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Abstract
We study covariate shift in the context of nonparametric regression. We introduce a new

measure of distribution mismatch between the source and target distributions that is based on
the integrated ratio of probabilities of balls at a given radius. We use the scaling of this measure
with respect to the radius to characterize the minimax rate of estimation over a family of Hölder
continuous functions under covariate shift. In comparison to the recently proposed notion of
transfer exponent, this measure leads to a sharper rate of convergence and is more fine-grained.
We accompany our theory with concrete instances of covariate shift that illustrate this sharp
difference.

1 Introduction

In the standard formulation of prediction or classification, future data (as represented by a test
set) is assumed to be drawn from the same distribution as the training data. This assumption,
while theoretically convenient, may fail to hold in many real-world scenarios. For instance, training
data might be collected only from a sub-group within a broader population (such as in medical
trials), or the environment might change over time as data are collected. Such scenarios result in a
distribution mismatch between the training and test data.

In this paper, we study an important case of such distribution mismatch—namely, the covariate
shift problem (e.g., [21, 19]). Suppose that a statistician observes covariate-response pairs (X,Y ),
and wishes to build a prediction rule. In the problem of covariate shift, the distribution of the
covariatesX is allowed to change between the training and test data, while the posterior distribution
of the responses (namely, Y | X) remains fixed. Compared to the usual i.i.d. setting, this serves as
a more accurate model for a variety of real-world applications, including image classification [20],
biomedical engineering [13], sentiment analysis [3], and audio processing [8], among many others.

More formally, suppose that the statistician observes nP covariates {Xi}nPi=1 from a source dis-
tribution P , and nQ covariates {Xi}nQ+nP

i=nP+1 from a target distribution Q. For each observed Xi, she
also observes a response Yi drawn from the same conditional distribution. The regression function
f?(x) = E[Y | x] defined by this conditional distribution is assumed to lie in some function class F .
The statistician uses these samples to produce an estimate f̂ , which will be evaluated on the target
distribution, with a fresh sample X ∼ Q, yielding the mean-squared error

‖f̂ − f?‖2L2(Q)
··= E

[(
f̂(X)− f?(X)

)2]
.

When there is no covariate shift, the fundamental (minimax) risks for this problem are well-
understood [7, 9, 22]. The goal of this paper is to understand how, for nonparametric function
classes F , this minimax risk changes as a function of the “amount” of covariate shift between P and
Q.

? RP and CM contributed equally to this paper.
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1.1 Our contributions and related work

Let us summarize the main contributions of this paper, and put them in the context of related work.

Our contributions. We introduce a similarity measure1 ρh between two probability measures
P,Q on a common metric space (X , d). For any level h > 0, it is defined as

ρh(P,Q) ··=
∫

X

1

P
(
B(x, h)

) dQ(x), (1)

where B(x, h) ··= {x′ ∈ X | d(x, x′) 6 h } is the closed ball of radius h centered around x. We
substantiate the significance of this similarity measure via the following contributions:

(i) For regression functions that are Hölder continuous, we demonstrate a performance guarantee
for the Nadaraya-Watson kernel estimator under covariate shift that is fully determined by
the scaling of the similarity measure ρh(P,Q) with respect to the radius h.

(ii) We complement these upper bounds with matching lower bounds—in a minimax sense—
demonstrating that the best achievable rate of estimation in Hölder classes is also determined
by the scaling of this similarity measure.

(iii) We show how the similarity measure ρh can be controlled based on the metric properties of the
space X . In addition, we compare ρh with existing notions for covariate shift (e.g., bounded
likelihood ratios, transfer exponents), thereby showcasing some of its advantages.

Related work. The problem of covariate shift was studied in the seminal work by Shimodaira [21],
who provided asymptotic guarantees for a weighted maximum likelihood estimator under covari-
ate shift. Since then, a plethora of work has analyzed covariate shift, or the general distribution
mismatch problem (also referred to as domain adaptation or transfer learning).

For general distribution mismatch, one line of work provides rates that depend on distance
metrics between the source-target pair (e.g., [1, 2, 6, 14, 5, 16]). These results hold under fairly
general conditions, but do not necessarily guarantee consistency as the sample size n increases.
In contrast, our guarantees for covariate shift do guarantee consistency, and moreover, we provide
explicit nonasymptotic, optimal nonparametric rates. As pointed out in the paper [11], the distri-
bution mismatch problem is asymmetric in the sense that it may be easier to estimate accurately
when dealing with covariate shift from P to Q than from Q to P . Our results also corroborate this
intuition. It is worth noting that these prior distance metrics fall short of capturing the inherent
asymmetry between P and Q.

Another line of work addresses covariate shift under conditions on the likelihood ratio dQ/dP .
For instance, some authors have obtained results for bounded likelihood ratios [24, 10] or in terms
of information-theoretic divergences between the source-target pair [23, 15]. Our work is inspired in
part by the work of Kpotufe and Martinet [11], who introduced the notion of the transfer exponent.
It is a condition that bounds the mass placed by the pair (P,Q) on balls of varying radii; using this
notion, they analyzed various problems of nonparametric classification. Our work, focusing instead
on nonparametric regression problems and using the measure ρh, provides sharper rates than those
obtainable by considering the transfer exponent; see Section 3.2 for details. Thus, the similarity
measure ρh provides a more fine-grained control on the effect of covariate shift on nonparametric
regression.

1To be clear, this quantity actually serves as a dis-similarity measure: as shown in the sequel, source-target pairs
(P,Q) with larger values ρh(P,Q) lead to “harder” estimation problems in terms of covariate shift.
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Finally, it is worth mentioning other recent works that give risk bounds for covariate shift
problems, including on linear models [12], as well as linear models and one-layer neural networks [17].
Although these results deal with covariate shift, the rates obtained are parametric ones, and hence
not directly comparable to the nonparametric rates that are the focus of our inquiry.

1.2 Notation

Here we collect notation used throughout the paper. We use R to denote the real numbers. We
use (X , d) to denote a metric space, and we equip it with the usual Borel σ-algebra. We let
B(x, r) ··=

{
x′ ∈ X | d(x, x′) 6 r

}
be the closed ball of radius r centered at x. We reserve the cap-

ital letters X,Y , possibly with subscripts, for a pair of random variables arising from a regression
model. Similarly, we reserve P,Q for a pair of two probability measures on (X , d). For h > 0, we
denote by N(h) the covering number of X at resolution h in the metric d. This is the minimal
number of balls of radius at most h > 0 required to cover the space X .

The remainder of this paper is organized as follows. We begin in Section 2 by setting up the
problem more precisely, and stating and discussing our main results on covariate shift: namely,
upper bounds in Theorem 1, accompanied by matching lower bounds in Theorem 2. These results
establish that the similarity measure (1) provides a useful measure of the “difficulty” of source-
target pairs in covariate shift; accordingly, Section 3 is devoted to a comparison and discussion of
this measure relevant to concepts from past work, including likelihood ratio bounds and transfer
exponents. The proofs of all our results are given in Section 4, and we conclude with a discussion
in Section 5.

2 How covariate shift affects nonparametric regression

In this section, we use the similarity measure introduced in equation (1) to characterize how covariate
shift can change the minimax risks of estimation for certain classes of nonparametric regression
models. We begin in Section 2.1 by setting up the observation model to be considered, along
with some associated assumptions on the regression function f?, the conditional distribution of
Y | X, and the covariate shift. In Section 2.2, we derive an achievable result (Theorem 1) for
nonparametric regression in the presence of covariate shift, in particular via a careful analysis of the
classical Nadaraya-Watson estimator. Our upper bound in this section is general, and illustrates the
key role of the similarity measure ρh. In Section 2.3, we introduce the α-families of source-target
pairs (P,Q), and use Theorem 1 to derive achievable results for these families. In Section 2.4, we
state some complementary lower bounds for α-families (Theorem 2), showing that our achievable
results are, in fact, unimprovable.

2.1 Observation model and assumptions

Suppose that we observe covariate-response pairs {(Xi, Yi)}ni=1 ⊂ X × R that are drawn from
nonparametric regression model of the following type. The conditional distribution of Y | X is the
same for all i = 1, . . . , n, and our goal is to estimate the regression function f?(x) ··= E[Y | X = x].
In terms of the “noise” variables, ξi ··= Yi − f?(Xi), the observations can be written in the form

Yi = f?(Xi) + ξi, i = 1, . . . , n. (2)

In our analysis, we impose three types of regularity conditions: (i) Hölder continuity of the regression
function; (ii) the type of covariate shift allowed; and (iii) tail conditions on the noise variables {ξi}ni=1.
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Assumption 1 (Hölder continuity). For some L > 0 and β ∈ (0, 1], the function f? : X → R is
(β, L)-Hölder continuous, meaning that

∣∣f?(z)− f?(z′)
∣∣ 6 L [d(z, z′)]β, for any z, z′ ∈ X .

We note that in the special case β = 1, the function f? is L-Lipschitz.

Assumption 2 (Covariate shift). The covariates X1, . . . , Xn are independent, and drawn as

X1, . . . , XnP
i.i.d.∼ P and XnP+1, . . . XnP+nQ

i.i.d.∼ Q where n = nP + nQ.

Assumption 3 (Noise assumption). The variables {ξi}ni=1 satisfy the second moment bound

sup
x

E
[
ξ2
i | Xi = x

]
6 σ2 for i = 1, . . . , n.

Note that by construction, the variables ξi are (conditionally) centered. Assumption 3 also allows
ξi to depend on Xi, as long as the variance is uniformly bounded above.

2.2 Achievable performance via the Nadaraya-Watson estimator

We first exhibit an achievable result for the problem of nonparametric regression in the presence of
covariate shift. We do so by analyzing a classical and simple method for nonparametric estimation,
namely the Nadaraya-Watson estimator [18, 27], or NW for short. The main result of this section
is to show that the mean-squared error (MSE) of the NW estimator is upper bounded by a bias-
variance decomposition that also involves the similarity measure ρh.

We begin by recalling the definition of the NW estimator, focusing here on the version in which
the underlying kernel is uniform over a ball of a given bandwidth hn > 0. In particular, define the
set

Gn ··=
n⋃

i=1

B(Xi, hn),

corresponding to the set of points in X within distance hn of the observed covariates. In terms of
this set, the Nadaraya-Watson estimator f̂ takes the form

f̂(x) ··=





∑n
i=1 Yi1{Xi ∈ B(x, hn)}∑n
i=1 1{Xi ∈ B(x, hn)} for x ∈ Gn

0 otherwise.
(3)

Our first main result provides an upper bound on the MSE of the NW estimator under covariate
shift; this bound exhibits the significance of the similarity measure (1). It involves the distribution
µn ··= nP

n P +
nQ
n Q, which is a convex combination of the source and target distributions weighted

by their respective fractions of samples.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. For any hn > 0, the Nadaraya-Watson
estimator f̂ with bandwidth hn has MSE bounded as

E
∥∥f̂ − f?

∥∥2

L2(Q)
6 cu

{
L2h2β

n +
‖f?‖2∞ + σ2

n
ρhn(µn, Q)

}
, (4)

where cu > 0 is a numerical constant.
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See Section 4.1 for a proof of this result.
Note that the bound (4) exhibits a type of bias-variance trade-off, one that controls the optimal

choice of bandwidth hn. The quantity h2β
n in the first term is familiar from the classical analysis

of the NW estimator; it corresponds to the bias induced by smoothing over balls of radius hn, and
hence is an increasing function of bandwidth. In the second term, the bandwidth appears in the
similarity measure ρhn(µn, Q), which is a non-increasing function of the bandwidth. The optimal
choice of bandwidth arises from optimizing this tradeoff; note that it depends on the pair (P,Q),
as well as the sample sizes (nP , nQ), via the similarity measure applied to the convex combination
µn and Q.

No covariate shift: As a sanity check, it is worth checking that the bound (4) recovers known
results in the case of no covariate shift (P = Q and hence µn = Q). As a concrete example, if Q is
uniform on the hypercube [0, 1]k, it can be verified that ρh(Q,Q) � h−k as h→ 0+. (See Example 2
in the sequel for a more general calculation that implies this fact.) Thus, if we track only the
sample size, the optimal bandwidth is given by h∗n = n

− 1
2β+k , and with this choice, the bound (4)

implies that the NW estimator has MSE bounded as n−
2β

2β+k . Thus, we recover the classical and
known results in this special case. As we will see, more interesting tradeoffs arise in the presence of
covariate shift, so that µn 6= Q.

2.3 Consequences for α-families of source-target pairs

In order to better understand the bias-variance tradeoff in the bound (4) in the presence of covariate
shift, it is helpful to derive some explicit consequences of Theorem 1 for a particular function class
F , along with certain families of source-target pairs (P,Q). The latter families are indexed by
a parameter α > 0 that controls the amount of covariate shift; accordingly, we refer to them as
α-families.

So as to simplify our presentation, we assume that X is the unit interval [0, 1]. For a given pair
β ∈ (0, 1] and L > 0, consider the class of regression functions

F(β, L) =
{
f : [0, 1]→ R | |f(x)− f(x′)| 6 L|x− x′|β, for all x, x′ ∈ X , f(0) = 0

}
.

This is a special case of β-Hölder continuous functions when the underlying metric space is the unit
interval [0, 1] equipped with the absolute value norm. The additional constraint f(0) = 0 ensures
that this class has finite metric entropy.

Next we introduce some interesting families of source-target pairs.

α-families of (P,Q) pairs: For a given parameter α > 1 and radius C > 1, we define the set of
source-target pairs2

D(α,C) ··=
{

(P,Q) | sup
0<h61

hαρh(P,Q) 6 C
}
. (5a)

In words, these are source target pairs for which the growth of the similarity as h→ 0+ is at most
h−α. In the case α ∈ (0, 1], we define the related set

D′(α,C) ··=
{

(P,Q) | sup
0<h6∆

hαρh(P,Q) 6 C, sup
0<h61

ρh(Q,Q) 6 C
}
, (5b)

2Note that the restriction of the supremum to h ∈ [0, 1] is necessary, as ρh(P,Q) = 1 for all h > 1. Note also that
since ρ1(P,Q) = 1, one necessarily has C > 1.
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where the additional condition is added to address the fact that even without covariate shift, the
rate n−2β/(2β+1) is unimprovable for some distributions [22]. Taking into account the first part of
the next corollary, it is necessary to impose some condition on the target distribution in order to

obtain significantly faster rates such as n−
2β

2β+α , when α < 1.

Corollary 1. Suppose that σ > L, and that Assumptions 2 and 3 hold. Then there exists a constant
c′u > 0, independent of n, nP , nQ, σ2, and an integer nu ··= nu(σ, β, L, α,C) such that, provided that
max{nP , nQ} > nu:

(a) For α > 1 and C > 1, we have

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂−f?

∥∥2

L2(Q)
6 c′u

{(nP
σ2

) 2β+1
2β+α +

(nQ
σ2

)}− 2β
2β+1 for any (P,Q) ∈ D(α,C). (6a)

(b) For α ∈ (0, 1] and C > 1, we have

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂ − f?

∥∥2

L2(Q)
6 c′u

{(nP
σ2

) 2β
2β+α +

(nQ
σ2

)}−1
for any (P,Q) ∈ D′(α,C). (6b)

See Section 4.2 for a proof of this corollary.

Let us discuss the bound (6a) to gain some intuition. The special case of no covariate shift can
be captured by setting nP = 0 and nQ > 0, and we recover the familiar n−

2β
2β+k rate previously

discussed. At the other extreme, suppose that nQ = 0 so that all of our samples are from the shifted

distribution (i.e., n = nP ); in this case, the MSE is bounded as (σ2/n)
− 2β

2β+α . As α increases, our
set-up allows for more severe form of covariate shift, and its deleterious effect is witnessed by the
exponent 2β

2β+α shrinking towards zero. Thus, the NW estimator—with an appropriate choice of
bandwidth—remains consistent but with an arbitrarily slow rate as α diverges to +∞.

There are many papers in the literature (e.g., [24, 10]) that discuss the covariate shift problem
when the likelihood ratio is bounded—that is, when Q is absolutely continuous with respect to P
and supx∈X

dQ
dP (x) 6 b for some b > 1. We say that the pair (P,Q) are b-bounded in this case.

Example 1 (Bounded likelihood ratio). Suppose that X = [0, 1]k with the Euclidean metric, and
consider a pair (P,Q) with b-bounded likelihood ratio. In this special case, our general theory yields
bounds in terms of the b-weighted effective sample size

neff(b) ··=
nP
b

+ nQ. (7)

In particular, it follows from the proof of Corollary 1 that in the regime σ2 > L2, we have the upper
bound

E
∥∥f̂ − f?

∥∥2

L2(Q)
6 c′u

( σ2

neff(b)

) 2β
2β+k

,

provided that neff(b) is large enough. Consequently, the effect of covariate shift with b-bounded

pairs is to reduce nP to nP /b. Again, we recover the standard rate (σ
2

n )
2β

2β+k in the case of no
covariate shift (or equivalently, when b = 1). This recovers a known result and is minimax optimal.
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2.4 Matching lower bounds for α-families

Thus far, we have seen that the similarity measure ρh plays a central role in determining the esti-
mation error of the NW estimator under covariate shift. However, this is just one of many possible
estimators in nonparametric regression. Does this similarity measure play a more fundamental role?
In this section, we answer this question in the affirmative by proving minimax lower bounds for co-
variate shift problems parameterized in terms of bounds on ρh. In order to do so, we consider the
metric space X = [0, 1] equipped with the absolute value as the metric.

The main result of this section provides lower bounds on the mean-squared error of any estimator,
when measured uniformly over functions in the Hölder class F(β, L), along with target-source pairs
(P,Q) belonging to the class D(α,C) when α > 1 and the class D′(α,C) when α < 1.

Theorem 2. Suppose that Assumptions 2 and 3 hold. Then there is a constant c` > 0, independent
of n, nP , nQ, σ2, and an integer n` ··= n`(σ, L,C, α, β) such that for all sample sizes max{nP , nQ} >
n`:

(a) For α > 1 and C > 1, there is a pair of distributions (P,Q) ∈ D(α,C) such that

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂ − f?

∥∥2

L2(Q)
> c`

{(nP
σ2

) 2β+1
2β+α +

(nQ
σ2

)}− 2β
2β+1

. (8a)

(b) For α 6 1 and C > 1, there is a pair of distributions (P,Q) ∈ D′(α,C) such that

inf
f̂

sup
f?∈F(β,L)

E
∥∥f̂ − f?

∥∥2

(Q)
> c`

{(nP
σ2

) 2β
2β+α +

(nQ
σ2

)}−1
. (8b)

See Sections 4.3 and 4.4 for the proof of this result.

These lower bounds should be compared to Corollary 1. This comparison shows that the MSE
bounds achieved by the NW estimator are actually optimal in the minimax sense over families
defined by the similarity measure ρh.

3 Properties of the similarity measure

In the previous sections, we have seen that the similarity measure ρh controls both the behavior of
the NW estimator, as well as fundamental (minimax) risks applicable to any estimator. Thus, it
is natural to explore the similarity measure in some more detail, and in particular to draw some
connections to existing notions in the literature.

3.1 Controlling ρh via covering numbers

We start with a general way of controlling the similarity measure ρh, which is based on the covering
number of the metric space (X , d). In particular, for any h > 0, the covering number N(h) is defined
to be the smallest number of balls of radius h needed to cover the space X . See Chapter 5 in the
book [26] for more background.

Proposition 1 (Covering number bounds for the similarity measure). Suppose that P,Q are two
probability measures on the same metric space (X , d). Suppose that for some h > 0, there is a λ > 0
such that

P (B(x, h)) > λ Q(B(x, h)) for all x ∈ X . (9)

Then the similarity at scale h is upper bounded as ρh(P,Q) 6 N(h2 )/λ.
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See Section 4.5 for the proof of this claim.

It is worth emphasizing that—due to the order of quantifiers above—the quantity λ > 0 is
allowed to depend on h > 0. We exploit this fact in subsequent uses of the bound (9).

One straightforward application of Proposition 1 is in bounding the similarity measure when
there is no covariate shift, as we now discuss.

Example 2 (No covariate shift). Suppose that we compute the similarity measure in the case
P = Q; intuitively, this models a scenario where there is no covariate shift. In this case, we clearly
may apply Proposition 1 with λ = 1, which reveals that ρh(P, P ) 6 N(h/2). To give one concrete
bound, suppose that X ⊂ Rk is a compact set, with diameter D. Then—owing to standard bounds
on covering number [26, chap. 5]—we obtain ρh(P, P ) 6 (1 + 2D

h )k. Note that this bound holds
for any metric, so long as the diameter D is computed with the same metric as the balls in the
definition of the similarity measure.

We give another application of Proposition 1 in the following subsection.

3.2 Comparison to previous notions of distribution mismatch

Next, we show how the mapping h 7→ ρh(P,Q) can be bounded naturally using previously proposed
notions of distribution mismatch for covariate shift. Again, Proposition 1 plays a central role.

Example 3 (Bounded likelihood ratio). Suppose that P,Q are such that Q� P and the likelihood
ratio dQ

dP (x) 6 b, for all x ∈ X . Then note that by a simple integration argument P (B(x, h)) >
1
bQ(B(x, h)). Therefore, we conclude ρh(P,Q) 6 bN(h/2).

As noted previously, our work was inspired by the transfer exponent introduced by Kpotufe and
Martinet [11] in the context of covariate shift for nonparametric regression. It is worth comparing
these notions so as to understand in what sense the similarity measure ρh is a refinement of the
transfer exponent. In order to simplify this discussion, we focus here on the special case X = [0, 1].
We begin by providing the definition of transfer exponent:

Definition 1 (Transfer exponent [11]). The distributions (P,Q) have transfer exponent γ > 0 with
constant K ∈ (0, 1] if

P (B(x, h)) > KhγQ(B(x, h)) for all x in the support of Q.

We denote by T (γ,K) the set of all pairs (P,Q) with this property.
It is natural to ask how the set T (γ,K) is related to the α-family previously defined in equa-

tion (5a). The following result establishes an inclusion:

Lemma 1. For X = [0, 1] and any γ > 0 and K ∈ (0, 1], we have the inclusion

T (γ,K) ⊂ D(γ + 1, 2
K ). (10)

The proof of this inclusion is given in Section 4.6. At a high level, it exploits Proposition 1 to show
that for any (P,Q) ∈ T (γ,K), we have the bound ρh(P,Q) 6 1

KhγN(h/2).

From the inclusion (10), it follows that any covariate shift instance (P,Q) with finite transfer
exponent γ > 0 belongs to an α-similarity family with α = γ + 1. In fact, following a proof similar
to that of Theorem 2, we can show that for γ > 0, there is pair (P,Q) in the class T (γ,K) such that
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Figure 1. The yellow circle depicts the contour for the class D(γ + 1, 2
K ), while the blue square

plots the contour for the class T (γ,K). It can be seen from Lemma 1 and Example 5 that T (γ,K)
is strict subset of D(γ + 1, 2

K ). In addition, our lower bound shows that under covariate shift, the
worst-case instances for both classes coincide with each other. However, there exist instances (P,Q)
where the characterization using transfer exponent is intrinsically loose.

the minimax risk for β-Hölder-continous functions scales as n
− 2β

2β+γ+1

P . Note that this risk bound
coincides with the minimax risk associated with the class D(γ + 1, 2

K ). In other words, from a
worst case point of view, the source-target class T (γ,K) is equally as hard as the class D(γ+ 1, 2

K )
for nonparametric regression under covariate shift. However, this worst case equivalence does not
capture the full picture: there are many covariate shift families for which the transfer exponent
provides an overly conservative prediction, and so does not capture the fundamental difficulty of
the problem. Let us consider a concrete example to illustrate.

Example 4 (Separation between transfer exponent and ρh). Let the target distribution Q be a
uniform distribution on the interval [0, 1], and for some κ > 1, suppose that the source distribution
P has density p(x) = (κ + 1)xκ for x ∈ [0, 1]. With these definitions, it can be verified that
(P,Q) ∈ T (κ,K) for some constant K ∈ (0, 1], and moreover, that the quantity κ is the smallest
possible transfer exponent for this pair. In contrast, another direct computation shows that the
pair (P,Q) belongs to the class D(κ,C ′) for some constant C ′ > 0. These two inclusions establish
a separation between the rates predicted by the transfer exponent and the similarity ρh. Indeed,
as shown by our theory, the difficulty of estimation over D(κ,C ′) is smaller than that prescribed
by T (κ,K). Indeed, if one observe n samples from the source distribution, the worst-case rate
indicated by the computation from the transfer exponent is n−

2β
2β+κ+1 , whereas the rate guaranteed

by the similarity measure ρh is n−
2β

2β+κ . As an explicit example, Lipschitz functions (β = 1) and
κ = 1, we obtain the slower rate n−1/2 versus the faster rate n−2/3, so that the ratio between the
two rates diverges as n1/6 as the sample size grows.

See also Figure 1 for an illustration of the connections and differences between the similarity measure
and the transfer exponent.
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4 Proofs

We now turn to the proofs of the results stated in the previous section.

4.1 Proof of Theorem 1

Recall that the estimate f̂ depends on the observations {(Xi, Yi)}ni=1, and so should be understood
as a random function. The core of the proof involves proving that, for each x ∈ X , we have

E
[(
f̂(x)− f?(x)

)2] 6 L2h2β
n +

4σ2 + ‖f?‖2∞
n

1

µn(B(x, hn))
, (11)

where the expectation is taking over the observations {(Xi, Yi)}ni=1. Given this inequality, the
claim (4) of Theorem 1 follows, since by Fubini’s theorem, we can write

E
[∥∥f̂ − f?

∥∥2

L2(Q)

]
=

∫

X
E
[(
f̂(x)− f?(x)

)2]
dQ(x).

Applying inequality (11) and recalling the definition of the similarity measure yields the claim (4).
We now focus on establishing the bound (11). Our proof makes use of the conditional expectation

of f̂ given the covariates

f(x) ··= E[f̂(x) | X1, . . . , Xn], for any x ∈ X .

To be explicit, the expectation is taken over Yi | Xi, i = 1, . . . , n. With this definition, our first
result provides a bound on the conditional bias and variance.

Lemma 2. For each x ∈ X almost surely, the Nadaraya-Watson estimator f̂ satisfies the bounds

(f(x)− f?(x)
)2 6 ‖f?‖2∞1{x 6∈ Gn}+ L2h2β

n 1{x ∈ Gn} and (12a)

E[(f(x)− f̂(x))2 | X1, . . . , Xn] 6 σ2∑n
i=1 1{Xi∈B(x,hn)}1{x ∈ Gn}. (12b)

We prove this auxiliary claim at the end of this section.

Taking the results of Lemma 2 as given, we continue our proof of the bound (11). For any fixed
x ∈ X , a conditioning argument yields

E
[
(f̂(x)− f?(x))2

]
= E

[
(f(x)− f?(x)

)2]
+ E

[
E[(f(x)− f̂(x))2 | X1, . . . , Xn]

]
.

By applying the bounds (12a) and (12b) to the two terms above, respectively, we arrive at the upper
bound E

[
(f̂(x)− f?(x))2

]
6 T1 + T2, where

T1 ··= ‖f?‖2∞E[1{x 6∈ Gn}] + L2h2β
n , and T2 ··= E

[
1{x ∈ Gn} σ2∑n

i=1 1{Xi∈B(x,hn)}

]
.

We bound each of these terms in turn.
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Bounding T1: By definition, the set Gn involves n independent random variables, so that for any
x ∈ X , we have

E
[
1{x /∈ Gn}

]
=
(

1− P
(
B(x, hn)

))nP (
1−Q

(
B(x, hn)

))nQ (i)

6 1

nµn(B(x, hn))
, (13)

where step (i) follows from the elementary inequality (1− p)n(1− q)m 6 exp(−(np+mq)) 6 1
np+mq ,

valid for p, q ∈ (0, 1) and nonnegative integers n,m. Consequently, the first term is upper bounded
as

T1 6 ‖f?‖2∞
1

nµn(B(x, hn))
+ L2h2β

n . (14a)

Bounding T2: For a fixed x ∈ X , and for each i = 1, . . . , n, define the Bernoulli random variable
Zi = 1[Xi ∈ B(x, hn)] ∈ {0, 1}, along with the binomial random variables U =

∑nP
i=1 Zi and

V =
∑n

i=nP+1 Zi. With these definitions, we can write

n∑

i=1

1{Xi ∈ B(x, hn)} = U + V, and 1{x ∈ Gn} = 1
{
U + V > 0

}
.

Consequently, by an elementary bound for binomial random variables (see Lemma 5), it follows that

T2 = E
[
1{U + V > 0} 1

U + V

]
6 4

nµn(B(x, hn))
. (14b)

Combining inequalities (14a) and (14b) yields the claim (11).

The only remaining detail is to prove the auxiliary lemma used in the proof.

Proof of Lemma 2. Recall that by definition, we have

f(x) =





∑n
i=1 f

?(Xi)1{Xi ∈ B(x, hn)}∑n
i=1 1{Xi ∈ B(x, hn)} x ∈ Gn

0 x /∈ Gn

Proof of the bound (12a): By a direct expansion, we have

(
f(x)− f?(x)

)2
1{x ∈ Gn} =

(∑n
i=1(f?(x)− f?(Xi))1{Xi ∈ B(x, hn)}∑n

i=1 1{Xi ∈ B(x, hn)}
)2

1{x ∈ Gn}

(i)

6
∑n

i=1(f?(x)− f?(Xi))
21{Xi ∈ B(x, hn)}∑n

i=1 1{Xi ∈ B(x, hn)} 1{x ∈ Gn}

(ii)

6 L2h2β
n 1{x ∈ Gn},

where step (i) follows from Jensen’s inequality; and step (ii) makes use of Assumption 1. The
bound (12a) is an immediate consequence.
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Proof of the bound (12b): In order to prove this claim, note that by independence among
{(Xi, ξi)}ni=1,

E[(f(x)− f̂(x))2 | X1, . . . , Xn] =

n∑

i=1

E[ξ2
i | Xi]

( 1{Xi∈B(x,hn)}∑n
i=1 1{Xi∈B(x,hn)}

)2
1{x ∈ Gn}

(iii)

6 σ2
n∑

i=1

( 1{Xi∈B(x,hn)}∑n
i=1 1{Xi∈B(x,hn)}

)2
1{x ∈ Gn}

=
σ2

∑n
i=1 1{Xi ∈ B(x, hn)}1{x ∈ Gn},

which proves the claim. Here step (iii) is a consequence of Assumption 3.

4.2 Proof of Corollary 1

Fix some h ∈ (0, 1], and introduce the indicator variable η = 1{α > 1}. We then have
∫

X

1

nPP (B(x, h)) + nQQ(B(x, h))
dQ(x) 6 min

{ 1

nP
ρh(P,Q),

1

nQ
ρh(Q,Q)

}

6 3ηC min
{ 1

nPhα
,

1

nQhη

}

6 2 · 3ηC 1

nPhα + nQhη
.

The last inequality follows from (1) and standard covering number bounds (note h 6 1). Thus the
final performance bound is

2 · 3ηCL2
{
h2β +

L2 + σ2

nPhα + nQhη

}
.

We choose the bandwidth h? so as to trade off between two terms in this risk bound; more precisely,
we set

h? =
(( nQ
L2 + σ2

)
+
( nP
L2 + σ2

) 2β+η
2β+α

)− 1
2β+η

This choice is valid, since σ2 > L2 and max{nP , nQ} > 4σ2 by assumption. Substituting this choice
of bandwidth into the risk bound (4) yields the claim.

4.3 Proof of Theorem 2(a)

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P,Q) ∈ D(α,C). This instance is designed such that the
integral quantity ρh(P,Q) must scale as Ch−α.

2. Then we select a family of hard regression functions contained within F(β, L) that guarantees
the worst-case expected error for our pair of distributions, (P,Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (8a).
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Proposition 2. Let ↵ > 1 and C > 1. Define P and Q as in Table 1, with the following choice of
parameters ", S:

(a) if C > 6, set " = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set " = 1, and S = 1
4(C/6)1/↵.

Then for any choice of M, r > 0 satisfying S = 6Mr, the pair (P, Q) lies in D(↵, C).

See section 5.2.1 for a proof of this claim.

Construction of hard regression functions. Now we move on to construct a packing set of
F(�, L). Let  : [�1, 1] ! R be such that  (�1) =  (1) = 0 and

�� (x) � (y)
�� 6 |x � y|� , for all x, y 2 [�1, 1], and, (10a)

Z 1

�1
 2(x) dx =·· C2

 > 0. (10b)

Many choices of  are possible above [22, see chap. 2]; we require C2
 6 1/6, which is possible by

taking  (x) = e�1/(1�x2)1{|x| 6 1}. For a sequence b = (b1, . . . , bM ) 2 {0, 1}M , we define

fb(x) ··=
MX

j=1

bj�j(x), where �j(x) ··= Lr� 
⇣x � zj

r

⌘
.

We will take
H ··=

n
fb | b 2 B

o
.

Above, B is a packing set of the discrete cube {0, 1}M , originally constructed by Gilbert [7] and
Varshamov [23]. The following result records the main property of this set.

Lemma 2 (Gilbert-Varshamov [22, Lemma 2.9]). Let M > 8. There is a subset B ⇢ {0, 1}M such
that kb � b0k1 > M/8 for all distinct b, b0 2 B, and |B| > 2M/8.

The next result summarizes the important properties of the hard set of regression functions, H.

Lemma 3. The set H has the following properties:

(a) it is contained within the Hölder class, H ⇢ F(�, L);

(b) it has the following separation: for each distinct f, g 2 H, kf � gk2
L2(Q) >

C2
 

16 L2r2� ;

(c) it satisifes the following L2(P ) and L2(Q) bounds:

kfk2
L2(Q) 6

C2
 M

2S
L2r2�+1 and kfk2

L2(P ) 6
"C2
 M

6S↵
L2r2�+↵,

for all f 2 H.
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This implies that

�
f(x) � f?(x)

�2
1{x 2 Gn} =

⇣Pn
i=1(f

?(x) � f?(Xi))1{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)}

⌘2
1{x 2 Gn}

(i)

6
Pn

i=1(f
?(x) � f?(Xi))

21{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)} 1{x 2 Gn}

(ii)

6 L2h2�
n 1{x 2 Gn}.

Bound (a) now follows immediately. Above, (i) follows from Jensen’s inequality and (ii) makes use
of Assumption 1. For bound (b), note that by independence among {(Xi, ⌫i)}n

i=1,

E[(f(x) � bf(x))2 | X1, . . . , Xn] =
nX

i=1

E[⌫2
i | Xi]

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

(iii)

6 �2
nX

i=1

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

=
�2

Pn
i=1 1{Xi 2 B(x, hn)}1{x 2 Gn},

which proves the claim. Above, (iii) follows from Assumption 3.

5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P, Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P, Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P, Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . , M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1 � "

3( r
S )↵�1) 0

(zj � r, zj + r] "
6Mr ( r

S )↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1 � "

3( r
S )↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P, Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P, Q) lies in D(↵, C) for proper choices of the " and S.
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5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P, Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P, Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P, Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . , M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1 � "

3( r
S )↵�1) 0

(zj � r, zj + r] "
6Mr ( r

S )↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1 � "

3( r
S )↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P, Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P, Q) lies in D(↵, C) for proper choices of the " and S.

8

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

M = S
6r intervals

z1 = 3r

P

Q

1

Figure 2. An illustration of the distributions (P,Q) constructed as a hard pair in our lower bound.

It is worth commenting on our proof strategy in relation to past work. On one hand, in the
case α > 1, our construction of the distributions (P,Q) is adapted from the lower bound argument
introduced by Kpotufe and Martinet [11]. The technical work involves constructing pairs of densities
of P,Q, and establishing their membership in the class D(α,C). As for the case α ∈ (0, 1), as
stated in Theorem 2(b), we use a different construction of the distribution pair (P,Q), one that
is new (to the best of our knowledge). We combine these constructions of “hard” source-target
pairs, in particular by packing the interval [0, 1] with a variable number of small intervals (e.g., [28,
25, 26]). By adapting the number of intervals (and constructing a packing set of the function
class F(β, L) appropriately over these intervals), one can adapt the hardness of the lower bound
instance to change with the number of samples. In this case, we are able to do this such that
the hardness scales appropriately with the critical parameters that govern the final minimax lower
bound: nP , nQ, σ, α, β. With this high-level overview in place, we now proceed to the technical
content of the proof.

Constructing “hard” source-target pairs: For scalars S, r ∈ (0, 1], define M = S
6r along with

the intervals

Ij ··= (zj − 3r, zj + 3r], where zj ··= 6jr − 3r, j = 1, . . . ,M.

We specify P and Q on each interval Ij as follows:

subinterval density of P density of Q

(zj − 3r, zj − r] 1
4Mr (1− ε

3( rS )α−1) 0

(zj − r, zj + r] ε
6Mr ( rS )α−1 1

2Mr

(zj + r, zj + 3r] 1
4Mr (1− ε

3( rS )α−1) 0

Table 1. Specification of densities for lower bound pair of distributions (P,Q) on the interval Ij .
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By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P,Q) lies in D(α,C) for proper choices of the ε and S.

Proposition 2. Let α > 1 and C > 1. Define P and Q as in Table 1, with the following choice of
parameters ε, S:

(a) if C > 6, set ε = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set ε = 1, and S = 1
4(C/6)1/α.

Then for any choice of M, r > 0 satisfying S = 6Mr, the pair (P,Q) lies in D(α,C).

See Section 4.3.1 for the proof of this claim.

Construction of “hard” regression functions. Next we construct a packing of the func-
tion class of F(β, L). We do so by summing together scaled and shifted copies of base function
Ψ: [−1, 1]→ R that satisfies the boundary conditions Ψ(−1) = Ψ(1) = 0, along with

∣∣Ψ(x)−Ψ(y)
∣∣ 6 |x− y|β, for all x, y ∈ [−1, 1], and, (15a)

∫ 1

−1
Ψ2(x) dx =·· C2

Ψ > 0. (15b)

There are many possible choices of Ψ; see Chapter 2 in the book [25] for details. For our proof, we
also require the bound C2

Ψ 6 1/6, so that we make the explicit choice

Ψ(x) ··= e−1/(1−x2)1{|x| 6 1}.

We now form a class of functions using sums of the form

fb(x) ··=
M∑

j=1

bjφj(x), where φj(x) ··= LrβΨ
(x− zj

r

)
,

and b = (b1, . . . , bM ) ∈ {0, 1}M is a Boolean sequence. Our construction makes use of the Gilbert-
Varshamov lemma (e.g. [25, Lemma 2.9]), which for M > 8, guarantees the existence of a subset
B ⊂ {0, 1}M of cardinality at least 2M/8 such that

‖b− b′‖1 >M/8 for all distinct b, b′ ∈ B. (16)

Lemma 3. The function class H ··=
{
fb | b ∈ B

}
has the following properties:

(a) It is contained within the Hölder class—H ⊂ F(β, L).

(b) Pairs of functions are well-separated: for each distinct f, g ∈ H, we have

‖f − g‖2L2(Q) >
C2

Ψ
16 L

2r2β.

(c) Its elements satisfy the following L2(P ) and L2(Q) bounds:

‖f‖2L2(Q) 6
C2

ΨM

2S
L2r2β+1 and ‖f‖2L2(P ) 6

εC2
ΨM

6Sα
L2r2β+α,

for all f ∈ H.
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Applying Fano’s method. We now combine the preceding constructions with a Fano argument
to complete the proof of the lower bound. For any function f ∈ H, let νf be the distribution
{(Xi, Yi)}ni=1 where (X,Y ) pairs are related by our nonparametric regression model (2) with f = f?.
For proving our lower bound, it suffices to consider Gaussian noise: in particular, ξi

i.i.d.∼ N(0, σ2)
for i = 1, . . . , n. These variables satisfy Assumption 3.

With these choices, Kullback-Leibler divergence between any given pair (νf , νg) can be bounded
as

Dkl(νf ‖ νg) =
1

2σ2

(
nP ‖f − g‖2L2(P ) + nQ‖f − g‖2L2(Q)

)
6 2

σ2

(
nP max

f∈H
‖f‖2L2(P ) + nQ max

f∈H
‖f‖2L2(Q)

)
.

Now applying part (c) of Lemma 3 yields

Dkl(νf ‖ νg) 6MC2
Ψ

{
nP

L2

3σ2

ε

Sα
r2β+α + nQ

L2

σ2

1

S
r2β+1

}

6M
{4α

C

L2

σ2
nP r

2β+α +
4α

C

L2

σ2
nQr

2β+1
}

The final inequality arises by using C2
Ψ 6 1/6. Suppose we take

r =
((

64
4α

C

L2nP
σ2

)
2β+1
2β+α +

(
64

4α

C

L2nQ
σ2

))− 1
2β+1

Then for any distinct f, g ∈ H, we obtain

Dkl(νf ‖ νg) 6M/32. (17)

By a standard reduction to hypothesis testing [26, chap. 15] along with part (a),

inf
f̂

sup
f?F(β,L)

E
[
‖f̂ − f?‖2L2(Q)

]
>

min(f,g)∈(H2 ) ‖f − g‖
2
L2(Q)

4

{
1−

log 2 + max(f,g)∈(H2 )Dkl(νf ‖ νg)
log |H|

}

Thus, after applying part (b) of Lemma 3, we obtain

inf
f̂

sup
f?F(β,L)

E
[
‖f̂−f?‖2L2(Q)

]
> C2

Ψ

64
L2r2β

(
1− 8

M
−1

4

)
> C2

ΨL
2

256

((
64

4α

C

L2nP
σ2

)
2β+1
2β+α+

(
64

4α

C

L2nQ
64σ2

))− 2β
2β+1

,

provided that M > 32. Equivalently, r 6 S/192. It suffices that r 6 1
4608 , this is ensured by having

max{nP , nQ} >
(

72
σ2

L2

C

4α

)2β+α
.

4.3.1 Proof of Proposition 2

We will show that for a general choice of ε, S ∈ (0, 1], the following holds:

P
(
B(x, h)

)
> ε

3

( h
4S

)α−1
Q
(
B(x, h)

)
, for all x ∈ supp(Q), and any h > 0. (18)

For the moment let us take this bound as given. By Lemma 1, note that bound (18) implies that
(P,Q) ∈ D(α, C(ε, S)), with C(ε, S) = 6

ε (4S)α−1, for any ε, S ∈ (0, 1]. Note that the parameter
choices given in the statement of the result ensure that ε, S ∈ (0, 1]. When C > 6, we have
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C(ε, S) = 6(C/6)1−1/α = C(6/C)1/α 6 6 6 C. Otherwise C 6 6 and C(ε, S) = C. Therefore,
checking the two cases C > 6 and C 6 6 verifies C(ε, S) = C in both regimes, which furnishes the
claim.

We now turn to establish bound (18). Let h > 0. First observe that the support of Q is the
disjoint union of intervals ∪Mj=1(zj − r, zj + r]. Thus, fix x in the support of Q, and let zj denote
the center of the interval to which x belongs. Suppose that h ∈ [0, 4r], in which case, we have the
inclusion B(x, h) ⊂ Ij , whence the lower bound

P (B(x, h)) > P
(
B(x, h) ∩ B(zj , r)

)

(i)
=
ε

3

( r
S

)α−1
Q
(
B(x, h) ∩ B(zj , r)

)

(ii)

> ε

3

( h
4S

)α−1
Q
(
B(x, h) ∩ B(zj , r)

)

(iii)
=

ε

3

( h
4S

)α−1
Q
(
B(x, h)

)
(19)

Above, step (i) follows from the construction of P,Q; step (ii) follows from h 6 4r, whereas step
(iii) follows since B(x, h) ⊂ Ij and Q assigns no mass to the set Ij \ B(zj , r).

Otherwise, we may assume that h ∈ [4r, S], in which case we have the inclusion B(x, h) ⊃ Ij .
Denote by N > 1 the number of intervals of the form Ij that are included within B(x, h). Note that
since B(x, h) is connected, it is always contained in at most N + 2 intervals (by considering partial
intervals on the left and right). Thus,

P (B(x, h))

Q(B(x, h))

(iii)

> N · P (Ij)

(N + 2) ·Q(Ij)

(iv)

> 1

3
. (20)

Here step (iii) follows since B(x, h) is contained in a collection of at most (N + 2) intervals and
contains at least N intervals, and the intervals are disjoint and have the same mass under both P
and Q. On the other hand, step (iv) uses the equivalence P (Ij) = Q(Ij), along with the fact that
the function x 7→ x

x+2 is increasing on the set {x > 1}.
Therefore, combining inequalities (19) and (20), we conclude that

P (B(x, h)) > 1

3

[
ε
( h

4S

)α−1
∧ 1
]
Q(B(x, h)) > ε

3

( h
4S

)α−1
Q(B(x, h))

for every x in the support of Q, the final inequality follows since α > 1. Since h > 0 was arbitrary,
this establishes bound (18) and completes the proof.

4.3.2 Proof of Lemma 3

We prove each of the three parts in turn.

Proof of part (a): Fix a Boolean vector b ∈ {0, 1}M . Note that the function φj is supported on
the interval Ij , which is disjoint from any other interval Ik, k 6= j. Since Ψ satisfies the continuity
condition (15a), it follows that φj is (β, L)-Hölder. Finally, we have fε(0) = 0 by definition. Taking
these properties together, we have shown that fε ∈ F(β, L), as required.
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Proof of part (b): For any distinct pair b, b′ ∈ B, we have

∫ 1

0
(fb(x)− fb′(x))2 dQ(x) =

∫ 1

0

( M∑

j=1

(bj − b′j)φj(x)
)2

dQ(x)

(i)
=

1

2Mr

M∑

j=1

(bj − b′j)2

∫ zj+3r

zj−3r
φ2
j (x) dx

(ii)
=

C2
Ψ

2M
L2r2β‖b− b′‖1

(iii)

> C2
Ψ

16
L2r2β.

Here step (i) follows from the definition of Q along with the disjointedness of the supports of φj .
Step (ii) follows from equation (15b) and the fact that b, b′ ∈ B ⊂ {0, 1}M . Finally, step (iii) follows
from the Gilbert-Varshamov separation (16).

Proof of part (c): For any b ∈ B, by following the calculations above, for µ ∈ {P,Q}, we have
by symmetry

∫ 1

0
f2
b (x) dµ(x) =

M∑

j=1

b2j

∫

Ij

φ2
j (x) dµ(x) 6M

∫

I1

φ2
1(x) dµ(x).

Now observe that
∫ 6r

0 φ2
1(x) dQ(x) =

C2
Ψ

2ML
2r2β , and consequently, ‖fb‖2L2(Q) 6 L2r2βC2

Ψ/2. Addi-
tionally, we can compute

∫ 6r

0
φ2

1(x) dP (x) =
ε

6rMα

∫ 4r

2r
φ2

1(x) dx =
ε

6Sα
L2r2β+αC2

Ψ.

Thus, we have established the upper bound ‖fb‖2L2(P ) 6 εL2r2β+α−1/(6Sα−1).

4.4 Proof of Theorem 2(b)

Given the inclusion D′(α, 1) ⊂ D′(α,C), it suffices to prove a lower bound for C = 1.

Construction of “hard” distributions. Let Q = δ1, and let Pα be the distribution supported
on [0, 1] with density pα(x) ··= α(1− x)α−11{x ∈ [0, 1]}. By construction, we then have

ρh(Pα, Q) =
1

Pα(B(1, h))
= h−α for all h ∈ (0, 1],

which implies that (Pα, Q) ∈ D′(α, 1). From herein, we adopt the shorthand P ··= Pα so as to
lighten notation.

Construction of two point alternative. If the regression function is f , we denote the resulting
joint distribution of {(Xi, Yi)}ni=1 by νf . We consider the two point alternatives {ft, g} with g ≡ 0

and ft(x) ··= L(x− t)β+. The next result demonstrates the validity of this choice:

Lemma 4. For any t ∈ [0, 1], the function ft belongs to F(β, L).
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See Section 4.4.1 for the proof.

Moreover, by straightforward calculations, we find that ‖ft‖2L2(Q) = L2(1− t)2β , and

‖ft‖2L2(P ) = L2

∫ 1

t
α(1− x)α−1(x− t)2β dx

6 L2(1− t)2β

∫ 1−t

0
αsα−1 ds = L2(1− t)2β+α.

Applying Le Cam’s method. We are now equipped to apply Le Cam’s two point bound. In
particular, we have

inf
f̂

sup
f?∈F(β,L)

E
[
‖f̂ − f?‖2L2(Q)

]
> L2(1− t)2β

16
exp

(
−Dkl(νft ‖ νg)

)

By standard KL calculations (using N(0, σ2) noises)

Dkl(νft ‖ νg) =
L2

2σ2

{
nP (1− t)2β+α + nQ(1− t)2β

}

Finally, we make the

1− t =

((L2nP
2σ2

) 1
2β+α

+
(L2nQ

2σ2

) 1
2β

)−1

A little bit of algebra shows that this choice guarantees that Dkl(νft ‖ νg) 6 2, which completes the
proof.

4.4.1 Proof of Lemma 4

We begin by observing that ft(0) = 0. Thus, in order to prove the claim, it suffices to show that

ft(y)− ft(x) 6 L(y − x)β for any pair x, y such that 0 6 t < x < y 6 1.

In order to prove this bound, consider an arbitrary point x ∈ (t, 1), and define the function

φx(y) ··= L(yβ − xβ)− L(y − x)β for y ∈ [x, 1].

We can compute the derivative φ′x(y) = Lβ(yβ−1− (y− x)β−1). Since y > y− x > 0 and β 6 1, we
have yβ−1 6 (y−x)β−1, and hence φ′x(y) 6 0. Consequently, the function φx is non-increasing, and
since y > x, it follows that φx(y) 6 φx(x) = 0. Putting together the pieces completes the proof.

4.5 Proof of Proposition 1

Starting with the assumed bound (9), we have
∫

X

1

P (B(x, h))
dQ(x) 6 1

λ

∫

X

1

Q(B(x, h))
dQ(x). (21)

By definition of the covering number N ··= N(h/2), there is a collection {zj}Nj=1 such that the set
X is contained within the union

⋃N
j=1 B(zj , h2 ). This fact, combined with our previous bound (21),

implies that
∫

X

1

P (B(x, h))
dQ(x) 6 1

λ

N∑

j=1

∫

B(zj ,h/2)

1

Q(B(x, h))
dQ(x). (22)
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Note by the triangle inequality, for each j ∈ [N ] and x ∈ B(zj , h/2), we have B(zj , h/2) ⊂ B(x, h).
This inclusion implies that

∫

B(zj ,h/2)

1

Q(B(x, h))
dQ(x) 6

∫

B(zj ,h/2)

1

Q(B(zj , h/2))
dQ(x) = 1,

for each j ∈ [N ]. Combining this inequality with the bound (22) yields the claim.

4.6 Proof of Lemma 1

By assumption, we have the upper bound
∫ 1

0

1

P (B(x, h))
dQ(x) 6 1

Khγ

∫ 1

0

1

Q(B(x, h))
dQ(x)

Moreover, we can find a collection of N ··= d1/he balls with centers {zj}Nj=1 of radius h/2 that cover
the interval [0, 1], whence

∫ 1

0

1

Q(B(x, h))
dQ(x) 6

N∑

j=1

∫

x∈B(zj ,h/2)

1

Q(B(x, h))
dQ(x) 6 N.

The final inequality follows from the inclusion B(x, h) ⊃ B(zj , h/2).
Now define the function g(t) ··= dte /t, and observe that g(t) 6 2 whenever t > 1. Consequently,

we can write
hγ+1ρh(P,Q) 6 1

K
g(1/h) 6 2

K
, for any h 6 1.

Passing to the supremum over h ∈ (0, 1] yields the claim.

5 Discussion

In this paper, we have studied the problem of covariate shift in the context of nonparametric
regression. We have shown that a measure of (dis)-similarity ρh between the source and target
distributions, as defined in equation (1), can be used to characterize how minimax risks change as
the source-target pair are varied. In particular, we proved upper bounds on the Nadaraya-Watson
estimator over Hölder classes that are an explicit function of the similarity ρh, and also established
matching lower bounds over classes constrained in terms of the similarity. We also discussed how
the measure ρh is related to other characterizations of covariate shift from past work, including
likelihood ratio bounds and transfer exponents. Our work shows that similarity measure ρh provides
a more fine-grained characterization of how covariate shift changes the difficulty of non-parametric
regression.

Our work leaves open a number of open questions. First, our lower bounds for covariate shift (cf.
Theorem 2) are obtained within a global minimax framework, which involves worst-case assessments
over a certain function class. These lower bounds match our upper bound on the NW estimator (cf.
Theorem 1) for certain source-target pairs (P,Q). But the upper bound actually depends explicitly
on the source-target pair. Is this upper bound always optimal? Or are there instances of covariate
shift for which Nadaraya-Watson is suboptimal for some Hölder continuous function? In general,
this question appears non-trivial: even without the (interesting) complication of covariate shift,
there are few results that give distribution-dependent results for nonparametric regression outside
of the uniform distribution and fixed-design problems.
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A Elementary bound for binomial variables

In this section, we state and prove an elementary bound for binomial random variables, used in the
proof of Theorem 1.

Lemma 5. Let n,m be positive integers and p, q ∈ (0, 1). Suppose that U ∼ Bin(n, p) and V ∼
Bin(m, q). Then

E
[ 1

U + V
1{U + V > 0}

]
6 4

np+mq
.

Proof. We begin by observing that conditionally on the event {U + V > 0}, we have the lower
bound

U + V > U + V + 1

2
> U + 1

2
∨ V + 1

2
.

These lower bounds allow us to write

E
[ 1

U + V
1{U + V > 0}

]
6 E

2

U + 1
∧E

2

V + 1
6 2

(np ∨mq) 6 4

np+mq
.

Here the penultimate inequality is a consequence of known results for binomial random variables [4,
equation (3.4)].
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