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Abstract
Deep learning has arguably achieved tremendous success in recent years. In simple words, deep

learning uses the composition of many nonlinear functions to model the complex dependency between
input features and labels. While neural networks have a long history, recent advances have greatly
improved their performance in computer vision, natural language processing, etc. From the statistical
and scientific perspective, it is natural to ask: What is deep learning? What are the new characteristics of
deep learning, compared with classical methods? What are the theoretical foundations of deep learning?

To answer these questions, we introduce common neural network models (e.g., convolutional neural
nets, recurrent neural nets, generative adversarial nets) and training techniques (e.g., stochastic gradient
descent, dropout, batch normalization) from a statistical point of view. Along the way, we highlight new
characteristics of deep learning (including depth and over-parametrization) and explain their practical
and theoretical benefits. We also sample recent results on theories of deep learning, many of which are
only suggestive. While a complete understanding of deep learning remains elusive, we hope that our
perspectives and discussions serve as a stimulus for new statistical research.

Keywords: neural networks, over-parametrization, stochastic gradient descent, approximation theory, gen-
eralization error.

Contents
1 Introduction 2

1.1 Intriguing new characteristics of deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Towards theory of deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Roadmap of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Feed-forward neural networks 5
2.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Back-propagation in computational graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Popular models 8
3.1 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Deep unsupervised learning 14
4.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Generative adversarial networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Representation power: approximation theory 17
5.1 Universal approximation theory for shallow NNs . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Approximation theory for multi-layer NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Author names are sorted alphabetically.
∗Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA; Email:

{jqfan, congm, yiqiaoz}@princeton.edu.

1



6 Training deep neural nets 20
6.1 Stochastic gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Easing numerical instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Regularization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Generalization power 25
7.1 Algorithm-independent controls: uniform convergence . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Algorithm-dependent controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Discussion 29

1 Introduction
Modern machine learning and statistics deal with the problem of learning from data: given a training dataset
{(yi,xi)}1≤i≤n where xi ∈ Rd is the input and yi ∈ R is the output1, one seeks a function f : Rd 7→ R from a
certain function class F that has good prediction performance on test data. This problem is of fundamental
significance and finds applications in numerous scenarios. For instance, in image recognition, the input x
(reps. the output y) corresponds to the raw image (reps. its category) and the goal is to find a mapping f(·)
that can classify future images accurately. Decades of research efforts in statistical machine learning have been
devoted to developing methods to find f(·) efficiently with provable guarantees. Prominent examples include
linear classifiers (e.g., linear / logistic regression, linear discriminant analysis), kernel methods (e.g., support
vector machines), tree-based methods (e.g., decision trees, random forests), nonparametric regression (e.g.,
nearest neighbors, local kernel smoothing), etc. Roughly speaking, each aforementioned method corresponds
to a different function class F from which the final classifier f(·) is chosen.

Deep learning [70], in its simplest form, proposes the following compositional function class:{
f(x;θ) = WLσL(WL−1 · · ·σ2(W2σ1(W1x)))

∣∣ θ = {W1, . . . ,WL}
}
. (1)

Here, for each 1 ≤ l ≤ L, σ`(·) is some nonlinear function, and θ = {W1, . . . ,WL} consists of matrices
with appropriate sizes. Though simple, deep learning has made significant progress towards addressing
the problem of learning from data over the past decade. Specifically, it has performed close to or better
than humans in various important tasks in artificial intelligence, including image recognition [50], game
playing [114], and machine translation [132]. Owing to its great promise, the impact of deep learning is
also growing rapidly in areas beyond artificial intelligence; examples include statistics [15, 111, 76, 104, 41],
applied mathematics [130, 22], clinical research [28], etc.

Table 1: Winning models for ILSVRC image classification challenge.

Model Year # Layers # Params Top-5 error
Shallow < 2012 — — > 25%
AlexNet 2012 8 61M 16.4%
VGG19 2014 19 144M 7.3%

GoogleNet 2014 22 7M 6.7%
ResNet-152 2015 152 60M 3.6%

To get a better idea of the success of deep learning, let us take the ImageNet Challenge [107] (also
known as ILSVRC) as an example. In the classification task, one is given a training dataset consisting of 1.2
million color images with 1000 categories, and the goal is to classify images based on the input pixels. The
performance of a classifier is then evaluated on a test dataset of 100 thousand images, and in the end the
top-5 error2 is reported. Table 1 highlights a few popular models and their corresponding performance. As

1When the label y is given, this problem is often known as supervised learning. We mainly focus on this paradigm throughout
this paper and remark sparingly on its counterpart, unsupervised learning, where y is not given.

2The algorithm makes an error if the true label is not contained in the 5 predictions made by the algorithm.

2



Figure 1: Visualization of trained filters in the first layer of AlexNet. The model is pre-trained on ImageNet
and is downloadable via PyTorch package torchvision.models. Each filter contains 11×11×3 parameters
and is shown as an RGB color map of size 11× 11.

can be seen, deep learning models (the second to the last rows) have a clear edge over shallow models (the
first row) that fit linear models / tree-based models on handcrafted features. This significant improvement
raises a foundational question:

Why is deep learning better than classical methods on tasks like image recognition?

1.1 Intriguing new characteristics of deep learning
It is widely acknowledged that two indispensable factors contribute to the success of deep learning, namely
(1) huge datasets that often contain millions of samples and (2) immense computing power resulting from
clusters of graphics processing units (GPUs). Admittedly, these resources are only recently available: the
latter allows to train larger neural networks which reduces biases and the former enables variance reduction.
However, these two alone are not sufficient to explain the mystery of deep learning due to some of its “dreadful”
characteristics: (1) over-parametrization: the number of parameters in state-of-the-art deep learning models
is often much larger than the sample size (see Table 1), which gives them the potential to overfit the training
data, and (2) nonconvexity : even with the help of GPUs, training deep learning models is still NP-hard [8]
in the worst case due to the highly nonconvex loss function to minimize. In reality, these characteristics are
far from nightmares. This sharp difference motivates us to take a closer look at the salient features of deep
learning, which we single out a few below.

1.1.1 Depth

Deep learning expresses complicated nonlinearity through composing many nonlinear functions; see (1).
The rationale for this multilayer structure is that, in many real-world datasets such as images, there are
different levels of features and lower-level features are building blocks of higher-level ones. See [134] for a
visualization of trained features of convolutional neural nets; here in Figure 1, we sample and visualize weights
from a pre-trained AlexNet model. This intuition is also supported by empirical results from physiology and
neuroscience [56, 2]. The use of function composition marks a sharp difference from traditional statistical
methods such as projection pursuit models [38] and multi-index models [73, 27]. It is often observed that
depth helps efficiently extract features that are representative of a dataset. In comparison, increasing width
(e.g., number of basis functions) in a shallow model leads to less improvement. This suggests that deep
learning models excel at representing a very different function space that is suitable for complex datasets.

1.1.2 Algorithmic regularization

The statistical performance of neural networks (e.g., test accuracy) depends heavily on the particular opti-
mization algorithms used for training [131]. This is very different from many classical statistical problems,
where the related optimization problems are less complicated. For instance, when the associated optimization
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(a) MNIST images (b) training and test accuracies

Figure 2: (a) shows the images in the public dataset MNIST; and (b) depicts the training and test accuracies
along the training dynamics. Note that the training accuracy is approaching 100% and the test accuracy is
still high (no overfitting).

problem has a relatively simple structure (e.g., convex objective functions, linear constraints), the solution
to the optimization problem can often be unambiguously computed and analyzed. However, in deep neural
networks, due to over-parametrization, there are usually many local minima with different statistical perfor-
mance [72]. Nevertheless, common practice runs stochastic gradient descent with random initialization and
finds model parameters with very good prediction accuracy.

1.1.3 Implicit prior learning

It is well observed that deep neural networks trained with only the raw inputs (e.g., pixels of images) can
provide a useful representation of the data. This means that after training, the units of deep neural networks
can represent features such as edges, corners, wheels, eyes, etc.; see [134]. Importantly, the training process
is automatic in the sense that no human knowledge is involved (other than hyper-parameter tuning). This
is very different from traditional methods, where algorithms are designed after structural assumptions are
posited. It is likely that training an over-parametrized model efficiently learns and incorporates the prior
distribution p(x) of the input, even though deep learning models are themselves discriminative models. With
automatic representation of the prior distribution, deep learning typically performs well on similar datasets
(but not very different ones) via transfer learning.

1.2 Towards theory of deep learning
Despite the empirical success, theoretical support for deep learning is still in its infancy. Setting the stage,
for any classifier f , denote by E(f) the expected risk on fresh sample (a.k.a. test error, prediction error
or generalization error), and by En(f) the empirical risk / training error averaged over a training dataset.
Arguably, the key theoretical question in deep learning is

why is E(f̂n) small, where f̂n is the classifier returned by the training algorithm?

We follow the conventional approximation-estimation decomposition (sometimes, also bias-variance trade-
off) to decompose the term E(f̂n) into two parts. Let F be the function space expressible by a family of
neural nets. Define f∗ = argminfE(f) to be the best possible classifier and f∗F = argminf∈FE(f) to be the
best classifier in F . Then, we can decompose the excess error E , E(f̂n)− E(f∗) into two parts:

E = E(f∗F )− E(f∗)︸ ︷︷ ︸
approximation error

+ E(f̂n)− E(f∗F )︸ ︷︷ ︸
estimation error

. (2)

Both errors can be small for deep learning (cf. Figure 2), which we explain below.
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• The approximation error is determined by the function class F . Intuitively, the larger the class, the smaller
the approximation error. Deep learning models use many layers of nonlinear functions (Figure 3)that can
drive this error small. Indeed, in Section 5, we provide recent theoretical progress of its representation
power. For example, deep models allow efficient representation of interactions among variable while shallow
models cannot.

• The estimation error reflects the generalization power, which is influenced by both the complexity of the
function class F and the properties of the training algorithms. Interestingly, for over-parametrized deep
neural nets, stochastic gradient descent typically results in a near-zero training error (i.e., En(f̂n) ≈ 0;
see e.g. left panel of Figure 2). Moreover, its generalization error E(f̂n) remains small or moderate. This
“counterintuitive” behavior suggests that for over-parametrized models, gradient-based algorithms enjoy
benign statistical properties; we shall see in Section 7 that gradient descent enjoys implicit regularization
in the over-parametrized regime even without explicit regularization (e.g., `2 regularization).

The above two points lead to the following heuristic explanation of the success of deep learning models.
The large depth of deep neural nets and heavy over-parametrization lead to small or zero training errors, even
when running simple algorithms with moderate number of iterations. In addition, these simple algorithms
with moderate number of steps do not explore the entire function space and thus have limited complexities,
which results in small generalization error with a large sample size. Thus, by combining the two aspects, it
explains heuristically that the test error is also small.

1.3 Roadmap of the paper
We first introduce basic deep learning models in Sections 2–4, and then examine their representation power
via the lens of approximation theory in Section 5. Section 6 is devoted to training algorithms and their
ability of driving the training error small. Then we sample recent theoretical progress towards demystifying
the generalization power of deep learning in Section 7. Along the way, we provide our own perspectives, and
at the end we identify a few interesting questions for future research in Section 8. The goal of this paper
is to present suggestive methods and results, rather than giving conclusive arguments (which is currently
unlikely) or a comprehensive survey. We hope that our discussion serves as a stimulus for new statistics
research.

2 Feed-forward neural networks
Before introducing the vanilla feed-forward neural nets, let us set up necessary notations for the rest of this
section. We focus primarily on classification problems, as regression problems can be addressed similarly.
Given the training dataset {(yi,xi)}1≤i≤n where yi ∈ [K] , {1, 2, . . . ,K} and xi ∈ Rd are independent
across i ∈ [n], supervised learning aims at finding a (possibly random) function f̂(x) that predicts the
outcome y for a new input x, assuming (y,x) follows the same distribution as (yi,xi). In the terminology
of machine learning, the input xi is often called the feature, the output yi called the label, and the pair
(yi,xi) is an example. The function f̂ is called the classifier, and estimation of f̂ is training or learning. The
performance of f̂ is evaluated through the prediction error P(y 6= f̂(x)), which can be often estimated from
a separate test dataset.

As with classical statistical estimation, for each k ∈ [K], a classifier approximates the conditional prob-
ability P(y = k|x) using a function fk(x;θk) parametrized by θk. Then the category with the highest
probability is predicted. Thus, learning is essentially estimating the parameters θk. In statistics, one of the
most popular methods is (multinomial) logistic regression, which stipulates a specific form for the functions
fk(x;θk): let zk = x>βk + αk and fk(x;θk) = Z−1 exp(zk) where Z =

∑K
k=1 exp(zk) is a normalization

factor to make {fk(x;θk)}1≤k≤K a valid probability distribution. It is clear that logistic regression induces
linear decision boundaries in Rd, and hence it is restrictive in modeling nonlinear dependency between y and
x. The deep neural networks we introduce below provide a flexible framework for modeling nonlinearity in
a fairly general way.
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Figure 3: A feed-forward neural network with an input layer, two hidden layers and an output layer. The
input layer represents raw features {xi}1≤i≤n. Both hidden layers compute an affine transform (a.k.s.
indices) of the input and then apply an element-wise activation function σ(·). Finally, the output returns a
linear transform followed by the softmax activation (resp. simply a linear transform) of the hidden layers for
the classification (resp. regression) problem.

2.1 Model setup
From the high level, deep neural networks (DNNs) use composition of a series of simple nonlinear functions
to model nonlinearity

h(L) = g(L) ◦ g(L−1) ◦ . . . ◦ g(1)(x),

where ◦ denotes composition of two functions and L is the number of hidden layers, and is usually called
depth of a NN model. Letting h(0) , x, one can recursively define h(l) = g(l)

(
h(l−1)) for all ` = 1, 2, . . . , L.

The feed-forward neural networks, also called the multilayer perceptrons (MLPs), are neural nets with a
specific choice of g(l): for ` = 1, . . . , L, define

h(`) = g(l)
(
h(l−1)) , σ(W(`)h(`−1) + b(`)

)
, (3)

where W(l) and b(l) are the weight matrix and the bias / intercept, respectively, associated with the l-th
layer, and σ(·) is usually a simple given (known) nonlinear function called the activation function. In words,
in each layer `, the input vector h(`−1) goes through an affine transformation first and then passes through a
fixed nonlinear function σ(·). See Figure 3 for an illustration of a simple MLP with two hidden layers. The
activation function σ(·) is usually applied element-wise, and a popular choice is the ReLU (Rectified Linear
Unit) function:

[σ(z)]j = max{zj , 0}. (4)

Other choices of activation functions include leaky ReLU, tanh function [79] and the classical sigmoid function
(1 + e−z)−1, which is less used now.

Given an output h(L) from the final hidden layer and a label y, we can define a loss function to minimize.
A common loss function for classification problems is the multinomial logistic loss. Using the terminology of
deep learning, we say that h(L) goes through an affine transformation and then the soft-max function:

fk(x;θ) ,
exp(zk)∑
k exp(zk)

, ∀ k ∈ [K], where z = W(L+1)h(L) + b(L+1) ∈ RK .

Then the loss is defined to be the cross-entropy between the label y (in the form of an indicator vector) and
the score vector (f1(x;θ), . . . , fK(x;θ))>, which is exactly the negative log-likelihood of the multinomial
logistic regression model:

L(f(x;θ), y) = −
K∑
k=1

1{y = k} log pk, (5)
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where θ , {W(`), b(`) : 1 ≤ ` ≤ L + 1}. As a final remark, the number of parameters scales with both the
depth L and the width (i.e., the dimensionality of W(`)), and hence it can be quite large for deep neural
nets.

2.2 Back-propagation in computational graphs
Training neural networks follows the empirical risk minimization paradigm that minimizes the loss (e.g.,
(5)) over all the training data. This minimization is usually done via stochastic gradient descent (SGD). In a
way similar to gradient descent, SGD starts from a certain initial value θ0 and then iteratively updates the
parameters θt by moving it in the direction of the negative gradient. The difference is that, in each update,
a small subsample B ⊂ [n] called a mini-batch—which is typically of size 32–512—is randomly drawn and
the gradient calculation is only on B instead of the full batch [n]. This saves considerably the computational
cost in calculation of gradient. By the law of large numbers, this stochastic gradient should be close to the
full sample one, albeit with some random fluctuations. A pass of the whole training set is called an epoch.
Usually, after several or tens of epochs, the error on a validation set levels off and training is complete. See
Section 6 for more details and variants on training algorithms.

The key to the above training procedure, namely SGD, is the calculation of the gradient ∇`B(θ), where

`B(θ) , |B|−1
∑
i∈B
L(f(xi;θ), yi). (6)

Gradient computation, however, is in general nontrivial for complex models, and it is susceptible to numerical
instability for a model with large depth. Here, we introduce an efficient approach, namely back-propagation,
for computing gradients in neural networks.

Back-propagation [106] is a direct application of the chain rule in networks. As the name suggests,
the calculation is performed in a backward fashion: one first computes ∂`B/∂h(L), then ∂`B/∂h(L−1), . . .,
and finally ∂`B/∂h(1). For example, in the case of the ReLU activation function3, we have the following
recursive / backward relation

∂`B

∂h(`−1) =
∂h(`)

∂h(`−1) ·
∂`B

∂h(`)
= (W(`))>diag

(
1{W(`)h(`−1) + b(`) ≥ 0}

) ∂`B

∂h(`)
(7)

where diag(·) denotes a diagonal matrix with elements given by the argument. Note that the calculation of
∂`B/∂h

(`−1) depends on ∂`B/∂h
(`), which is the partial derivatives from the next layer. In this way, the

derivatives are “back-propagated” from the last layer to the first layer. These derivatives {∂`B/∂h(`)} are
then used to update the parameters. For instance, the gradient update for W(`) is given by

W(`) ←W(`) − η ∂`B
∂W(`)

, where
∂`B

∂W
(`)
jm

=
∂`B

∂h
(`)
j

· σ′ · h(`−1)m , (8)

where σ′ = 1 if the j-th element of W(`)h(`−1) + b(`) is nonnegative, and σ′ = 0 otherwise. The step size
η > 0, also called the learning rate, controls how much parameters are changed in a single update.

A more general way to think about neural network models and training is to consider computational
graphs. Computational graphs are directed acyclic graphs that represent functional relations between vari-
ables. They are very convenient and flexible to represent function composition, and moreover, they also
allow an efficient way of computing gradients. Consider an MLP with a single hidden layer and an `2
regularization:

`λB(θ) = `B(θ) + rλ(θ) = `B(θ) + λ
(∑
j,j′

(
W

(1)
j,j′

)2
+
∑
j,j′

(
W

(2)
j,j′

)2)
, (9)

where `B(θ) is the same as (6), and λ ≥ 0 is a tuning parameter. A similar example is considered in [45]. The
corresponding computational graph is shown in Figure 4. Each node represents a function (inside a circle),
which is associated with an output of that function (outside a circle). For example, we view the term `B(θ)
as a result of 4 compositions: first the input data x multiplies the weight matrix W(1) resulting in u(1),

3The issue of non-differentiability at the origin is often ignored in implementation.
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Figure 4: The computational graph illustrates the loss (9). For simplicity, we omit the bias terms. Symbols
inside nodes represent functions, and symbols outside nodes represent function outputs (vectors/scalars).
matmul is matrix multiplication, relu is the ReLU activation, cross entropy is the cross entropy loss, and
SoS is the sum of squares.

then it goes through the ReLU activation function relu resulting in h(1), then it multiplies another weight
matrix W(2) leading to p, and finally it produces the cross-entropy with label y as in (5). The regularization
term is incorporated in the graph similarly.

A forward pass is complete when all nodes are evaluated starting from the input x. A backward pass
then calculates the gradients of `λB with respect to all other nodes in the reverse direction. Due to the chain
rule, the gradient calculation for a variable (say, ∂`B/∂u(1)) is simple: it only depends on the gradient value
of the variables (∂`B/∂h) the current node points to, and the function derivative evaluated at the current
variable value (σ′(u(1))). Thus, in each iteration, a computation graph only needs to (1) calculate and
store the function evaluations at each node in the forward pass, and then (2) calculate all derivatives in the
backward pass.

Back-propagation in computational graphs forms the foundations of popular deep learning programming
softwares, including TensorFlow [1] and PyTorch [92], which allows more efficient building and training of
complex neural net models.

3 Popular models
Moving beyond vanilla feed-forward neural networks, we introduce two other popular deep learning models,
namely, the convolutional neural networks (CNNs) and the recurrent neural networks (RNNs). One impor-
tant characteristic shared by the two models is weight sharing, that is some model parameters are identical
across locations in CNNs or across time in RNNs. This is related to the notion of translational invariance in
CNNs and stationarity in RNNs. At the end of this section, we introduce a modular thinking for constructing
more flexible neural nets.

3.1 Convolutional neural networks
The convolutional neural network (CNN) [71, 40] is a special type of feed-forward neural networks that is
tailored for image processing. More generally, it is suitable for analyzing data with salient spatial structures.
In this subsection, we focus on image classification using CNNs, where the raw input (image pixels) and
features of each hidden layer are represented by a 3D tensor X ∈ Rd1×d2×d3 . Here, the first two dimensions
d1, d2 of X indicate spatial coordinates of an image while the third d3 indicates the number of channels. For
instance, d3 is 3 for the raw inputs due to the red, green and blue channels, and d3 can be much larger (say,
256) for hidden layers. Each channel is also called a feature map, because each feature map is specialized to
detect the same feature at different locations of the input, which we will soon explain. We now introduce
two building blocks of CNNs, namely the convolutional layer and the pooling layer.

1. Convolutional layer (CONV). A convolutional layer has the same functionality as described in (3), where
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Figure 5: X ∈ R28×28×3 represents the input feature consisting of 28 × 28 spatial coordinates in a total
number of 3 channels / feature maps. Fk ∈ R5×5×3 denotes the k-th filter with size 5 × 5. The third
dimension 3 of the filter automatically matches the number 3 of channels in the previous input. Every 3D
patch of X gets convolved with the filter Fk and this as a whole results in a single output feature map X̃:,:,k

with size 24× 24× 1. Stacking the outputs of all the filters {Fk}1≤k≤K will lead to the output feature with
size 24× 24×K.

the input feature X ∈ Rd1×d2×d3 goes through an affine transformation first and then an element-wise
nonlinear activation. The difference lies in the specific form of the affine transformation. A convolutional
layer uses a number of filters to extract local features from the previous input. More precisely, each filter
is represented by a 3D tensor Fk ∈ Rw×w×d3 (1 ≤ k ≤ d̃3), where w is the size of the filter (typically 3 or
5) and d̃3 denotes the total number of filters. Note that the third dimension d3 of Fk is equal to that of
the input feature X. For this reason, one usually says that the filter has size w×w, while suppressing the
third dimension d3. Each filter Fk then convolves with the input feature X to obtain one single feature
map Ok ∈ R(d1−w+1)×(d1−w+1), where4

Okij =
〈

[X]ij ,Fk
〉

=

w∑
i′=1

w∑
j′=1

d3∑
l=1

[X]i+i′−1,j+j′−1,l[Fk]i′,j′,l. (10)

Here [X]ij ∈ Rw×w×d3 is a small “patch” of X starting at location (i, j). See Figure 5 for an illustration of
the convolution operation. If we view the 3D tensors [X]ij and Fk as vectors, then each filter essentially
computes their inner product with a part of X indexed by i, j (which can be also viewed as convolution,
as its name suggests). One then pack the resulted feature maps {Ok} into a 3D tensor O with size
(d1 − w + 1)× (d1 − w + 1)× d̃3, where

[O]ijk = [Ok]ij . (11)

The outputs of convolutional layers are then followed by nonlinear activation functions. In the ReLU
case, we have

X̃ijk = σ(Oijk), ∀ i ∈ [d1 − w + 1], j ∈ [d2 − w + 1], k ∈ [d̃3]. (12)

The convolution operation (10) and the ReLU activation (12) work together to extract features X̃ from
the input X. Different from feed-forward neural nets, the filters Fk are shared across all locations (i, j).
A patch [X]ij of an input responds strongly (that is, producing a large value) to a filter Fk if they are
positively correlated. Therefore intuitively, each filter Fk serves to extract features similar to Fk.

As a side note, after the convolution (10), the spatial size d1×d2 of the inputX shrinks to (d1 − w + 1)× (d2 − w + 1)
of X̃. However one may want the spatial size unchanged. This can be achieved via padding, where one
4To simplify notation, we omit the bias/intercept term associated with each filter.
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Figure 6: A 2× 2 max pooling layer extracts the maximum of 2 by 2 neighboring pixels / features across the
spatial dimension.
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Figure 7: LeNet is composed of an input layer, two convolutional layers, two pooling layers and three fully-
connected layers. Both convolutions are valid and use filters with size 5 × 5. In addition, the two pooling
layers use 2× 2 average pooling.

appends zeros to the margins of the input X to enlarge the spatial size to (d1 +w− 1)× (d2 +w− 1). In
addition, a stride in the convolutional layer determines the gap i′ − i and j′ − j between two patches Xij

and Xi′j′ : in (10) the stride is 1, and a larger stride would lead to feature maps with smaller sizes.

2. Pooling layer (POOL). A pooling layer aggregates the information of nearby features into a single one.
This downsampling operation reduces the size of the features for subsequent layers and saves computa-
tion. One common form of the pooling layer is composed of the 2 × 2 max-pooling filter. It computes
max{Xi,j,k, Xi+1,j,k, Xi,j+1,k, Xi+1,j+1,k}, that is, the maximum of the 2× 2 neighborhood in the spatial
coordinates; see Figure 6 for an illustration. Note that the pooling operation is done separately for each
feature map k. As a consequence, a 2 × 2 max-pooling filter acting on X ∈ Rd1×d2×d3 will result in an
output of size d1/2×d2/2×d3. In addition, the pooling layer does not involve any parameters to optimize.
Pooling layers serve to reduce redundancy since a small neighborhood around a location (i, j) in a feature
map is likely to contain the same information.

In addition, we also use fully-connected layers as building blocks, which we have already seen in Section 2.
Each fully-connected layer treats input tensor X as a vector Vec(X), and computes X̃ = σ(WVec(X)).
A fully-connected layer does not use weight sharing and is often used in the last few layers of a CNN. As
an example, Figure 7 depicts the well-known LeNet 5 [71], which is composed of two sets of CONV-POOL
layers and three fully-connected layers.

3.2 Recurrent neural networks
Recurrent neural nets (RNNs) are another family of powerful models, which are designed to process time
series data and other sequence data. RNNs have successful applications in speech recognition [108], machine
translation [132], genome sequencing [21], etc. The structure of an RNN naturally forms a computational
graph, and can be easily combined with other structures such as CNNs to build large computational graph
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Figure 8: Vanilla RNNs with different inputs/outputs settings. (a) has one input but multiple outputs; (b)
has multiple inputs but one output; (c) has multiple inputs and outputs. Note that the parameters are
shared across time steps.

models for complex tasks. Here we introduce vanilla RNNs and improved variants such as long short-term
memory (LSTM).

3.2.1 Vanilla RNNs

Suppose we have general time series inputs x1,x2, . . . ,xT . A vanilla RNN models the “hidden state” at time
t by a vector ht, which is subject to the recursive formula

ht = fθ(ht−1,xt). (13)

Here, fθ is generally a nonlinear function parametrized by θ. Concretely, a vanilla RNN with one hidden
layer has the following form5

ht = tanh (Whhht−1 + Wxhxt + bh) , where tanh(a) = e2a−1
e2a+1 ,

zt = σ (Whyht + bz) ,

where Whh,Wxh,Why are trainable weight matrices, bh, bz are trainable bias vectors, and zt is the output
at time t. Like many classical time series models, those parameters are shared across time. Note that in
different applications, we may have different input/output settings (cf. Figure 8). Examples include

• One-to-many: a single input with multiple outputs; see Figure 8(a). A typical application is image
captioning, where the input is an image and outputs are a series of words.

• Many-to-one: multiple inputs with a single output; see Figure 8(b). One application is text sentiment
classification, where the input is a series of words in a sentence and the output is a label (e.g., positive
vs. negative).

• Many-to-many: multiple inputs and outputs; see Figure 8(c). This is adopted in machine translation,
where inputs are words of a source language (say Chinese) and outputs are words of a target language
(say English).

As the case with feed-forward neural nets, we minimize a loss function using back-propagation, where
the loss is typically

`T (θ) =
∑
t∈T
L(yt, zt) = −

∑
t∈T

K∑
k=1

1{yt = k} log

(
exp([zt]k)∑
k exp([zt]k)

)
,

where K is the number of categories for classification (e.g., size of the vocabulary in machine translation),
and T ⊂ [T ] is the length of the output sequence. During the training, the gradients ∂`T /∂ht are computed
in the reverse time order (from T to t). For this reason, the training process is often called back-propagation
through time.

5Similar to the activation function σ(·), the function tanh(·) means element-wise operations.
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and one-hidden-layer RNNs.

One notable drawback of vanilla RNNs is that, they have difficulty in capturing long-range dependencies
in sequence data when the length of the sequence is large. This is sometimes due to the phenomenon of
exploding / vanishing gradients. Take Figure 8(c) as an example. Computing ∂`T /∂h1 involves the product∏3
t=1(∂ht+1/∂ht) by the chain rule. However, if the sequence is long, the product will be the multiplication

of many Jacobian matrices, which usually results in exponentially large or small singular values. To alleviate
this issue, in practice, the forward pass and backward pass are implemented in a shorter sliding window
{t1, t1 + 1, . . . , t2}, instead of the full sequence {1, 2, . . . , T}. Though effective in some cases, this technique
alone does not fully address the issue of long-term dependency.

3.2.2 GRUs and LSTM

There are two improved variants that alleviate the above issue: gated recurrent units (GRUs) [26] and long
short-term memory (LSTM) [54].

• A GRU refines the recursive formula (13) by introducing gates, which are vectors of the same length as
ht. The gates, which take values in [0, 1] elementwise, multiply with ht−1 elementwise and determine how
much they keep the old hidden states.

• An LSTM similarly uses gates in the recursive formula. In addition to ht, an LSTM maintains a cell
state, which takes values in R elementwise and are analogous to counters.

Here we only discuss LSTM in detail. Denote by � the element-wise multiplication. We have a recursive
formula in replace of (13): 

it
f t
ot
gt

 =


σ
σ
σ

tanh

W

 ht−1
xt
1

 ,

ct = f t � ct−1 + it � gt,
ht = ot � tanh(ct),

where W is a big weight matrix with appropriate dimensions. The cell state vector ct carries information of
the sequence (e.g., singular/plural form in a sentence). The forget gate f t determines how much the values
of ct−1 are kept for time t, the input gate it controls the amount of update to the cell state, and the output
gate ot gives how much ct reveals to ht. Ideally, the elements of these gates have nearly binary values.
For example, an element of f t being close to 1 may suggest the presence of a feature in the sequence data.
Similar to the skip connections in residual nets, the cell state ct has an additive recursive formula, which
helps back-propagation and thus captures long-range dependencies.
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3.2.3 Multilayer RNNs

Multilayer RNNs are generalization of the one-hidden-layer RNN discussed above. Figure 9 shows a vanilla
RNN with two hidden layers. In place of (13), the recursive formula for an RNN with L hidden layers now
reads

h`t = tanh

W`

 h`−1t

h`t−1
1

 , for all ` ∈ [L], h0
t , xt.

Note that a multilayer RNN has two dimensions: the sequence length T and depth L. Two special cases are
the feed-forward neural nets (where T = 1) introduced in Section 2, and RNNs with one hidden layer (where
L = 1). Multilayer RNNs usually do not have very large depth (e.g., 2–5), since T is already very large.

Finally, we remark that CNNs, RNNs, and other neural nets can be easily combined to tackle tasks
that involve different sources of input data. For example, in image captioning, the images are first processed
through a CNN, and then the high-level features are fed into an RNN as inputs. Theses neural nets combined
together form a large computational graph, so they can be trained using back-propagation. This generic
training method provides much flexibility in various applications.

3.3 Modules
Deep neural nets are essentially composition of many nonlinear functions. A component function may be
designed to have specific properties in a given task, and it can be itself resulted from composing a few
simpler functions. In LSTM, we have seen that the building block consists of several intermediate variables,
including cell states and forget gates that can capture long-term dependency and alleviate numerical issues.

This leads to the idea of designing modules for building more complex neural net models. Desirable
modules usually have low computational costs, alleviate numerical issues in training, and lead to good
statistical accuracy. Since modules and the resulting neural net models form computational graphs, training
follows the same principle briefly described in Section 2.

Here, we use the examples of Inception and skip connections to illustrate the ideas behind modules.
Figure 10(a) is an example of “Inception” modules used in GoogleNet [123]. As before, all the convolutional
layers are followed by the ReLU activation function. The concatenation of information from filters with
different sizes give the model great flexibility to capture spatial information. Note that 1 × 1 filters is an
1× 1× d3 tensor (where d3 is the number of feature maps), so its convolutional operation does not interact
with other spatial coordinates, only serving to aggregate information from different feature maps at the same
coordinate. This reduces the number of parameters and speeds up the computation. Similar ideas appear
in other work [78, 57].
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(a) “Inception” module (b) Skip connections

Figure 10: (a) The “Inception” module from GoogleNet. Concat means combining all features maps into a
tensor. (b) Skip connections are added every two layers in ResNets.

Another module, usually called skip connections, is widely used to alleviate numerical issues in very deep
neural nets, with additional benefits in optimization efficiency and statistical accuracy. Training very deep
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neural nets are generally more difficult, but the introduction of skip connections in residual networks [50, 51]
has greatly eased the task.

The high level idea of skip connections is to add an identity map to an existing nonlinear function. Let
F(x) be an arbitrary nonlinear function represented by a (fragment of) neural net, then the idea of skip
connections is simply replacing F(x) with x+F(x). Figure 10(b) shows a well-known structure from residual
networks [50]—for every two layers, an identity map is added:

x 7−→ σ(x+ F(x)) = σ(x+ W′σ(Wx+ b) + b′), (14)

where x can be hidden nodes from any layer and W,W′, b, b′ are corresponding parameters. By repeating
(namely composing) this structure throughout all layers, [50, 51] are able to train neural nets with hundreds
of layers easily, which overcomes well-observed training difficulties in deep neural nets. Moreover, deep
residual networks also improve statistical accuracy, as the classification error on ImageNet challenge was
reduced by 46% from 2014 to 2015. As a side note, skip connections can be used flexibly. They are not
restricted to the form in (14), and can be used between any pair of layers `, `′ [55].

4 Deep unsupervised learning
In supervised learning, given labelled training set {(yi,xi)}, we focus on discriminative models, which essen-
tially represents P(y |x) by a deep neural net f(x;θ) with parameters θ. Unsupervised learning, in contrast,
aims at extracting information from unlabeled data {xi}, where the labels {yi} are absent. In regard to this
information, it can be a low-dimensional embedding of the data {xi} or a generative model with latent vari-
ables to approximate the distribution PX(x). To achieve these goals, we introduce two popular unsupervised
deep leaning models, namely, autoencoders and generative adversarial networks (GANs). The first one can
be viewed as a dimension reduction technique, and the second as a density estimation method. DNNs are
the key elements for both of these two models.

4.1 Autoencoders
Recall that in dimension reduction, the goal is to reduce the dimensionality of the data and at the same time
preserve its salient features. In particular, in principal component analysis (PCA), the goal is to embed the
data {xi}1≤i≤n into a low-dimensional space via a linear function f such that maximum variance can be
explained. Equivalently, we want to find linear functions f : Rd → Rk and g : Rk → Rd (k ≤ d) such that
the difference between xi and g(f(xi)) is minimized. Formally, we let

f (x) = Wfx , h and g (h) = Wgh, where Wf ∈ Rk×d and Wg ∈ Rd×k.

Here, for simplicity, we assume that the intercept/bias terms for f and g are zero. Then, PCA amounts to
minimizing the quadratic loss function

minimizeWf ,Wg

1

n

n∑
i=1

‖xi −WfWgxi‖22 . (15)

It is the same as minimizing ‖X −WX‖2F subject to rank(W) ≤ k, where X ∈ Rp×n is the design matrix.
The solution is given by the singular value decomposition of X [44, Thm. 2.4.8], which is exactly what PCA
does. It turns out that PCA is a special case of autoencoders, which is often known as the undercomplete
linear autoencoder.

More broadly, autoencoders are neural network models for (nonlinear) dimension reduction, which gen-
eralize PCA. An autoencoder has two key components, namely, the encoder function f(·), which maps the
input x ∈ Rd to a hidden code/representation h , f(x) ∈ Rk, and the decoder function g(·), which maps
the hidden representation h to a point g(h) ∈ Rd. Both functions can be multilayer neural networks as
(3). See Figure 11 for an illustration of autoencoders. Let L(x1,x2) be a loss function that measures the
difference between x1 and x2 in Rd. Similar to PCA, an autoencoder is used to find the encoder f and
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Figure 11: First an input x goes through the decoder f(·), and we obtain its hidden representation h = f(x).
Then, we use the decoder g(·) to get g(h) as a reconstruction of x. Finally, the loss is determined from the
difference between the original input x and its reconstruction g(f(x)).

decoder g such that L(x, g(f(x))) is as small as possible. Mathematically, this amounts to solving the
following minimization problem

minimizef ,g
1

n

n∑
i=1

L (xi, g (hi)) with hi = f (xi) , for all i ∈ [n]. (16)

One needs to make structural assumptions on the functions f and g in order to find useful representations
of the data, which leads to different types of autoencoders. Indeed, if no assumption is made, choosing f and
g to be identity functions clearly minimizes the above optimization problem. To avoid this trivial solution,
one natural way is to require that the encoder f maps the data onto a space with a smaller dimension,
i.e., k < d. This is the undercomplete autoencoder that includes PCA as a special case. There are other
structured autoencoders which add desired properties to the model such as sparsity or robustness, mainly
through regularization terms. Below we present two other common types of autoencoders.

• Sparse autoencoders. One may believe that the dimension k of the hidden code hi is larger than the
input dimension d, and that hi admits a sparse representation. As with LASSO [126] or SCAD [36], one
may add a regularization term to the reconstruction loss L in (16) to encourage sparsity [98]. A sparse
autoencoder solves

minf ,g
1

n

n∑
i=1

L (xi, g (hi))︸ ︷︷ ︸
loss

+ λ ‖hi‖1︸ ︷︷ ︸
regularizer

with hi = f (xi) , for all i ∈ [n].

This is similar to dictionary learning, where one aims at finding a sparse representation of input data on
an overcomplete basis. Due to the imposed sparsity, the model can potentially learn useful features of the
data.

• Denoising autoencoders. One may hope that the model is robust to noise in the data: even if the
input data xi are corrupted by small noise ξi or miss some components (the noise level or the missing
probability is typically small), an ideal autoencoder should faithfully recover the original data. A denoising
autoencoder [128] achieves this robustness by explicitly building a noisy data x̃i = xi+ξi as the new input,
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Figure 12: GANs consist of two components, a generator G which generates fake samples and a discriminator
D which differentiate the true ones from the fake ones.

and then solves an optimization problem similar to (16) where L (xi, g (hi)) is replaced by L (xi, g (f(x̃i))).
A denoising autoencoder encourages the encoder/decoder to be stable in the neighborhood of an input,
which is generally a good statistical property. An alternative way could be constraining f and g in the
optimization problem, but that would be very difficult to optimize. Instead, sampling by adding small
perturbations in the input provides a simple implementation. We shall see similar ideas in Section 6.3.3.

4.2 Generative adversarial networks
Given unlabeled data {xi}1≤i≤n, density estimation aims to estimate the underlying probability density
function PX from which the data is generated. Both parametric and nonparametric estimators [115] have
been proposed and studied under various assumptions on the underlying distribution. Different from these
classical density estimators, where the density function is explicitly defined in relatively low dimension,
generative adversarial networks (GANs) [46] can be categorized as an implicit density estimator in much
higher dimension. The reasons are twofold: (1) GANs put more emphasis on sampling from the distribution
PX than estimation; (2) GANs define the density estimation implicitly through a source distribution PZ and
a generator function g(·), which is usually a deep neural network. We introduce GANs from the perspective
of sampling from PX and later we will generalize the vanilla GANs using its relation to density estimators.

4.2.1 Sampling view of GANs

Suppose the data {xi}1≤i≤n at hand are all real images, and we want to generate new natural images.
With this goal in mind, GAN models a zero-sum game between two players, namely, the generator G and
the discriminator D. The generator G tries to generate fake images akin to the true images {xi}1≤i≤n
while the discriminator D aims at differentiating the fake ones from the true ones. Intuitively, one hopes to
learn a generator G to generate images where the best discriminator D cannot distinguish. Therefore the
payoff is higher for the generator G if the probability of the discriminator D getting wrong is higher, and
correspondingly the payoff for the discriminator correlates positively with its ability to tell wrong from truth.

Mathematically, the generator G consists of two components, an source distribution PZ (usually a stan-
dard multivariate Gaussian distribution with hundreds of dimensions) and a function g(·) which maps a
sample z from PZ to a point g(z) living in the same space as x. For generating images, g(z) would be a
3D tensor. Here g(z) is the fake sample generated from G. Similarly the discriminator D is composed of
one function which takes an image x (real or fake) and return a number d(x) ∈ [0, 1], the probability of x
being a real sample from PX or not. Oftentimes, both the generating function g(·) and the discriminating
function d(·) are realized by deep neural networks, e.g., CNNs introduced in Section 3.1. See Figure 12 for
an illustration for GANs. Denote θG and θD the parameters in g(·) and d(·), respectively. Then GAN tries
to solve the following min-max problem:
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min
θG

max
θD

Ex∼PX
[log (d (x))] + Ez∼PZ

[log (1− d (g (z)))] . (17)

Recall that d(x) models the belief / probability that the discriminator thinks that x is a true sample. Fix
the parameters θG and hence the generator G and consider the inner maximization problem. We can see
that the goal of the discriminator is to maximize its ability of differentiation. Similarly, if we fix θD (and
hence the discriminator), the generator tries to generate more realistic images g(z) to fool the discriminator.

4.2.2 Density estimation view of GANs

Let us now take a density-estimation view of GANs. Fixing the source distribution PZ , any generator G
induces a distribution PG over the space of images. Removing the restrictions on d(·), one can then rewrite
(17) as

min
PG

max
d(·)

Ex∼PX
[log (d (x))] + Ex∼PG [log (1− d (x))] . (18)

Observe that the inner maximization problem is solved by the likelihood ratio, i.e.

d∗ (x) =
PX (x)

PX (x) + PG (x)
.

As a result, (18) can be simplified as
min
PG

JS (PX ‖ PG) , (19)

where JS(·‖·) denotes the Jensen–Shannon divergence between two distributions

JS (PX‖PG) =
1

2
KL
(
PX ‖ PX+PG

2

)
+

1

2
KL
(
PG ‖ PX+PG

2

)
.

In words, the vanilla GAN (17) seeks a density PG that is closest to PX in terms of the Jensen–Shannon di-
vergence. This view allows to generalize GANs to other variants, by changing the distance metric. Examples
include f-GAN [90], Wasserstein GAN (W-GAN) [6], MMD GAN [75], etc. We single out the Wasserstein
GAN (W-GAN) [6] to introduce due to its popularity. As the name suggests, it minimizes the Wasserstein
distance between PX and PG :

min
θG

WS (PX‖PG) = min
θG

sup
f :f 1-Lipschitz

Ex∼PX
[f (x)]− Ex∼PG [f (x)] , (20)

where f(·) is taken over all Lipschitz functions with coefficient 1. Comparing W-GAN (20) with the original
formulation of GAN (17), one finds that the Lipschitz function f in (20) corresponds to the discriminator D
in (17) in the sense that they share similar objectives to differentiate the true distribution PX from the fake
one PG . In the end, we would like to mention that GANs are more difficult to train than supervised deep
learning models such as CNNs [110]. Apart from the training difficulty, how to evaluate GANs objectively
and effectively is an ongoing research.

5 Representation power: approximation theory
Having seen the building blocks of deep learning models in the previous sections, it is natural to ask: what is
the benefits of composing multiple layers of nonlinear functions. In this section, we address this question from
a approximation theoretical point of view. Mathematically, letting H be the space of functions representable
by neural nets (NNs), how well can a function f (with certain properties) be approximated by functions in
H. We first revisit universal approximation theories, which are mostly developed for shallow neural nets
(neural nets with a single hidden layer), and then provide recent results that demonstrate the benefits of
depth in neural nets. Other notable works include Kolmogorov-Arnold superposition theorem [7, 120], and
circuit complexity for neural nets [91].
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5.1 Universal approximation theory for shallow NNs
The universal approximation theories study the approximation of f in a space F by a function represented
by a one-hidden-layer neural net

g(x) =

N∑
j=1

cjσ∗(w
>
j x− bj), (21)

where σ∗ : R→ R is certain activation function and N is the number of hidden units in the neural net. For
different space F and activation function σ∗, there are upper bounds and lower bounds on the approximation
error ‖f − g‖. See [93] for a comprehensive overview. Here we present representative results.

First, as N → ∞, any continuous function f can be approximated by some g under mild conditions.
Loosely speaking, this is because each component σ∗(w>j x− bj) behaves like a basis function and functions
in a suitable space F admits a basis expansion. Given the above heuristics, the next natural question is:
what is the rate of approximation for a finite N?

Let us restrict the domain of x to a unit ball Bd in Rd. For p ∈ [1,∞) and integer m ≥ 1, consider the
Lp space and the Sobolev space with standard norms

‖f‖p =
[ ∫

Bn
|g(x)|p dx

]1/p
, ‖f‖m,p =

[ ∑
0≤|k|≤m

‖Dkf‖pp
]1/p

,

where Dkf denotes partial derivatives indexed by k ∈ Zd+. Let F , Fmp be the space of functions f in the
Sobolev space with ‖f‖m,p ≤ 1. Note that functions in F have bounded derivatives up to m-th order, and
that smoothness of functions is controlled by m (larger m means smoother). Denote by HN the space of
functions with the form (21). The following general upper bound is due to [85].

Theorem 1 (Theorem 2.1 in [85]). Assume σ∗ : R→ R is such that σ∗ has arbitrary order derivatives in an
open interval I, and that σ∗ is not a polynomial on I. Then, for any p ∈ [1,∞), d ≥ 2, and integer m ≥ 1,

sup
f∈Fmp

inf
g∈HN

‖f − g‖p ≤ Cd,m,pN−m/d,

where Cd,m,p is independent of N , the number of hidden units.

In the above theorem, the condition on σ∗(·) is mainly technical. This upper bound is useful when the
dimension d is not large. It clearly implies that the one-hidden-layer neural net is able to approximate any
smooth function with enough hidden units. However, it is unclear how to find a good approximator g; nor
do we have control over the magnitude of the parameters (huge weights are impractical). While increasing
the number of hidden units N leads to better approximation, the exponent −m/d suggests the presence of
the curse of dimensionality. The following (nearly) matching lower bound is stated in [80].

Theorem 2 (Theorem 5 in [80]). Let p ≥ 1, m ≥ 1 and N ≥ 2. If the activation function is the standard
sigmoid function σ(t) = (1 + e−t)−1, then

sup
f∈Fmp

inf
g∈HN

‖f − g‖p ≥ C ′d,m,p (N logN)−m/d, (22)

where C ′d,m,p is independent of N .

Results for other activation functions are also obtained by [80]. Moreover, the term logN can be removed
if we assume an additional continuity condition [85].

For the natural space Fmp of smooth functions, the exponential dependence on d in the upper and lower
bounds may look unappealing. However, [12] showed that for a different function space, there is a good
dimension-free approximation by the neural nets. Suppose that a function f : Rd 7→ R has a Fourier
representation

f(x) =

∫
Rd
ei〈ω,x〉f̃(ω) dω, (23)
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where f̃(ω) ∈ C. Assume that f(0) = 0 and that the following quantity is finite

Cf =

∫
Rd
‖ω‖2|f̃(ω)| dω. (24)

[12] uncovers the following dimension-free approximation guarantee.

Theorem 3 (Proposition 1 in [12]). Fix a C > 0 and an arbitrary probability measure µ on the unit ball Bd
in Rd. For every function f with Cf ≤ C and every N ≥ 1, there exists some g ∈ HN such that[∫

Bd
(f(x)− g(x))2 µ(dx)

]1/2
≤ 2C√

N
.

Moreover, the coefficients of g may be restricted to satisfy
∑N
j=1 |cj | ≤ 2C.

The upper bound is now independent of the dimension d. However, Cf may implicitly depend on d, as
the formula in (24) involves an integration over Rd (so for some functions Cf may depend exponentially
on d). Nevertheless, this theorem does characterize an interesting function space with an improved upper
bound. Details of the function space are discussed by [12]. This theorem can be generalized; see [81] for an
example.

To help understand why a dimensionality-free approximation holds, let us appeal to a heuristic argument
given by Monte Carlo simulations. It is well-known that Monte Carlo approximation errors are independent
of dimensionality in evaluation of high-dimensional integrals. Let us generate {ωj}1≤j≤N randomly from a
given density p(·) in Rd. Consider the approximation to (23) by

gN (x) =
1

N

N∑
j=1

cje
i〈ωj ,x〉, cj =

f̃(ωj)

p(ωj)
. (25)

Then, gN (x) is a one-hidden-layer neural network with N units and the sinusoid activation function. Note
that EgN (x) = f(x), where the expectation is taken with respect to randomness {ωj}. Now, by indepen-
dence, we have

E(gN (x)− f(x))2 =
1

N
Var(cje

i〈ωj ,x〉) ≤ 1

N
Ec2j ,

if Ec2j <∞. Therefore, the rate is independent of the dimensionality d, though the constant can be.

5.2 Approximation theory for multi-layer NNs
The approximation theory for multilayer neural nets is less understood compared with neural nets with one
hidden layer. Driven by the success of deep learning, there are many recent papers focusing on expressivity
of deep neural nets. As studied by [125, 35, 84, 94, 15, 111, 77, 103], deep neural nets excel at representing
composition of functions. This is perhaps not surprising, since deep neural nets are themselves defined by
composing layers of functions. Nevertheless, it points to a new territory rarely studied in statistics before.
Below we present a result based on [77, 103].

Suppose that the inputs x have a bounded domain [−1, 1]d for simplicity. As before, let σ∗ : R→ R be a
generic function, and σ∗ = (σ∗, · · · , σ∗)> be element-wise application of σ∗. Consider a neural net which is
similar to (3) but with scaler output: g(x) = W`σ∗(· · ·σ∗(W2σ∗(W1x)) · · · ). A unit or neuron refers to an
element of vectors σ∗(Wk · · ·σ∗(W2σ∗(W1x)) · · · ) for any k = 1, . . . , `− 1. For a multivariate polynomial
p, define mk(p) to be the smallest integer such that, for any ε > 0, there exists a neural net g(x) satisfying
supx |p(x)− g(x)| < ε, with k hidden layers (i.e., ` = k + 1) and no more than mk(p) neurons in total.
Essentially, mk(p) is the minimum number of neurons required to approximate p arbitrarily well.

Theorem 4 (Theorem 4.1 in [103]). Let p(x) be a monomial xr11 x
r2
2 · · ·xrdd with q =

∑d
j=1 rj. Suppose that

σ∗ has derivatives of order 2q at the origin, and that they are nonzero. Then,
(i) m1(p) =

∏d
j=1(rj + 1);

(ii) minkmk(p) ≤∑d
j=1 (7dlog2(rj)e+ 4).
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This theorem reveals a sharp distinction between shallow networks (one hidden layer) and deep networks.
To represent a monomial function, a shallow network requires exponentially many neurons in terms of the
dimension d, whereas linearly many neurons suffice for a deep network (with bounded rj). The exponential
dependence on d, as shown in Theorem 4(i), is resonant with the curse of dimensionality widely seen in
many fields; see [30]. One may ask: how does depth help? Depth circumvents this issue, at least for certain
functions, by allowing us to represent function composition efficiently. Indeed, Theorem 4(ii) offers a nice
result with clear intuitions: it is known that the product of two scalar inputs can be represented using 4
neurons [77], so by composing multiple products, we can express monomials with O(d) neurons.

Recent advances in nonparametric regressions also support the idea that deep neural nets excel at repre-
senting composition of functions [15, 111]. In particular, [15] considered the nonparametric regression setting
where we want to estimate a function f̂n(x) from i.i.d. data Dn = {(yi,xi)}1≤i≤n. If the true regression
function f(x) has certain hierarchical structure with intrinsic dimensionality6 d∗, then the error

EDnEx
∣∣∣f̂n(x)− f(x)

∣∣∣2
has an optimal minimax convergence rate O(n−

2q
2q+d∗ ), rather than the usual rate O(n−

2q
2q+d ) that depends on

the ambient dimension d. Here q is the smoothness parameter. This provides another justification for deep
neural nets: if data are truly hierarchical, then the quality of approximators by deep neural nets depends on
the intrinsic dimensionality, which avoids the curse of dimensionality.

We point out that the approximation theory for deep learning is far from complete. For example, in
Theorem 4, the condition on σ∗ excludes the widely used ReLU activation function, there are no constraints
on the magnitude of the weights (so they can be unreasonably large).

6 Training deep neural nets
The existence of a good function approximator in the NN function class does not explain why in practice
we can easily find them. In this section, we introduce standard methods, namely stochastic gradient descent
(SGD) and its variants, to train deep neural networks (or to find such a good approximator). As with many
statistical machine learning tasks, training DNNs follows the empirical risk minimization (ERM) paradigm
which solves the following optimization problem

minimizeθ∈Rp `n (θ) ,
1

n

n∑
i=1

L (f (xi;θ) , yi) . (26)

Here L(f(xi;θ), yi) measures the discrepancy between the prediction f(xi;θ) of the neural network and the
true label yi. Correspondingly, denote by `(θ) , E(x,y)∼D[L(f(x;θ),y)] the out-of-sample error, where D
is the joint distribution over (y,x). Solving ERM (26) for deep neural nets faces various challenges that
roughly fall into the following three categories.

• Scalability and nonconvexity. Both the sample size n and the number of parameters p can be huge for
modern deep learning applications, as we have seen in Table 1. Many optimization algorithms are not
practical due to the computational costs and memory constraints. What is worse, the empirical loss
function `n(θ) in deep learning is often nonconvex. It is a priori not clear whether an optimization
algorithm can drive the empirical loss (26) small.

• Numerical stability. With a large number of layers in DNNs, the magnitudes of the hidden nodes can be
drastically different, which may result in the “exploding gradients” or “vanishing gradients” issue during
the training process. This is because the recursive relations across layers often lead to exponentially
increasing / decreasing values in both forward passes and backward passes.

• Generalization performance. Our ultimate goal is to find a parameter θ̂ such that the out-of-sample error
`(θ̂) is small. However, in the over-parametrized regime where p is much larger than n, the underlying
6Roughly speaking, the true regression function can be represented by a tree where each node has at most d∗ children.

See [15] for the precise definition.
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neural network has the potential to fit the training data perfectly while performing poorly on the test
data. To avoid this overfitting issue, proper regularization, whether explicit or implicit, is needed in the
training process for the neural nets to generalize.

In the following three subsections, we discuss practical solutions / proposals to address these challenges.

6.1 Stochastic gradient descent
Stochastic gradient descent (SGD) [101] is by far the most popular optimization algorithm to solve ERM (26)
for large-scale problems. It has the following simple update rule:

θt+1 = θt − ηtG(θt) with G
(
θt
)

= ∇L
(
f
(
xit ;θ

t
)
, yit

)
(27)

for t = 0, 1, 2, . . ., where ηt > 0 is the step size (or learning rate), θ0 ∈ Rp is an initial point and it is
chosen randomly from {1, 2, · · · , n}. It is easy to verify that G(θt) is an unbiased estimate of ∇`n(θt). The
advantage of SGD is clear: compared with gradient descent, which goes over the entire dataset in every
update, SGD uses a single example in each update and hence is considerably more efficient in terms of both
computation and memory (especially in the first few iterations).

Apart from practical benefits of SGD, how well does SGD perform theoretically in terms of minimizing
`n(θ)? We begin with the convex case, i.e., the case where the loss function is convex w.r.t. θ. It is well
understood in literature that with proper choices of the step sizes {ηt}, SGD is guaranteed to achieve both
consistency and asymptotic normality.

• Consistency. If `(θ) is a strongly convex function7, then under some mild conditions8, learning rates that
satisfy

∞∑
t=0

ηt = +∞ and
∞∑
t=0

η2t < +∞ (28)

guarantee almost sure convergence to the unique minimizer θ∗ , argminθ`(θ), i.e., θt a.s.−−→ θ∗ as t →
∞ [101, 64, 16, 69]. The requirements in (28) can be viewed from the perspective of bias-variance tradeoff:
the first condition ensures that the iterates can reach the minimizer (controlled bias), and the second
ensures that stochasticity does not prevent convergence (controlled variance).

• Asymptotic normality. It is proved by [97] that for robust linear regression with fixed dimension p, under
the choice ηt = t−1,

√
t (θt− θ∗) is asymptotically normal under some regularity conditions (but θt is not

asymptotically efficient in general). Moreover, by averaging the iterates of SGD, [96] proved that even
with a larger step size ηt ∝ t−α, α ∈ (1/2, 1), the averaged iterate θ̄t = t−1

∑t
s=1 θ

s is asymptotic efficient
for robust linear regression. These strong results show that SGD with averaging performs as well as the
MLE asymptotically, in addition to its computational efficiency.

These classical results, however, fail to explain the effectiveness of SGD when dealing with nonconvex
loss functions in deep learning. Admittedly, finding global minima of nonconvex functions is computationally
infeasible in the worst case. Nevertheless, recent work [4, 32] bypasses the worst case scenario by focusing
on losses incurred by over-parametrized deep learning models. In particular, they show that (stochastic)
gradient descent converges linearly towards the global minimizer of `n(θ) as long as the neural network is
sufficiently over-parametrized. This phenomenon is formalized below.

Theorem 5 (Theorem 2 in [4]). Let {(yi,xi)}1≤i≤n be a training set satisfying mini,j:i 6=j ‖xi−xj‖2 ≥ δ > 0.
Consider fitting the data using a feed-forward neural network (1) with ReLU activations. Denote by L
(resp. W ) the depth (resp. width) of the network. Suppose that the neural network is sufficiently over-
parametrized, i.e.,

W � poly

(
n,L,

1

δ

)
, (29)

7For results on consistency and asymptotic normality, we consider the case where in each step of SGD, the stochastic
gradient is computed using a fresh sample (y,x) from D. This allows to view SGD as an optimization algorithm to minimize
the population loss `(θ).

8One example of such condition can be constraining the second moment of the gradients: E
[
‖∇L

(
xi, yi;θ

t
)
‖22

]
≤ C1 +

C2‖θt − θ∗‖22 for some C1, C2 > 0. See [16] for details.
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where poly means a polynomial function. Then with high probability, running SGD (27) with certain random
initialization and properly chosen step sizes yields `n(θt) ≤ ε in t � log 1

ε iterations.

Two notable features are worth mentioning: (1) first, the network under consideration is sufficiently over-
parametrized (cf. (29)) in which the number of parameters is much larger than the number of samples, and
(2) one needs to initialize the weight matrices to be in near-isometry such that the magnitudes of the hidden
nodes do not blow up or vanish. In a nutshell, over-parametrization and random initialization together
ensure that the loss function (26) has a benign landscape9 around the initial point, which in turn implies
fast convergence of SGD iterates.

There are certainly other challenges for vanilla SGD to train deep neural nets: (1) training algorithms
are often implemented in GPUs, and therefore it is important to tailor the algorithm to the infrastructure,
(2) the vanilla SGD might converge very slowly for deep neural networks, albeit good theoretical guarantees
for well-behaved problems, and (3) the learning rates {ηt} can be difficult to tune in practice. To address
the aforementioned challenges, three important variants of SGD, namely mini-batch SGD, momentum-based
SGD, and SGD with adaptive learning rates are introduced.

6.1.1 Mini-batch SGD

Modern computational infrastructures (e.g., GPUs) can evaluate the gradient on a number (say 64) of
examples as efficiently as evaluating that on a single example. To utilize this advantage, mini-batch SGD
with batch size K ≥ 1 forms the stochastic gradient through K random samples:

θt+1 = θt − ηtG(θt) with G(θt) =
1

K

K∑
k=1

∇L
(
f
(
xikt ;θt

)
, yikt

)
, (30)

where for each 1 ≤ k ≤ K, ikt is sampled uniformly from {1, 2, · · · , n}. Mini-batch SGD, which is an
“interpolation” between gradient descent and stochastic gradient descent, achieves the best of both worlds:
(1) using 1 � K � n samples to estimate the gradient, one effectively reduces the variance and hence
accelerates the convergence, and (2) by taking the batch size K appropriately (say 64 or 128), the stochastic
gradient G(θt) can be efficiently computed using the matrix computation toolboxes on GPUs.

6.1.2 Momentum-based SGD

While mini-batch SGD forms the foundation of training neural networks, it can sometimes be slow to converge
due to its oscillation behavior [122]. Optimization community has long investigated how to accelerate the
convergence of gradient descent, which results in a beautiful technique called momentum methods [95, 88].
Similar to gradient descent with moment, momentum-based SGD, instead of moving the iterate θt in the
direction of the current stochastic gradient G(θt), smooth the past (stochastic) gradients {G(θt)} to stabilize
the update directions. Mathematically, let vt ∈ Rp be the direction of update in the tth iteration, i.e.,

θt+1 = θt − ηtvt.

Here v0 = G(θ0) and for t = 1, 2, · · ·
vt = ρvt−1 +G(θt) (31)

with 0 < ρ < 1. A typical choice of ρ is 0.9. Notice that ρ = 0 recovers the mini-batch SGD (30), where
no past information of gradients is used. A simple unrolling of vt reveals that vt is actually an exponential
averaging of the past gradients, i.e., vt =

∑t
j=0 ρ

t−jG(θj). Compared with vanilla mini-batch SGD, the
inclusion of the momentum “smoothes” the oscillation direction and accumulates the persistent descent
direction. We want to emphasize that theoretical justifications of momentum in the stochastic setting is not
fully understood [63, 60].

9In [4], the loss function `n(θ) satisfies the PL condition.
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6.1.3 SGD with adaptive learning rates

In optimization, preconditioning is often used to accelerate first-order optimization algorithms. In principle,
one can apply this to SGD, which yields the following update rule:

θt+1 = θt − ηtP−1t G(θt) (32)

with Pt ∈ Rp×p being a preconditioner at the t-th step. Newton’s method can be viewed as one type
of preconditioning where Pt = ∇2`(θt). The advantages of preconditioning are two-fold: first, a good
preconditioner reduces the condition number by changing the local geometry to be more homogeneous, which
is amenable to fast convergence; second, a good preconditioner frees practitioners from laboring tuning of the
step sizes, as is the case with Newton’s method. AdaGrad, an adaptive gradient method proposed by [33],
builds a preconditioner Pt based on information of the past gradients:

Pt =
{
diag

( t∑
j=0

G
(
θt
)
G
(
θt
)> )}1/2

. (33)

Since we only require the diagonal part, this preconditioner (and its inverse) can be efficiently computed in
practice. In addition, investigating (32) and (33), one can see that AdaGrad adapts to the importance of each
coordinate of the parameters by setting smaller learning rates for frequent features, whereas larger learning
rates for those infrequent ones. In practice, one adds a small quantity δ > 0 (say 10−8) to the diagonal
entries to avoid singularity (numerical underflow). A notable drawback of AdaGrad is that the effective
learning rate vanishes quickly along the learning process. This is because the historical sum of the gradients
can only increase with time. RMSProp [52] is a popular remedy for this problem which incorporates the
idea of exponential averaging:

Pt =
{
diag

(
ρPt−1 + (1− ρ)G

(
θt
)
G
(
θt
)> )}1/2

. (34)

Again, the decaying parameter ρ is usually set to be 0.9. Later, Adam [65, 100] combines the momentum
method and adaptive learning rate and becomes the default training algorithms in many deep learning
applications.

6.2 Easing numerical instability
For very deep neural networks or RNNs with long dependencies, training difficulties often arise when the val-
ues of nodes have different magnitudes or when the gradients “vanish” or “explode” during back-propagation.
Here we discuss three partial solutions to alleviate this problem.

6.2.1 ReLU activation function

One useful characteristic of the ReLU function is that its derivative is either 0 or 1, and the derivative remains
1 even for a large input. This is in sharp contrast with the standard sigmoid function (1 + e−t)−1 which
results in a very small derivative when inputs have large magnitude. The consequence of small derivatives
across many layers is that gradients tend to be “killed”, which means that gradients become approximately
zero in deep nets.

The popularity of the ReLU activation function and its variants (e.g., leaky ReLU) is largely attributable
to the above reason. It has been well observed that the ReLU activation function has superior training
performance over the sigmoid function [68, 79].

6.2.2 Skip connections

We have introduced skip connections in Section 3.3. Why are skip connections helpful for reducing numerical
instability? This structure does not introduce a larger function space, since the identity map can be also
represented with ReLU activations: x = σ(x)− σ(−x).
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One explanation is that skip connections bring ease to the training / optimization process. Suppose
that we have a general nonlinear function F(x`;θ`). With a skip connection, we represent the map as
x`+1 = x` + F(x`;θ`) instead. Now the gradient ∂x`+1/∂x` becomes

∂x`+1

∂x`
= I +

∂F(x`;θ`)

∂x`
instead of

∂F(x`;θ`)

∂x`
, (35)

where I is an identity matrix. By the chain rule, gradient update requires computing products of many
components, e.g., ∂xL∂x1

=
∏L−1
`=1

∂x`+1

∂x`
, so it is desirable to keep the spectra (singular values) of each component

∂x`+1

∂x`
close to 1. In neural nets, with skip connections, this is easily achieved if the parameters have small

values; otherwise, this may not be achievable even with careful initialization and tuning. Notably, training
neural nets with hundreds of layers is possible with the help of skip connections.

6.2.3 Batch normalization

Recall that in regression analysis, one often standardizes the design matrix so that the features have zero
mean and unit variance. Batch normalization extends this standardization procedure from the input layer
to all the hidden layers. Mathematically, fix a mini-batch of input data {(xi, yi)}i∈B, where B ⊂ [n]. Let
h
(`)
i be the feature of the i-th example in the `-th layer (` = 0 corresponds to the input xi). The batch

normalization layer computes the normalized version of h(`)
i via the following steps:

µ ,
1

|B|
∑
i∈B

h
(`)
i , σ2 ,

1

|B|
∑
i∈B

(
h
(`)
i − µ

)2 and h
(l)
i,norm ,

h
(`)
i − µ
σ

.

Here all the operations are element-wise. In words, batch normalization computes the z-score for each feature
over the mini-batch B and use that as inputs to subsequent layers. To make it more versatile, a typical batch
normalization layer has two additional learnable parameters γ(`) and β(`) such that

h
(l)
i,new = γ(l) � h(l)

i,norm + β(l).

Again � denotes the element-wise multiplication. As can be seen, γ(`) and β(`) set the new feature h(l)
inew

to have mean β(`) and standard deviation γ(`). The introduction of batch normalization makes the training
of neural networks much easier and smoother. More importantly, it allows the neural nets to perform well
over a large family of hyper-parameters including the number of layers, the number of hidden units, etc. At
test time, the batch normalization layer needs more care. For brevity we omit the details and refer to [58].

6.3 Regularization techniques
So far we have focused on training techniques to drive the empirical loss (26) small efficiently. Here we
proceed to discuss common practice to improve the generalization power of trained neural nets.

6.3.1 Weight decay

One natural regularization idea is to add an `2 penalty to the loss function. This regularization technique
is known as the weight decay in deep learning. We have seen one example in (9). For general deep neural
nets, the loss to optimize is `λn(θ) = `n(θ) + rλ(θ) where

rλ(θ) = λ

L∑
`=1

∑
j,j′

[
W

(`)
j,j′

]2
.

Note that the bias (intercept) terms are not penalized. If `n(θ) is a least square loss, then regularization
with weight decay gives precisely ridge regression. The penalty rλ(θ) is a smooth function and thus it can
be also implemented efficiently with back-propagation.
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6.3.2 Dropout

Dropout, introduced by [53], prevents overfitting by randomly dropping out subsets of features during train-
ing. Take the l-th layer of the feed-forward neural network as an example. Instead of propagating all the
features in h(`) for later computations, dropout randomly omits some of its entries by

h
(`)
drop = h(`) �mask`,

where � denotes element-wise multiplication as before, and mask` is a vector of Bernoulli variables with
success probability p. It is sometimes useful to rescale the features h(`)

inv drop = h
(`)
drop/p, which is called

inverted dropout. During training, mask` are i.i.d. vectors across mini-batches and layers. However, when
testing on fresh samples, dropout is disabled and the original features h(`) are used to compute the output
label y. It has been nicely shown by [129] that for generalized linear models, dropout serves as adaptive
regularization. In the simplest case of linear regression, it is equivalent to `2 regularization. Another possible
way to understand the regularization effect of dropout is through the lens of bagging [45]. Since different
mini-batches has different masks, dropout can be viewed as training a large ensemble of classifiers at the same
time, with a further constraint that the parameters are shared. Theoretical justification remains elusive.

6.3.3 Data augmentation

Data augmentation is a technique of enlarging the dataset when we have knowledge about invariance structure
of data. It implicitly increases the sample size and usually regularizes the model effectively. For example,
in image classification, we have strong prior knowledge about what invariance properties a good classifier
should possess. The label of an image should not be affected by translation, rotation, flipping, and even
crops of the image. Hence one can augment the dataset by randomly translating, rotating and cropping the
images in the original dataset.

Formally, during training we want to minimize the loss `n(θ) =
∑
i L(f(xi;θ), yi) w.r.t. parameters θ,

and we know a priori that certain transformation T ∈ T where T : Rd → Rd (e.g., affine transformation)
should not change the category / label of a training sample. In principle, if computation costs were not a
consideration, we could convert this knowledge to a constraint fθ(Txi) = fθ(xi),∀T ∈ T in the minimization
formulation. Instead of solving a constrained optimization problem, data augmentation enlarges the training
dataset by sampling T ∈ T and generating new data {(Txi, yi)}. In this sense, data augmentation induces
invariance properties through sampling, which results in a much bigger dataset than the original one.

7 Generalization power
Section 6 has focused on the in-sample / training error obtained via SGD, but this alone does not guarantee
good performance with respect to the out-of-sample / test error. The gap between the in-sample error and
the out-of-sample error, namely the generalization gap, has been the focus of statistical learning theory since
its birth; see [112] for an excellent introduction to this topic.

While understanding the generalization power of deep neural nets is difficult [135, 99], we sample re-
cent endeavors in this section. From a high level point of view, these approaches can be divided into
two categories, namely algorithm-independent controls and algorithm-dependent controls. More specifically,
algorithm-independent controls focus solely on bounding the complexity of the function class represented
by certain deep neural networks. In contrast, algorithm-dependent controls take into account the algorithm
(e.g., SGD) used to train the neural network.

7.1 Algorithm-independent controls: uniform convergence
The key to algorithm-independent controls is the notion of complexity of the function class parametrized
by certain neural networks. Informally, as long as the complexity is not too large, the generalization gap of
any function in the function class is well-controlled. However, the standard complexity measure (e.g., VC
dimension [127]) is at least proportional to the number of weights in a neural network [5, 112], which fails to
explain the practical success of deep learning. The caveat here is that the function class under consideration
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is all the functions realized by certain neural networks, with no restrictions on the size of the weights at all.
On the other hand, for the class of linear functions with bounded norm, i.e., {x 7→ w>x | ‖w‖2 ≤ M}, it is
well understood that the complexity of this function class (measured in terms of the empirical Rademacher
complexity) with respect to a random sample {xi}1≤i≤n is upper bounded by maxi ‖xi‖2M/

√
n, which is

independent of the number of parameters in w. This motivates researchers to investigate the complexity
of norm-controlled deep neural networks10 [89, 14, 43, 74]. Setting the stage, we introduce a few necessary
notations and facts. The key object under study is the function class parametrized by the following fully-
connected neural network with depth L:

FL ,
{
x 7→WLσ (WL−1σ (· · ·W2σ (W1x)))

∣∣ (W1, · · · ,WL) ∈ W
}
. (36)

Here (W1,W2, · · · ,WL) ∈ W represents a certain constraint on the parameters. For instance, one can
restrict the Frobenius norm of each parameter Wl through the constraint ‖Wl‖F ≤ MF(l), where MF(l) is
some positive quantity. With regard to the complexity measure, it is standard to use Rademacher complexity
to control the capacity of the function class of interest.

Definition 1 (Empirical Rademacher complexity). The empirical Rademacher complexity of a function
class F w.r.t. a dataset S , {xi}1≤i≤n is defined as

RS (F) = Eε
[

sup
f∈F

1

n

n∑
i=1

εif (xi)
]
, (37)

where ε , (ε1, ε2, · · · , εn) is composed of i.i.d. Rademacher random variables, i.e., P(εi = 1) = P(εi = −1) =
1/2.

In words, Rademacher complexity measures the ability of the function class to fit the random noise rep-
resented by ε. Intuitively, a function class with a larger Rademacher complexity is more prone to overfitting.
We now formalize the connection between the empirical Rademacher complexity and the out-of-sample error;
see Chapter 24 in [112].

Theorem 6. Assume that for all f ∈ F and all (y,x) we have |L(f(x), y)| ≤ 1. In addition, assume that
for any fixed y, the univariate function L(·, y) is Lipschitz with constant 1. Then with probability at least
1− δ over the sample S , {(yi,xi)}1≤i≤n i.i.d.∼ D, one has for all f ∈ F

E(y,x)∼D [L (f(x), y)]︸ ︷︷ ︸
out-of-sample error

≤ 1

n

n∑
i=1

L (f(xi), yi)︸ ︷︷ ︸
in-sample error

+2RS (F) + 4

√
log (4/δ)

n
.

In English, the generalization gap of any function f that lies in F is well-controlled as long as the
Rademacher complexity of F is not too large. With this connection in place, we single out the following
complexity bound.

Theorem 7 (Theorem 1 in [43]). Consider the function class FL in (36), where each parameter Wl has
Frobenius norm at most MF(l). Further suppose that the element-wise activation function σ(·) is 1-Lipschitz
and positive-homogeneous (i.e., σ(c · x) = cσ(x) for all c ≥ 0). Then the empirical Rademacher complex-
ity (37) w.r.t. S , {xi}1≤i≤n satisfies

RS (FL) ≤ max
i
‖xi‖2 ·

4
√
L
∏L
l=1MF(l)√
n

. (38)

The upper bound of the empirical Rademacher complexity (38) is in a similar vein to that of linear
functions with bounded norm, i.e., maxi ‖xi‖2M/

√
n, where

√
L
∏L
l=1MF(l) plays the role of M in the

latter case. Moreover, ignoring the term
√
L, the upper bound (38) does not depend on the size of the

network in an explicit way if MF (l) sharply concentrates around 1. This reveals that the capacity of the
10Such attempts have been made in the seminal work [13].
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neural network is well-controlled, regardless of the number of parameters, as long as the Frobenius norm
of the parameters is bounded. Extensions to other norm constraints, e.g., spectral norm constraints, path
norm constraints have been considered by [89, 14, 74, 67, 34]. This line of work improves upon traditional
capacity analysis of neural networks in the over-parametrized setting, because the upper bounds derived
are often size-independent. Having said this, two important remarks are in order: (1) the upper bounds
(e.g.,

∏L
l=1MF(l)) involve implicit dependence on the size of the weight matrix and the depth of the neural

network, which is hard to characterize; (2) the upper bound on the Rademacher complexity offers a uniform
bound over all functions in the function class, which is a pure statistical result. However, it stays silent
about how and why standard training algorithms like SGD can obtain a function whose parameters have
small norms.

7.2 Algorithm-dependent controls
In this subsection, we bring computational thinking into statistics and investigate the role of algorithms in the
generalization power of deep learning. The consideration of algorithms is quite natural and well motivated:
(1) local/global minima reached by different algorithms can exhibit totally different generalization behaviors
due to extreme nonconvexity, which marks a huge difference from traditional models, (2) the effective capacity
of neural nets is possibly not large, since a particular algorithm does not explore the entire parameter space.

These demonstrate the fact that on top of the complexity of the function class, the inherent property of
the algorithm we use plays an important role in the generalization ability of deep learning. In what follows,
we survey three different ways to obtain upper bounds on the generalization errors by exploiting properties
of the algorithms.

7.2.1 Mean field view of neural nets

As we have emphasized, modern deep learning models are highly over-parametrized. A line of work [83, 117,
105, 25, 82, 61] approximates the ensemble of weights by an asymptotic limit as the number of hidden units
tends to infinity, so that the dynamics of SGD can be studied via certain partial different equations.

More specifically, let f̂(x;θ) = N−1
∑N
i=1 σ(θ>i x) be a function given by a one-hidden-layer neural net

with N hidden units, where σ(·) is the ReLU activation function and parameters θ , [θ1, . . . ,θN ]> ∈ RN×d
are suitably randomly initialized. Consider the regression setting where we want to minimize the population
risk RN (θ) = E[(y − f̂(x;θ))2] over parameters θ. A key observation is that this population risk depends
on the parameters θ only through its empirical distribution, i.e., ρ̂(N) = N−1

∑N
i=1 δθi where δθi is a point

mass at θi. This motivates us to view express RN (θ) equivalently as R(ρ̂(N)), where R(·) is a functional
that maps distributions to real numbers. Running SGD for RN (·)—in a suitable scaling limit—results in
a gradient flow on the space of distributions endowed with the Wasserstein metric that minimizes R(·). It
turns out that the empirical distribution ρ̂(N)

k of the parameters after k steps of SGD is well approximated
by the gradient follow, as long as the the neural net is over-parametrized (i.e., N � d) and the number of
steps is not too large. In particular, [83] have shown that under certain regularity conditions,

sup
k∈[0,T/ε]∩N

∣∣∣R(ρ̂(N))−R (ρkε)
∣∣∣ . eT

√
1

N
∨ ε ·

√
d+ log

N

ε
,

where ε > 0 is an proxy for the step size of SGD and ρkε is the distribution of the gradient flow at time kε.
In words, the out-of-sample error under θk generated by SGD is well-approximated by that of ρkε. Viewing
the optimization problem from the distributional aspect greatly simplifies the problem conceptually, as
the complicated optimization problem is now passed into its limit version—for this reason, this analytical
approach is called the mean field perspective. In particular, [83] further demonstrated that in some simple
settings, the out-of-sample error R(ρkε) of the distributional limit can be fully characterized. Nevertheless,
how well does R(ρkε) perform and how fast it converges remain largely open for general problems.

7.2.2 Stability

A second way to understand the generalization ability of deep learning is through the stability of SGD. An
algorithm is considered stable if a slight change of the input does not alter the output much. It has long been
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observed that a stable algorithm has a small generalization gap; examples include k nearest neighbors [102,
29], bagging [18, 19], etc. The precise connection between stability and generalization gap is stated by [17,
113]. In what follows, we formalize the idea of stability and its connection with the generalization gap. Let
A denote an algorithm (possibly randomized) which takes a sample S , {(yi,xi)}1≤i≤n of size n and returns
an estimated parameter θ̂ , A(S). Following [49], we have the following definition for stability.

Definition 2. An algorithm (possibly randomized) A is ε-uniformly stable with respect to the loss function
L(·, ·) if for all datasets S, S′ of size n which differ in at most one example, one has

sup
x,y

EA [L (f(x;A (S)), y)− L (f(x;A (S′)), y)] ≤ ε.

Here the expectation is taken w.r.t. the randomness in the algorithm A and ε might depend on n. The loss
function L(·, ·) takes an example (say (x, y)) and the estimated parameter (say A(S)) as inputs and outputs
a real value.

Surprisingly, an ε-uniformly stable algorithm incurs small generalization gap in expectation, which is
stated in the following lemma.

Lemma 1 (Theorem 2.2 in [49]). Let A be ε-uniformly stable. Then the expected generalization gap is no
larger than ε, i.e., ∣∣∣∣∣EA,S

[
1

n

n∑
i=1

L(f(xi;A (S)), yi)− E(x,y)∼D [L (f(x;A (S)), y)]

]∣∣∣∣∣ ≤ ε. (39)

With Lemma 1 in hand, it suffices to prove stability bound on specific algorithms. It turns out that SGD
introduced in Section 6 is uniformly stable when solving smooth nonconvex functions.

Theorem 8 (Theorem 3.12 in [49]). Assume that for any fixed (y,x), the loss function L(f(x;θ), y), viewed
as a function of θ, is L-Lipschitz and β-smooth. Consider running SGD on the empirical loss function with
decaying step size αt ≤ c/t, where c is some small absolute constant. Then SGD is uniformly stable with

ε .
T 1− 1

βc+1

n
,

where we have ignored the dependency on β, c and L.

Theorem 8 reveals that SGD operating on nonconvex loss functions is indeed uniformly stable as long
as the number of steps T is not large compared with n. This together with Lemma 1 demonstrates the
generalization ability of SGD in expectation. Nevertheless, two important limitations are worth mentioning.
First, Lemma 1 provides an upper bound on the out-of-sample error in expectation, but ideally, instead of
an on-average guarantee under EA,S , we would like to have a high probability guarantee as in the convex
case [37]. Second, controlling the generalization gap alone is not enough to achieve a small out-of-sample
error, since it is unclear whether SGD can achieve a small training error within T steps.

7.2.3 Implicit regularization

In the presence of over-parametrization (number of parameters larger than the sample size), conventional
wisdom informs us that we should apply some regularization techniques (e.g., `1 / `2 regularization) so that
the model will not overfit the data. However, in practice, neural networks without explicit regularization
generalize well. This phenomenon motivates researchers to look at the regularization effects introduced by
training algorithms (e.g., SGD) in this over-parametrized regime. While there might exits multiple, if not
infinite global minima of the empirical loss (26), it is possible that practical algorithms tend to converge to
solutions with better generalization powers.

Take the underdetermined linear system Xθ = y as a starting point. Here X ∈ Rn×p and θ ∈ Rp with p
much larger than n. Running gradient descent on the loss 1

2‖Xθ− y‖22 from the origin (i.e., θ0 = 0) results
in the solution with the minimum Euclidean norm, that is GD converges to

min
θ∈Rp

‖θ‖2 subject to Xθ = y.
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In words, without any `2 regularization in the loss function, gradient descent automatically finds the solution
with the least `2 norm. This phenomenon, often called as implicit regularization, not only has been empirically
observed in training neural networks, but also has been theoretically understood in some simplified cases,
e.g., logistic regression with separable data. In logistic regression, given a training set {(yi,xi)}1≤i≤n with
xi ∈ Rp and yi ∈ {1,−1}, one aims to fit a logistic regression model by solving the following program:

min
θ∈Rp

1

n

n∑
i=1

`
(
yix
>
i θ

t
)
. (40)

Here, `(u) , log(1 + e−u) denotes the logistic loss. Further assume that the data is separable, i.e., there
exists θ∗ ∈ Rp such that yiθ∗>xi > 0 for all i. Under this condition, the loss function (40) can be arbitrarily
close to zero for certain θ with ‖θ‖2 → ∞. What happens when we minimize (40) using gradient descent?
[119] uncovers a striking phenomenon.

Theorem 9 (Theorem 3 in [119]). Consider the logistic regression (40) with separable data. If we run GD

θt+1 = θt − η 1

n

n∑
i=1

yixi`
′(yix>i θt)

from any initialization θ0 with appropriate step size η > 0, then normalized θt converges to a solution with
the maximum `2 margin. That is,

lim
t→∞

θt

‖θt‖2
= θ̂, (41)

where θ̂ is the solution to the hard margin support vector machine:

θ̂ , arg min
θ∈Rp

‖θ‖2, subject to yix
>
i θ ≥ 1 for all 1 ≤ i ≤ n. (42)

The above theorem reveals that gradient descent, when solving logistic regression with separable data,
implicitly regularizes the iterates towards the `2 max margin vector (cf. (41)), without any explicit regular-
ization as in (42). Similar results have been obtained by [62]. In addition, [47] studied algorithms other than
gradient descent and showed that coordinate descent produces a solution with the maximum `1 margin.

Moving beyond logistic regression, which can be viewed as a one-layer neural net, the theoretical under-
standing of implicit regularization in deeper neural networks is still limited; see [48] for an illustration in
deep linear convolutional neural networks.

8 Discussion
Due to space limitations, we have omitted several important deep learning models; notable examples include
deep reinforcement learning [86], deep probabilistic graphical models [109], variational autoencoders [66],
transfer learning [133], etc. Apart from the modeling aspect, interesting theories on generative adversarial
networks [10, 11], recurrent neural networks [3], connections with kernel methods [59, 9] are also emerging.
We have also omitted the inverse-problem view of deep learning where the data are assumed to be generated
from a certain neural net and the goal is to recover the weights in the NN with as few examples as possible.
Various algorithms (e.g., GD with spectral initialization) have been shown to recover the weights successfully
in some simplified settings [136, 118, 42, 87, 23, 39].

In the end, we identify a few important directions for future research.

• New characterization of data distributions. The success of deep learning relies on its power of efficiently
representing complex functions relevant to real data. Comparatively, classical methods often have optimal
guarantee if a problem has a certain known structure, such as smoothness, sparsity, and low-rankness [121,
31, 20, 24], but they are insufficient for complex data such as images. How to characterize the high-
dimensional real data that can free us from known barriers, such as the curse of dimensionality is an
interesting open question?
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• Understanding various computational algorithms for deep learning. As we have emphasized throughout this
survey, computational algorithms (e.g., variants of SGD) play a vital role in the success of deep learning.
They allow fast training of deep neural nets and probably contribute towards the good generalization
behavior of deep learning in practice. Understanding these computational algorithms and devising better
ones are crucial components in understanding deep learning.

• Robustness. It has been well documented that DNNs are sensitive to small adversarial perturbations that
are indistinguishable to humans [124]. This raises serious safety issues once if deploy deep learning models
in applications such as self-driving cars, healthcare, etc. It is therefore crucial to refine current training
practice to enhance robustness in a principled way [116].

• Low SNRs. Arguably, for image data and audio data where the signal-to-noise ratio (SNR) is high, deep
learning has achieved great success. In many other statistical problems, the SNR may be very low. For
example, in financial applications, the firm characteristic and covariates may only explain a small part of
the financial returns; in healthcare systems, the uncertainty of an illness may not be predicted well from
a patient’s medical history. How to adapt deep learning models to excel at such tasks is an interesting
direction to pursue?
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