fo miniwim s Loss.

» |ndustry standard ;e C
i bu & b » ToP

Willett & Chen (2020). “CMSC 35400: Machine Learning”



https://voices.uchicago.edu/machinelearning/stats37710-cmsc35400-s20/
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