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Multi-armed bandits

— Robbins, 1952, Lai and Robbins, 1985

sequential decision making

time horizon T

action set: K arms

unknown reward distribution for each action

goal: maximize expected cumulative reward
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Multi-armed bandits with covariates
(aka contextual bandits)

— Yang and Zhu, 2002, Rigollet and Zeevi, 2010, Perchet and Rigollet, 2013

Context > Action » Reward

For instance, in clinical trials,
e Context: features of patient
e Action: treatment to patient

e Reward: health outcome of patient
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Multi-armed bandits with covariates
(aka contextual bandits)

— Yang and Zhu, 2002, Rigollet and Zeevi, 2010, Perchet and Rigollet, 2013

Context > Action » Reward

For instance, in clinical trials,
e Context: features of patient
e Action: treatment to patient

e Reward: health outcome of patient

Contextual bandits find numerous applications in recommender
systems, digital health, ...
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Batch constraints

— Perchet et al., 2016, Gao et al., 2019, Fan et al., 2023

Note that clinical trials are run in batches
e groups of patients are treated simultaneously

e rewards of a group influence treatment plan for next group of
patients
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Note that clinical trials are run in batches
e groups of patients are treated simultaneously

e rewards of a group influence treatment plan for next group of
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In other cases, e.g., online advertising

e statistician cannot update the policy too frequently, especially
when number of users is large
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Batch constraints

— Perchet et al., 2016, Gao et al., 2019, Fan et al., 2023

Note that clinical trials are run in batches
e groups of patients are treated simultaneously

e rewards of a group influence treatment plan for next group of
patients

In other cases, e.g., online advertising

e statistician cannot update the policy too frequently, especially
when number of users is large

Batch constraints are common in many other applications ...
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Main questions

batch learning (fully) online learning

4 4

»
»

1 2 T number of batches

e What's the optimal way to select batch sizes, and to update
policy after each batch?

e Is it possible to achieve similar performance as in fully online
setting using few policy updates?
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Problem setup

2-armed nonparametric bandit is specified by a sequence of iid tuples

(X, Y, YN crer

e T'is time horizon
e Context X; € X = [0,1]¢ foIIows distribution Px

e Reward Yt( ) € [0, 1] W|th E[Yt | X¢] = f®)(X;) for arm
ke {1,—1}. Call f*) reward function of arm k
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Game rules w/o batch constraints

The game is sequential: at each step t, statistician
e observes context X;

e selects action A; according to rule m : X — {1, -1}

e then receives corresponding reward Yt(At)

Key: m; is allowed to depend on all observations prior to step ¢
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Game rules with batch constraints

27 hatch M*'™ batch
A~ = A
1 &1 t e tar—1 ty =T

Given M—number of allowed batches, statistician needs to decide on
M-batch policy (T', 7):

o I'={t1,...,tpy = T} is a partition of the entire time horizon T’

e T — {ﬂ-t}lgtSTv where T . X — {1, —1}

e 7, only depends on all observations prior to current batch
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Regret minimization

Define optimal reward function f*(r) = maxyec(1 _1y f(k)(x)
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Problem assumptions

e Smoothness. There exist 8 € (0,1] and L > 0 such that
[f P (@) = fW ()] < Lilz — 2|1,

forke {l,—-1} and z,2' € X
e Margin. There exist & > 0, 6o € (0,1) and Dy > 0 such that

Px (0 < |fV(X) = FI(X)| <) < Dyo°

holds for all ¢ € [0, d¢]
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Problem assumptions

e Smoothness. There exist 8 € (0,1] and L > 0 such that
[f P (@) = fW ()] < Lilz — 2|1,

forke {l,—-1} and z,2' € X
e Margin. There exist & > 0, 6o € (0,1) and Dy > 0 such that

Px (0 < |fV(X) = FI(X)| <) < Dyo°

holds for all ¢ € [0, d¢]

— Problem class F, 3
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Margin conditions
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borrowed from Nathan Kallus's slides
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Interesting regime o < 1

— Rigollet and Zeevi, 2010, Perchet and Rigollet, 2013

We only focus on af < 1 since

e When af > 1, contexts do not matter: there exists a single arm
that is uniformly optimal

e When aff < 1, there exists nontrivial contextual bandits in F, 3
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Prior work

Define v == ﬁééi‘;)

Theorem 0 (Rigollet and Zeevi, ‘10, Perchet and Rigollet, ‘13)

In fully online setting, i.e., M =T, we have

inf sup E[Rp(m)] =< T'7
(Fvﬂ') fa’,g
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Our results

Recall v = 2([13:3‘)

Theorem 1 (Jiang, Ma, 2024)
Fix M, number of batches. We have, up to log factors,

inf sup E[Rp(m)] <

EE
T1 M when M < loglog T,
(FW)]: B

T'=7, when M > loglog T
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Our results in a figure

lim log(E[fir)) 1
T—oo logT

v

1 loglogT T M
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Minimax lower bounds

Theorem 2 (Jiang and Ma, 2024)

Assume Px is the uniform distribution on X. Any M-batch policy
(T',m) has worst-case regret

~

1—
E[Ry(m)] 2 T ="

e This together with lower bound for M = T in Rigollet and Zeevi,
2010 leads to our final lower bounds
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Minimax upper bounds

Theorem 3 (Jiang and Ma, 2024)

Assume M = O(logT). Algorithm BaSEDB (to be introduced)
achieves

1—
E[Ry (7)) < (log T)? - TT

e An immediate consequence: when M 2 loglogT, BaSEDB
achieves optimal regret T'~7 in fully online setting
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Analysis for lower bounds

and why it is instrumental for upper bounds



Notation

M-batch policy (I', ) with
Bernoulli rewards: Yt(l),Yt(fl) are Bernoulli random variables
with mean f(V(X,), and f(-1(X,), respectively

Fix f(-1(z) = 1, and denote by f be the mean reward function
of arm 1

Cumulative regret up to time ¢t: Ry(m; f)
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Notation

M-batch policy (I', ) with
Bernoulli rewards: Yt(l),Yt(fl) are Bernoulli random variables
with mean f(V(X,), and f(-1(X,), respectively

Fix f(-1(z) = 1, and denote by f be the mean reward function
of arm 1

Cumulative regret up to time ¢t: Ry(m; f)

Target: lower bound SUD (£, 1) F(a,8) Ry (m; f) J
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A simple but key observation

Worst-case regret over [T is larger than that over first i batches J

Precisely, we have

sup  Rp(m; f) > max sup Ry, (m; f)
(f,3)eF(a,8) 1SisM (5 1ye F(a,B)

21/ 36



A simple but key observation

Worst-case regret over [T is larger than that over first i batches J

Precisely, we have

sup  Rp(m; f) > max sup Ry, (m; f)
(f,3)eF(a,8) 1SisM (5 1ye F(a,B)

Though simple, this observation lends us freedom on choosing
different hard instances in F(c, ) targeting different batch index i
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Family of reward instances

— long history in nonparametric estimation

How to construct hard instances for f = f(1)?
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Family of reward instances

— long history in nonparametric estimation

How to construct hard instances for f = f(1)?

e Split [0, 1] to z number of equal-sized bins

e Place a random hat function in each bin on top of % (reward
function of arm —1)

ANINVAVANS

1/z

Y
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Worst-case regret over [t;]

Set z = z; = [(t;_1)"/(?#+9)]. By standard calculations, we obtain

A, i>1
sup Ry (m f) 2 !
(f,2)eF(e,B)
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Putting things together

sup  Rp(m; f) > max sup Ry, (m; f)
(f.3)EF(.B) 1isM (5 1yeF(a.8)

> max sup Ry (m;
= Zicn feCI:i tz( 7f)

t T
Zmax{thi,..., = }
t th-1

1—y
=T1-M

This finishes proof of lower bound
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Implications on optimal )M -batch policy

e Grid points: in view of lower bound
max Ly ooy (o
t T

. it
t1 X —— < T1-M for2<i< M

one needs to set

Any other choice of I' = {¢1,to,...,tyr = T} has higher worst-case

regret
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Implications on optimal )M -batch policy

e Dynamic binning: recall for each different batch ¢, we set

2=z = [t/

In other words, the granularity (i.e., bin width 1/z;) at which we
investigate mean reward functions depends crucially on grid
points {¢;}: the larger the grid point t;, the finer the granularity
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Implications on optimal )M -batch policy

e Dynamic binning: recall for each different batch ¢, we set

2=z = [t/

In other words, the granularity (i.e., bin width 1/z;) at which we
investigate mean reward functions depends crucially on grid
points {¢;}: the larger the grid point t;, the finer the granularity

= batched successive elimination with dynamic binning (BaSEDB) |
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Batched successive elimination with dynamic binning

Prior to 15t batch:
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Batched successive elimination with dynamic binning

After 15t batch (or prior to 2"¢ batch):
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A tree-based interpretation

L is a list of active bins, and Z¢ is the active arms for bin C'

Prior to batch 1: £ < By, where B; is a regular partition of X
with bins of equal width w;. In the above example, wy = 1/4

Within this batch: try the arms in Z¢ equally likely whenever a
sample X; € C

At the end of the batch: given the revealed rewards, update Z¢
for each C' € L via successive elimination

If no arm were eliminated from Zg, split the bin C' € L into its
children child(C') and replace C' with child(C)

Repeat the above process in a batch fashion
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Performance guarantees

1—v

Denote b < T'1-+™ | Choose
e batch sizes

Sl
ty < T1-M, and t; = |b(ti—1)7], fori=2,... M
e split factors
1
go = [b27F4 |, and  gi=|g/ 4], fori=1,...M—2

Theorem 3 (More explicit version)

When M = O(logT'), BaSEDB with above choices of batch sizes and
split factors achieves

1—
E[Ry (7)) < (log T)? - TT
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Numerics

—— BaSEDB
006 - BSE
Confidence band

0.05

0.02

0.01

Figure 1: Default parameters are T' = 50000,d =1, « = 0.2,3 =1. BSE is
regret optimal policy without the batch constraint.
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Is dynamic binning necessary?

e Without batch constraint, successive elimination with static
binning achieves optimal regret

e We motivate dynamic binning by proof of lower bounds; but
maybe we are not smart enough to find a single family of
instances that are hard for all batches
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Suboptimality of static binning

Theorem 4 (Jiang and Ma, 2024)

Consider o« = 3 =d =1 and M = 3. For any 3-batch SE policy
(I', ) with a fixed number of g bins. No matter how one sets g, there
exists a nonparametric bandit instance such that

E[Ry(7)] > T,

where T'T5 is the optimal regret achieved by BaSEDB

This demonstrates the necessity of dynamic binning in some sense
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Understand 1% failure mode: finer binning

g: algorithm choice; z: reward instance

1/g
/_/H

A\

1/z

e algorithm uses finer binning than reward instance

e number of pulls in the smaller bin (used by algorithm) is not
sufficient to tell two arms apart

e incur extra regret in next batch
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Understand 2"¢ failure mode: coarser binning

g: algorithm choice; z: reward instance

%/—/ v
1/z .

1/g

e algorithm uses coarser binning than reward instance

e aggregated reward difference on the larger bin is small,
elimination could fail

e incur extra regret in next batch
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Concluding remarks

Summary:

e Batched successive elimination with dynamic binning is nearly
minimax optimal

e |t is almost necessary as static binning is strictly suboptimal
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e Remove log factors
e Adaptive to margin parameters
e Static grid vs. adaptive grid
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Paper:

e R. Jiang, and C. Ma, "Batched nonparametric contextual bandits,”
arXiv:2402.17732, 2024
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