
Batched Nonparametric Contextual Bandits

Cong Ma
Department of Statistics, UChicago

Wilks Seminar, Princeton ORFE, Apr. 2024



Rong Jiang
UChicago CCAM



Multi-armed bandits
— Robbins, 1952, Lai and Robbins, 1985

• sequential decision making
• time horizon T

• action set: K arms
• unknown reward distribution for each action
• goal: maximize expected cumulative reward
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Multi-armed bandits with covariates
(aka contextual bandits)

— Yang and Zhu, 2002, Rigollet and Zeevi, 2010, Perchet and Rigollet, 2013

Context Action Reward

For instance, in clinical trials,
• Context: features of patient
• Action: treatment to patient
• Reward: health outcome of patient

Contextual bandits find numerous applications in recommender
systems, digital health, ...
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Batch constraints

— Perchet et al., 2016, Gao et al., 2019, Fan et al., 2023

Note that clinical trials are run in batches
• groups of patients are treated simultaneously
• rewards of a group influence treatment plan for next group of

patients

In other cases, e.g., online advertising
• statistician cannot update the policy too frequently, especially

when number of users is large

Batch constraints are common in many other applications ...
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Main questions
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• What’s the optimal way to select batch sizes, and to update
policy after each batch?
• Is it possible to achieve similar performance as in fully online

setting using few policy updates?
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Problem setup

2-armed nonparametric bandit is specified by a sequence of iid tuples

{(Xt, Y
(1)

t , Y
(−1)

t )}1≤t≤T

• T is time horizon
• Context Xt ∈ X = [0, 1]d follows distribution PX

• Reward Y
(k)

t ∈ [0, 1] with E[Y (k)
t | Xt] = f (k)(Xt) for arm

k ∈ {1,−1}. Call f (k) reward function of arm k

7/ 36



Game rules w/o batch constraints

The game is sequential: at each step t, statistician
• observes context Xt

• selects action At according to rule πt : X 7→ {1,−1}
• then receives corresponding reward Y

(At)
t

Key: πt is allowed to depend on all observations prior to step t
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Game rules with batch constraints
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Given M—number of allowed batches, statistician needs to decide on
M -batch policy (Γ, π):

• Γ = {t1, . . . , tM = T} is a partition of the entire time horizon T

• π = {πt}1≤t≤T , where πt : X 7→ {1,−1}
• πt only depends on all observations prior to current batch

9/ 36



Regret minimization

Define optimal reward function f⋆(x) = maxk∈{1,−1} f (k)(x)

Goal: minimize expected cumulative regret

RT (π) := E
[∑T

t=1

(
f⋆(Xt)− f (πt(Xt))(Xt)

)]
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Problem assumptions

• Smoothness. There exist β ∈ (0, 1] and L > 0 such that

|f (k)(x)− f (k)(x′)| ≤ L∥x− x′∥β2 ,

for k ∈ {1,−1} and x, x′ ∈ X
• Margin. There exist α > 0, δ0 ∈ (0, 1) and D0 > 0 such that

PX

(
0 <

∣∣∣f (1)(X)− f (−1)(X)
∣∣∣ ≤ δ

)
≤ D0δα

holds for all δ ∈ [0, δ0]

−→ Problem class Fα,β
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Margin conditions

Margin condition:

PX

(
0 <

∣∣∣f (1)(X)− f (−1)(X)
∣∣∣ ≤ δ

)
≤ D0δα

borrowed from Nathan Kallus’s slides
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Interesting regime αβ ≤ 1

— Rigollet and Zeevi, 2010, Perchet and Rigollet, 2013

We only focus on αβ ≤ 1 since
• When αβ > 1, contexts do not matter: there exists a single arm

that is uniformly optimal
• When αβ ≤ 1, there exists nontrivial contextual bandits in Fα,β
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Prior work

Define γ := β(1+α)
2β+d

Theorem 0 (Rigollet and Zeevi, ‘10, Perchet and Rigollet, ‘13)
In fully online setting, i.e., M = T , we have

inf
(Γ,π)

sup
Fα,β

E[RT (π)] ≍ T 1−γ
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Our results

Recall γ = β(1+α)
2β+d

Theorem 1 (Jiang, Ma, 2024)
Fix M , number of batches. We have, up to log factors,

inf
(Γ,π)

sup
Fα,β

E[RT (π)] ≍

T
1−γ

1−γM , when M ≲ log log T,

T 1−γ , when M ≳ log log T
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Our results in a figure
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Minimax lower bounds

Theorem 2 (Jiang and Ma, 2024)
Assume PX is the uniform distribution on X . Any M -batch policy
(Γ, π) has worst-case regret

E[RT (π)] ≳ T
1−γ

1−γM

• This together with lower bound for M = T in Rigollet and Zeevi,
2010 leads to our final lower bounds
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Minimax upper bounds

Theorem 3 (Jiang and Ma, 2024)
Assume M = O(log T ). Algorithm BaSEDB (to be introduced)
achieves

E[RT (π̂)] ≲ (log T )2 · T
1−γ

1−γM

• An immediate consequence: when M ≳ log log T , BaSEDB
achieves optimal regret T 1−γ in fully online setting
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Analysis for lower bounds
and why it is instrumental for upper bounds



Notation

• M -batch policy (Γ, π) with

Γ = {t1, t2, . . . , tM = T}

• Bernoulli rewards: Y
(1)

t , Y
(−1)

t are Bernoulli random variables
with mean f (1)(Xt), and f (−1)(Xt), respectively
• Fix f (−1)(x) = 1

2 , and denote by f be the mean reward function
of arm 1
• Cumulative regret up to time t: Rt(π; f)

Target: lower bound sup(f, 1
2 )∈F(α,β) RT (π; f)
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A simple but key observation

Worst-case regret over [T ] is larger than that over first i batches

Precisely, we have

sup
(f, 1

2 )∈F(α,β)
RT (π; f) ≥ max

1≤i≤M
sup

(f, 1
2 )∈F(α,β)

Rti(π; f)

Though simple, this observation lends us freedom on choosing
different hard instances in F(α, β) targeting different batch index i
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Family of reward instances
— long history in nonparametric estimation

How to construct hard instances for f = f (1)?

• Split [0, 1] to z number of equal-sized bins
• Place a random hat function in each bin on top of 1

2 (reward
function of arm −1)

x

1/z
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Worst-case regret over [ti]

Set z = zi = ⌈(ti−1)1/(2β+d)⌉. By standard calculations, we obtain

sup
(f, 1

2 )∈F(α,β)
Rti(π; f) ≳


ti

tγ
i−1

, i > 1

t1, i = 1
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Putting things together

sup
(f, 1

2 )∈F(α,β)
RT (π; f) ≥ max

1≤i≤M
sup

(f, 1
2 )∈F(α,β)

Rti(π; f)

≥ max
1≤i≤M

sup
f∈Czi

Rti(π; f)

≳ max
{

t1,
t2
tγ
1

, ...,
T

tγ
M−1

}

≍ T
1−γ

1−γM

This finishes proof of lower bound
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Implications on optimal M-batch policy

• Grid points: in view of lower bound

max
{

t1,
t2
tγ
1

, ...,
T

tγ
M−1

}
,

one needs to set

t1 ≍
ti

tγ
i−1
≍ T

1−γ

1−γM for 2 ≤ i ≤M

Any other choice of Γ = {t1, t2, . . . , tM = T} has higher worst-case
regret
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Implications on optimal M-batch policy

• Dynamic binning: recall for each different batch i, we set

z = zi = ⌈t1/(2β+d)
i−1 ⌉

In other words, the granularity (i.e., bin width 1/zi) at which we
investigate mean reward functions depends crucially on grid
points {ti}: the larger the grid point ti, the finer the granularity

=⇒ batched successive elimination with dynamic binning (BaSEDB)
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Batched successive elimination with dynamic binning

Prior to 1st batch:

[0, 1]

[0, 1
4) [1

4 , 1
2) [1

2 , 3
4) [3

4 , 1]
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Batched successive elimination with dynamic binning

After 1st batch (or prior to 2nd batch):
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A tree-based interpretation

• L is a list of active bins, and IC is the active arms for bin C

• Prior to batch 1: L ← B1, where B1 is a regular partition of X
with bins of equal width w1. In the above example, w1 = 1/4

• Within this batch: try the arms in IC equally likely whenever a
sample Xt ∈ C

• At the end of the batch: given the revealed rewards, update IC

for each C ∈ L via successive elimination
• If no arm were eliminated from IC , split the bin C ∈ L into its

children child(C) and replace C with child(C)
• Repeat the above process in a batch fashion
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Performance guarantees

Denote b ≍ T
1−γ

1−γM . Choose
• batch sizes

t1 ≍ T
1−γ

1−γM , and ti = ⌊b(ti−1)γ⌋, for i = 2, ..., M

• split factors

g0 = ⌊b
1

2β+d ⌋, and gi = ⌊gγ
i−1⌋, for i = 1, ..., M − 2

Theorem 3 (More explicit version)
When M = O(log T ), BaSEDB with above choices of batch sizes and
split factors achieves

E[RT (π̂)] ≲ (log T )2 · T
1−γ

1−γM
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Numerics

Figure 1: Default parameters are T = 50000, d = 1, α = 0.2, β = 1. BSE is
regret optimal policy without the batch constraint.
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Is dynamic binning necessary?

• Without batch constraint, successive elimination with static
binning achieves optimal regret
• We motivate dynamic binning by proof of lower bounds; but

maybe we are not smart enough to find a single family of
instances that are hard for all batches
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Suboptimality of static binning

Theorem 4 (Jiang and Ma, 2024)
Consider α = β = d = 1 and M = 3. For any 3-batch SE policy
(Γ, π) with a fixed number of g bins. No matter how one sets g, there
exists a nonparametric bandit instance such that

E[RT (π̂)]≫ T
9

19 ,

where T
9

19 is the optimal regret achieved by BaSEDB

This demonstrates the necessity of dynamic binning in some sense
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Understand 1st failure mode: finer binning
g: algorithm choice; z: reward instance

x

1/g

1/z

• algorithm uses finer binning than reward instance
• number of pulls in the smaller bin (used by algorithm) is not

sufficient to tell two arms apart
• incur extra regret in next batch
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Understand 2nd failure mode: coarser binning

g: algorithm choice; z: reward instance

x1/z

1/g

• algorithm uses coarser binning than reward instance
• aggregated reward difference on the larger bin is small,

elimination could fail
• incur extra regret in next batch
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Concluding remarks

Summary:
• Batched successive elimination with dynamic binning is nearly

minimax optimal
• It is almost necessary as static binning is strictly suboptimal

Future directions:
• Remove log factors
• Adaptive to margin parameters
• Static grid vs. adaptive grid

Paper:
• R. Jiang, and C. Ma, “Batched nonparametric contextual bandits,”

arXiv:2402.17732, 2024
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