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Success of machine learning

Core assumption: Ptrain = Qtest
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Our focus: covariate shift

Ptrain(X) ̸= Qtest(X), while Ptrain(Y | X) = Qtest(Y | X)

due to variability in medical equipment, scanning protocols, subject populations
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Key questions

• What is the statistical limit of estimation in the presence of
covariate shift?
And how does this limit depend on the “amount” of covariate
shift?

• Is nonparametric least-squares estimation still optimal under
covariate shift?
If not, what is the optimal way of tackling covariate shift?
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Problem setup



Nonparametric regression under covariate shift

• In standard nonparametric regression, one observes n random
pairs {xi, yi}n

i=1, where xi ∼ P , and

yi = f⋆(xi) + wi with wi ∼ N (0, σ2)

We measure performance of estimator f̂ by its L2(P )-error:

∥f̂ − f⋆∥2
P :=

∫
X

(
f̂(x) − f⋆(x)

)2
p(x)dx

• Under covariate shift, however, our goal is to find an estimator f̂
whose L2(Q)-error is small, where target distribution Q is
different from source distribution P
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Reproducing kernel Hilbert spaces (RKHSs)
• We assume throughout that f⋆ lies in some RKHS H in L2(Q)

• Eigen-decomposition of kernel K : X × X → R:

K (x, x′) :=
∑∞

j=1
µjϕj(x)ϕj(x′)

with {µj}j≥1 sequence of non-negative eigenvalues, and {ϕj}j≥1
orthonormal basis of L2(Q)

• Hilbert norm (measure of smoothness):

∥f∥2
H =

∑∞
j=1

θ2
j /µj , where θj :=

∫
X f(x)ϕj(x)q(x)dx

• Parametrization of H:

H :=
{

f =
∑∞

j=1
θjϕj |

∑∞
j=1

θ2
j /µj < ∞

}
We assume throughout that supx∈X K (x, x) ≤ κ2
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Examples of RKHSs

• Linear kernels: K (x, x′) = ⟨x, x′⟩ with X = Rd, and H all linear
functions

• Polynomial kernels: K (x, x′) = (1 + ⟨x, x′⟩)m with X = Rd,
and H being polynomials of degree m or less

• First-order Sobolev space: K (x, x′) = min{x, x′} with
X = [0, 1], and

H =
{

f : [0, 1] → R | f(0) = 0,

∫ 1

0
|f ′(x)|2dx < ∞

}
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Family of source-target pairs

Discrepancy between L2(P ) and L2(Q) norms are controlled by
likelihood ratios (LRs)

ρ(x) := q(x)
p(x)

We focus on two broad families of covariate shift pairs (P, Q):
• Uniformly B-bounded families: supx∈X ρ(x) ≤ B, where B ≥ 1

B = 1 recovers no-covariate-shift case

• χ2-bounded families: EX∼P [ρ2(X)] ≤ V 2 for some V 2 ≥ 1

more general than (1), and related to χ2(Q||P ) := EX∼P [ρ2(X)] − 1
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Uniformly B-bounded likelihood ratios



Upper bounds

A naive kernel ridge regression estimator (KRR):

f̂λ := arg min
f∈H

{ 1
n

n∑
i=1

(f(xi) − yi)2 + λ∥f∥2
H

}

Theorem 1 (Ma, Pathak, Wainwright, 2022)

Assume B-bounded likelihood ratios and κ-uniformly bounded kernel.
For any λ ≥ 10κ2/n, w.h.p. KRR f̂λ satisfies the bound

∥f̂λ − f⋆∥2
Q ≲ λB∥f⋆∥2

H︸ ︷︷ ︸
b2

λ
(B)

+ σ2B log n

n

∞∑
j=1

µj

µj + λB︸ ︷︷ ︸
vλ(B)
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Bias-variance trade-off

Upper bound of KRR:

∥f̂λ − f⋆∥2
Q ≲ λB∥f⋆∥2

H︸ ︷︷ ︸
b2

λ
(B)

+ σ2B log n

n

∞∑
j=1

µj

µj + λB︸ ︷︷ ︸
vλ(B)

• Bias λB∥f⋆∥2
H: increase as λ increases

• Variance: σ2B log n
n

∑∞
j=1

µj

µj+λB : decrease as λ increases

Familiar! What’s new?
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Bias-variance trade-off
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Bias/variance trade-off under covariate shift
B = 1
B = 5
B = 10
B = 15

— µj = j−2, sample size n = 8000, and noise variance σ2 = 1

Optimal λ∗(B) shifts leftwards to smaller values as B is increased
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Upper bounds for specific kernels

• Finite-rank kernels (i.e., µj = 0 for j > D) with optimal rate
σ2B D

n

• Kernels with α-decaying eigenvalues (i.e., µj ≲ j−2α) with
optimal rate (σ2B/n)

2α
2α+1

Unweighted KRR is minimax optimal for these RKHSs
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Sub-optimality of constrained estimator

Suppose that ∥f⋆∥H ≤ 1. A seemingly “equivalent” estimator:

f̂erm := arg min
f∈BH(1)

1
n

n∑
i=1

(f(xi) − yi)2

with BH(1) denoting the ball with unit Hilbert norm

• Without covariate shift, constrained least-squares estimator is
also rate-optimal

• However, under covariate shift, f̂erm is provably sub-optimal.
One can construct B-bounded pair (P, Q) and RKHS such that
optimal rate is (B/n)2/3, while E

[
∥f̂erm − f⋆∥2

Q

]
≳ B3/n2
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Intuition for failure
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Key observation: ∥f̂λ∥2
H increases as B increases, where λ = λ∗(B)
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χ2-bounded likelihood ratios
— going beyond uniform boundedness



A simple example

• Source distribution P = N (0, 0.9)

• Target distribution Q = N (0, 1)

• Unbounded likelihood ratio as lim|x|→∞ ρ(x) → ∞

• However, second moment of LRs is bounded
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Unweighted KRR?

In the bounded likelihood ratio case, the key to the success of
unweighted KRR:

f̂λ := arg min
f∈H

{ 1
n

n∑
i=1

(f(xi) − yi)2 + λ∥f∥2
H

}
is the following nice relation

ΣP ⪰ 1
BI

ΣP := EX∼P [ϕ(X)ϕ(X)⊤], and I = ΣQ := EX∼Q[ϕ(X)ϕ(X)⊤]

In contrast, such a nice relationship (with B replaced by V 2) does
NOT appear to hold with unbounded likelihood ratios
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Likelihood-reweighted estimator

It is therefore natural to consider the likelihood-reweighted estimate

arg min
f∈H

1
n

n∑
i=1

ρ(xi)(f(xi) − yi)2 + λ∥f∥2
H

• The first term is an unbiased estimate of EQ[(Y − f(X))2]

• However, the variability could be huge due to multiplication by
potentially unbounded ρ(x)

Therefore we consider truncated estimator

f̂ rw
λ := arg min

f∈H

1
n

n∑
i=1

ρτn(xi)(f(xi) − yi)2 + λ∥f∥2
H
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Importance-reweighted estimator is near-optimal

With properly chosen λ and τn, f̂ rw
λ is optimal for a range of kernel

classes including
• Finite-rank kernels with optimal rate DV 2σ2

n

• Kernels with α-decaying eigenvalues with optimal rate(
σ2V 2

n

) 2α
2α+1

as long as the kernel eigenfunctions are bounded supx∈X |ϕj(x)| ≤ 1
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Conclusions and open questions

• When LRs are uniformly bounded, unweighted KRR is optimal
while constrained estimator is sub-optimal

• When LRs are unbounded, likelihood reweighted KRR is optimal

Future directions:
• Prove theoretically unweighted KRR (fails to) achieve optimality

• Remove extra condition on uniformly-bounded eigen-functions
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