Optimally tackling covariate shift in
RKHS-based nonparametric regression
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Our focus: covariate shift

Ptrain(X) 7é Qtest(X)7 while ]Dtrain(Y | X) = Qtest(Y ‘ X)

due to variability in medical equipment, scanning protocols, subject populations
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Key questions

e What is the statistical limit of estimation in the presence of
covariate shift?

And how does this limit depend on the “amount” of covariate
shift?

e |s nonparametric least-squares estimation still optimal under

covariate shift?
If not, what is the optimal way of tackling covariate shift?
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Problem setup



Nonparametric regression under covariate shift

e In standard nonparametric regression, one observes n random
pairs {z;,y;}i_,, where z; ~ P, and

yi = f*() +w;  with  w; ~ N(0,07%)

We measure performance of estimator f by its L2(P)-error:

~

1= 1= [ (@)= 1 @)*pla)da

e Under covariate shift, however, our goal is to find an estimator f
whose L?(Q)-error is small, where target distribution Q is

different from source distribution P
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Reproducing kernel Hilbert spaces (RKHSs)

We assume throughout that f* lies in some RKHS H in L?(Q)
Eigen-decomposition of kernel 7 : X x X — R:
o
H(z,2') = ijl pidi(x)o;(z)

with {1} ;>1 sequence of non-negative eigenvalues, and {¢;};>1
orthonormal basis of L?(Q)

Hilbert norm (measure of smoothness):
1£13 = ZFI 07/, where 0; = [y f(2)¢;(x)q(z)dz
Parametrization of H:

He= {F =37 005 | X 63 ms < oc

We assume throughout that sup, .y # (z,z) < K*
8/ 24



Examples of RKHSs

e Linear kernels: .7 (x,2') = (z,2') with X = R?, and # all linear
functions

e Polynomial kernels: ¢ (z,2') = (1 + (x,2'))™ with X = R?,
and H being polynomials of degree m or less

e First-order Sobolev space: 7 (x,2’) = min{x, 2’} with
X =10,1], and

7—[:{f:[0,1]—>}R|f(O):O,/O1|f’(x)\2dm<oo}
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Family of source-target pairs

Discrepancy between Lo(P) and L2(Q) norms are controlled by
likelihood ratios (LRs)

_ @)
p(x) = )

p(z
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Family of source-target pairs

Discrepancy between Lo(P) and Lo(Q) norms are controlled by
likelihood ratios (LRs)

- )

p(z

We focus on two broad families of covariate shift pairs (P, Q):

e Uniformly B-bounded families: sup,cy p(x) < B, where B > 1

B =1 recovers no-covariate-shift case

e x%-bounded families: Ex.p[p?(X)] < V2 for some V2 > 1

more general than (1), and related to x*(Q||P) = Ex~p[p*(X)] — 1
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Uniformly B-bounded likelihood ratios



Upper bounds

A naive kernel ridge regression estimator (KRR):

N 1 &
= arg?éiqﬂl {5 ;(f(xz) — i)’ + A“f“%{}

Theorem 1 (Ma, Pathak, Wainwright, 2022)

Assume B-bounded likelihood ratios and k-uniformly bounded kernel.
For any A\ > 10x2/n, w.h.p. KRR f\ satisfies the bound

1F— I3 S ABIF + CDlsn s i
n S + AB

3(B) va(B)
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Bias-variance trade-off

Upper bound of KRR:

-~ ) . d’Blogn <X 1
155 = £l SABIF IR + == == 3 =g
j=1

b2 (B) va(B)

e Bias AB||f*||3;: increase as X increases

0?Blogn s—oo

decrease as \ increases
J=1 p; +>\B

e Variance:
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Bias-variance trade-off

Upper bound of KRR:

-~ ) . d’Blogn <X 1
155 = £l SABIF IR + == == 3 =g
j=1

b2 (B) va(B)

e Bias AB||f*||3;: increase as X increases

0?Blogn s—oo

decrease as \ increases
J=1 p; +>\B

e Variance:

Familiar! What's new?
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Bias-variance trade-off

Bias/variance trade-off under covariate shift

v B=1
14- —— B=5

---- B=10
12- — B=15

10-

Mean-squared error
[o0]

1073 10-2 1071
Regularization A

— ;= 2, sample size n = 8000, and noise variance 0% = 1

Optimal A*(B) shifts leftwards to smaller values as B is increased J
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Upper bounds for specific kernels

e Finite-rank kernels (i.e., 11; = 0 for j > D) with optimal rate
o’BE
n

e Kernels with a-decaying eigenvalues (i.e., y; < j72%) with

2
optimal rate (02B/n)Za+1

Unweighted KRR is minimax optimal for these RKHSs
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Sub-optimality of constrained estimator

Suppose that ||f*]|% < 1. A seemingly “equivalent” estimator:
n

Fum =arg min £ 3" (F(1) - u)?

with By (1) denoting the ball with unit Hilbert norm
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Sub-optimality of constrained estimator

Suppose that ||f*]|% < 1. A seemingly “equivalent” estimator:
n

Fum =arg min £ 3" (F(1) - u)?

with By (1) denoting the ball with unit Hilbert norm

e Without covariate shift, constrained least-squares estimator is
also rate-optimal

e However, under covariate shift, fem is provably sub-optimal.
One can construct B-bounded pair (P, Q) and RKHS such that

optimal rate is (B/n)2/3, while E[errm - f*ugg] > B3 /n?
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Intuition for failure

—#— n=28000
2.6° —— n=16000
—#— n=32000
2.4 - —— n=64000
n=128000
2.2-
~z 2.0-
=
~1.8-
1.6-
1.4-
1.2-
10° 10 102

Key observation: ||fA>\||%_L increases as B increases, where A = )\*(B)J
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x2-bounded likelihood ratios

— going beyond uniform boundedness



A simple example

Source distribution P = N (0,0.9)
Target distribution Q = A/(0,1)
Unbounded likelihood ratio as lim|,|_, p(z) — o

However, second moment of LRs is bounded
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Unweighted KRR?

In the bounded likelihood ratio case, the key to the success of
unweighted KRR:

1 n

. : 2 2
Fui=argmin {25207 —w0)" + M/ 1)
is the following nice relation
Sp =51

Sp =Ex~p[p(X)p(X)'], and I = B¢ = Ex~[d(X)$(X) ']
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Unweighted KRR?

In the bounded likelihood ratio case, the key to the success of
unweighted KRR:

1 n

. : 2 2
Fui=argmin {25207 —w0)" + M/ 1)
is the following nice relation
Sp =51

p = Ex~p[3(X)o(X) "], and I = Bq = Ex~q[s(X)$(X) "]

In contrast, such a nice relationship (with B replaced by V?) does
NOT appear to hold with unbounded likelihood ratios
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Likelihood-reweighted estimator

It is therefore natural to consider the likelihood-reweighted estimate

arg i ;;p(ﬂfi)(f(xi) — 2 + ISR

e The first term is an unbiased estimate of Eg[(Y — f(X))?]

e However, the variability could be huge due to multiplication by
potentially unbounded p(x)

Therefore we consider truncated estimator

AY = arg %171_[1 Z,OTn xi)( yi)? + )\Hf”?-t
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Importance-reweighted estimator is near-optimal

With properly chosen A and 7, f/{w is optimal for a range of kernel

classes including
DV2o2

e Finite-rank kernels with optimal rate =

e Kernels with a-decaying eigenvalues with optimal rate

2a
o212\ 2a+1
n

as long as the kernel eigenfunctions are bounded sup, ¢ » [¢;(z)] <1
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Conclusions and open questions

e When LRs are uniformly bounded, unweighted KRR is optimal
while constrained estimator is sub-optimal

e When LRs are unbounded, likelihood reweighted KRR is optimal

Future directions:

e Prove theoretically unweighted KRR (fails to) achieve optimality

e Remove extra condition on uniformly-bounded eigen-functions
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