Estimating Shared Subspace with AJIVE:
Power and Limitation of Multiple Data Matrices
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Multimodal single-cell data

RNA expression Protein
abundance
N\ Vo
Chromatin 4 \ DNA
accessibility methylation

RAC u

Each modality captures a different biological view
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Multimodal data are ubiquitous

Examples with multiple high-dimensional data types

Field Object Data types

Computational biology Tissue samples Gene expression, microRNA, genotype, protein
abundance/activity

Chemometrics Chemicals Mass spectra, NMR spectra, atomic composi-
tion

Atmospheric sciences Locations Temperature, humidity, particle concentrations
over time

Internet traffic ‘Websites Word frequencies, visitor demographics, linked
pages

— from Lock et al. '13
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Multimodal data are ubiquitous

Ezamples with multiple high-dimensional data types

Field Object Data types

Computational biology Tissue samples Gene expression, microRNA, genotype, protein
abundance/activity

Chemometrics Chemicals Mass spectra, NMR spectra, atomic composi-
tion

Atmospheric sciences Locations Temperature, humidity, particle concentrations
over time

Internet traffic ‘Websites Word frequencies, visitor demographics, linked
pages

— from Lock et al. '13
How to integrate information across different data types? )

4/ 39



Learning shared structure

@ 90 O
83 88 88 &8
J

see e.g., Argelaguet et al. '18, Fan el al. '19, Arroyo et al. '22
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Learning shared and unique structures

26 OC @ W

58 58 58 48

see e.g., Lock et al. 18, Lin and Zhang '23, Prothero et al. '24
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Two key questions

e ldentification: How to define shared and unique structures?

e Estimation: How to estimate shared and unique structures?
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Joint and Individual Variation Explained (JIVE)

— Lock et el. '13

JIVE

We observe K matrices { Ay }1<p<ix with Ay € R"™%4 and

A= UV + UWET + Ey
—_ —_ L
rank—r rank—ry, Noise

shared component  unique component

e U* € O™*" is shared column space
e U; € O™ " are unique column spaces with U, L U
o V¥ € R%>" and W} € R4k are loading matrices
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Two key questions

e ldentification: How to define shared and unique structures?

e Estimation: How to estimate shared and unique structures?
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Defining shared and unique structures in JIVE

A= UwT o+ uiwy!t
| I—| | I— |
rank—r rank—ry,

shared component  unique component

JIVE defines shared information to be shared subspace Ni_; col(Ajf) )
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Defining shared and unique structures in JIVE

A= UwT o+ uiwy!t
| I—| | I— |
rank—r rank—ry,

shared component  unique component

JIVE defines shared information to be shared subspace Ni_; col(Ajf) )

But, does col(U*) = NE_,col(A%)?
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Faithfulness: col(U*) C N&_ col( A7)

Ay = UV o+ upwyT
| I | | I |
rank—r rank—ry,

shared component  unique component

e Counterexample: V¥ = W[
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Faithfulness: col(U*) C N&_ col( A7)

A= vl o+ giwyT
| IS | | S
rank—r rank—ry,

shared component  unique component

e Counterexample: V¥ = W[

e Faithfulness is equivalent to assuming

rank(A%) =7 + 7
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Exhaustiveness: N col(A}) C col(U*)

A= Uvyl 4+ UrwyT
]

| IS |

rank—r rank—ry,
shared component  unique component

e Counterexample: {U}} are identical
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Exhaustiveness: N col(A}) C col(U*)

A= Uvyl 4+ UrwyT
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| IS |

rank—r rank—ry,
shared component  unique component
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Exhaustiveness: N col(A}) C col(U*)

A= UV o+ Uiwy'
| I—| | I— |
rank—r rank—ry,

shared component  unique component

e Counterexample: {U}} are identical

e Exhaustiveness is equivalent to assuming

NE_ col(U}) = @

Now, U* is identifiable since col(U*) = N¥_ col(A}) )
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Two key questions

e ldentification: How to define shared and unique structures?

e Estimation: How to estimate shared and unique structures?
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Angle-based JIVE (AJIVE)

— Feng et al. '18

AJIVE: a two-step spectral method

@ Estimate shared + unique column space of each Ay:
Let Uy be top-(r + ri) left singular vectors of Ay

@ Estimate shared column space: o
Let U be the top-r eigenvectors of S0, UpU,’
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Angle-based JIVE (AJIVE)

— Feng et al. '18

AJIVE: a two-step spectral method

© Estimate shared + unique column space of each Ay:
Let Uy be top-(r + ri) left singular vectors of Ay

@ Estimate shared column space: o
Let U be the top-r eigenvectors of S0, UpU,’

e In the noiseless case, AJIVE recovers U* exactly

e How does AJIVE perform with noisy observations?
<+ focus of this talk
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Theoretical results



Key problem parameters

Performance of AJIVE and hardness of shared subspace estimation
depend on

e n,d,r,o, and mininum singular value miny oy, (Aj)
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Key problem parameters

Performance of AJIVE and hardness of shared subspace estimation
depend on

e n,d,r,o, and mininum singular value miny oy, (Aj)

e K: number of matrices
— benefit of using multiple matrices?

e (: misalignment level of unique subspaces
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Misalignment of unique subspaces

Recall for identifiability, we assume

K col(U}) = @
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Misalignment of unique subspaces

Recall for identifiability, we assume

K
1
NE colU}) =2 — HKZUgU,jT <1
k=1

e — |
Avg. Proj. Mat
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Misalignment of unique subspaces

Recall for identifiability, we assume

K
1
NE colU}) =2 — HKZUgU,jT <1
k=1

e — |
Avg. Proj. Mat

Definition 1 (Misalignment)

We say collection of subspaces {U} }1<k<k is #-misaligned if

<1-86

| K
e S urup’
=1

e 0 tells us how misaligned unique subspaces are
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Range of ¢

f-misalignment

<1-46

1 & T
Hszw
k=1

e Fully aligned: when N&_, col(U}) # @, we have § =0
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Range of ¢

f-misalignment

<1-46

=2 UiU;
K=

e Fully aligned: when N&_, col(U}) # @, we have § =0

e Fully misaligned: when {U}}1<i<k are orthonormal to each
other, we have § =1 —1/K
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Range of ¢

f-misalignment

<1-46

=> UU;
K=

e Fully aligned: when N&_, col(U}) # @, we have § =0

e Fully misaligned: when {U}}1<i<k are orthonormal to each
other, we have § =1 —1/K

e Any 6 € (0,1 —1/K] is realizable by some {U}}
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Performance guarantees of AJIVE

Let Omin = ming oryry, (Ax)

For simplicity suppose n =dy =---=dg, r=r1=---=rg <1
Theorem 2 (Yang, Ma ’'25)

Assume gT\f‘ < min{v0,VK0}. AJIVE obeys

o E+L+ 1 on
omin YV K KO  6(1NK0) Uﬁﬁn

Hﬁf]\T i U*U*T

| <
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Performance guarantees of AJIVE

Let Omin = ming oryry, (Ax)
For simplicity suppose n =dy =---=dg, r=r1=---=rg <1
Theorem 2 (Yang, Ma ’'25)
Assume gT\f‘ < min{v0,VK0}. AJIVE obeys

o E+L+ 1 on
omin YV K KO  6(1NK0) Uﬁﬁn

Hﬁf]\T i U*U*T

| <

5o/ % * 5g: first-order error in high-SNR regime

1 _o%n
0(IANK0) o2

min

: second-order error in low-SNR regime
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High-SNR regime



Minimax lower bounds for estimating col(U*)

Theorem 3 (Yang, Ma '25)

J2-2 /2o

inf sup E {HﬁﬁT —-uUur’ p V7

U {A;}
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Minimax lower bounds for estimating col(U*)

Theorem 3 (Yang, Ma ’25)

g n n r
Omin K Ko

inf sup E {HﬁﬁT —-uUur’
U {A;}

2

Recall upper bound of AJIVE when SNR is high:

g r

T

<
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Minimax lower bounds for estimating col(U*)

Theorem 3 (Yang, Ma '25)

g

inf sup E {HﬁﬁT —-uUur’
U {A;}

2

.
Omin K Ko

Recall upper bound of AJIVE when SNR is high:

g r

T

<

AJIVE is minimax optimal in high-SNR regime

21/ 39



Understanding optimal rate under high SNR

A= UV + UWET + E
rank—r rank—ry Noise

shared component  unique component

a
[ ]

\/ 7¢: optimal est. error when unique components are known

Omin
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Understanding optimal rate under high SNR

A= UV + UWET + E
rank—r rank—ry Noise

shared component  unique component

7—1/7¢: optimal est. error when unique components are known
min

/- additional error due to unknown unique subspaces
Omin Ko
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Understanding optimal rate under high SNR

A= UV + UWET + E
rank—r rank—ry Noise

shared component  unique component

o n.

e /4 optimal est. error when unique components are known
min

/- additional error due to unknown unique subspaces
Omin Ko

Shared subspace estimation is harder as unique subspaces are more
aligned, i.e., 8 is smaller

22/ 39



Empirical results: Large 6

Estimation error

2.0

1.0

x10°3

—— AJIVE
Linear fit

A
Ve
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vn

x10~%

—+— AJIVE
1.04 Linear fit

Estimation error

0.05 0.10

VK

—UU""|| x \/n/K

0.15 0.20
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Empirical results: Small 6

Estimation error
- -

x10-

x10~°

—— AJIVE f\f« 4 —— AJIVE
5 Linear fit Linear fit

\é}\f
Estimation error

o

5\&

Y

2

p 0
20 10 60 80 100 0.00 0.05 010

/v VK

0.15

6 € (0.0001,0.01): |UUT —U*U*T| x \/1/K8

0.20
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Empirical results: Small 6

Estimation error

x10~°

2.2

—— AJIVE

2.14

2.01

1.94

1.8+

1.7 1
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4 6 8 10 12 14 16 18 20
vn
6 = 0.0001
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Low-SNR regime



Non-diminishing error in low-SNR regime

Revisiting upper bound of AJIVE when SNR is low:

1 on

‘<
~O(1AKO) o

min

Hﬁﬁ‘l’ _UrurT
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Non-diminishing error in low-SNR regime

Revisiting upper bound of AJIVE when SNR is low:

Hﬁfﬁ A ‘ S 0(1 /\1K0) ' 5;1

Estimation error does NOT converge to 0 as K increases
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Non-diminishing error in low-SNR regime

Revisiting upper bound of AJIVE when SNR is low:

1 on

‘<
~O(1AKO) o

min

Hﬁﬁ‘l’ _UrurT

Estimation error does NOT converge to 0 as K increases

Is this artifact in analysis or fundamental limitation?
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Two experimental settings

A= UVFT + Wy + E,
1 | A | —
rank—r rank—ry, Noise

shared component  unique component

e Random loadings: V;* and W} are independent random
orthonormal matrices

e Shared loadings: Let V* and W* be random orthonormal
matrices. Set VX = V* and W = W™ for all k
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AJIVE has non-diminishing error

“© 0.016 4
=
O
7
20
=)
= 0.008 1
[
o —+— random loading
=
8 shared loading
£ 0.0041
=
<
=
=
17
3 0.002

20 40 60 80 100

Shared vs random loadings on ||[UUT — U*U*T|| vs K
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Intuition: Bias aligns

Q Let U;, be top-(r + ry) left singular vectors of Ay,
@ Let U be top-r eigenvectors of Zszl AU/k/ﬁkT

30/ 39



Intuition: Bias aligns

Q Let U;, be top-(r + ry) left singular vectors of Ay,
@ Let U be top-r eigenvectors of Zszl AU/k/ﬁkT

e SVD is biased: ﬁvij}j is biased estimate of column space of A}

30/ 39
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Q Let U;, be top-(r + ry) left singular vectors of Ay,
@ Let U be top-r eigenvectors of Zszl AU/k/ﬁkT

e SVD is biased: ﬁvij}j is biased estimate of column space of A}

e Under shared loading, individual bias can be aligned, inducing a
non-diminishing error in second step of AJIVE
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Intuition: Bias aligns

O Let U, be top-(r + ry) left singular vectors of Ay,
@ Let U be top-r eigenvectors of Zszl ﬁk/ﬁg

e SVD is biased: @’[j];r is biased estimate of column space of A}

e Under shared loading, individual bias can be aligned, inducing a
non-diminishing error in second step of AJIVE

Is non-diminishing error fundamental to shared subspace estimation? J
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Oracle lower bound



Oracle spectral estimator

e Suppose unique components Ulek*T are known, optimal
estimator is top-r eigenspace of

1 us * * T * * T T
?Z(Ak—Uka ) (A —UpwiT)
k=1
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Oracle spectral estimator

e Suppose unique components Ulek*T are known, optimal
estimator is top-r eigenspace of

1 i * * T * * T T
?Z(Ak—Uka ) (A —UpwiT)
k=1

e When unknown, replace U/I:Wk*—r by estimate
For instance, oracle-aided estimate

top-ry SVD of  PLA, =UW;' + PLE,,

where Pt =1 - U*U*"
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Non-diminishing error of oracle estimator

Oracle spectral estimator

Q Let U, W, be top-ri, SVD of PLA;, = UyW;T + PLE;
Q Let ﬁoracle be top-r eigenspace of

K PN e\ T
> (A -OW]) (A - W)

1
K k=1
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Non-diminishing error of oracle estimator

Oracle spectral estimator

Q Let U, W, be top-ri, SVD of PLA;, = UyW;T + PLE;

Q Let ﬁoracle be top-r eigenspace of

K P e\ T
Z(Ak—UkaT) (Ak_Uk:WkT)

1
K k=1

Theorem 4 (Yang, Ma ’'25)
There exist U*, {UF Y |, (Vi | {WFE | such that

4,2
’ > 020471 _Cglogn oyn
o

min VK  Onmin

7 77T *TTx T
HUOFaClerracle -U"U
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Connection to nonconvex MLE

Maximum likelihood estimator

K
min v +UW, — A, |?
oo kZ::l UV, KWy kllE

subjectto  U'U =1, UlU. =1, U'U,=0.4,
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Connection to nonconvex MLE

Maximum likelihood estimator

K
min v +UW, — A, |?
oo ;::1 UV, KWy kllE

subjectto  U'U =1, UlU. =1, U'U,=0.4,

Alternating minimization (AltMin):
e Fixing shared subspace U, find unique components UkaT
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Connection to nonconvex MLE
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K
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Connection to nonconvex MLE

Maximum likelihood estimator

K
min Uv, + UWwW, — A, |?
oo kZ::l UV, KWy kllE

subjectto  U'U =1, UlU. =1, U'U,=0.4,

Alternating minimization (AltMin):
e Fixing shared subspace U, find unique components UkaT
e Fixing unique components {U,W,'}, find shared component U

oracle spectral estimator = one-step AltMin of MLE from U* J

34/ 39



Connection to nonconvex MLE

Maximum likelihood estimator

K
min Uv, + UWwW, — A, |?
oo kZ::l UV, KWy kllE

subjectto  U'U =1, UlU. =1, U'U,=0.4,

Alternating minimization (AltMin):
e Fixing shared subspace U, find unique components UkaT
e Fixing unique components {U,W,'}, find shared component U

oracle spectral estimator = one-step AltMin of MLE from U* J

MLE is inconsistent as K — oo
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Shared subspace estimation
as an incidental parameter problem

— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations { Ay}
is governed by two sets of parameters:
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Shared subspace estimation
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— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations { Ay}
is governed by two sets of parameters:

e structural parameters U™, which appears in the law of every
observation

e incidental parameters ({U}},{V, '}, {W}}), which appears only
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Shared subspace estimation
as an incidental parameter problem

— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations { Ay}
is governed by two sets of parameters:

e structural parameters U™, which appears in the law of every
observation

e incidental parameters ({U}},{V, '}, {W}}), which appears only
in law of each individual observation

MLE can be inconsistent for estimating structural parameters
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Classical example: Fixed-effect model

Setup:
(X;,Y;)) ~ N(aj,0%), i=1,...,n
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Classical example: Fixed-effect model

Setup:
(Xiayvi)NN(aiaa-Q% izlv"'vn
MLE:
_XitYi o, 1K, s (Xi—Y))?
oy = B N = ﬁ;si, S; 1

36/ 39



Classical example: Fixed-effect model

Setup:
(Xiayvi)NN(aiao-Q% izlv"'vn

MLE:

Neyman-Scott problem:

e Bias in estimating o?:

E(s?) = % (not equal to %)

e As n — oo, MLE is inconsistent

36/ 39



Another interesting example: Rasch Model

Setup: Probability of correct response of subject i to item j:

- . exp(@i — ,B])
P(}fw a 1) o 1 + eXp(QZ' — ,Bj)7

e 0;: Ability parameter of subject 7 (incidental parameters)

for1<i<n,1<j<m

e (3;: Difficulty parameter of item j (main parameters of interest)
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Another interesting example: Rasch Model

Setup: Probability of correct response of subject i to item j:

- N exp(@i — ,B])
P(}fw o 1) o 1 + eXp(QZ' — ,Bj)7

e 0;: Ability parameter of subject 7 (incidental parameters)

for1<i<n,1<j<m

e (3;: Difficulty parameter of item j (main parameters of interest)

Neyman-Scott problem: Fixing m, as n — oo, MLE is inconsistent

Y. Yang, and C. Ma, “Random pairing MLE for estimation of item parameters in
Rasch model,” arXiv:2406.13989, 2024 :l —
[AD)

_.
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Neyman-Scott’s problem in our case

A= UV + UW +E
rank—r rank—ry, Noise

shared component  unique component
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Neyman-Scott’s problem in our case

A= UV + UW +E
rank—r rank—ry, Noise

shared component  unique component

Maximum likelihood estimator

K

SNV +UW,! — Agl}

k=1

subjectto U'U =1I,, UlU.=1,, U'Uy=0.,

min
U,Uy, Vi, Wy,
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Neyman-Scott’s problem in our case

A= UV + Wy + E,
rank—r rank—ry, Noise

shared component  unique component

Maximum likelihood estimator

K

S NUV + UW, — Aylf

k=1

subjectto U'U =1I,, UlU.=1,, U'Uy=0.,

min
U,Uy, Vi, Wy,

MLE is inconsistent when K — o
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e Multimodal learning is ubiquitous and important
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Conclusions

Multimodal learning is ubiquitous and important
JIVE and AJIVE are interesting model and method, respectively

When SNR is high, AJIVE is optimal
— power of multiple matrices

When SNR is low, AJIVE (and MLE) has non-diminishing error
— potential limitation of multiple matrices

Future directions:
e Information-theoretic lower bounds for non-diminishing error
e Missing data, outliers, etc.
e Adaptive rank estimation
Y. Yang, C. Ma, “Estimating shared subspace with AJIVE: the power and
limitation of multiple data matrices”, arxiv:2501.093336, 2025
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