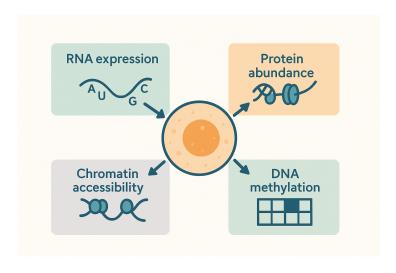
Estimating Shared Subspace with AJIVE: Power and Limitation of Multiple Data Matrices

Cong Ma
Department of Statistics, UChicago

Statistics Seminar, UC Davis, Apr. 2025

 $\begin{array}{c} \textbf{Yuepeng Yang} \\ \textbf{UChicago Statistics} \rightarrow \textbf{Yale Statistics} \end{array}$

Multimodal single-cell data



Each modality captures a different biological view

Multimodal data are ubiquitous

$Examples\ with\ multiple\ high-dimensional\ data\ types$

Field	Object	Data types
Computational biology	Tissue samples	Gene expression, microRNA, genotype, protein abundance/activity
Chemometrics	Chemicals	Mass spectra, NMR spectra, atomic composition
Atmospheric sciences	Locations	Temperature, humidity, particle concentrations over time
Internet traffic	Websites	Word frequencies, visitor demographics, linked pages $$

— from Lock et al. '13

Multimodal data are ubiquitous

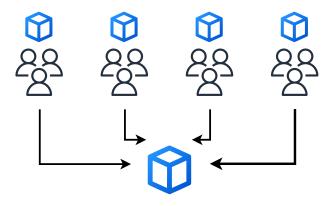
 $Examples\ with\ multiple\ high-dimensional\ data\ types$

Field	Object	Data types
Computational biology	Tissue samples	Gene expression, microRNA, genotype, protein abundance/activity
Chemometrics	Chemicals	Mass spectra, NMR spectra, atomic composition
Atmospheric sciences	Locations	Temperature, humidity, particle concentrations over time
Internet traffic	Websites	Word frequencies, visitor demographics, linked pages $$

— from Lock et al. '13

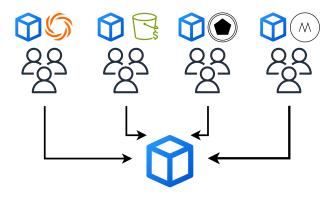
How to integrate information across different data types?

Learning shared structure



see e.g., Argelaguet et al. '18, Fan el al. '19, Arroyo et al. '22

Learning shared and unique structures



see e.g., Lock et al. '18, Lin and Zhang '23, Prothero et al. '24

Two key questions

- **Identification**: How to define shared and unique structures?
- Estimation: How to estimate shared and unique structures?

Joint and Individual Variation Explained (JIVE)

— Lock et el. '13

JIVE

We observe K matrices $\{A_k\}_{1 \leq k \leq K}$ with $A_k \in \mathbb{R}^{n \times d_k}$ and

$$m{A}_k = m{m{U}^\star V_k^{\star op}}_{m{rank} - r} + m{m{U}_k^\star W_k^{\star op}}_{m{rank} - r_k} + m{m{E}_k}_{m{Noise}}$$

- $U^{\star} \in \mathbb{O}^{n \times r}$ is shared column space
- ullet $oldsymbol{U}_k^\star \in \mathbb{O}^{n imes r_k}$ are unique column spaces with $oldsymbol{U}_k \perp oldsymbol{U}$
- ullet $m{V}_k^\star \in \mathbb{R}^{d_k imes r}$ and $m{W}_k^\star \in \mathbb{R}^{d_k imes r_k}$ are loading matrices

Two key questions

- Identification: How to define shared and unique structures?
- Estimation: How to estimate shared and unique structures?

Defining shared and unique structures in JIVE

JIVE

$$\boldsymbol{A}_k^{\star} = \underbrace{\boldsymbol{U}^{\star}\boldsymbol{V}_k^{\star\top}}_{\text{rank}-r} + \underbrace{\boldsymbol{U}_k^{\star}\boldsymbol{W}_k^{\star\top}}_{\text{rank}-r_k}$$
 shared component unique component

JIVE defines shared information to be shared subspace $\cap_{k=1}^K \mathrm{col}(\pmb{A}_k^\star)$

Defining shared and unique structures in JIVE

JIVE

$$m{A}_k^\star = m{U}^\star m{V}_k^{\star op} + m{U}_k^\star m{W}_k^{\star op} \ _{
m rank-r_k}$$
 shared component unique component

JIVE defines shared information to be shared subspace $\cap_{k=1}^K \mathrm{col}(\boldsymbol{A}_k^\star)$

But, does
$$\operatorname{col}(\boldsymbol{U}^{\star}) = \cap_{k=1}^{K} \operatorname{col}(\boldsymbol{A}_{k}^{\star})$$
?

Faithfulness: $\operatorname{col}(\boldsymbol{U}^{\star}) \subset \cap_{k=1}^{K} \operatorname{col}(\boldsymbol{A}_{k}^{\star})$

JIVE

$$\boldsymbol{A}_k^{\star} = \underbrace{\boldsymbol{U}^{\star}\boldsymbol{V}_k^{\star\top}}_{\text{rank}-r} + \underbrace{\boldsymbol{U}_k^{\star}\boldsymbol{W}_k^{\star\top}}_{\text{rank}-r_k}$$
 shared component unique component

ullet Counterexample: $oldsymbol{V}_k^\star = oldsymbol{W}_k^\star$

Faithfulness: $\operatorname{col}(\boldsymbol{U}^{\star}) \subset \cap_{k=1}^{K} \operatorname{col}(\boldsymbol{A}_{k}^{\star})$

JIVE

$$\boldsymbol{A}_{k}^{\star} = \underbrace{\boldsymbol{U}^{\star}\boldsymbol{V}_{k}^{\star\top}}_{\text{rank}-r} + \underbrace{\boldsymbol{U}_{k}^{\star}\boldsymbol{W}_{k}^{\star\top}}_{\text{rank}-r_{k}} + \underbrace{\boldsymbol{U}_{k}^{\star}\boldsymbol{W}_{k}^{\star\top}}_{\text{unique component}}$$

- ullet Counterexample: $oldsymbol{V}_k^\star = oldsymbol{W}_k^\star$
- Faithfulness is equivalent to assuming

$$rank(\mathbf{A}_k^{\star}) = r + r_k$$

Exhaustiveness: $\cap_{k=1}^K \operatorname{col}(\boldsymbol{A}_k^{\star}) \subset \operatorname{col}(\boldsymbol{U}^{\star})$

JIVE

$$m{A}_k^\star = m{m{U}^\star m{V}_k^{\star op}}_{ ext{rank}-r} + m{m{U}_k^\star m{W}_k^{\star op}}_{ ext{rank}-r_k}$$

ullet Counterexample: $\{oldsymbol{U}_k^{\star}\}$ are identical

Exhaustiveness: $\cap_{k=1}^K \operatorname{col}(\boldsymbol{A}_k^{\star}) \subset \operatorname{col}(\boldsymbol{U}^{\star})$

JIVE

$$m{A}_k^\star = m{m{U}^\star m{V}_k^{\star op}}_{ ext{rank}-r} + m{m{U}_k^\star m{W}_k^{\star op}}_{ ext{rank}-r_k}$$
 shared component unique component

- ullet Counterexample: $\{oldsymbol{U}_k^{\star}\}$ are identical
- Exhaustiveness is equivalent to assuming

$$\cap_{k=1}^K \operatorname{col}(\boldsymbol{U}_k^{\star}) = \varnothing$$

Exhaustiveness: $\cap_{k=1}^K \operatorname{col}(\boldsymbol{A}_k^{\star}) \subset \operatorname{col}(\boldsymbol{U}^{\star})$

JIVE

$$\boldsymbol{A}_k^{\star} = \underbrace{\boldsymbol{U}^{\star}\boldsymbol{V}_k^{\star\top}}_{\text{rank}-r} + \underbrace{\boldsymbol{U}_k^{\star}\boldsymbol{W}_k^{\star\top}}_{\text{rank}-r_k}$$
 shared component unique component

- ullet Counterexample: $\{oldsymbol{U}_k^{\star}\}$ are identical
- Exhaustiveness is equivalent to assuming

$$\cap_{k=1}^K \operatorname{col}(\boldsymbol{U}_k^{\star}) = \varnothing$$

Now, $m{U}^{\star}$ is identifiable since $\mathrm{col}(m{U}^{\star}) = \cap_{k=1}^{K} \mathrm{col}(m{A}_{k}^{\star})$

Two key questions

- **Identification**: How to define shared and unique structures?
- Estimation: How to estimate shared and unique structures?

— Feng et al. '18

AJIVE: a two-step spectral method

- Estimate shared + unique column space of each \boldsymbol{A}_k : Let $\widetilde{\boldsymbol{U}}_k$ be top- $(r+r_k)$ left singular vectors of \boldsymbol{A}_k
- ② Estimate shared column space: Let \widehat{U} be the top-r eigenvectors of $\sum_{k=1}^K \widetilde{U}_k \widetilde{U}_k^{\top}$

— Feng et al. '18

AJIVE: a two-step spectral method

- Estimate shared + unique column space of each A_k : Let \widetilde{U}_k be top- $(r+r_k)$ left singular vectors of A_k
- ② Estimate shared column space: Let \widehat{U} be the top-r eigenvectors of $\sum_{k=1}^K \widetilde{U}_k \widetilde{U}_k^{\top}$

ullet In the noiseless case, AJIVE recovers U^{\star} exactly

— Feng et al. '18

AJIVE: a two-step spectral method

- Estimate shared + unique column space of each A_k : Let \widetilde{U}_k be top- $(r+r_k)$ left singular vectors of A_k
- ② Estimate shared column space: Let $\widehat{m{U}}$ be the top-r eigenvectors of $\sum_{k=1}^K \widetilde{m{U}}_k \widetilde{m{U}}_k^{ op}$

- ullet In the noiseless case, AJIVE recovers U^{\star} exactly
- How does AJIVE perform with noisy observations?

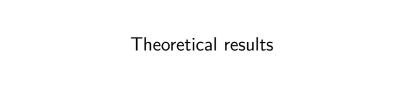
— Feng et al. '18

AJIVE: a two-step spectral method

- Estimate shared + unique column space of each A_k : Let \widetilde{U}_k be top- $(r+r_k)$ left singular vectors of A_k
- ② Estimate shared column space: Let \widehat{U} be the top-r eigenvectors of $\sum_{k=1}^K \widetilde{U}_k \widetilde{U}_k^{ op}$

- ullet In the noiseless case, AJIVE recovers U^\star exactly
- How does AJIVE perform with noisy observations?

← focus of this talk



Key problem parameters

Performance of AJIVE and hardness of shared subspace estimation depend on

• n, d, r, σ , and minimum singular value $\min_k \sigma_{r+r_k}(\boldsymbol{A}_k^{\star})$

Key problem parameters

Performance of AJIVE and hardness of shared subspace estimation depend on

- ullet n,d,r,σ , and minimum singular value $\min_k \sigma_{r+r_k}(\pmb{A}_k^\star)$
- K: number of matrices

— benefit of using multiple matrices?

Key problem parameters

Performance of AJIVE and hardness of shared subspace estimation depend on

- n,d,r,σ , and minimum singular value $\min_k \sigma_{r+r_k}(\pmb{A}_k^\star)$
- K: number of matrices
- benefit of using multiple matrices?
- ullet θ : misalignment level of unique subspaces

Misalignment of unique subspaces

Recall for identifiability, we assume

$$\cap_{k=1}^K \operatorname{col}(\boldsymbol{U}_k^{\star}) = \varnothing$$

Misalignment of unique subspaces

Recall for identifiability, we assume

$$\bigcap_{k=1}^{K} \operatorname{col}(\boldsymbol{U}_{k}^{\star}) = \varnothing \quad \Longleftrightarrow \quad \left\| \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} \right\| < 1$$
Avg. Proj. Mat

Misalignment of unique subspaces

Recall for identifiability, we assume

$$\bigcap_{k=1}^{K} \operatorname{col}(\boldsymbol{U}_{k}^{\star}) = \varnothing \quad \Longleftrightarrow \quad \left\| \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} \right\| < 1$$
Avg. Proj. Mat

Definition 1 (Misalignment)

We say collection of subspaces $\{U_k^{\star}\}_{1 \leq k \leq K}$ is heta-misaligned if

$$\left\| \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} \right\| \leq 1 - \theta$$

ullet tells us how misaligned unique subspaces are

Range of θ

θ -misalignment

$$\left\| \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} \right\| \leq 1 - \theta$$

 \bullet Fully aligned: when $\cap_{k=1}^K \mathrm{col}(\boldsymbol{U}_k^\star) \neq \varnothing$, we have $\theta = 0$

Range of θ

θ -misalignment

$$\left\| \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} \right\| \leq 1 - \theta$$

- Fully aligned: when $\bigcap_{k=1}^K \operatorname{col}(\boldsymbol{U}_k^\star) \neq \varnothing$, we have $\theta = 0$
- \bullet Fully misaligned: when $\{\pmb{U}_k^{\star}\}_{1\leq k\leq K}$ are orthonormal to each other, we have $\theta=1-1/K$

Range of θ

θ -misalignment

$$\left\| \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{U}_{k}^{\star} \boldsymbol{U}_{k}^{\star \top} \right\| \leq 1 - \theta$$

- Fully aligned: when $\bigcap_{k=1}^K \operatorname{col}(\boldsymbol{U}_k^\star) \neq \varnothing$, we have $\theta = 0$
- Fully misaligned: when $\{U_k^{\star}\}_{1\leq k\leq K}$ are orthonormal to each other, we have $\theta=1-1/K$
- Any $\theta \in (0, 1-1/K]$ is realizable by some $\{\boldsymbol{U}_k^{\star}\}$

Performance guarantees of AJIVE

$$\mathsf{Let}\ \sigma_{\min} \coloneqq \min_k \sigma_{r+r_k}(\boldsymbol{A}_k)$$
 For simplicity suppose $n=d_1=\cdots=d_K,\ r=r_1=\cdots=r_K \asymp 1$

Theorem 2 (Yang, Ma '25)

Assume
$$\frac{\sigma\sqrt{n}}{\sigma_{\min}} \ll \min\{\sqrt{\theta}, \sqrt{K}\theta\}$$
. AJIVE obeys

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K} + \frac{r}{K\theta}} + \frac{1}{\theta(1 \wedge K\theta)} \cdot \frac{\sigma^{2}n}{\sigma_{\min}^{2}}$$

Performance guarantees of AJIVE

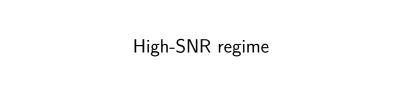
$$\mathsf{Let}\ \sigma_{\min} \coloneqq \min_k \sigma_{r+r_k}(\boldsymbol{A}_k)$$
 For simplicity suppose $n=d_1=\cdots=d_K,\ r=r_1=\cdots=r_K \asymp 1$

Theorem 2 (Yang, Ma '25)

Assume $\frac{\sigma\sqrt{n}}{\sigma_{\min}} \ll \min\{\sqrt{\theta}, \sqrt{K}\theta\}$. AJIVE obeys

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \ \frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K} + \frac{r}{K\theta}} + \frac{1}{\theta(1 \wedge K\theta)} \cdot \frac{\sigma^2 n}{\sigma_{\min}^2}$$

- $\frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K}+\frac{r}{K\theta}}$: first-order error in high-SNR regime
- $\frac{1}{\theta(1 \wedge K\theta)} \cdot \frac{\sigma^2 n}{\sigma_{\min}^2}$: second-order error in low-SNR regime



Minimax lower bounds for estimating $\operatorname{col}(\boldsymbol{U}^{\star})$

Theorem 3 (Yang, Ma '25)

$$\inf_{\widetilde{\boldsymbol{U}}} \sup_{\{\boldsymbol{A}_k^{\star}\}} \mathbb{E}\left[\left\|\widetilde{\boldsymbol{U}}\widetilde{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\|\right] \gtrsim \frac{\sigma}{\sigma_{\min}} \sqrt{\frac{n}{K}} + \frac{r}{K\theta}$$

Minimax lower bounds for estimating $\operatorname{col}(\boldsymbol{U}^{\star})$

Theorem 3 (Yang, Ma '25)

$$\inf_{\widetilde{\boldsymbol{U}}} \sup_{\{\boldsymbol{A}_k^{\star}\}} \mathbb{E}\left[\left\|\widetilde{\boldsymbol{U}}\widetilde{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\|\right] \gtrsim \frac{\sigma}{\sigma_{\min}} \sqrt{\frac{n}{K}} + \frac{r}{K\theta}$$

Recall upper bound of AJIVE when SNR is high:

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K} + \frac{r}{K\theta}}$$

Minimax lower bounds for estimating $\operatorname{col}(\boldsymbol{U}^{\star})$

Theorem 3 (Yang, Ma '25)

$$\inf_{\widetilde{\boldsymbol{U}}} \sup_{\{\boldsymbol{A}_k^{\star}\}} \mathbb{E}\left[\left\|\widetilde{\boldsymbol{U}}\widetilde{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\|\right] \gtrsim \frac{\sigma}{\sigma_{\min}} \sqrt{\frac{n}{K}} + \frac{r}{K\theta}$$

Recall upper bound of AJIVE when SNR is high:

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K} + \frac{r}{K\theta}}$$

AJIVE is minimax optimal in high-SNR regime

Understanding optimal rate under high SNR

JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

ullet $\frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K}}$: optimal est. error when unique components are known

Understanding optimal rate under high SNR

JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

- ullet $\frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K}}$: optimal est. error when unique components are known
- $\frac{\sigma}{\sigma_{\min}}\sqrt{\frac{r}{K\theta}}$: additional error due to unknown unique subspaces

Understanding optimal rate under high SNR

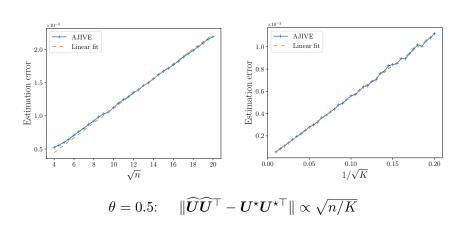
JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

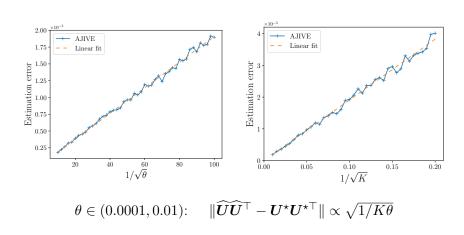
- ullet $\frac{\sigma}{\sigma_{\min}}\sqrt{\frac{n}{K}}$: optimal est. error when unique components are known
- $\frac{\sigma}{\sigma_{\min}}\sqrt{\frac{r}{K\theta}}$: additional error due to unknown unique subspaces

Shared subspace estimation is harder as unique subspaces are more aligned, i.e., θ is smaller

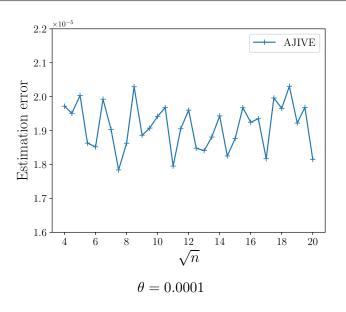
Empirical results: Large θ



Empirical results: Small θ



Empirical results: Small θ



Low-SNR regime

Non-diminishing error in low-SNR regime

Revisiting upper bound of AJIVE when SNR is low:

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \frac{1}{\theta(1 \wedge K\theta)} \cdot \frac{\sigma^{2}n}{\sigma_{\min}^{2}}$$

Non-diminishing error in low-SNR regime

Revisiting upper bound of AJIVE when SNR is low:

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \frac{1}{\theta(1 \wedge K\theta)} \cdot \frac{\sigma^{2}n}{\sigma_{\min}^{2}}$$

Estimation error does NOT converge to 0 as ${\cal K}$ increases

Non-diminishing error in low-SNR regime

Revisiting upper bound of AJIVE when SNR is low:

$$\left\|\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \lesssim \frac{1}{\theta(1 \wedge K\theta)} \cdot \frac{\sigma^{2}n}{\sigma_{\min}^{2}}$$

Estimation error does NOT converge to 0 as K increases

Is this artifact in analysis or fundamental limitation?

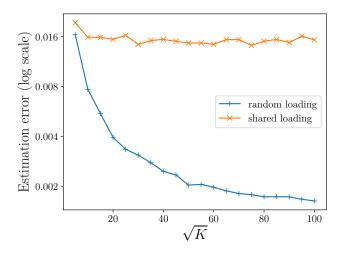
Two experimental settings

JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

- Random loadings: $m{V}_k^{\star}$ and $m{W}_k^{\star}$ are independent random orthonormal matrices
- Shared loadings: Let V^* and W^* be random orthonormal matrices. Set $V_k^* = V^*$ and $W_k^* = W^*$ for all k

AJIVE has non-diminishing error



Shared vs random loadings on $\|\widehat{U}\widehat{U}^{ op} - U^\star U^{\star op}\|$ vs K

AJIVE

- Let $\widetilde{\boldsymbol{U}}_k$ be top- $(r+r_k)$ left singular vectors of \boldsymbol{A}_k
- 2 Let $\widehat{\pmb{U}}$ be top-r eigenvectors of $\sum_{k=1}^K \widetilde{\pmb{U}}_k \widetilde{\pmb{U}}_k^\top$

AJIVE

- **1** Let $\widetilde{\boldsymbol{U}}_k$ be top- $(r+r_k)$ left singular vectors of \boldsymbol{A}_k
- 2 Let $\widehat{\pmb{U}}$ be top-r eigenvectors of $\sum_{k=1}^K \widetilde{\pmb{U}}_k \widetilde{\pmb{U}}_k^\top$

ullet SVD is biased: $\widetilde{m{U}_k}\widetilde{m{U}}_k^ op$ is biased estimate of column space of $m{A}_k^\star$

AJIVE

- **1** Let $\widetilde{\boldsymbol{U}}_k$ be top- $(r+r_k)$ left singular vectors of \boldsymbol{A}_k
- 2 Let $\widehat{\pmb{U}}$ be top-r eigenvectors of $\sum_{k=1}^K \widetilde{\pmb{U}}_k \widetilde{\pmb{U}}_k^\top$

- ullet SVD is biased: $\widetilde{m{U}_k}\widetilde{m{U}}_k^{ op}$ is biased estimate of column space of $m{A}_k^{\star}$
- Under shared loading, individual bias can be aligned, inducing a non-diminishing error in second step of AJIVE

AJIVE

- **1** Let $\widetilde{\boldsymbol{U}}_k$ be top- $(r+r_k)$ left singular vectors of \boldsymbol{A}_k
- 2 Let $\widehat{\pmb{U}}$ be top-r eigenvectors of $\sum_{k=1}^K \widetilde{\pmb{U}}_k \widetilde{\pmb{U}}_k^\top$

- ullet SVD is biased: $\widetilde{m{U}_k}\widetilde{m{U}}_k^ op$ is biased estimate of column space of $m{A}_k^\star$
- Under shared loading, individual bias can be aligned, inducing a non-diminishing error in second step of AJIVE

Is non-diminishing error fundamental to shared subspace estimation?



Oracle spectral estimator

ullet Suppose unique components $m{U}_k^{\star} m{W}_k^{\star op}$ are known, optimal estimator is top-r eigenspace of

$$\frac{1}{K} \sum_{k=1}^{K} \left(\boldsymbol{A}_{k} - \boldsymbol{U}_{k}^{\star} \boldsymbol{W}_{k}^{\star \top} \right) \left(\boldsymbol{A}_{k} - \boldsymbol{U}_{k}^{\star} \boldsymbol{W}_{k}^{\star \top} \right)^{\top}$$

Oracle spectral estimator

ullet Suppose unique components $m{U}_k^\star m{W}_k^{\star op}$ are known, optimal estimator is top-r eigenspace of

$$\frac{1}{K} \sum_{k=1}^{K} \left(\boldsymbol{A}_{k} - \boldsymbol{U}_{k}^{\star} \boldsymbol{W}_{k}^{\star \top} \right) \left(\boldsymbol{A}_{k} - \boldsymbol{U}_{k}^{\star} \boldsymbol{W}_{k}^{\star \top} \right)^{\top}$$

ullet When unknown, replace $oldsymbol{U}_k^{\star} oldsymbol{W}_k^{\star op}$ by estimate

Oracle spectral estimator

• Suppose unique components $m{U}_k^{\star} m{W}_k^{\star op}$ are known, optimal estimator is top-r eigenspace of

$$\frac{1}{K} \sum_{k=1}^{K} \left(\boldsymbol{A}_{k} - \boldsymbol{U}_{k}^{\star} \boldsymbol{W}_{k}^{\star \top} \right) \left(\boldsymbol{A}_{k} - \boldsymbol{U}_{k}^{\star} \boldsymbol{W}_{k}^{\star \top} \right)^{\top}$$

ullet When unknown, replace $m{U}_k^{\star} m{W}_k^{\star op}$ by estimate For instance, oracle-aided estimate

top-
$$r_k$$
 SVD of $\mathcal{P}_{\star}^{\perp} \boldsymbol{A}_k = \boldsymbol{U}_k^{\star} \boldsymbol{W}_k^{\star \top} + \mathcal{P}_{\star}^{\perp} \boldsymbol{E}_k,$

where
$$\mathcal{P}_{\!\scriptscriptstyleullet}^\perp\coloneqq oldsymbol{I} - oldsymbol{U}^\star oldsymbol{U}^{\star op}$$

Non-diminishing error of oracle estimator

Oracle spectral estimator

- $\bullet \ \, \mathsf{Let} \,\, \widehat{\pmb{U}}_k \widehat{\pmb{W}}_k^\top \,\, \mathsf{be} \,\, \mathsf{top}\text{-}r_k \,\, \mathsf{SVD} \,\, \mathsf{of} \,\, \mathcal{P}_{\star}^{\perp} \pmb{A}_k = \pmb{U}_k^{\star} \pmb{W}_k^{\star\top} + \mathcal{P}_{\star}^{\perp} \pmb{E}_k$
- 2 Let $\widehat{m{U}}_{ ext{oracle}}$ be top-r eigenspace of

$$\frac{1}{K} \sum_{k=1}^{K} \left(\boldsymbol{A}_{k} - \widehat{\boldsymbol{U}}_{k} \widehat{\boldsymbol{W}}_{k}^{\top} \right) \left(\boldsymbol{A}_{k} - \widehat{\boldsymbol{U}}_{k} \widehat{\boldsymbol{W}}_{k}^{\top} \right)^{\top}$$

Non-diminishing error of oracle estimator

Oracle spectral estimator

- $\bullet \ \, \mathsf{Let} \ \widehat{U}_k \widehat{W}_k^\top \ \, \mathsf{be} \ \, \mathsf{top}\text{-}r_k \ \, \mathsf{SVD} \ \, \mathsf{of} \ \, \mathcal{P}_{\star}^{\perp} A_k = U_k^{\star} W_k^{\star \top} + \mathcal{P}_{\star}^{\perp} E_k$
- 2 Let $\widehat{m{U}}_{ ext{oracle}}$ be top-r eigenspace of

$$\frac{1}{K}\sum_{k=1}^{K}\left(\boldsymbol{A}_{k}-\widehat{\boldsymbol{U}}_{k}\widehat{\boldsymbol{W}}_{k}^{\top}\right)\left(\boldsymbol{A}_{k}-\widehat{\boldsymbol{U}}_{k}\widehat{\boldsymbol{W}}_{k}^{\top}\right)^{\top}$$

Theorem 4 (Yang, Ma '25)

There exist U^\star , $\{U_k^\star\}_{k=1}^K$, $\{V_k^\star\}_{k=1}^K$, $\{W_k^\star\}_{k=1}^K$ such that

$$\left\|\widehat{\boldsymbol{U}}_{\text{oracle}}\widehat{\boldsymbol{U}}_{\text{oracle}}^{\top} - \boldsymbol{U}^{\star}\boldsymbol{U}^{\star\top}\right\| \ge C_2 \frac{\sigma^4 n^2}{\sigma_{\min}^4} - C_3 \frac{\log n}{\sqrt{K}} \cdot \frac{\sigma\sqrt{n}}{\sigma_{\min}}$$

Maximum likelihood estimator

$$\begin{split} \min_{\boldsymbol{U},\boldsymbol{U}_k,\boldsymbol{V}_k,\boldsymbol{W}_k} & \quad \sum_{k=1}^K \|\boldsymbol{U}\boldsymbol{V}_k^\top + \boldsymbol{U}_k\boldsymbol{W}_k^\top - \boldsymbol{A}_k\|_{\mathrm{F}}^2 \\ \text{subject to} & \quad \boldsymbol{U}^\top\boldsymbol{U} = \boldsymbol{I}_r, \quad \boldsymbol{U}_k^\top\boldsymbol{U}_k = \boldsymbol{I}_{r_k}, \quad \boldsymbol{U}^\top\boldsymbol{U}_k = \boldsymbol{0}_{r\times r_k} \end{split}$$

Maximum likelihood estimator

$$\begin{aligned} & \min_{\boldsymbol{U}, \boldsymbol{U}_k, \boldsymbol{V}_k, \boldsymbol{W}_k} & & \sum_{k=1}^K \|\boldsymbol{U}\boldsymbol{V}_k^\top + \boldsymbol{U}_k \boldsymbol{W}_k^\top - \boldsymbol{A}_k\|_{\mathrm{F}}^2 \\ & \text{subject to} & & \boldsymbol{U}^\top \boldsymbol{U} = \boldsymbol{I}_r, & & \boldsymbol{U}_k^\top \boldsymbol{U}_k = \boldsymbol{I}_{r_k}, & & \boldsymbol{U}^\top \boldsymbol{U}_k = \boldsymbol{0}_{r \times r_k} \end{aligned}$$

Alternating minimization (AltMin):

ullet Fixing shared subspace $oldsymbol{U}$, find unique components $oldsymbol{U}_k oldsymbol{W}_k^ op$

Maximum likelihood estimator

$$\begin{split} \min_{\boldsymbol{U},\boldsymbol{U}_k,\boldsymbol{V}_k,\boldsymbol{W}_k} & \quad \sum_{k=1}^K \|\boldsymbol{U}\boldsymbol{V}_k^\top + \boldsymbol{U}_k\boldsymbol{W}_k^\top - \boldsymbol{A}_k\|_{\mathrm{F}}^2 \\ \text{subject to} & \quad \boldsymbol{U}^\top\boldsymbol{U} = \boldsymbol{I}_r, \quad \boldsymbol{U}_k^\top\boldsymbol{U}_k = \boldsymbol{I}_{r_k}, \quad \boldsymbol{U}^\top\boldsymbol{U}_k = \boldsymbol{0}_{r \times r_k} \end{split}$$

Alternating minimization (AltMin):

- ullet Fixing shared subspace $oldsymbol{U}$, find unique components $oldsymbol{U}_k oldsymbol{W}_k^ op$
- ullet Fixing unique components $\{oldsymbol{U}_koldsymbol{W}_k^ op\}$, find shared component $oldsymbol{U}$

Maximum likelihood estimator

$$egin{aligned} \min_{oldsymbol{U},oldsymbol{U}_k,oldsymbol{V}_k,oldsymbol{W}_k} & \sum_{k=1}^K \|oldsymbol{U}oldsymbol{V}_k^ op + oldsymbol{U}_koldsymbol{W}_k^ op - oldsymbol{A}_k\|_{ ext{F}}^2 \ & ext{subject to} & oldsymbol{U}^ op oldsymbol{U} = oldsymbol{I}_r, & oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_{r_k}, & oldsymbol{U}^ op oldsymbol{U}_k = oldsymbol{0}_{r imes r_k} \end{aligned}$$

Alternating minimization (AltMin):

- ullet Fixing shared subspace $oldsymbol{U}$, find unique components $oldsymbol{U}_k oldsymbol{W}_k^ op$
- ullet Fixing unique components $\{oldsymbol{U}_koldsymbol{W}_k^ op\}$, find shared component $oldsymbol{U}$

oracle spectral estimator = one-step AltMin of MLE from U^{\star}

Maximum likelihood estimator

$$\begin{split} \min_{\boldsymbol{U},\boldsymbol{U}_k,\boldsymbol{V}_k,\boldsymbol{W}_k} & \quad \sum_{k=1}^K \|\boldsymbol{U}\boldsymbol{V}_k^\top + \boldsymbol{U}_k\boldsymbol{W}_k^\top - \boldsymbol{A}_k\|_{\mathrm{F}}^2 \\ \text{subject to} & \quad \boldsymbol{U}^\top\boldsymbol{U} = \boldsymbol{I}_r, \quad \boldsymbol{U}_k^\top\boldsymbol{U}_k = \boldsymbol{I}_{r_k}, \quad \boldsymbol{U}^\top\boldsymbol{U}_k = \boldsymbol{0}_{r\times r_k} \end{split}$$

Alternating minimization (AltMin):

- ullet Fixing shared subspace $oldsymbol{U}$, find unique components $oldsymbol{U}_k oldsymbol{W}_k^ op$
- ullet Fixing unique components $\{oldsymbol{U}_k oldsymbol{W}_k^ op \}$, find shared component $oldsymbol{U}$

oracle spectral estimator = one-step AltMin of MLE from U^{\star}

MLE is inconsistent as $K \to \infty$

— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations $\{A_k\}$ is governed by two sets of parameters:

— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations $\{A_k\}$ is governed by two sets of parameters:

ullet structural parameters U^\star , which appears in the law of every observation

— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations $\{A_k\}$ is governed by two sets of parameters:

- ullet structural parameters U^\star , which appears in the law of every observation
- incidental parameters $(\{U_k^{\star}\}, \{V_k^{\star}\}, \{W_k^{\star}\})$, which appears only in law of each individual observation

— Neyman, Scott 1948

In incidental parameter problem, sequence of ind. observations $\{A_k\}$ is governed by two sets of parameters:

- ullet structural parameters U^\star , which appears in the law of every observation
- incidental parameters $(\{U_k^{\star}\}, \{V_k^{\star}\}, \{W_k^{\star}\})$, which appears only in law of each individual observation

MLE can be inconsistent for estimating structural parameters

Classical example: Fixed-effect model

Setup:

$$(X_i, Y_i) \sim N(\alpha_i, \sigma^2), \quad i = 1, \dots, n$$

Classical example: Fixed-effect model

Setup:

$$(X_i, Y_i) \sim N(\alpha_i, \sigma^2), \quad i = 1, \dots, n$$

MLE:

$$\widehat{\alpha}_i = \frac{X_i + Y_i}{2}, \quad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n s_i^2, \quad s_i^2 = \frac{(X_i - Y_i)^2}{4}$$

Classical example: Fixed-effect model

Setup:

$$(X_i, Y_i) \sim N(\alpha_i, \sigma^2), \quad i = 1, \dots, n$$

MLE:

$$\widehat{\alpha}_i = \frac{X_i + Y_i}{2}, \quad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n s_i^2, \quad s_i^2 = \frac{(X_i - Y_i)^2}{4}$$

Neyman-Scott problem:

• Bias in estimating σ^2 :

$$E(s_i^2) = \frac{\sigma^2}{2}$$
 (not equal to σ^2)

• As $n \to \infty$, MLE is inconsistent

Another interesting example: Rasch Model

Setup: Probability of correct response of subject i to item j:

$$P(Y_{ij} = 1) = \frac{\exp(\theta_i - \beta_j)}{1 + \exp(\theta_i - \beta_j)}, \quad \text{for } 1 \le i \le n, 1 \le j \le m$$

- θ_i : Ability parameter of subject i (incidental parameters)
- β_j : Difficulty parameter of item j (main parameters of interest)

Another interesting example: Rasch Model

Setup: Probability of correct response of subject i to item j:

$$P(Y_{ij} = 1) = \frac{\exp(\theta_i - \beta_j)}{1 + \exp(\theta_i - \beta_j)}, \quad \text{for } 1 \le i \le n, 1 \le j \le m$$

- θ_i : Ability parameter of subject i (incidental parameters)
- β_j : Difficulty parameter of item j (main parameters of interest)

Neyman–Scott problem: Fixing m, as $n \to \infty$, MLE is inconsistent

Another interesting example: Rasch Model

Setup: Probability of correct response of subject i to item j:

$$P(Y_{ij} = 1) = \frac{\exp(\theta_i - \beta_j)}{1 + \exp(\theta_i - \beta_j)}, \quad \text{for } 1 \le i \le n, 1 \le j \le m$$

- θ_i : Ability parameter of subject i (incidental parameters)
- β_j : Difficulty parameter of item j (main parameters of interest)

Neyman–Scott problem: Fixing m, as $n \to \infty$, MLE is inconsistent

Y. Yang, and C. Ma, "Random pairing MLE for estimation of item parameters in Rasch model," arXiv:2406.13989, 2024

Neyman-Scott's problem in our case

JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

Neyman-Scott's problem in our case

JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

Maximum likelihood estimator

$$\begin{aligned} \min_{\boldsymbol{U},\boldsymbol{U}_k,\boldsymbol{V}_k,\boldsymbol{W}_k} & & \sum_{k=1}^K \|\boldsymbol{U}\boldsymbol{V}_k^\top + \boldsymbol{U}_k\boldsymbol{W}_k^\top - \boldsymbol{A}_k\|_{\mathrm{F}}^2 \\ \text{subject to} & & \boldsymbol{U}^\top\boldsymbol{U} = \boldsymbol{I}_r, & & \boldsymbol{U}_k^\top\boldsymbol{U}_k = \boldsymbol{I}_{r_k}, & & \boldsymbol{U}^\top\boldsymbol{U}_k = \boldsymbol{0}_{r \times r_k} \end{aligned}$$

Neyman-Scott's problem in our case

JIVE

$$m{A}_k = m{m{U}^\star m{V}_k^{\star op}}_{m{ ext{rank}} - r} + m{m{U}_k^\star m{W}_k^{\star op}}_{m{ ext{rank}} - r_k} + m{m{E}_k}_{m{ ext{Noise}}}$$

Maximum likelihood estimator

$$\begin{split} \min_{\boldsymbol{U},\boldsymbol{U}_k,\boldsymbol{V}_k,\boldsymbol{W}_k} & \quad \sum_{k=1}^K \|\boldsymbol{U}\boldsymbol{V}_k^\top + \boldsymbol{U}_k\boldsymbol{W}_k^\top - \boldsymbol{A}_k\|_{\mathrm{F}}^2 \\ \text{subject to} & \quad \boldsymbol{U}^\top\boldsymbol{U} = \boldsymbol{I}_r, \quad \boldsymbol{U}_k^\top\boldsymbol{U}_k = \boldsymbol{I}_{r_k}, \quad \boldsymbol{U}^\top\boldsymbol{U}_k = \boldsymbol{0}_{r\times r_k} \end{split}$$

MLE is inconsistent when $K \to \infty$

• Multimodal learning is ubiquitous and important

- Multimodal learning is ubiquitous and important
- JIVE and AJIVE are interesting model and method, respectively

- Multimodal learning is ubiquitous and important
- JIVE and AJIVE are interesting model and method, respectively
- When SNR is high, AJIVE is optimal

 \rightarrow power of multiple matrices

- Multimodal learning is ubiquitous and important
- JIVE and AJIVE are interesting model and method, respectively
- When SNR is high, AJIVE is optimal
 - ightarrow power of multiple matrices
- ullet When SNR is low, AJIVE (and MLE) has non-diminishing error ullet potential limitation of multiple matrices

- Multimodal learning is ubiquitous and important
- JIVE and AJIVE are interesting model and method, respectively
- When SNR is high, AJIVE is optimal
 - ightarrow power of multiple matrices
- ullet When SNR is low, AJIVE (and MLE) has non-diminishing error ullet potential limitation of multiple matrices

Future directions:

- Information-theoretic lower bounds for non-diminishing error
- Missing data, outliers, etc.
- Adaptive rank estimation

- Multimodal learning is ubiquitous and important
- JIVE and AJIVE are interesting model and method, respectively
- When SNR is high, AJIVE is optimal

ightarrow power of multiple matrices

ullet When SNR is low, AJIVE (and MLE) has non-diminishing error ullet potential limitation of multiple matrices

Future directions:

- Information-theoretic lower bounds for non-diminishing error
- Missing data, outliers, etc.
- Adaptive rank estimation

Y. Yang, C. Ma, "Estimating shared subspace with AJIVE: the power and limitation of multiple data matrices", arxiv:2501.093336, 2025