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Abstract

Statistical learning under distribution shift is challenging when neither prior knowledge nor fully
accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to
control the worst-case statistical performance within an uncertainty set of candidate distributions, but
how to properly specify the set remains challenging. To enable distributional robustness without being
overly conservative, in this paper we propose a shape-constrained approach to DRL, which incorporates
prior information about the way in which the unknown target distribution differs from its estimate—
specifically, we assume the unknown density ratio between the target distribution and its estimate is
isotonic with respect to some partial order. At the population level, we provide a solution to the
shape-constrained optimization problem that does not involve the isotonic constraint. At the sample
level, we provide consistency results for an empirical estimator of the target in a range of different settings.
Empirical studies on both synthetic and real data examples demonstrate the improved efficiency of the
proposed shape-constrained approach.

1 Introduction

Evaluating the performance of an estimator is of significant importance in statistics. To give several mo-
tivating examples, we first consider supervised learning settings, where our observations consist of features
X ∈ X ⊆ Rd and a response Y ∈ Y ⊆ R:

• Given a fitted model µ̂ : X → R, we may want to estimate the expected value of the squared error
(Y − µ̂(X))2 with respect to target distribution on (X,Y ).

• Or, in predictive inference, suppose we have constructed a prediction band Ĉ1−α, where Ĉ1−α(X) ⊆ R
is a confidence region for the response Y given features X, and 1−α denotes the target coverage level.
Then to determine whether Ĉ1−α does in fact achieve coverage at level 1 − α for data points drawn
from some target distribution, we would like to estimate the the expected value of 1{Y ̸∈ Ĉ1−α(X)}
with respect to this target distribution. This is exactly the probability that our interval fails to cover
the response.

We can also consider unsupervised learning settings, with observations X ∈ X ⊆ Rd only:

• In principal component analysis (PCA), suppose we have obtained a set of pre-fitted principal compo-
nents V̂K = {v̂1, . . . , v̂K} which forms an orthonormal basis for a K-dimensional subspace of Rd. To
evaluate how well the variance in X is explained by the principal components, it would be of interest
to analyze the expected value of the reconstruction error ∥X −

∑K
k=1(X

⊤v̂k)v̂k∥2 with respect to the
distribution of X.
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• Another example is density estimation. In this case, given a density estimate Pθ learned from data,
we may want to evaluate its performance using the expected log-likelihood − log dPθ(X) over a target
distribution Ptarget. In fact, EPtarget

[− log dPθ(X)] is the cross-entropy of Pθ relative to Ptarget.

A key challenge for any of these problems is that the target distribution (say, the distribution of the general
population) may be unknown, and our available data (say, individuals who participate in our study) may be
drawn from a different distribution than the general population.

1.1 Problem formulation

To make the problem more concrete, and unify the examples mentioned above, here we introduce some
notation to formulate the question at hand.

The unsupervised setting. Let R : X → R+ denote a risk function, where our goal is to evaluate the
expected value EPtarget [R(X)] with respect to some target distribution Ptarget on X. However, the available
data only provides information about P , a potentially different distribution.

For instance, in density estimation, after obtaining the density estimate Pθ, we can then estimate
EP [R(X)] using a calibration data set, which consists of samples X1, . . . , Xn drawn from P . Instead, our
aim is to provide a bound on the risk EPtarget [R(X)], or in other words, to bound the difference in risks (often
called the excess risk), EPtarget

[R(X)]− EP [R(X)]. If we assume that the unknown distribution Ptarget lies
in some class Q (to be specified later on), then defining the worst-case excess risk

∆(R;Q) = sup
Q∈Q

EQ [R(X)]− EP [R(X)] , (1)

we can then bound
EPtarget

[R(X)] ≤ EP [R(X)] + ∆(R;Q).

The right hand side provides an upper bound on the risk of our estimator under the target distribution Ptarget.

The supervised setting: covariate shift assumption. In the supervised learning setting, the data
contains both features X and a response Y , so the setup is somewhat different. Here we will consider a
loss function r : X × Y → R+, for instance, r(x, y) = (y − µ̂(x))2 for the squared error in a regression, or
r(x, y) = 1{y ̸∈ Ĉ1−α(x)} for characterizing the (mis)coverage of a prediction interval in predictive inference.

Throughout this paper, for the supervised learning setting, we will assume the covariate shift setting,
where the distribution of the available data and the target distribution may differ in the marginal distribution
of the covariates X, but share the same conditional distribution Y | X. To make this concrete, if our
calibration data consists of n data points (X1, Y1), . . . , (Xn, Yn) drawn from P̃ , while our goal is to control
the expected loss with respect to the target distribution P̃target on (X,Y ), we will assume that we can write

data distribution: P̃ = P × PY |X ,

target distribution: P̃target = Ptarget × PY |X ,

so that P̃ and P̃target share the same conditional distribution PY |X for Y | X.
In fact, under covariate shift, this supervised setting can be unified with the unsupervised one by defining

the risk
R(X) = E[r(X,Y ) | X],

which is the conditional expectation of r(X,Y ) under either P̃ or P̃target, since we have assumed that both
of these distributions share the same conditional distribution, PY |X . The quantity of interest is then given
by EPtarget [R(X)] = EP̃target

[r(X,Y )], but our calibration data, which is sampled from P , instead enables us
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to estimate EP [R(X)] = EP̃ [r(X,Y )]. If we again assume that Ptarget ∈ Q, then ∆(R;Q) again allows us to
bound the risk of our estimator under the target distribution, which is now given by P̃target:

EP̃target
[r(X,Y )] ≤ EP̃ [r(X,Y )] + ∆(R;Q).

Estimating the error or tuning the model? In this paper, we consider the setting where our estimator—
say, a prediction band Ĉ1−α—is pretrained, meaning that we have available calibration data sampled from
P (in the unsupervised setting) or P̃ (in the supervised setting) that is independent of the fitted estima-
tor. Consequently, our available calibration data provides us with an unbiased estimate of EP [R(X)] (or,
equivalently in the supervised setting, EP̃ [r(X,Y )]).

In some settings, the goal may be to estimate the risk of each estimator within a family of (pretrained)
options, in order to tune the choice of estimator. Returning again to the example of a prediction band,
suppose, with any confidence level 1− a ∈ [0, 1], we actually are given a nested family of prediction bands,
{Ĉ1−a : a ∈ [0, 1]}. Choosing Ra(X) = PPY |X (Y ̸∈ Ĉ1−a(X)) or accordingly, ra(X,Y ) = 1{Y ̸∈ Ĉ1−a(X)},
then, if we can compute a bound on the miscoverage rate EPtarget

[Ra(X)] of Ĉ1−a relative to the target
distribution for each a, then we can choose a value of a that achieves some desired level of coverage. More
generally, we may do the same in other settings as well—that is, given a family of candidate estimators,
bounding the risk of each one under the target distribution Ptarget provides an intermediate step towards
choosing the tuning parameter.

1.2 Prior work: distributionally robust learning

Our work builds upon the distributionally robust learning (DRL) literature (Ben-Tal and Nemirovski, 1998;
El Ghaoui et al., 1998; Lam, 2016; Duchi and Namkoong, 2018), which is a well established framework for
risk evaluation under distribution shift. In this framework, the target distribution Ptarget is assumed to lie
in some neighborhood around the distribution P of the available data—for instance, we might assume that
DKL(Ptarget∥P ) ≤ ρ, where DKL denotes the Kullbeck–Leibler (KL) divergence. DRL takes a conservative
approach and evaluate the performance on Ptarget via its upper bound, i.e., the worst-case performance over
all distributions within the specified neighborhood of P ,

EPtarget [R(X)] ≤ sup {EQ[R(X)] : DKL(Q∥P ) ≤ ρ} . (2)

Equivalently, we can write this upper bound as

EPtarget
[R(X)] ≤ EP [R(X)] + ∆(R;QKL(ρ)),

where ∆(R;QKL(ρ)) is defined as in (1) above by defining the constraint set as Q = QKL(ρ) = {Q :

DKL(Q∥P ) ≤ ρ}. More generally, we can consider divergence measures beyond the KL distance, as we will
describe in more detail below.

1.3 Our proposal: iso-DRL

If the assumption DKL(Ptarget∥P ) ≤ ρ is correct, then the upper bound (2) is valid. However, since this
bound uses only the KL divergence to define the constraint Ptarget ∈ Q on the target distribution, it could
be quite conservative. In many practical settings, additional side information or prior knowledge on the
structure of the distribution shift may allow for a tighter bound, which would be less conservative than the
worst-case excess risk of DRL (2). This raises the following key question:

Can we use side information on the distribution shift between the data distribution P and the target
distribution Ptarget, to improve the worst-case excess risk of DRL in risk evaluation?

In this paper, we study one specific example of this type of setting: we assume that the density ratio
dPtarget

dP (x) between the target distribution and the data distribution is isotonic (i.e., monotone) with respect
to some order or partial order on X .
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Motivation: recalibration of an estimated density ratio. To motivate the use of such side informa-
tion, consider a practical supervised setting where we have an initial estimate w0 for the density ratio:

w0(x) ≈
dPtarget

dP
(x).

This is possible in addition to labeled data (i.e., (X,Y ) pairs) sampled from the data distribution P ×PY |X ,
we also have access to unlabeled (i.e., X only) data from the target population Ptarget. We may use these two
data sets to train w0. Although there is no guarantee that the estimate w0 is accurate, the shape or relative
magnitude of w0 may provide us with useful side information: large values of w0 can identify portions of the
target population that are underrepresented under the data distribution P . This motivates us to recalibrate
w0 within the set of density ratios that are isotonic in w0.

To express this scenario in the notation of the problem formulation above, we assume that the target
distribution Ptarget satisfies an isotonicity constraint, Ptarget ∈ Qiso(w0), where

Qiso(w0) =

{
Q :

dQ

dP
(x) is a monotonically nondecreasing function of w0(x)

}
.

If we assume as before that the target distribution Ptarget satisfies DKL(Ptarget∥P ) ≤ ρ, then we can bound

EPtarget
[R(X)] ≤ EP [R(X)] + ∆(R;QKL(ρ) ∩Qiso(w0)). (3)

The benefits of iso-DRL. What are the benefits of iso-DRL, as compared to the existing DRL frame-
work? Of course, thus far the idea is quite straightforward—if we have stronger constraints on Ptarget,
then we can place a tighter bound on the excess risk EPtarget

[R(X)]− EP [R(X)]. But as we will see below,
adding the isotonic constraint plays a crucial role in enabling DRL to provide bounds that are useful in
practical scenarios. Specifically, consider a practical setting where the bound ρ on the distribution shift is
a positive constant. As we will see below, the existing worst-case excess risk ∆(R;QKL(ρ)) of DRL is often
quite large, leading to extremely conservative statistical conclusions; in contrast, the worst-case excess risk
∆(R;QKL(ρ)∩Qiso(w0)) given by iso-DRL is often vanishingly small, leading to much more informative con-
clusions. Moreover, surprisingly, this improvement in the bound does not incur any additional computational
challenges—even though the constraint set QKL(ρ) ∩ Qiso(w0) appears more complex than the original set
QKL(ρ), we will see that ∆(R;QKL(ρ) ∩Qiso(w0)) can be computed as easily as the original ∆(R;QKL(ρ)).
In addition, we further show in the appendix that the worst-case excess risk of iso-DRL can be consistently
estimated with noisy observations of R(X), while the estimation of the worst-case excess risk of DRL can
be challenging even with bounded risks.

Example: predictive inference for the wine quality dataset. To illustrate the advantage of the
proposed approach, Figure 1 presents a numerical example for a predictive inference problem on the wine
quality dataset.1 (See Section 5.2 for full details of this experiment.)

We are given a pretrained family of prediction bands Ĉ1−a, indexed by the target coverage level 1 − a.
At each value a ∈ [0, 1], we define Ra(X) = P(Y ̸∈ Ĉ1−a(X) | X), the probability of the prediction band
failing to cover the true response value Y given features X. Our goal is to return a prediction band with
90% coverage—that is, we would like to choose a value of a such that the expected risk

EPtarget
[Ra(X)] = PP̃target

(Y ̸∈ Ĉ1−a(X))

is bounded by 0.1 = 1 − 90%. In our experiment, the available data is given by all samples that are white
wines (with distribution P̃ ), while the target population is comprised of the samples that are red wines (with
a different distribution P̃target).

In Figure 1 below, we compare four methods (see Section 5.2 for details):
1https://archive.ics.uci.edu/dataset/186/wine+quality
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Figure 1: Coverage rate and average width of intervals for the wine quality dataset.

• An uncorrected interval—using conformal prediction (CP) (Vovk et al., 2005): the value a is chosen
by tuning on the calibration data set (i.e., we choose a to satisfy EP [Ra(X)] ≤ 0.1), without correcting
for the distribution shift.

• A corrected interval—using weighted conformal prediction (WCP) (Tibshirani et al., 2019): the value
a is chosen by tuning on the calibration data set using an estimated density ratio w0 to correct for the
covariate shift between distributions P̃ and P̃target. Since w0 is estimated from data, this correction is
imperfect.

• The DRL interval: we choose a to satisfy EP [Ra(X)] + ∆(Ra;QKL(ρ)) ≤ 0.1, where EP [Ra(X)] and
∆(Ra;QKL(ρ)) are estimated using the calibration data.

• The iso-DRL interval: we choose a to satisfy EP [Ra(X)] + ∆(Ra;QKL(ρ) ∩ Qiso(w0)) ≤ 0.1, where
EP [Ra(X)] and ∆(Ra;QKL(ρ) ∩Qiso(w0)) are estimated using the calibration data.2

As we can see in Figure 1 below, the CP and WCP intervals both undercover—for CP, this is because the
method does not correct for distribution shift, while for WCP, this is because the ratio w0 that corrects for
distribution shift is imperfectly estimated. In contrast, DRL shows substantial overcoverage with extremely
wide prediction intervals due to the worst-case nature of the bound ∆(Ra;QKL(ρ)). In contrast, our proposed
method, iso-DRL, achieves the target coverage rate 90% without excessive increase in the size of the prediction
interval, showing the benefit of adding the isotonic constraint to the DRL framework.

The motivating example demonstrates that, when we have access to meaningful—but imperfect—side
information (e.g., in the form of the density ratio w0), adding the isotonic constraint to iso-DRL can provide
an estimate of the risk that is more reliable than a non-distributionally-robust approach, but less conservative
than the original DRL approach.

1.4 Organization of paper

Section 2 introduces a general class of uncertainty sets for candidate distributions and further studies the
property of the worst-case excess risk defined in (1) for generic DRL. For the worst-case excess risk with the
isotonic constraint, we prove that it is equivalent to the worst-case excess risk for a projected risk function
without the isotonic constraint in Section 3. In Section 4, we propose an estimator of the worst-case excess
risk with the isotonic constraint and establish the estimation error bounds. Numerical results for both
synthetic and real data are shown in Section 5 and additional related work is summarized in Section 6. We
defer technical proofs and additional simulations to the appendix.

2For both the DRL and iso-DRL methods, the parameter ρ is an estimate of the actual KL distance DKL(Ptarget∥P ).
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Notation. Before proceeding, we introduce useful notation for theoretical developments later on. To begin
with, we denote by Lp(P ) (1 ≤ p ≤ ∞) the Lp function space under the probability measure P , i.e., when
p ̸= ∞,

Lp(P ) =

{
f : ∥f∥p =

(∫
X
fp(x)dP (x)

)1/p

<∞

}
.

When p = ∞, the set L∞(P ) consists of measurable functions that are bounded almost surely under P . In
addition, for a measurable function w : X → W and a measure P on X , the pushforward measure w#P

denotes the measure satisfiying that (w#P )(B) = P (w−1(B)) for any B ∈ Z, where w−1(B) = {x ∈ X :

w(x) ∈ B} denotes the preimage of B under w. In other words, if X ∼ P , then w(X) follows the distribution
w#P . We say a function h is Ah-bounded if supx |h(x)| ≤ Ah.

Fix a partial (pre)order ⪯ on X ⊆ Rd. A function g is isotonic in x if g(x1) ≤ g(x2) for any x1 ⪯ x2.
Correspondingly, we define the cone of isotonic functions by

Ciso
⪯ = {w : w is isotonic w.r.t. partial order ⪯} .

Lastly, to compare two probability distributions Q and P , we define the convex ordering
cvx
⪯ by

Q′ cvx
⪯ Q if and only if EQ′ [ψ(X)] ≤ EQ[ψ(X)] for all convex functions ψ.

2 The distributional robustness framework

As we have explained in Section 1.1, both the unsupervised setting and supervised setting under covariate
shift can be unified. Therefore, from now on, to develop our theoretical results we will use the notation
of the unsupervised setting with the risk function R(X), with the understanding that this also covers the
supervised setting under covariate shift.

Recall that X is the feature domain. In this paper we consider a bounded risk function R : X → [0, BR]

with 0 < BR <∞, and the goal is to evaluate (or bound) the target risk EPtarget
[R(X)] using samples from

P , by assuming that the target distribution Ptarget is in some sense similar to the available distribution
P—more concretely, by assuming that the target distribution Ptarget lies in some neighborhood Q around
the distribution P of the available data.

Reformulating the neighborhood. To unify the different examples of constraints described in Section 1,
we will start by considering settings where we can express the constraint Q ∈ Q using conditions on the
density ratio w = dQ

dP . This type of framework includes the sensitivity analysis setting via the bounds
constraint on w (Cornfield et al., 1959; Rosenbaum, 1987; Tan, 2006; Ding and VanderWeele, 2016; Zhao
et al., 2019b; Yadlowsky et al., 2018; Jin et al., 2022, 2023; Sahoo et al., 2022), and f -divergence constraints
(e.g., bounding Df (Q∥P ) = EP [f (dQ/dP (X))]) (Duchi et al., 2021; Namkoong and Duchi, 2017; Duchi and
Namkoong, 2018; Cauchois et al., 2020).3

Concretely, we can reparameterize the distribution Q using the density ratio w(x) = dQ
dP (x). Then we

can reformulate the constraint Q ∈ Q into a constraint on this density ratio, i.e.,

Q ∈ Q ⇐⇒ w#P ∈ B,

where B is a set of distributions, and where w#P denotes the pushforward measure (as defined in Section 1.4).
To facilitate understanding, let us consider several examples.

3We note that DRL with optimal transport divergences is not covered by this framework (Shafieezadeh Abadeh et al., 2015;
Blanchet and Murthy, 2019; Blanchet et al., 2019; Esfahani and Kuhn, 2015) We discuss this in Section 7.
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Example 1: bound-constrained distribution shift. In sensitivity analysis, it is common to assume
that the likelihood ratio dPtarget

dP is bounded from above and below. This corresponds to a constraint set of
the form

Q =

{
Q : a ≤ dQ

dP
(X) ≤ b P -almost surely

}
,

for some constants 0 ≤ a < 1 < b < +∞. In particular, when a = Γ−1 and b = Γ for some Γ > 1,
this constraint set represents the marginal Γ-selection model for the density ratio in sensitivity analysis
(Rosenbaum, 1987; Tan, 2006). By defining

B = Ba,b =
{
Q̃ : EZ∼Q̃[Z] = 1, PZ∼Q̃(a ≤ Z ≤ b) = 1

}
,

we can verify that

Q ∈ Q ⇐⇒ w#P ∈ Ba,b with w(x) =
dQ

dP
(x).

Example 2: f-constrained distribution shift. For f -constrained distribution shift, we consider the
constraint set

Q =

{
Q : EP

[
f

(
dQ

dP
(X)

)]
≤ ρ

}
.

For instance, if we take Q = QKL(ρ) = {Q : DKL(Q∥P ) ≤ ρ}, this corresponds to choosing f(x) = x log(x)

in f -divergence above (Rényi, 1961). Choosing

B = Bf,ρ = {Q̃ : EZ∼Q̃[Z] = 1, EZ∼Q̃[f(Z)] ≤ ρ, PZ∼Q̃(Z ≥ 0) = 1},

we can verify that

Q ∈ Q ⇐⇒ w#P ∈ Bf,ρ with w(x) =
dQ

dP
(x).

2.1 Worst-case excess risk with DRL

In this section, we explore some properties of the generic DRL, without the isotonic constraint. Building
this framework will help us to introduce the isotonic constraint in the next section.

Based on the equivalence of Q and B in representing the uncertainty set, we focus on the following
equivalent representation of ∆(R;Q):

∆(R;B) = sup
w≥0

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B, (4)

where abusing notation we now write ∆(·;B) to express that B is a constraint on the distribution of the
density ratio w(X) = dQ

dP (X), where previously we instead wrote ∆(·;Q). We will say that ∆(R;B) is
attainable if this supremum is attained by some w∗ in the constraint set.

Throughout the paper, we assume that the set B satisfies the following condition.

Condition 2.1. The set B is closed under convex ordering, that is, if Q ∈ B, then for any Q′ cvx
⪯ Q, it holds

that Q′ ∈ B.

This condition enables the following reformulation of the quantity of interest, ∆(R;B):
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Proposition 2.2. Assume Condition 2.1 holds. Then ∆(R;B) can be equivalently written as

∆(R;B) = sup
ϕ:R→R+

EP [(ϕ ◦R)(X)R(X)]− EP [R(X)]

subject to (ϕ ◦R)#P ∈ B, ϕ is nondecreasing.

Moreover, if ∆(R;B) is attainable (i.e., the supremum is attained by some w∗ satisfying the constraints),
then the equivalent formulation is attainable as well (i.e., the supremum is attained by some w∗ = ϕ∗ ◦ R,
where ϕ∗ is nondecreasing).

See Section A.1 for the proof. In words, this proposition shows that the excess risk is maximized by consid-
ering functions w(x) that are monotonically nondecreasing with respect to R(x) (i.e., w = ϕ ◦ R for some
nondecreasing ϕ). This is intuitive, since maximizing the expected value of w(X)R(X) implies that we
should choose a function w that is large when R is large.

Most importantly, Proposition 2.2 implies that for a class of constrained sets B, the optimal value in
the constrained optimization problem (4) only depends on covariates x through the risk function R(x), or
equivalently, only depends on the distribution of X through the distribution of R(X). As a corollary of
Proposition 2.2, the worst-case excess risk ∆(R;B) is also monotonically nondecreasing in R. This property
of ∆(R;B) is commonly known as the (strict) monotonicity of the functional ∆(R;B) in R(X) under the
usual stochastic order, which is treated as a condition on the functional ∆(R;B) in Shapiro and Pichler
(2023); Shapiro (2017). We note that, in the special case when B is specified in term of an f -divergence (as
in Example 2 above), the conclusion of Proposition 2.2 is established by Donsker and Varadhan (1976); Lam
(2016); Namkoong et al. (2022).

Next, we return to the two earlier examples of the constraint set B to verify that this result holds in
those settings.

Returning to Example 1: bound-constrained distribution shift. Recall that in this example, we
take the constraint set B to be B = Ba,b =

{
Q̃ : EZ∼Q̃[Z] = 1, PZ∼Q̃(a ≤ Z ≤ b) = 1

}
, for some 0 ≤ a <

1 < b < +∞. It is straightforward to verify that Ba,b satisfies Condition 2.1, implying that Proposition 2.2
can be applied.

Moreover, in this specific example, we can actually calculate the maximizing density ratio w∗(x) explicitly.
If the distribution of R(X) is continuous, the worst-case density ratio that attains the worst-case excess risk
takes the form

w∗(x) = a · 1
{
R(x) ≤ qR

(
b−1
b−a

)}
+ b · 1

{
R(x) > qR

(
b−1
b−a

)}
,

where qR(t) = inf{r ∈ R | FR(r) ≥ t} and FR is the cumulative distribution function of R#P—that is, qR(t)
is the t-quantile of the distribution of R(X) under X ∼ P . For general R(X), we have

w∗(x) = a · 1
{
R(x) < qR

(
b−1
b−a

)}
+ b · 1

{
R(x) > qR

(
b−1
b−a

)}
+ c · 1

{
R(x) = qR

(
b−1
b−a

)}
,

where
c = a+

(b− a)t∗ − (b− 1)

P
{
R(X) = qR

(
b−1
b−a

)} with t∗ = inf

{
t ∈ range(FR)

∣∣∣∣ t ≥ b− 1

b− a

}
.

In particular, we can see that w∗(x) is nondecreasing in R(x), i.e., we can write w = ϕ∗ ◦ R for some
nondecreasing ϕ∗, thus validating that the conclusion of Proposition 2.2 holds in this example.

Returning to Example 2: f-constrained distribution shift. Recall that for an f -divergence con-
straint, we define B = Bf,ρ =

{
Q̃ : EZ∼Q̃[Z] = 1, EZ∼Q̃[f(Z)] ≤ ρ, Z ≥ 0

}
. Since f must be convex (for
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f -divergence to be well-defined), this immediately implies that Bf,ρ satisfies Condition 2.1. By the results
of Donsker and Varadhan (1976); Lam (2016), the worst-case excess risk ∆ρ(R;Bf,ρ) is attained at

w∗(x) = w(x;λ∗, ν∗) =

{
(f ′)−1

(
R(x)− ν∗

λ∗

)}
+

,

where a+ is the positive part of a ∈ R and λ∗, ν∗ are the solutions to the dual problem

inf
λ≥0, ν

{
λρ+ ν + EP

[
w(X;λ, ν)(R(X)− ν)− λf(w(X;λ, ν))

]}
. (5)

Since f is convex, the inverse of derivative (f ′)−1 is then nondecreasing, meaning that w∗(x) is nondecreasing
in R(x), which again validates the result in Proposition 2.2.

3 Worst-case excess risk with an isotonic constraint

In this section, we will now formally introduce our iso-DRL method, adding an isotonic constraint to the
DRL framework developed in Section 2 above.

Recall the cone of isotonic functions

Ciso
⪯ = {w : X → R : w is isotonic w.r.t. partial order ⪯} .

In this paper, we actually allow ⪯ to be a partial preorder rather than a partial order, meaning that it
may be the case that both x ⪯ x′ and x′ ⪯ x, even when x ̸= x′. As an example, we denote Ciso

w0
=

{w : w(x) is a monotonically nondecreasing function of w0(x)}—this is obtained by the (pre)order given by
x ⪯ x′ whenever w0(x) ≤ w0(x

′).
Our focus is the worst-case excess risk with the isotonic constraint:

∆iso(R;B) = sup
w≥0

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B, w ∈ Ciso
⪯ . (6)

To make this more concrete with a specific example, in the bound (3), this example corresponds to choosing
B = Bf,ρ for the f -divergence f(x) = x log x that is related to the KL distance. In particular, the bound (3)
assumed two constraints on the distribution Ptarget—first, DKL(Ptarget∥P ) ≤ ρ (which corresponds to as-
suming (dPtarget/dP )#P ∈ Bf,ρ, in our new notation), and second, Ptarget ∈ Qiso(w0) (which is expressed
by assuming w ∈ Ciso

w0
, in our new notation, when we take the partial (pre)order defined as x ⪯ x′ whenever

w0(x) ≤ w0(x
′)).

3.1 Equivalent formulation

Optimization problems with isotonic constraints may be difficult to tackle both theoretically and computa-
tionally, since the isotonic cone, despite being convex, may be challenging to optimize over when working with
an infinite-dimensional object such as the density ratio. In this section, we will show that the maximization
problem (6) can equivalently be reformulated as an optimization problem without an isotonic constraint, by
drawing a connection to the original (not isotonic) DRL maximization problem (4).

Given the probability measure P , we will define π as the projection to the isotonic cone Ciso
⪯ with respect

to L2(P ):

π(a) = argmin
b∈Ciso

⪯

∫
(a(x)− b(x))2dP (x).

As L2(P ) is reflexive and strictly convex, the projection π(a) exists and is unique (up to sets of measure
zero) for all a ∈ L2(P ) (Megginson, 2012).

With the projection π in place, we are ready to state our main equivalence result.

9



Theorem 3.1. For any B and any partial (pre)order ⪯ on X , it holds that

∆iso(R;B) ≤ ∆(π(R);B).

If in addition Condition 2.1 holds, then we have

∆iso(R;B) = ∆(π(R);B),

and moreover, ∆iso(R;B) is attainable if and only if ∆(π(R);B) is attainable.

See Section B.1 for the proof.

To interpret this theorem, recall from the definition (4) that we have

∆(π(R);B) = sup
w≥0

EP

[
w(X)[π(R)](X)

]
− EP

[
[π(R)](X)

]
subject to w#P ∈ B. (7)

Compared with the formulation (6) that defines the isotonic worst-case risk ∆iso(R;B), we see that this
equivalent formulation removes the constraint w ∈ Ciso

⪯ by replacing R with its isotonic projection π(R).
This brings computational benefits. The equivalent formulation (7) separates two constraints w#P ∈ B and
w ∈ Ciso

⪯ , allowing us to first project the risk function onto Ciso
⪯ and solve a problem that is as simple as the

problem stated earlier in (4). More concretely, as seen in Examples 1 and 2, for many common choices of B,
we have closed-form solutions to (7) in terms of the projected risk π(R).

3.2 Setting: iso-DRL with estimated density ratio

We now return to the scenario described in (3) in Section 1.3, where we would like to recalibrate a pretrained
density ratio w0 that estimates the distribution shift dPtarget

dP . As the shape or relative magnitude of w0 could
contain useful information about the true density ratio, we assume that the true density ratio is an isotonic
function of w0—that is, we assume

dPtarget

dP
(x) = ϕ(w0(x))

for some nondecreasing function ϕ, for P -almost every x. Equivalently, defining the partial (pre)order

x ⪯ x′ ⇐⇒ w0(x) ≤ w0(x
′), (8)

we are essentially assuming that dPtarget

dP ∈ Ciso
⪯ for this particular partial order. We will denote this specific

cone as Ciso
w0

and its isotonic projection as πw0
, and abusing notation, we write ∆iso(R;B, w0) to denote the

excess risk for this particular setting, to emphasize the role of w0.
By Theorem 3.1, if we assume B satisfies Condition 2.1 then we have the equivalence

∆iso(R;B, w0) = ∆(πw0
(R);B). (9)

To understand the projection onto the cone Ciso
w0

more straightforwardly, we can derive a further simplification,
with a few more definitions. First, write π1 to denote the isotonic projection of functions R → R under the
measure (w0)#P , and define a function R̃ : R → R to satisfy

R̃(w0(X)) = EP [R(X) | w0(X)]

P -almost surely. We then have the following simplified equivalence:

10



Proposition 3.2. Assume Condition 2.1 holds. We have the equivalence

∆iso(R;B, w0) = ∆(π1(R̃) ◦ w0;B, w0),

where we recall

∆(R;B, w0) = sup
h: h◦w0≥0

EP [(h ◦ w0)(X)R(X)]− EP [R(X)]

subject to (h ◦ w0)# P ∈ B.

Compared to the equivalence (9), the new equivalence in the proposition relies on an isotonic projection with
respect to the canonical order on the real line (i.e., the projection π1), as opposed to projecting to the cone
Ciso
w0

, which uses the more complicated partial preorder defined in (8).

3.3 A misspecified isotonic constraint

When the true distribution shift does not obey the isotonic constraint exactly, we can nonetheless provide a
bound on the worst-case excess risk, which is tighter than the (non-iso) DRL bound whenever the isotonic
constraint provides a reasonable approximation.

Denote w̃∗ as the underlying density ratio dPtarget/dP and ∆∗(R) = EP [w̃
∗(X)R(X)]−EP [R(X)] as the

true excess risk. Then, we have the following connections between ∆∗(R) and ∆iso(R;B).

Proposition 3.3. Assume Condition 2.1 holds. If w̃∗
#P ∈ B, then we have

∆∗(R) ≤ ∆iso(R;B) + EP

[
[w̃∗ − π(w̃∗)](X) · [R− π(R)](X)

]
.

In particular, if either w̃∗ ∈ Ciso
⪯ or R ∈ Ciso

⪯ , then one has ∆∗(R) ≤ ∆iso(R;B).

The result states that when the isotonic constraint is violated, the worst-case excess risk of iso-DRL will
be no worse than the true excess risk minus a gap which can be controlled by the correlation between
[w̃∗−π(w̃∗)](X) and [R−π(R)](X). In particular, if either the risk or the true density ratio is itself isotonic,
the excess risk calculation ∆iso(R;B), which is tighter than the (non-iso) DRL bound ∆(R;B), will never
underestimate the true risk ∆∗(R).

4 Estimation of worst-case excess risk with isotonic constraint

So far, our focus is on the population level, namely we assume full access to the data distribution P and
the risk function R. In practice, however, we may only access the data distribution P via samples drawn
from P , and we may only be able to learn about the risk function R via noisy evaluations of R(X) on each
sampled point X.

In this section, focusing on the supervised setting, we propose a fully data dependent estimator for the
worst-case excess risk ∆iso(R;B). Moreover, we characterize the estimation error for different choices of B,
including the bounds constraint and the f -divergence constraint for the distribution shift.

In this case, we observe {(Xi, Yi)}i≤n drawn i.i.d. from P×PY |X , and only observe the risk r : X×Y → R+

that approximates the true underlying risk function R in the sense that

R(X) = E[r(X,Y ) | X], almost surely.

To make this concrete, as an example we can recall the regression setting with squared loss from Section 1,
given by R(X) = E[r(X,Y ) | X] for r(x, y) = (y − µ̂(x))2. Then our information about the (expected) risk
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is often limited to evaluating r(Xi, Yi) = (Yi − µ̂(Xi))
2 on the samples (Xi, Yi) drawn from P̃—that is, we

only observe noisy estimates of R(X), at only finitely many randomly sampled values of X.
Given a truncation level 1 ≤ Ω < +∞, we propose to estimate the worst-case excess risk via the following

optimization problem:

∆̂iso
Ω (r;B) := max

w≥0

1

n

∑
i≤n

w(Xi)r(Xi, Yi)−
1

n

∑
i≤n

r(Xi, Yi)

subject to w#P̂n ∈ B, w ∈ Ciso
⪯ , ∥w∥∞ ≤ Ω. (10)

Here, P̂n denotes the empirical distribution of i.i.d. observations {Xi}i≤n drawn from P . Since the feasible
set is compact, the maximum is attainable, and we denote it by ŵiso

r . When Ω = +∞, we write ∆̂iso(r;B) =
∆̂iso

∞ (r;B).4
From now on, when d ≥ 2, we consider a bounded domain X equipped with the componentwise order

(Han et al., 2019; Deng and Zhang, 2020; Gao and Wellner, 2007), i.e. x ⪯ z if and only if xj ≤ zj for
all j ∈ [d]. Similar to Han et al. (2019), in the multivariate case, we assume 0 < m0 ≤ infx∈X dP (x) ≤
supx∈X dP (x) ≤M0 <∞ with constants m0 and M0.

4.1 Computation: estimation after projection

In view of Theorem 3.1, we may accelerate the computation of (10) via an equivalent optimization problem
without the isotonic constraint.

To be more specific, denote riso = (risoi )i≤n ∈ Rn as the isotonic projection of (r(Xi, Yi))i≤n with respect
to the empirical distribution P̂n under the partial order ⪯. Then, consider the optimization problem

∆̂Ω(r
iso;B) := max

w≥0

1

n

∑
i≤n

w(Xi)r
iso
i − 1

n

∑
i≤n

risoi

subject to w#P̂n ∈ B, ∥w∥∞ ≤ Ω. (11)

By Theorem 3.1, we have ∆̂Ω(r
iso;B) = ∆̂iso

Ω (r;B).
Note that in iso-DRL with estimated density ratio in Section 3.2, we can simply apply the isotonic

regression for (r(Xi, Yi))i≤n on (w0(Xi))i≤n to obtain the projected risk.

4.2 Reduction to noiseless risk

To control the estimation error, we will consider an oracle estimator with perfect knowledge of the noiseless
risk R. That is, we consider the following optimization problem:

∆̂iso
Ω (R;B) := max

w≥0

1

n

∑
i≤n

w(Xi)R(Xi)−
1

n

∑
i≤n

r(Xi, Yi)

subject to w#P̂n ∈ B, w ∈ Ciso
⪯ , ∥w∥∞ ≤ Ω. (12)

In comparison to (10), in the first sum in the maximization, the noisy risk r(Xi, Yi) is replaced by the
noiseless counterpart R(Xi).

Recall our population-level target ∆iso(R;B) defined in (6). It is clear via the triangle inequality that
the estimation error can be decomposed into two parts:∣∣∆̂iso

Ω (r;B)−∆iso(R;B)
∣∣ ≤ ∣∣∆̂iso

Ω (r;B)− ∆̂iso
Ω (R;B)

∣∣+ ∣∣∆̂iso
Ω (R;B)−∆iso(R;B)

∣∣.
We first show in the following theorem that the convergence of the first term does not depend on the

specific choice of B.
4We note that ∆̂iso

Ω (r;B) can also be written as ∆̂iso(r;BΩ), where BΩ = {Q ∈ B : PZ∼Q(Z ≤ Ω) = 1}.
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Theorem 4.1. Assume both R and r are BR-bounded, there exist constants C > 0 and γd that only depends
on d such that, with probability at least 1− 2n−1,∣∣∣∣∆̂iso

Ω (r;B)− ∆̂iso
Ω (R;B)

∣∣∣∣ ≤ C
logγd/2 n

n1/max{d,2} .

See Section C.1 for the proof. As a result, bounding |∆̂iso
Ω (r;B) − ∆iso(R;B)| is reduced to bounding the

estimation error with the noiseless risk R, i.e., controlling the second term
∣∣∆̂iso

Ω (R;B)−∆iso(R;B)
∣∣.

4.3 Estimation error with the noiseless risk

In this section, we bound the error |∆̂iso
Ω (R;B)−∆iso(R;B)| induced by the sampling of X. To simplify the

presentation, we focus on two canonical examples with bounds constraints and f -divergence constraints. For
the population level worst-case excess risk, we also denote ∆iso

Ω (R;B) as a modification of ∆iso(R;B) with
an additional constraint ∥w∥∞ ≤ Ω, i.e.

∆iso
Ω (R;B) = ∆iso(R;BΩ), where BΩ = {Q ∈ B : PZ∼Q(Z ≤ Ω) = 1}.

We will start with the analysis of the error |∆̂iso
Ω (R;B) −∆iso

Ω (R;B)|, and then validate that the remaining
bias term |∆iso

Ω (R;B)−∆iso(R;B)| is zero when Ω is sufficiently large.
Recall the definitions of Ba,b and Bf,ρ in Section 2. We further denote the function class GBa,b

=

{w : a ≤ w ≤ b, w ∈ Ciso
⪯ } and GBf,ρ

= {w : w ∈ Ciso
⪯ , w ∈ [−Ω ∨ Bf ,Ω ∨ Bf ]}, where we assume

supt∈[0,Ω] f(t) = Bf < +∞. Define the empirical Rademacher complexity of the function class G by

Rn(G) := Eσ

sup
g∈G

∣∣∣∣ 1n∑
i≤n

σig(Zi)

∣∣∣∣
 ,

where {Zi}i≤n is a sample of size n from P and {σi}i≤n are independent random variables drawn from the
Rademacher distribution. Then, we have the following theorem for the estimation error bound of |∆̂iso

Ω (R;B)−
∆iso

Ω (R;B)|.

Theorem 4.2. Assume R is BR-bounded and supt∈[0,Ω] f(t) = Bf < +∞. For any Ω > 0, and for either
choice of constraint set B = Ba,b or B = Bf,ρ, there exists a constant C that does not depend on n such that
with probability at least 1− 2n−1, it holds that∣∣∣∣∆̂iso

Ω (R;B)−∆iso
Ω (R;B)

∣∣∣∣ ≤ C

(√
log n

n
+Rn(GB)

)
. (13)

We provide two concrete examples to make apparent the dependence of the empirical Rademacher com-
plexity on the sample size.

(1) When d = 1, e.g., in the setting of density ratio recalibration in Section 3.2, both Ba,b and Bf,ρ are
contained in the set of uniformly bounded unimodal functions, then, similar to the results of Chatterjee
and Lafferty (2019), one can show by Dudley’s theorem (Dudley, 1967) that Rn(GB) ≲ n−1/2, ignoring
logarithmic factors.

(2) For Rd with a fixed dimension d ≥ 2 and a bounded domain X equipped with the componentwise order,
by Han et al. (2019), if 0 < m0 ≤ infx∈X dP (x) ≤ supx∈X dP (x) ≤M0 <∞, we have Rn(GB) ≲ n−1/d,
ignoring logarithmic factors, for which we provide more details in Appendix C.2 and C.3.

13



To conclude, we note that the estimation error in Theorem 4.2 is for the truncated population worst-case
excess risk ∆iso

Ω (R;B). We will show that the bias term |∆iso
Ω (R;B)−∆iso(R;B)| is zero for Ba,b and Bf,ρ as

follows:

• For Ba,b, the bound (13) still holds for |∆̂iso(R;Ba,b)−∆iso(R;Ba,b)| when Ω ≥ b.

• For the f -constrained problem, with supt∈[0,Ω] f(t) = Bf < +∞, as we will show in Appendix C.3 that
the worst-case excess risk ∆iso(R;Bf,ρ) is attained at w∗iso

f,ρ ∈ Ciso
⪯ with ∥w∗iso

f,ρ ∥∞ < ∞ almost surely,
which implies that ∆iso

Ω (R;Bf,ρ) = ∆iso(R;Bf,ρ) whenever Ω ≥ ∥w∗iso
f,ρ ∥∞.

Combining the results in Theorem 4.1 and 4.2, it holds that with B = Ba,b or Bf,ρ and adequately large Ω,
the estimation error |∆̂iso

Ω (r;B) −∆iso(R;B)| ≲ n−1/max{d,2}, up to logarithmic factors. As we will discuss
in Appendix C.4, the isotonic constraint w ∈ Ciso

⪯ plays an important role in the convergence result. Even
in the simple case with B = Ba,b, we will present an example in Appendix C.4 where the estimation error of
the (non-iso) DRL risk does not converge to zero.

5 Numerical experiments

In this section, we demonstrate the benefits of iso-DRL in calibrating prediction sets under covariate shift
with empirical examples, as previewed in Section 1.3. Throughout all experiments, we have data Dtrain =

{(Xi, Yi)}i≤N drawn from the data distribution and the test set Dtest = {(X̃i, Ỹi)}i≤M drawn from the target
distribution with M ≪ N . We consider both synthetic and real datasets. Code to reproduce all experiments
is available at https://github.com/yugjerry/iso-DRL.

Background. When covariate shift is present, Tibshirani et al. (2019) proposes the weighted conformal
prediction (WCP) method, which produces a prediction set Cw0

1−α(X) with an estimated density ratio w0,
which is valid for the covariate distribution P̂ defined by dP̂ ∝ w0 ·dP . The validity for the target distribution
P̃target is only guaranteed up to a coverage gap due to the estimation error or potential misspecification in
w0 (Lei and Candès, 2020; Candès et al., 2023; Gui et al., 2023, 2024)—that is, if w0 is a reasonably
accurate estimate of the true density ratio dPtarget

dP of the covariate shift, then WCP will lead to coverage
at approximately (1 − α) level relative to P̃target. In comparison to our approach, Cauchois et al. (2020);
Ai and Ren (2024) share similar idea with the generic DRL to adjust the target level α, but focuses on a
different setting with distribution shift on the joint distribution of (X,Y ). More related work on conformal
prediction is discussed in Section 6.

Dataset partition. The datasets Dtrain and Dtest are partitioned as follows:

• First, we use a subset D1 ⊂ Dtrain of the training data of size |D1| = npre, and a subset Dtest,1 ⊆ Dtest

of the test data of size |Dtest,1| = npre, to train the estimator of the covariate shift, i.e., the function
w0.

• Next, we use a subset D2 ⊂ Dtrain\D1 of the training data of size |D2| = ntrain to train CP or WCP
prediction intervals.

• Then, D3 = Dtrain\(D1 ∪ D2) is used to for estimating upper bounds on the excess risk for the DRL
and iso-DRL methods. We further define n = |D3| to ease notations.

• Finally, Dtest,0 = Dtest\Dtest,1 with |Dtest,0| = ntest is used for estimating the actual performance of
each method relative to the target distribution. We will measure the coverage rate on Dtest,0 to assess
each method’s performance:

Coverage rate(C,α) =
1

ntest

∑
i∈Dtest,0

1

{
Ỹi ∈ C

(
X̃i

)}
.
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We next turn to the details of how each of these steps are carried out.

Initial density ratio estimation. Using data from D1 and Dtest,1, we construct a data set comprised of
the covariate X (from either the training data points D1 or the test data points Dtest,1) and a binary label
L ∈ {0, 1} (0 for the training points, 1 for the test points), We then fit a logistic regression model and obtain
the estimated probability p̂(x) for P(L = 1 | X = x), with which we define

w0(x) =
p̂(x)

1− p̂(x)

(Weighted) Split conformal prediction. With data from D2, we use Ordinary Least Squares (OLS)
as the base algorithm, where we denote µ̂ as the fitted regression model, and, following Tibshirani et al.
(2019); Lei et al. (2018), apply split conformal prediction with the nonconformity score V (x, y) = |y− µ̂(x)|
to obtain the following prediction intervals for comparison:

• CP: conformal prediction interval C1−α without adjusting for covariate shift;

• WCP-oracle: weighted conformal prediction interval Cw∗

1−α with true density ratio w∗ = dPtarget/dP ;

• WCP: weighted conformal prediction interval Cw0
1−α with estimated w0;

DRL methods: estimation of worst-case excess risks. Next we give details on how we implement
the two distributionally robust methods, which we denote by DRL (i.e., without an isotonic constraint) and
iso-DRL-w0 (i.e., our proposed method, with the constraint that the distribution shift is monotone with
respect to the estimated covariate shift function w0).

Using the subset D3 of the training data, the observed risks can be calculated by

ri = 1 {Yi /∈ C1−α(Xi)} , i ∈ D3.

We adopt the KL-constraint DKL(Q∥P ) ≤ ρ to measure the magnitude of distribution shift, with which we
can obtain the following estimated worst-case excess risk

∆̂(α) =max
1

n

∑
i∈D3

wiri −
1

n

∑
i∈D3

ri

subject to
1

n

∑
i∈D3

wi = 1,
1

n

∑
i∈D3

wi logwi ≤ ρ, 0 ≤ wi ≤ Ω, (14)

with the upper bound set as Ω = 100 throughout the experiments. Given the estimated density ratio w0 ,
we run isotonic regression for (ri)i≤n on (w0(X

(3)
i ))i≤n to obtain the projected risk (risoi )i∈D3

, with which
we can calculate the worst-case excess risk

∆̂iso(α) =max
1

n

∑
i∈D3

wir
iso
i − 1

n

∑
i∈D3

risoi

subject to
1

n

∑
i∈D3

wi = 1,
1

n

∑
i∈D3

wi logwi ≤ ρ, 0 ≤ wi ≤ Ω. (15)

Given these estimates of the worst-case excess risks, we compare the following methods:

• DRL: CP interval C1−α̃, where α̃ = max{0, α− ∆̂(α)}.5

5To explain this construction, recall from Section 1 that we can use the excess risk estimate to choose a tuning parameter
that achieves a desired bound on risk. Specifically, for any value of α̃, we can bound the risk (i.e., the miscoverage) for the
CP interval C1−α̃ as E

P̃target
[Y ̸∈ C1−α̃(X)] ≤ E

P̃
[Y ̸∈ C1−α̃(X)] + ∆(Rα̃;Bf,ρ) ≤ α̃ + ∆(Rα̃;Bf,ρ) (where Rα̃ is the risk

defined by the CP interval C1−α̃, for any value of α̃). Since a 7→ Ra is nondecreasing, this also implies that a 7→ ∆(Ra;Bf,ρ)

is nondecreasing (recall from Section 2.1 that ∆(R;B) is monotone in R, as a corollary of Proposition 2.2). Thus, for α̃ ≤ α

we have E
P̃target

[Y ̸∈ C1−α̃(X)] ≤ α̃+∆(Rα;Bf,ρ) ≈ α̃+ ∆̂(α). Consequently, the above choice of α̃ ensures that miscoverage
will be (approximately) bounded by α. A similar argument also holds for iso-DRL-w0.
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• iso-DRL-w0: CP interval C1−αiso , where αiso = max{0, α− ∆̂iso(α)}.

5.1 Synthetic dataset

We start with a synthetic example, in which we fix ntrain = n = ntest = 500 and will vary npre to see how will
the initial density ratio estimation w0 affect the result. We will consider two settings—the “well-specified”
and “misspecified” settings, where model class within which w0 is estimated does, or does not, contain the
true density ratio dPtarget

dP (x). Specifically, for the marginal distributions of X, we set

Well-specified setting:

{
data distribution P : X ∼ N (0d, Id),

target distribution Ptarget : X ∼ N (µ, Id),

or

Misspecified setting:

{
data distribution P : X ∼ N (0d, Id),

target distribution Ptarget : X ∼ N (µ, Id +
ζ
d1d1

⊤
d ),

where d = 20, µ = (2/
√
d) · (1, · · · , 1)⊤, and ζ = 6. Since the estimate w0 for the density ratio will be fitted

via logistic regression as described above, the first setting is indeed well-specified since, due to the fact that
P and Ptarget have the same covariance, the logistic model is correct for the distribution shift from P to
Ptarget. In contrast, the second setting is misspecified since, due to the change in covariance matrix, the
underlying log-density ratio is no longer a linear function of µ⊤X, which cannot be characterized by logistic
regression.

Finally, for the conditional distribution of Y | X, we set

Y | X ∼ 0.2 · N
(
X⊤β + sin(X1) + 0.4X3

3 + 0.2X2
4 , 1
)

for both training and target distributions, where β ∼ N (0d, Id).

5.1.1 Results with varying sample size npre for estimating w0

We first consider the scenario with an estimated density ratio w0. Recall that we use the subsets D1 ⊂ Dtrain

and Dtest,1 ⊂ Dtest with |D1| = |Dtest,1| = npre for estimating w0; consequently, for larger values of npre,
we will expect a more accurate w0 (but will then have a lower sample size for the remaining steps of the
workflow). By varying npre, we aim to investigate the robustness of WCP and iso-DRL w.r.t. the accuracy
in w0. The sample size npre varies in {20, 40, 60, 80, 100} and we fix ρ = ρ∗ := DKL(Ptarget∥P ).

20 40 60 80 100
npre

0.0

0.1

0.2

0.3

0.4

0.5

D
KL

(P
ta

rg
et

||P
)

(a) DKL(Ptarget∥P̂ ) versus npre.

20 40 60 80 100
npre

0.85

0.90

0.95

1.00

co
ve

ra
ge

 ra
te

20 40 60 80 100
npre

0

1

2

3

4

av
er

ag
e 

w
id

th

CP
WCP
WCP-oracle

DRL
iso-DRL-w0

(b) Comparison of all methods with varying npre.

Figure 2: Results in the well-specified setting.
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(b) Comparison of all methods with varying npre.

Figure 3: Results in the misspecified setting.

Well-specified setting. In Figure 2b, we consider the well-specified setting for generating the data. We
can see that the uncorrected CP exhibits undercoverage due to the mismatch between Ptarget and P while
the coverage of WCP using w0 increases to 90% as npre increases, since w0 becomes more accurate with
larger npre (cf. Figure 2a). The generic DRL, even with ρ = ρ∗, tends to be conservative and has the widest
interval. In comparison, iso-DRL-w0 has coverage very close to the target level—indeed, the width is even
shorter than WCP-oracle, due to the limited effective sample size of WCP-oracle.

Misspecified w0. In Figure 3b, we show results for the misspecified setting. Since w0 is estimated from a
model class that does not contain the true density ratio, consequently DKL(Ptarget∥P̂ ) does not converge to
zero as npre increases (cf. Figure 3a). As a result, both uncorrected CP and WCP (which is weighted with
the misspecified w0) exhibit undercoverage. Proposed iso-DRL-w0 has coverage slightly above 90% but has
interval width close to that of WCP-oracle (which uses the correct weight function), while DRL is overly
conservative.
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Figure 4: Results with varying ρ in the well-specified setting.

5.1.2 Results with varying ρ

In the previous section, the parameter ρ, which is used to measure the size of the distribution shift, was
assumed to be known. In practice, of course, we can only estimate it. In this section, we investigate
the sensitivity of each approach (DRL and iso-DRL-w0) to the choice of ρ. Of course, the other methods
considered previously (CP, WCP, and WCP-oracle) do not have ρ as an input; for comparison, we will display
these methods’ outputs as constant over ρ.
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Figure 5: Results with varying ρ in the misspecified setting.

By fixing npre = 50, we vary ρ in [0.002, 6] and the underlying true KL-divergence ρ∗ = DKL(Ptarget∥P )
is marked by the vertical dashed line. The uncorrected CP, WCP with the true density ratio and estimated
density ratio w0 behave in the same way as shown in the previous section.

We can see from both plots that the prediction intervals produced by DRL is quite conservative (is much
wider than the oracle interval) across nearly the entire range of ρ, even values ρ much smaller than the true
distribution shift magnitude ρ∗ = DKL(Ptarget∥P ). In comparison, for iso-DRL-w0, when ρ = ρ∗, the width
of intervals is comparable to the oracle interval in both cases, and the coverage and width vary slowly as we
change the value of ρ. From this we can see that the isotonic constraint offers a significant gain in accuracy
if we have a reasonable estimate of ρ∗.

5.2 Real data: wine quality dataset

We also consider a real dataset: the wine quality dataset (https://archive.ics.uci.edu/dataset/186/
wine+quality). The dataset includes 12 variables that measure the physicochemical properties of wine and
we treat the variable quality as the response of interest. The entire dataset consists of two groups: the
white and red variants of the Portuguese “Vinho Verde” wine, which are unbalanced (1599 data points for
the red wine and 4898 data points for the white wine). The subset of red wine is treated as the test dataset
and that of white wine is viewed as the training set. All variables are nonnegative and we scale each variable
by its largest value such that the entries are bounded by 1. Similar to the dataset partition in synthetic
simulation, we fix npre = 40, ntrain = n = 1900, and ntest = 1000.
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Figure 6: Results for wine quality dataset.
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We first fit a kernel density estimator (Gaussian kernel with a bandwidth suggested by cross-validation)
using the entire dataset as a proxy of the oracle density ratio. Figure 6a plots this against the log-density
ratio obtained from logistic regression fitted on npre samples from each group. It can be seen that the two
density ratios exhibit an approximately isotonic trend. This motivates us to consider the isotonic constraint
with respect to the initial density ratio estimate w0.

To assess the performance of the proposed approach, we estimate w0 using the same procedure as for
the simulated data, with sample size npre = 40 for estimating the initial density ratio w0. We consider the
uncertainty set of distribution shifts defined by KL-divergence and choose ρ from 50 uniformly located grid
points in [0.02, 2]. In Figure 6b, similar to the performance in Section 5.1 for simulated data, DRL tends to
be conservative: the coverage rate quickly approaches 1 while ρ is still below 0.1. Moreover, the widths of
intervals are nearly three times those produced by iso-DRL-w0. In the meantime, iso-DRL-w0 captures the
approximate isotonic trend in Figure 6a and achieves valid coverage by recalibrating the weighted approach.
The key message is that in the real data case, even when there is no oracle information for selecting ρ and
the isotonic trend is not exact, the proposed iso-DRL-w0 with the isotonic constraint with respect to the
pre-fitted density ratio is robust to the selection of ρ. Additional details for this experiment are given in
Appendix D.2.

6 Additional related work

In this section, we discuss some additional literature in several related areas, including transfer learning,
DRL, sensitivity analysis, shape-constrained learning, and conformal prediction.

Transfer learning. Our investigation in this paper falls into the area of transfer learning (Hu et al., 2019;
Hu and Lei, 2020; Mei et al., 2010; Sun and Hu, 2016; Turki et al., 2017; Weng et al., 2020), in which data
from one distribution is used to improve performance on a related but different distribution. Transfer learning
is mostly studied in the supervised learning setting where we have (X,Y ) ∈ X ×Y, and it is categorized into
domain adaptation and inductive transfer learning (Redko et al., 2020).

Domain adaptation focuses on the scenario with covariate shift, where the conditional distribution of
Y | X is assumed to be unchanged. From the theoretical side, the performance of machine learning models
including hardness results is analyzed in Ben-David et al. (2010); Ben-David and Urner (2012, 2013); Johans-
son et al. (2019); Zhao et al. (2019a); Pathak et al. (2022); Pathak and Ma (2024), etc. The covariate shift
assumption is further relaxed in Hanneke and Kpotufe (2019) to study the value of target data in adaptation.
To implement efficient predictions, weighted methods are adopted as the first trial to draw P closer to Q
after re-weighting the labeled samples (Cortes et al., 2008; Gretton et al., 2009; Ma et al., 2023; Ge et al.,
2023). Another attempt is to require a small number of labeled target samples, which can be feasible in
reality and related works include Chen et al. (2011); Chattopadhyay et al. (2013); Yang et al. (2012), etc.

For inductive transfer learning, the marginal distribution of X is assumed to be the same for training
and target distributions. In the regression setting, the performance of the least square estimator with side
information from the target domain is studied vy Bastani (2021). The minimax theorem is further presented
for nonparametric classification vy Cai and Wei (2019). In the high-dimensional case, Li et al. (2021)
consider transfer learning with Lasso, and Tian and Feng (2021) extend transfer learning with generalized
linear models.

Distributionally robust learning (DRL). Our work is directly related to DRL (Ben-Tal and Ne-
mirovski, 1998; El Ghaoui and Lebret, 1997; El Ghaoui et al., 1998), which is a popular technique in transfer
learning that aims to control certain statistical risks uniformly over a set of candidate distributions for the
target distribution. Different choices of the uncertainty set are studied in the literature: in one line of re-
search, the distribution shift is measured in terms of the optimal transport discrepancy (Shafieezadeh Abadeh
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et al., 2015; Blanchet and Murthy, 2019; Blanchet et al., 2019; Esfahani and Kuhn, 2015); another line of
research adopts the uncertainty set defined by f -divergence (Duchi et al., 2021; Namkoong and Duchi, 2017;
Duchi and Namkoong, 2018; Cauchois et al., 2020; Ai and Ren, 2024; Weiss et al., 2023).

Further constraints on the uncertainty set as the improvement of DRL are explored by Duchi et al.
(2019); Setlur et al. (2023); Esteban-Pérez and Morales (2022); Liu et al. (2023), while in an earlier work,
Popescu (2007) considers certain families of uncertainty sets in which distributions preserve similar structural
properties. The recent work of Wang et al. (2023) considers the constraint that the unseen target distribution
is a weighted average of data distribution from multiple sources. Additionally, Shapiro and Pichler (2023)
propose the conditional distributional robust optimization to incorporate side information. Some recent
works based on the DRL framework also focus on the quantification of stability against distribution shift,
among which Gupta and Rothenhäusler (2021); Namkoong et al. (2022); Rothenhäusler and Bühlmann
(2023) quantify the smallest possible divergence from P (e.g., DKL(Q∥P )) with a fixed lower bound of the
worst-case risk, which can be viewed as a dual formulation of (1).

It is also worth mentioning related works addressing distribution shift based on multicalibration (Hébert-
Johnson et al., 2018; Deng et al., 2023; Kim et al., 2022), which guarantees the performance (e.g., coverage
in uncertainty quantification) within certain function classes.

Sensitivity analysis. Sensitivity analysis is closely related to DRL but is particularly widely studied in
the field of causal inference (Cornfield et al., 1959; Rosenbaum, 1987; Tan, 2006; Ding and VanderWeele,
2016; Zhao et al., 2019b; De Bartolomeis et al., 2023) with the goal of evaluating the effect of unmeasured
confounders and relaxing untestable assumptions. Sensitivity models can be viewed as a specific example of
constraints on distribution shift. For example, if we consider a treatment T ∈ {0, 1}, the marginal Γ-selection
model (Tan, 2006) implies that

1

Γ
≤

dPY (1)|X,T=0

dPY (1)|X,T=1
≤ Γ,

which imposes the bounds constraint on the distribution shift from the data distribution PY (1)|X,T=1 to
the counterfactual PY (1)|X,T=0. Recent works investigate the performance of estimation, prediction, and
inference under the sensitivity model from the perspective of DRL, such as the works of Yadlowsky et al.
(2018); Jin et al. (2022, 2023); Sahoo et al. (2022).

Statistical learning with shape constraints. Our work also borrows ideas from shape-constrained
learning. Shape constraints, including monotonicity, convexity and log-concavity constraints, have been
used for many decades across various applications (Grenander, 1956; Schell and Singh, 1997; Matzkin, 1991).
The monotonicity (or isotonic) constraint is the most common one among these. The nonstandard asymptotic
behavior of estimator with the isotonic constraint is identified by Rao (1969), since which the properties of
isotonic regression are well studied in the literature (Brunk et al., 1957, 1972; Zhang, 2002; Han et al., 2019;
Yang and Barber, 2019; Durot and Lopuhaä, 2018; Bogdan et al., 2015; Su and Candes, 2016). Moreover,
the isotonic constraint is also widely applied to calibration for distributions in regression and classification
settings (Zadrozny and Elkan, 2002; Niculescu-Mizil and Caruana, 2012; van der Laan et al., 2023; Henzi
et al., 2021; Berta et al., 2024).

Conformal prediction. One important application of our distributionally robust risk evaluation with an
isotonic constraint is to recalibrate prediction intervals from conformal prediction. Conformal prediction,
proposed by Vovk et al. (2005); Shafer and Vovk (2008), provides a framework for distribution-free uncer-
tainty quantification, which constructs confidence intervals that are valid with exchangeable data from any
underlying distribution and with any “black-box” algorithm. When covariate shift is present between training
and target distributions, Tibshirani et al. (2019) firstly introduce the notion of weighted exchangeability and
the weighted conformal prediction approach to maintain validity with the oracle information of the density
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ratio. However, with the estimated density ratio, the validity of WCP only holds up to a coverage gap (Lei
and Candès, 2020; Candès et al., 2023; Gui et al., 2024); building on this, Jin et al. (2023) further establish
a robust guarantee via sensitivity analysis. Besides the weighted approaches, there are other solutions in the
literature: Cauchois et al. (2020); Ai and Ren (2024) address the issue of joint distribution shift via the DRL;
Qiu et al. (2023); Yang et al. (2024); Chen and Lei (2024) formulate the covariate shift problem within the
semiparametric/nonparametric framework and utilize the doubly-robust theory to correct the distributional
bias.

7 Discussion

In this paper, we focus on distributionally robust risk evaluation with the isotonic constraint on the density
ratio. We provide an efficient approach to solve the shape-constrained optimization problem via an equivalent
reformulation. Estimation error bounds for the worst-case excess risk are also provided when only noisy
observations of the risk function can be accessed.

To conclude, we provide further discussions on the proposed iso-DRL framework and single out several
open questions.

Isotonic constraint as regularization on distribution shift. The isotonic constraint on the density
ratio, which is the key difference between DRL and iso-DRL, is related to regularization on distribution
shifts. The worst-case density ratio for the generic DRL will always align with the risk function even when
the risk is highly non-smooth, which results in over-conservativeness. By adding an isotonic constraint, we
aim to avoid over-pessimistic choices of the density ratio. This is similar in flavor to many tools in high-
dimensional statistical learning, where regularization/inductive bias is introduced to improve generalization.
More broadly, how to explicitly quantify the validity-accuracy tradeoff under distribution shift is an important
problem.

Stability against distribution shift. Excess risk can also be interpreted from the perspective of stability
against distribution shift (Lam, 2016; Namkoong et al., 2022). Suppose we have a fixed budget ε≪ 1 for the
excess risk, it is of interest to characterize the largest tolerance of distribution shift such that the excess risk is
under control. Taking the f -constrained problem as an example, if we aim at the budget ∆ρ(R;Bf,ρ) ≤ ε≪ 1,
then only an infinitesimal ρ that is quadratic in ε will be allowed (Lam, 2016; Duchi and Namkoong, 2018;
Blanchet and Shapiro, 2023), i.e., ρ needs to obey

ρ ≤ f ′′(1)

2Var(R(X))
· ε2 + o(ε2).

However, with the additional isotonic constraint on the density ratio and the same budget ε, we can tolerate
larger distribution shift:

ρ ≤ f ′′(1)

2Var
(
[π(R)](X)

) · ε2 + o(ε2).

(Note that the variance in the denominator may be substantially smaller here—for instance, if R(X) is
uncorrelated with X, we might have Var(R(X)) ≍ 1 but Var

(
[π(R)](X)

)
≈ 0.) This improvement drives the

following findings:

1. When side information of the underlying distribution shift is provided, e.g., the shape contraints of the
density ratio, risk evaluation will be less sensitive to the hyperparameters describing the uncertainty
set (e.g., ρ), thus is more robust with the presence of distribution shift.

2. Moreover, the denominator Var([π(R)](X)) also implies that when the shape of the uncertainty set is
well-designed such that the projected risk [π(R)](X) has small variance, then the out-of-sample risk
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within the uncertainty set will be more distributionally robust. Thus, it remains an open question
on how to construct the variance-reduction projection and design the uncertainty set based on noisy
observations of the risk function.

From risk evaluation to distributionally robust optimization. Different from risk evaluation, dis-
tributionally robust optimization (DRO) focuses on the optimization problem with a loss function ℓθ(x):

θ̂ ∈ argmin
θ∈Θ

sup
Q∈Q

EQ ℓθ(X).

Under smoothness conditions on ℓθ, asymptotic normality for θ̂ is established in the literature (Duchi and
Namkoong, 2018). The DRO framework is shown to regularize θ̂ in terms of variance penalization (Lam, 2016;
Duchi and Namkoong, 2018) or explicit norm regularization (Blanchet and Murthy, 2019). It is interesting
to incorporate the isotonic constraint into DRO and to understand the effect of the isotonic constraint in
the asymptotics of θ̂iso.

Extension to the optimal transport discrepancy. Finally, we should note that there is a rich literature
on DRL with the optimal transport discrepancy, in which case the distribution shift cannot be simply
represented by density ratios (Shafieezadeh Abadeh et al., 2015; Blanchet and Murthy, 2019; Blanchet et al.,
2019; Esfahani and Kuhn, 2015). Suppose we have side information about the functional σ(P, Ptarget) of two
distributions, of which w0 = dPtarget/dP is an example, it will be an open question regarding how to utilize
σ(P, Ptarget) in guiding the constraint on the candidate distributions or the choice of the cost function in the
optimal transport discrepancy.
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A Proofs of results in Section 2

A.1 Proof of Proposition 2.2

It is straightforward to check that ∆(R;B) is always an upper bound of the new formulation stated in
Proposition 2.2, simply by taking w = ϕ ◦ R. Therefore, it remains to show the converse: ∆(R;B) is also a
lower bound of the new formulation stated in Proposition 2.2.

To this end, it suffices to prove that for any w#P ∈ B, there exists a nondecreasing function ϕ such that
(ϕ ◦R)#P ∈ B, and

EP [w(X)R(X)] ≤ EP [ϕ(R(X))R(X)] .

We construct such a function ϕ in two steps.

Step 1: conditioning. For any w such that w#P ∈ B, we define g as a measurable function satisfying

g(R(X)) = E [w(X) | R(X)] , P -almost surely.

(Note that g is not necessarily a monotone function.) As a result, by the tower law, we have

EP [w(X)R(X)] = EP [g(R(X))R(X)]. (16)
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Since w#P ∈ B, by Jensen’s inequality, for any convex function ψ, we have

EP [ψ (g(R(X)))] = E [ψ (E [w(X) | R(X)])] ≤ EP [ψ(w(X))] ,

which implies (g ◦R)#P ∈ B by Condition 2.1.

Step 2: rearrangement. Denote F1 and F2 as the cumulative distribution functions of g(R(X)) and
R(X), respectively. Let U ∼ Unif([0, 1]). Then, we have F−1

1 (U)
d
= g(R(X)) and F−1

2 (U)
d
= R(X), where

F−1
k is the generalized inverse of Fk, k = 1, 2. Moreover, F−1

1 is nondecreasing and

g(F−1
2 (U))

d
= g(R(X))

d
= F−1

1 (U),

which implies that F−1
1 is the monotone rearrangement of g ◦ F−1

2 . By inequality (378) in Hardy et al.
(1952), we have

EP [g(R(X))R(X)] = E
[
g(F−1

2 (U))F−1
2 (U)

]
≤ E

[
F−1
1 (U)F−1

2 (U)
]
. (17)

Next, let ϕ be a measurable function satisfying

ϕ(F−1
2 (U)) = E

[
F−1
1 (U) | F−1

2 (U)
]
,

almost surely with respect to the distribution U ∼ Unif([0, 1]). Since F−1
k is the generalized inverse of a CDF

Fk, for each k = 1, 2, it is therefore monotone nondecreasing. Therefore, we can choose ϕ to be a monotone
nondecreasing function. Moreover, to verify that (ϕ ◦ R)#P ∈ B, we will check that ϕ(R(X))

cvx
⪯ g(R(X))

(and use Condition 2.1, along with the fact that (g ◦ R)#P ∈ B as established above). For any convex
function ψ, we have

EP [ψ(ϕ(R(X)))]
d
= E[ψ(ϕ(F−1

2 (U)))] = E[ψ(E
[
F−1
1 (U) | F−1

2 (U)
]
)] ≤ E[ψ(F−1

1 (U))] = EP [ψ(g(R(X)))],

where the inequality holds by Jensen’s inequality.
We then have

E
[
F−1
1 (U)F−1

2 (U)
]
= E

[
E
[
F−1
1 (U) | F−1

2 (U)
]
F−1
2 (U)

]
= E

[
ϕ(F−1

2 (U))F−1
2 (U)

]
= EP [ϕ(R(X))R(X)] .

This equality, combined with (16) and (17), yields the desired outcome: EP [w(X)R(X)] ≤ EP [ϕ(R(X))R(X)].
We hence complete the proof.

B Proofs of results in Section 3

To ease notation, we denote ⟨a, b⟩P =
∫
X a(x)b(x)dP (x) for any functions a, b.

Before proceeding to the proof of Theorem 3.1, denote

∆2(R;B) = sup
w≥0, w∈L2(P )

EP [w(X)R(X)]− EP [R(X)]

subject to w#P ∈ B. (18)

The only difference between this new definition, and the quantity ∆(R;B) defined in (4), is that we now add
the constraint w ∈ L2(P )—the L2 constraint will be useful for some of our theoretical results in this section.
In fact, the following result shows that adding the L2 constraint does not change the optimal value.
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Proposition B.1. Under the notation and definitions above, it holds that ∆(R;B) = ∆2(R;B).

We defer the proof of this proposition to Section B.3.
In addition, by the property of the projection onto a closed and convex set (Theorem 3.14 in Bauschke

and Combettes (2019), Proposition 1.12.4 in Edwards (2012)) and the fact that constant functions ±1 ∈ Ciso
⪯ ,

we have
⟨R− π(R), 1⟩P ≤ 0 and ⟨R− π(R),−1⟩P ≤ 0,

which implies that ⟨R− π(R), 1⟩P = EP

[
[π(R)](X)

]
− EP [R(X)] = 0.

B.1 Proof of Theorem 3.1

We split the proof into three steps:

1. prove that ∆iso(R;B) ≤ ∆(π(R);B);

2. prove that ∆iso(R;B) = ∆(π(R);B) provided that Condition 2.1 holds;

3. prove the claim on attainability of minimizers.

Step 1: Prove ∆iso(R;B) ≤ ∆(π(R);B). By the definition of ∆iso(R;B) as a supremum, for any ε > 0,
there exists wε ∈ Ciso

⪯ such that

∆iso(R;B)− ε ≤ ⟨wε, R⟩P − EP [R(X)] ≤ ∆iso(R;B). (19)

By the properties of projection onto a convex and closed cone Ciso
⪯ , we have EP [[π(R)](X)] = EP [R(X)] and

⟨wε − π(R), R− π(R)⟩P = ⟨wε, R− π(R)⟩P ≤ 0. (20)

Clearly we also have ⟨wε, π(R)⟩P ≤ ∆(π(R);B). This combined with (19), (20), and the property EP [[π(R)](X)] =

EP [R(X)] yields

∆iso(R;B)− ε ≤ ⟨wε, R⟩P − EP [R(X)] ≤ ⟨wε, π(R)⟩P − EP [R(X)] ≤ ∆(π(R);B).

Since ε > 0 is arbitrary, we obtain the desired result ∆iso(R;B) ≤ ∆(π(R);B).

Step 2: Prove ∆iso(R;B) = ∆(π(R);B). With a similar proof with that of Proposition 2.2 (see Sec-
tion A.1), we have the following equivalent formulation of ∆2(R;B):

∆2(R;B) = sup
ϕ:R→R+

EP [(ϕ ◦R)(X)R(X)]− EP [R(X)]

subject to (ϕ ◦R)#P ∈ B, ϕ ◦R ∈ L2(P ), ϕ is nondecreasing. (21)

Accordingly, we also have ∆(π(R);B) = ∆2(π(R);B). Then, by (21) and the definition of supremum, for
any ε > 0, there exists w̃ε = gε ◦ [π(R)] ∈ L2(P ) where gε(t) is nondecreasing in t such that

∆(π(R);B)− ε = ∆2(π(R);B)− ε ≤ ⟨w̃ε, π(R)⟩P − EP [R(X)] ≤ ∆2(π(R);B) = ∆iso(R;B). (22)

More importantly, since π(R) ∈ Ciso
⪯ and gε ∈ Ciso

⪯ , we know that w̃ε ∈ Ciso
⪯ , which implies that

⟨w̃ε, R⟩P − EP [R(X)] ≤ ∆iso(R;B). (23)
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In addition, assume for the moment that we can represent the isotonic cone Ciso
⪯ using a σ-lattice—a

claim we will prove in the end this section. We can then invoke Theorem 1 in Brunk (1963) (or Corollary
3.1 in Brunk (1965)) to conclude that

⟨h(π(R)), R− π(R)⟩P = 0, for all measurable functions h such that h(π(R)) ∈ L2(P ).

In particular, since w̃ε = gε ◦ [π(R)] ∈ L2(P ), we have

⟨w̃ε, R− π(R)⟩P = 0. (24)

Combining (22), (23), and (24), we arrive at the conclusion

∆(π(R);B)− ε ≤ ⟨w̃ε, π(R)⟩P − EP [R(X)] = ⟨w̃ε, R⟩P − EP [R(X)] ≤ ∆iso(R;B). (25)

Since ε > 0 is arbitrary, we have ∆(π(R);B) ≤ ∆iso(R;B). In all, we combine Steps 1 and 2 to finish the
proof.

Step 3: attainability of minimizers. Suppose ∆(π(R);B) is attained at w̃. Then, it holds that

⟨w̃, π(R)⟩P − EP [R(X)] = ∆(π(R);B) = ∆iso(R;B).

Moreover, by Proposition 2.2, without loss of generality, we assume that w̃ ∈ Ciso
⪯ .

By Proposition B.1, for any η > 0, there exists w̃η ∈ L2(P ) such that

max

{∣∣⟨w̃, π(R)⟩P − ⟨w̃η, π(R)⟩P
∣∣, ∣∣⟨w̃, R⟩P − ⟨w̃η, R⟩P

∣∣} ≤ η.

By the formulation (21), we assume that w̃η ∈ Ciso
⪯ . In addition, by Theorem 1 in Brunk (1963) (or Corollary

3.1 in Brunk (1965)), we further have ⟨w̃η, R− π(R)⟩P = 0, thus∣∣∣∣⟨w̃, R⟩P − EP [R(X)]−∆iso(R;B)
∣∣∣∣ ≤ η.

Since η is arbitrary, ∆iso(R;B) is also attained at w̃.
On the other hand, suppose ∆iso(R;B) is attained at w∗iso. It holds that

⟨w∗iso, R⟩P − EP [R(X)] = ∆(π(R);B) = ∆iso(R;B).

Suppose there exists ε > 0 such that ⟨w∗iso, π(R)⟩P − EP [R(X)] ≤ ∆(π(R);B) − ε. By the definition of
supremum together with Proposition B.1 and the equivalent formulation in (21), there exists w̃ε = gε ◦R ∈
L2(P ), where gε(t) is nondecreasing in t, such that

⟨w̃ε, π(R)⟩P > ∆(π(R);B)− ε.

By the property of projection and the optimality of w∗iso, we obtain

⟨w̃ε, R⟩P ≤ ⟨w∗iso, R⟩P ≤ ⟨w∗iso, π(R)⟩P < ⟨w̃ε, π(R)⟩P .

Brunk (1963, 1965) further gives us ⟨gε ◦ R,R − π(R)⟩P = 0, which yields ⟨w∗iso, R⟩P = ⟨w̃ε, π(R)⟩P >

∆(π(R);B)− ε and draws the contradiction.
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Representation of the isotonic cone with σ-lattice. For X ⊆ Rd with d ≥ 1, consider any partial
order ⪯ on X . Recall the isotonic cone

Ciso
⪯ = {g | g(x) ≤ g(x′) for all x ⪯ x′}.

Consider a class of subsets A ⊆ Rd such that for each A ∈ A, we have {x | a ⪯ x} ⊆ A for any a ∈ A.
Denote the set

R(A) = {g | {x | g(x) > τ} ∈ A for all τ ∈ R} .

One can verify that A is closed under countable union and countable intersection, thus R(A) forms a sigma
lattice. For any g ∈ Ciso

⪯ and any τ ∈ R, we have

{x | g(x) > τ} ∈ A =⇒ Ciso
⪯ ⊆ R(A).

On the other hand, for any g ∈ R(A). Suppose g /∈ Ciso
⪯ , i.e. there exists x1 ⪯ x2 such that g(x1) > g(x2).

By choosing τ = (g(x1)+g(x2))/2, we have Aτ := {x | g(x) > τ} ∈ A and x1 ∈ Aτ , x2 /∈ Aτ . However, since
x1 ⪯ x2, we have {x | x1 ⪯ x} ⊈ Aτ which draws the contradiction to Aτ ∈ A. Hence, we have verified that
Ciso
⪯ = R(A).

B.2 Proof of Proposition 3.3

The proof relies on the following property of the set B, which we establish in the end of this section.

Lemma B.2. Assume Condition 2.1 holds. The set B is closed under the isotonic projection, that is, for
any w#P ∈ B, it holds π(w)#P ∈ B.

Recall that w̃∗ is the underlying density ratio dPtarget/dP . Since B is closed under π by Lemma B.2, we
have π(w̃∗) ∈ Ciso

⪯ and π(w̃∗)#P ∈ B. By optimality, we have

∆iso(R;B) ≥ EP

[
[π(w̃∗)](X)R(X)

]
− EP [R(X)].

Case 1. We first assume that ∆iso(R;B) > EP [[π(w̃∗)](X)R(X)]−EP [R(X)]. For any 0 < ε < ∆iso(R;B)−
EP [[π(w̃∗)](X)R(X)]+EP [R(X)], by the definition of ∆iso(R;B) and the definition of supremum, there exists
w∗iso

ε ∈ Ciso
⪯ such that

∆iso(R;B)− ε ≤ EP [w
∗iso
ε (X)R(X)]− EP [R(X)] ≤ ∆iso(R;B), (w∗iso

ε )#P ∈ B.

Then, by the choice of ε, we have

EP [w
∗iso
ε (X)R(X)]− EP [R(X)] ≥ ∆iso(R;B)− ε ≥ EP

[
[π(w̃∗)](X)R(X)

]
− EP [R(X)],

which yields

∆iso(R;B)− ε ≥ EP [w̃
∗(X)R(X)]− EP [R(X)] +

{
EP

[
[π(w̃∗)](X)R(X)

]
− EP [w̃

∗(X)R(X)]

}
= ∆∗(R)− EP

[
[w̃∗ − π(w̃∗)](X)R(X)

]
.

In addition, by the property of the projection onto a convex and closed cone, we have

EP

[
[w̃∗ − π(w̃∗)](X)[π(R)](X)

]
≤ 0,
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which further yields

∆∗(R) + ε ≤ ∆iso(R;B) + EP [[w̃∗ − π(w̃∗)](X)R(X)]− EP

[
[w̃∗ − π(w̃∗)](X)[π(R)](X)

]
= ∆iso(R;B) + EP

[
[w̃∗ − π(w̃∗)](X) · [R− π(R)](X)

]
.

Since ε > 0 is arbitrary, we obtain

∆∗(R) ≤ ∆iso(R;B) + EP

[
[w̃∗ − π(w̃∗)](X) · [R− π(R)](X)

]
. (26)

Case 2. If the equality holds such that

∆iso(R;B) = EP

[
[π(w̃∗)](X)R(X)

]
− EP [R(X)],

it implies that worst-case excess risk ∆iso(R;B) can be attained by some w∗iso. Then, we can follow the
same proof as above to show (26).

In particular, if either w̃∗ ∈ Ciso
⪯ or R ∈ Ciso

⪯ , it holds that ∆∗(R) ≤ ∆iso(R;B).

Proof of Lemma B.2. Since B is closed under convex ordering, it suffices to prove that π(w)#P
cvx
⪯ w#P .

To this end, fix any convex function ψ. We know the expectation of the Bregman divergence is nonnegative,
i.e.,

⟨ψ(w)− ψ(π(w)), 1⟩P − ⟨ψ′(π(w)), w − π(w)⟩P ≥ 0.

Moreover, due to the monotonicity of ψ′ and the orthogonality property mentioned before in (Brunk, 1963,
1965), it holds that

⟨ψ′(π(w)), w − π(w)⟩P = 0.

Consequently, we obtain
⟨ψ(π(w)), 1⟩P ≤ ⟨ψ(w), 1⟩P .

This implies π(w)#P ∈ B.

B.3 Proof of Proposition B.1

For any w ≥ 0, we define the sequence of truncated functions {wn}n∈N via

wn(x) = w(x) · 1{w(x) ≤ n}+ Ln · 1{w(x) > n},

where Ln = E[w(X) | w(X) > n], which implies that EP [wn(X)] = 1 and, since max{n,Ln} = Ln < ∞,
wn ∈ L2(P ) for each n ≥ 1.

Step 1: feasibility of wn. We first prove the feasibility of wn. To see this, as EP [wn(X)] = 1 by
construction, we need to show that (wn)#P ∈ B. By Condition 2.1, since B is closed under the convex
ordering, it suffices to show that

EP [ψ(wn(X))] ≤ EP [ψ(w(X))] for any convex function ψ.

This is true by Jensen’s inequality, since, by construction, EP [w(X) | wn(X)] = wn(X).

28



Step 2: convergence of EP [wn(X)R(X)]. To verify the convergence of EP [wn(X)R(X)], consider∣∣∣∣EP [wn(X)R(X)]− EP [w(X)R(X)]

∣∣∣∣
=

∣∣∣∣ ∫
w(x)>n

(Ln − w(x))R(x)dP (x)

∣∣∣∣
≤ BR

∫
w(x)>n

∣∣Ln − w(x)
∣∣dP (x)

≤ BR

(∫
w(x)>n

w(x)dP (x) + LnP(w(X) > n)

)
= 2EP [w(X) · 1{w(X) > n}] .

Finally, since EP [w(X)] = 1 (i.e., we know that w ∈ L1(P )), this means that limn→∞ EP [w(X) · 1{w(X) > n}] =
0.

Summary. For any ε > 0, there exists w ≥ 0 such that EP [w(X)] = 1, w#P ∈ B, and

EP [w(X)R(X)]− EP [R(X)] ≥ ∆(R;B)− ε/2

Then, based on the previous steps, there exist w̃ ∈ L2(P ) such that w̃ is feasible for (4) and EP [w̃(X)R(X)] ≥
EP [w(X)R(X)]− ε/2, which implies that

EP [w̃(X)R(X)] ≥ ∆(R;B)− ε =⇒ ∆2(R;B) ≥ ∆(R;B)− ε.

Since ε is arbitrary and ∆2(R;B) ≤ ∆(R;B), we have shown that ∆2(R;B) = ∆(R;B), which completes the
proof.

C Proofs of results in Section 4

C.1 Proof of Theorem 4.1

To ease the notations, denote ri = r(Xi, Yi) and Ri = R(Xi). We abuse the notation and denote ŵR =

(ŵR
i )i≤n = (ŵiso

R,Ω(Xi))i≤n as the maximizer to (12) and ŵr = (ŵr
i )i≤n = (ŵiso

r,Ω(Xi))i≤n as the maximizer to
(10), which are both attainable due to the compactness of a truncated feasible set. Then we have

∆̂iso
Ω (R;B)− ∆̂iso

Ω (r;B) = 1

n

∑
i≤n

ŵR
i Ri −

1

n

∑
i≤n

ŵr
i ri

=
1

n

∑
i≤n

ŵR
i (Ri − ri) +

1

n

∑
i≤n

(
ŵR

i − ŵr
i

)
ri.

We can similarly rewrite

∆̂iso
Ω (R;B)− ∆̂iso

Ω (r;B) = 1

n

∑
i≤n

ŵr
i (Ri − ri) +

1

n

∑
i≤n

(
ŵR

i − ŵr
i

)
Ri.

By the optimality of ŵR for (12) and of ŵr for (10) (since the constraints are identical for the two
optimization problems), we have

1

n

∑
i≤n

(
ŵR

i − ŵr
i

)
Ri =

1

n

∑
i≤n

ŵR
i Ri −

1

n

∑
i≤n

ŵr
iRi ≥ 0,

1

n

∑
i≤n

(
ŵR

i − ŵr
i

)
ri =

1

n

∑
i≤n

ŵR
i ri −

1

n

∑
i≤n

ŵr
i ri ≤ 0.
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Consequently, we have the lower and upper bounds

1

n

∑
i≤n

ŵr
i (Ri − ri) ≤ ∆̂iso

Ω (R;B)− ∆̂iso
Ω (r;B) ≤ 1

n

∑
i≤n

ŵR
i (Ri − ri) . (27)

Denote εi = ri − Ri and G1 = {w ≥ 0 : w ∈ Ciso
⪯ , ∥w∥∞ ≤ Ω}. Then, to control both the lower and

upper bounds in (27), as both ŵR and ŵr are isotonic in Xi’s with respect to the componentwise order in
Rd, it suffices to control the following quantify

sup
w∈G1

∣∣∣∣ 1n∑
i≤n

εiw(Xi)

∣∣∣∣. (28)

We first control the expectation of (28). For any w ∈ G1, it holds that E[w(Xi)εi] = 0, thus by symmetrization
(Wellner et al. (2013) Theorem 2.3.1), we have

E
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

εiw(Xi)

∣∣∣∣] ≤ 2E
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

σi · εiw(Xi)

∣∣∣∣], (29)

where σi’s are independent Rademacher random variables. Since {εi}i≤n are bounded within [−2BR, 2BR],
by Ledoux-Talagrand contraction lemma (Ledoux and Talagrand (2013) Theorem 4.12) with ϕi(t) = εit, we
further have

E
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

εiw(Xi)

∣∣∣∣] ≤ 4BRE
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

σi · w(Xi)

∣∣∣∣] = 4BRE [Rn(G1)] .

Case 1: d = 1. In the univariate case, by Birgé (1987); Chatterjee and Lafferty (2019), for the empirical
Rademacher complexity of uniformly bounded isotonic function class, there exists a constant C0 such that
with probability at least 1− n−1,

Rn(G1) ≤ C0BR

√
log n

n
.

This bound is obtained via Dudley’s theorem (Dudley, 1967).

Case 2: d ≥ 2. In the multivariate case, when X is bounded and 0 < m0 ≤ infx∈X dP (x) ≤ supx∈X dP (x) ≤
M0 <∞, by Han et al. (2019) (Proposition 9), there exists a constant C̃0 such that

E
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

σi · w(Xi)

∣∣∣∣] ≤ C̃0B
2
R

√
logγd n

n1/d
,

where γ1 = 1, γ2 = 8, and γd = d(d+ 1) for d ≥ 3.
Combining the cases above, there exists a constant C such that

E
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

εiw(Xi)

∣∣∣∣] ≤ 4BRE
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

σi · w(Xi)

∣∣∣∣] ≤ C

√
logγd n

n1/max{d,2} .

Since G1 is a uniformly bounded function class and (28) is a function of n random vectors {(Xi, εi)}i≤n, if
we substitute (Xi, εi) by (X ′

i, ε
′
i), by the inequality |a− b| ≥

∣∣|a| − |b|
∣∣, it holds that∣∣∣∣∣ sup

w∈G1

∣∣∣∣∑
j ̸=i

εjw(Xj) + εiw(Xi)

∣∣∣∣− sup
w∈G1

∣∣∣∣∑
j ̸=i

εjw(Xj) + ε′iw(X̃i)

∣∣∣∣
∣∣∣∣∣

≤ sup
w∈G1

∣∣∣∣∣
∣∣∣∣∑
j ̸=i

εjw(Xj) + εiw(Xi)

∣∣∣∣− ∣∣∣∣∑
j ̸=i

εjw(Xj) + ε′iw(X̃i)

∣∣∣∣
∣∣∣∣∣

≤ sup
w∈G1

∣∣∣∣εiw(Xi)− ε′iw(X
′
i)

∣∣∣∣ ≤ 2ΩBR <∞.
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Then, by McDiarmid’s inequality (McDiarmid et al., 1989), there exist constants C̃ and c̃ such that with
probability at least 1− n−1,

sup
w∈G1

∣∣∣∣ 1n∑
i≤n

εiw(Xi)

∣∣∣∣ ≤ E
[
sup
w∈G1

∣∣∣∣ 1n∑
i≤n

εiw(Xi)

∣∣∣∣]+ c̃

√
log n

n
≤ C̃

logγd/2 n

n1/max{d,2} .

which implies that with probability at least 1− n−1,

∣∣∆̂iso
Ω (R;B)− ∆̂iso

Ω (r;B)
∣∣ ≤ max


∣∣∣∣ 1n∑

i≤n

ŵr
i (Ri − ri)

∣∣∣∣, ∣∣∣∣ 1n∑
i≤n

ŵR
i (Ri − ri)

∣∣∣∣
 ≤ C̃

logγd/2 n

n1/max{d,2} .

C.2 Proof of Theorem 4.2 with B = Ba,b

For any γ > −1, we consider a relaxed optimization problem:

∆̃(γ) := max
w≥0

1

n

∑
i≤n

w(Xi)R(Xi)−
1

n

∑
i≤n

r(Xi, Yi)

subject to
1

n

∑
i≤n

w(Xi) ≤ 1 + γ, a ≤ w ≤ b,

w ∈ Ciso
⪯ . (30)

In the constraints, when the inequality 1
n

∑
i≤n w(Xi) ≤ 1 + γ is replaced with equality, we denote the

resulting optimal value by ∆̃∗(γ).
Similarly, we also consider a relaxed optimization problem at the population level:

∆(γ) := sup
w≥0

EP [w(X)R(X)]− EP [R(X)]

subject to EP [w(X)] ≤ 1 + γ, a ≤ w ≤ b,

w ∈ Ciso
⪯ . (31)

The quantity ∆∗(γ) is defined similarly. With these definitions in place, we have the following equivalence
results.

Lemma C.1. For any γ > −1, we have

∆∗(γ) = ∆(γ), ∆̃∗(γ) = ∆̃(γ).

In particular, we have
∆iso(R;Ba,b) = ∆(0), ∆̂iso(R;Ba,b) = ∆̃(0).

We are now ready to prove the theorem.6

Step 1: Bounding the deviation. Denote the maximizer of (30) by ŵ(·; γ) and the maximizer to (31)
by w∗(·; γ). By Hoeffding’s inequality, there exists a universal constant C1 such that with probability at

6We note that as E[r(Xi, Yi)] = EP [R(X)] and {r(Xi, Yi)}i≤n are independent and bounded, the sample average
n−1

∑
i≤n r(Xi, Yi) converges to its mean EP [R(X)] at the parametric rate by Hoeffding’s inequality. Since the paramet-

ric rate will not exceed the dominating rate in analysis, we focus on the convergence of the first term in ∆̂iso
Ω (r;B) from now

on.
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least 1− n−1, ∣∣∣∣ 1n∑
i≤n

w∗(Xi; 0)− EP [w∗(X; 0)]

∣∣∣∣ ≤ C1

√
log n

n
=: γn,

and
∣∣∣∣ 1n∑

i≤n

w∗(Xi; 0)R(Xi)− EP [w∗(X; 0)R(X)]

∣∣∣∣ ≤ C1

√
log n

n
.

As a result of the first bound, with probability at least 1 − n−1, the density ratio w∗(·;−γn) is feasible for
the sample problem (30) with γ = 0. In addition, the second bound implies a lower bound for ∆̃(0), namely,

∆̂iso(R;Ba,b) = ∆̃(0) ≥ ∆(−γn)− γn. (32)

On the other hand, denote GBa,b
= {w ≥ 0 : a ≤ w ≤ b, w ∈ Ciso

⪯ }. For the maximizer ŵ(·; 0), we have∣∣∣∣ 1n∑
i≤n

ŵ(Xi, 0)− EP [ŵ(X, 0)]

∣∣∣∣ ≤ sup
w∈GBa,b

∣∣∣∣(En − EP )[w(X)]

∣∣∣∣,∣∣∣∣ 1n∑
i≤n

ŵ(Xi, 0)R(Xi)− EP [ŵ(X, 0)R(X)]

∣∣∣∣ ≤ sup
w∈GBa,b

∣∣∣∣(En − EP )[w(X)R(X)]

∣∣∣∣.
By the uniform law of large numbers (e.g., Theorem 4.10 in Wainwright (2019)), with probability at least
1− n−1,

sup
w∈GBa,b

∣∣∣∣(En − EP )[w(X)]

∣∣∣∣ ≤ C2

√
log n

n
+ C3Rn(GBa,b

) =: ε(1)n ,

and similarly,

sup
w∈GBa,b

∣∣∣∣(En − EP )[w(X)R(X)]

∣∣∣∣ ≤ C2

√
log n

n
+ C3Rn({w ·R | w ∈ GBa,b

}),

where Rn(G) is the empirical Rademacher complexity of the function class G, and C2, C3 are universal con-
stants. Moreover, as R is non-negative and BR-bounded, by Ledoux-Talagrand contraction lemma (Ledoux
and Talagrand (2013) Theorem 4.12) with ϕi(t) = R(Xi)t, we have

Rn({w ·R : w ∈ G}) ≤ BR · Rn(G).

Hence, we have

sup
w∈GBa,b

∣∣∣∣(En − EP )[w(X)R(X)]

∣∣∣∣ ≤ C2

√
log n

n
+ C3BRRn(GBa,b

) =: ε(2)n .

We denote εn := max{ε(1)n , ε
(2)
n }.

Therefore, the sample maximizer ŵ(·; 0) is feasible for the population problem (31) with γ = εn. In
addition, we have

∆(εn) ≥ ∆̃(0)− εn.

Combining the pieces above, we conclude that

−{∆(0)−∆(−γn)} − γn ≤ ∆̃(0)−∆(0) ≤ {∆(εn)−∆(0)}+ εn (33)

holds with probability at least 1− 2n−1.
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Step 2: Perturbation analysis. In view of (33), our goal boils down to controlling the terms ∆(0) −
∆(−γn) and ∆(εn) − ∆(0). This calls for the stability analysis of the population problem (31), which is
supplied in the following lemma.

Lemma C.2. For any ε > 0 and γ ≤ (b− 1)/2, we have

∆(ε)−∆(0) ≤ q∗0ε,

∆(0)−∆(−γ) ≤ q∗−(b−1)/2γ,

where q∗γ = qR

(
b−1−γ
b−a

)
and qR is the quantile function of R#P .

Step 3: Combining pieces. When n is sufficiently large, we have γn ≤ (b− 1)/2. Hence we can combine
Lemma C.2 with (33) to obtain∣∣∣∣∆̂iso(R;Ba,b)−∆iso(R;Ba,b)

∣∣∣∣ = ∣∣∣∣∆̃(0)−∆(0)

∣∣∣∣ ≤ max
{(

1 + q∗−(b−1)/2

)
γn, (1 + q∗0) εn

}
.

Recalling the definitions of εn and γn, we complete the proof.

C.2.1 Explicit rate of convergence

The proof above establishes that there exists a constant C̃ > 0 such that with probability at least 1− 2n−1,∣∣∣∣∆̂iso(R;Ba,b)−∆iso(R;Ba,b)

∣∣∣∣ ≤ C̃

(√
log n

n
+Rn(GBa,b

)

)
.

However, this result is only meaningful if we can verify that Rn(GBa,b
) is indeed small in settings of interest.

To explicitly show a rate of convergence for this result, we consider the following cases.

• When d = 1, by Dudley’s theorem (Dudley, 1967), we can obtain a tighter bound Rn(GBa,b
) ≲ n−1/2

(Birgé, 1987; Chatterjee and Lafferty, 2019).

• When d ≥ 2, with a bounded domain X equipped with the componentwise order, by Han et al. (2019),
if 0 < m0 ≤ infx∈X dP (x) ≤ supx∈X dP (x) ≤M0 <∞, they have shown that

E[Rn(GBa,b
)] ≲ n−1/d.

Since GBa,b
consists of uniformly bounded functions, by McDiarmid’s inequality (McDiarmid et al.,

1989), the empirical Rademacher complexity concentrates to its mean such that

Rn(GBa,b
) ≲ n−1/2 + n−1/d ≲ n−1/d.

To sum up, for any fixed d ≥ 1, there exists constant C̃ that does not depend on n such that with probability
at least 1− 2n−1, ∣∣∣∣∆̂iso(R;Ba,b)−∆iso(R;Ba,b)

∣∣∣∣ ≤ C̃

(
1

n

)1/d

.

Combining the upper bound above with the result in Theorem 4.1, we obtain∣∣∣∣∆̂iso(r;Ba,b)−∆iso(R;Ba,b)

∣∣∣∣ ≲ n−1/max{d,2}.
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C.2.2 Proof of Lemma C.1

Suppose ∆[a,b](γ) is attained at w̃ ∈ Ciso
⪯ in the interior of the feasible set, i.e.

EP [w̃(X)] < 1 + γ, a ≤ w̃ ≤ b.

Then, let wη = (w̃ + η) ∧ b, which satisfies that EP [wη(X)] = 1 + γ and

EP [wη(X)R(X)]− EP [R(X)]−∆(γ) = η · EP [R(X)1{w̃(X) < b}] > 0.

This draws the contradiction. Thus ∆[a,b](γ) is attained on the boundary of the feasible set and particularly,
when γ = 0, we have ∆iso(R;Ba,b) = ∆[a,b](0).

C.2.3 Proof of Lemma C.2

Recall that Fπ(R) and qπ(R) denote the cumulative density function and the quantile function of (π(R))#P ,
respectively. The maximizer of (31) takes the form

w∗(x, γ) = (a− η∗γ) · 1 {[π(R)](x) < qγ}+ (b− η∗γ) · 1 {[π(R)](x) > qγ}+ η∗γ ,

where we define qγ = qπ(R)(t
∗
γ),

t∗γ = inf

{
t ∈ range(Fπ(R)) : t ≥

b− 1− γ

b− a

}
, and η∗γ = a+

(b− a)t∗γ − (b− 1− γ)

P
(
R(X) = qγ

) .

Note that we have t∗0 ≥ t∗γ and q0 ≥ qγ by definition. Then, we can show that

∆(γ) = aEP

[
[π(R)](X)

]
+ (b− a)E

[
[π(R)](X) · 1 {[π(R)](X) > qγ}

]
+ qγ(b− a)t∗γ − qγ(b− 1− γ).

Thus, for any a− 1 < γ < b− 1, it holds that

∆(γ)−∆(0) = (b− a)E
[
[π(R)](X) · 1 {qγ < [π(R)](X) ≤ q0}

]
+ (b− a)(qγt

∗
γ − q0t

∗) + (q0 − qγ)(b− 1) + qγγ

≤ (b− a)q0(t
∗ − t∗γ) + (b− a)(qγt

∗
γ − q0t

∗) + (q0 − qγ)(b− 1) + qγγ

= (q0 − qγ)
[
b− 1− (b− a)t∗γ

]
+ qγγ

≤ q0γ.

The last inequality results from the fact that t∗γ ≥ (b− 1− γ)/(b− a). Similarly, we have the bound

∆(0)−∆(−γ) = (b− a)E
[
[π(R)](X) · 1 {q0 < [π(R)](X) ≤ q−γ}

]
+ (b− a)(q0t

∗ − q−γt
∗
−γ) + (q−γ − q0)(b− 1) + q−γγ

≤ q−γγ.

When γ < (b− 1)/2, we have q−γ ≤ q−(b−1)/2, which completes the proof.

C.3 Proof of Theorem 4.2 with B = Bf,ρ

Our proof in the case with B = Bf,ρ follows a similar route as that with B = Ba,b. To begin with, we define

∆(ρ) := ∆iso(R;Bf,ρ) = sup
w≥0

EP [w(X)R(X)]− EP [R(X)]

subject to EP [w(X)] = 1, 0 ≤ w ≤ Ω,

EP [f(w(X))] ≤ ρ, w ∈ Ciso
⪯ , (34)
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where we write ρ as an argument of ∆(·) to help stability analysis later on.
In addition, we define the relaxed optimization problem in the sample space:

∆̃(γ, ρ) := max
w≥0

1

n

∑
i≤n

w(Xi)R(Xi)−
1

n

∑
i≤n

r(Xi, Yi)

subject to
1

n

∑
i≤n

w(Xi) ≤ 1 + γ, 0 ≤ w ≤ Ω,

1

n

∑
i≤n

f(w(Xi)) ≤ ρ, w ∈ Ciso
⪯ . (35)

When we replace the inequality 1
n

∑
i≤n w(Xi) ≤ 1 + γ in the constraints with equality, we denote the

resulting optimal value ∆̃∗(γ, ρ). Similarly, we consider a relaxed optimization problem in the population
level:

∆(γ, ρ) := sup
w≥0

EP [w(X)R(X)]− EP [R(X)]

subject to EP [w(X)] ≤ 1 + γ, 0 ≤ w ≤ Ω,

EP [f(w(X))] ≤ ρ, w ∈ Ciso
⪯ . (36)

Also, we denote the optimal value to be ∆∗(γ, ρ) when we replace the inequality EP [w(X)] ≤ 1 + γ with
equality.

Lemma C.3. For −1 < γ ≤ 0, we have

∆∗(γ, ρ) = ∆(γ, ρ), ∆̃∗(γ, ρ) = ∆̃(γ, ρ).

In particular, we have

∆iso(R;Bf,ρ) = ∆(0, ρ) and ∆̂iso(R;Bf,ρ) = ∆̃(0, ρ).

Step 1: Bounding the deviation. Denote the maximizer of (36) by w∗(·; γ, ρ) and maximizer of (35)
by ŵ(·; γ, ρ). By Hoeffding’s inequality, there exists a universal constant C̃1 such that with probability at
least 1− n−1, ∣∣∣∣ 1n∑

i≤n

w∗(Xi; 0, ρ)− EP [w∗(X; 0, ρ)]

∣∣∣∣ ≤ C1

√
log n

n
=: γn,

∣∣∣∣ 1n∑
i≤n

f(w∗(Xi; 0, ρ))− EP [f(w∗(X; 0, ρ))]

∣∣∣∣ ≤ C1

√
log n

n
,

∣∣∣∣ 1n∑
i≤n

w∗(Xi; 0, ρ)R(Xi)− EP [w∗(X; 0, ρ)R(X)]

∣∣∣∣ ≤ C1

√
log n

n
.

As a result, with probability at least 1 − n−1, the maximizer w∗(·;−γn, ρ − γn) is feasible for the sample
problem (35) with γ = 0, and hence

∆̃(0, ρ) ≥ ∆(−γn, ρ− γn)− γn.

On the other hand, define G1 = {w ≥ 0 : w ∈ Ciso
⪯ , w ∈ [0,Ω]} and Gf,2 = {f ◦ w | w ∈ G1}. Since we

assume f is bounded on [0,Ω], we further have Gf,2 ⊂ {f ◦ w : w ∈ Ciso
⪯ , f ◦ w ∈ [0,Ω]}. For the maximizer
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ŵ(X; 0, ρ), we have ∣∣∣∣EP [ŵ(X, 0)]−
1

n

∑
i≤n

ŵ(Xi, 0)

∣∣∣∣ ≤ sup
w∈G1

∣∣∣∣(En − EP )[w(X)]

∣∣∣∣,∣∣∣∣ 1n∑
i≤n

f(ŵ(Xi, 0))− EP [f(ŵ(X, 0))]

∣∣∣∣ ≤ sup
w∈G1

∣∣∣∣(En − EP )[f(w(X))]

∣∣∣∣,∣∣∣∣ 1n∑
i≤n

ŵ(Xi, 0)R(Xi)− EP [ŵ(X, 0)R(X)]

∣∣∣∣ ≤ BR sup
w∈G1

∣∣∣∣(En − EP )[w(X)]

∣∣∣∣,
where the last inequality is based on Ledoux-Talagrand contraction lemma (Ledoux and Talagrand (2013)
Theorem 4.12).

Moreover, with probability at least 1− n−1, we have

sup
w∈G1

∣∣∣∣(En − EP )[w(X)]

∣∣∣∣ ≤ C2

{√
log n

n
+Rn(G1)

}
=: εn,

sup
w∈G1

∣∣∣∣(En − EP )[f(w(X))]

∣∣∣∣ ≤ C3

{√
log n

n
+Rn(Gf,2)

}
=: ε̃n.

where C2, C3 are universal constants and Rn(G1), Rn(Gf,2) are the empirical Rademacher complexities of
G1 and Gf,2, respectively.

Denote t∗f = argmin
t∈[0,Ω]

f(t). We have the decomposition

f(t) = f(t) · 1{f(t) ≥ t∗f}+ f(t) · 1{f(t) < t∗f} =: f1 + f2,

where both f1 and −f2 are nondecreasing. Then, for any g = f ◦ w ∈ Gf,2, we have the decomposition
g = f1 ◦ w + f2 ◦ w, where f1 ◦ w ∈ Ciso

⪯ , −f2 ◦ w ∈ Ciso
⪯ , and both functions are uniformly bounded

within [−Bf , Bf ]. Recall the notation GBf,ρ
= {w : w ∈ Ciso

⪯ , w ∈ [−Ω ∨ Bf ,Ω ∨ Bf ]}. Hence, we have
Gf,2 ⊆ GBf,ρ

−GBf,ρ
and by the property of the Rademacher complexity, we obtain Rn(G1) ≤ Rn(GBf,ρ

) and
Rn(Gf,2) ≤ 2Rn(GBf,ρ

), which implies that there exists a constant C4 such that

max{εn, ε̃n} ≤ C4

{√
log n

n
+Rn(GBf,ρ

)

}
.

Therefore, the maximizer ŵ(X; 0, ρ) is feasible for the population problem (36) with γ = εn and ρ+ ε̃n,
and we have the upper bound for ∆̃(0, ρ):

∆(εn, ρ+ ε̃n) ≥ ∆̃(0, ρ)− εn.

Combining the pieces above, we obtain

− {∆(0, ρ)−∆(−γn, ρ− γn)} − γn

≤ ∆̃(0, ρ)−∆(0, ρ) ≤ {∆(εn, ρ+ ε̃n)−∆(0, ρ)}+ εn. (37)

It remains to characterize the stability of ∆(γ, ρ) w.r.t. both γ and ρ.

Step 2: Perturbation analysis. According to (37), bounding the estimation error bound boilis down to
bounding ∆(0, ρ)−∆(−γn, ρ− γn) and ∆(εn, ρ+ ε̃n)−∆(0, ρ) respectively, for which we have the following
lemma on the stability analysis of the population problem (36).
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Lemma C.4. Assume supt∈[0,Ω] |f(t)| <∞. For any ε > 0, there exists 0 < λ̄ <∞, 0 < Lf <∞ and δ > 0

such that when |γ| < δ, it holds that

∆(ε, ρ+ ε)−∆(0, ρ) ≤ λ̄ε+
(
BR + λ̄

∣∣f ′(1)∣∣) ε,
∆(0, ρ)−∆(−γ, ρ− γ) ≤ λ̄γ +

(
BR + λ̄Lf

)
γ.

Step 3: Combining pieces. Based on Lemma C.4, bounds in (37) can be written as∣∣∣∣∆̃(0, ρ)−∆(0, ρ)

∣∣∣∣ ≤ max

{(
1 +BR + λ̄Lf + λ̄

)
γn,

(
1 +BR + λ̄

∣∣f ′(1)∣∣) εn + λ̄ε̃n

}
.

Recall the definitions of εn and γn to finish the proof.

C.3.1 Explicit rate of convergence

We first present the following lemma to ensure the boundedness of the maximizer of ∆iso(R;Bf,ρ).

Lemma C.5. Assume R is BR-bounded and convex function f is differentiable with f(1) = 0. The excess
risk ∆iso(R;Bf,ρ) is attained at w∗iso

f,ρ ∈ Bf,ρ ∩ Ciso
⪯ with ∥w∗iso

f,ρ (X)∥∞ <∞ almost surely.

Then, when 0 < Ω < ∥w∗iso
f,ρ ∥ and n is sufficiently large, there exist a constant C̃ = C̃(ρ) > 0 such that with

probability at least 1− 2n−1,∣∣∣∣∆̂iso(R;Bf,ρ)−∆iso(R;Bf,ρ)

∣∣∣∣ ≤ C̃

(√
log n

n
+Rn(GBf,ρ

)

)
.

To derive the explicit rate of convergence, it suffices to bound the empirical Rademacher complexity.
Since GBf,ρ

is contained in the bounded isotonic function class equipped with the componentwise order, then
when X is bounded, similar to the proof of the previous theorem in Section C.2.1, we have

Rn(GBf,ρ
) ≲

(
1

n

)1/d

.

Moreover, when d = 1, by Dudley’s theorem (Dudley, 1967), we can obtain a tighter bound Rn(GBf,ρ
) ≲

n−1/2 (Birgé, 1987; Chatterjee and Lafferty, 2019). To sum up, for any fixed d ≥ 1, there exists a constant
C̃ that does not depend on n such that with probability at least 1− 2n−1,∣∣∣∣∆̂iso(R;Bf,ρ)−∆iso(R;Bf,ρ)

∣∣∣∣ ≤ C̃

(
1

n

)1/d

.

Combining the upper bound above with the result in Theorem 4.1, we obtain∣∣∣∣∆̂iso(r;Bf,ρ)−∆iso(R;Bf,ρ)

∣∣∣∣ ≲ n−1/max{d,2}.

C.3.2 Proof of Lemma C.3

Without loss of generality, we assume t = 1 is the minimizer of f7. With −1 < γ ≤ 0, recall the KKT
condition of problem (36):

−[π(R)](x) + λf ′(w∗(x, γ, ρ)) + ν = 0,

λ (EP [f(w
∗(X, γ, ρ))]− ρ) = 0,

ν (EP [w
∗(X, γ, ρ)]− 1− γ) = 0.

7To see this, for any c ∈ R and f̃(t) = f(t)− c(t− 1), we have ∆iso(R;Bf,ρ) = ∆iso(R;B
f̃ ,ρ

). Specifically, the equality holds

for f̃(t) = f(t)− f ′(1)(t− 1)

37



Suppose EP [w
∗(X, γ, ρ)] < 1 + γ, then ν = 0, which implies that

λf ′(w(x)) = [π(R)](x).

Denote G = {w ≥ 0 : EP [f(w(X))] ≤ ρ}, which is a convex set.

Case 1. If λ = 0, the optimal density ratio w∗(x, γ, ρ) is an interior point of G and there exists η > 0 such
that w̃(x, γ, ρ) = w∗(x, γ, ρ) + η ∈ G. In the meantime,

EP

[
w̃(X, γ, ρ)[π(R)](X)

]
= EP

[
w∗(X, γ, ρ)[π(R)](X)

]
+ ηEP

[
[π(R)](X)

]
> EP

[
w∗(X, γ, ρ)[π(R)](X)

]
,

which draws the contradiction.

Case 2. If λ > 0, we have f ′(w∗(x, γ, ρ)) ∝ [π(R)](x). Since π(R) ≥ 0 and f ′(t) ≥ 0 if and only if t ≥ 1,
we obtain w∗(x, γ, ρ) ≥ 1. However, when γ ≤ 0, as EP [w

∗(X, γ, ρ)] < 1+ γ ≤ 1, it draws the contradiction.

C.3.3 Proof of Lemma C.4

We prove Lemma C.4 via analyzing the dual formulation of the worst-case excess risk.

Analysis of the dual formulation. Recall that the optimization problem (36) has the dual formulation:

∆(γ, ρ) = inf
λ≥0, ν

{
λρ+ ν(1 + γ) + EP

[
w(X)([π(R)](X)− ν)− λf(w(X))

]}
, (38)

where
w(x) = P[0,Ω]

{
(f ′)−1

(
[π(R)](x)− ν

λ

)}
.

Denote λ∗(γ, ρ) and ν∗(γ, ρ) as the minimizers and

H(λ, ν; ρ, γ) = λρ+ ν(1 + γ) + EP

[
w(X)([π(R)](X)− ν)− λf(w(X))

]
.

Then, with any ε > 0 and ε̃ > 0, we have

∆(ε, ρ+ ε̃)−∆(0, ρ) ≤ H(λ∗(0, ρ), ν∗(0, ρ); ρ+ ε̃, ε)−H(λ∗(0, ρ), ν∗(0, ρ); ρ, 0) (39)

≤ λ∗(0, ρ)ε̃+ ν∗(0, ρ)ε. (40)

Similarly, for any γ > 0, we have

∆(0, ρ)−∆(−γ, ρ− γ) ≤ λ∗(−γ, ρ− γ)γ + ν∗(−γ, ρ− γ)γ.

Our goal is to derive upper bounds for λ∗(γ, ρ) and ν∗(γ, ρ). Note that ν∗(γ, ρ) is the parameter for
standardization, thus to guarantee EP [w

∗(X; γ, ρ)] = 1 + γ, we have

(f ′)−1

(
BR − ν∗(γ, ρ)

λ∗(γ, ρ)

)
≥ sup

x∈X
w∗(X; γ, ρ) ≥ 1 + γ.

This implies that

ν∗(γ, ρ) ≤ BR − λ∗(γ, ρ)f ′(1 + γ), (41)

then it suffices to show that λ∗(γ, ρ) is finite. Moreover, as (f ′)−1(−ν∗(γ, ρ)/λ∗(γ, ρ)) ≤ minx∈X w∗(X; γ, ρ) ≤
1, we have ν∗(γ, ρ) ≥ −λ∗(γ, ρ)f ′(1).
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Bounding the dual minimizers. Denote ϕ(ξ) = P[0,Ω]

{
(f ′)−1(ξ)

}
and ψ(ξ) = ξϕ(ξ) − f(ϕ(ξ)). Recall

the dual formulation

∆(γ, ρ) = inf
λ≥0, ν

{
λρ+ ν(1 + γ) + λ · EP

[
ψ

(
[π(R)](X)− ν

λ

)]}
.

Denote ν = ν(λ) as the solution to EP [ϕ(ξ)] = 1 + γ and

L(λ, ρ, γ) = λρ+ ν(λ)(1 + γ) + λ · EP

[
ψ

(
[π(R)](X)− ν(λ)

λ

)]
.

Suppose the optimal dual variable λ∗(γ, ρ) is unbounded. Due to the fact that R is bounded and

EP

[
ϕ

(
[π(R)](X)− ν(λ)

λ

)]
= 1 + γ,

we have ν(λ) = −c · λ as λ → ∞, which satisfies that (f ′)−1(c) = 1 + γ, which yields c = f ′(1 + γ). Then,
we can verify that

EP

{
f

(
ϕ

(
[π(R)](X)− ν(λ)

λ

))}
→ f(1 + γ), as λ→ +∞,

which implies that

∂

∂λ
L(λ, ρ, γ) = ρ− EP

{
f

(
ϕ

(
[π(R)](X)− ν(λ)

λ

))}
→ ρ− f(1 + γ), as λ→ +∞.

For any δ ∈ (0,min{Ω−1, 1}/2), since f is convex and supt∈[0,Ω] |f(t)| <∞, we define Lf = sup|t−1|<δ |f ′(t)| <
∞. For any δ′ < min{δ, ρ/(2Lf )}, as f(1 + γ) < Lfδ

′ < ρ/2 when |γ| < δ′, there exists λ̄ > 0 such that
when λ > λ̄, we have ∂λL(λ, ρ, γ) ≥ ρ/2, which draws the contradiction to the assumption that the dual
problem is minimized at λ∗(γ, ρ) = ∞. This implies that both λ∗(0, ρ) and λ∗(−γ, ρ − γ) can be bounded
from above by λ̄ when 0 < γ < δ′.

Combining pieces. Consequently, with Lf = sup|t−1|≤δ |f ′(t)| <∞ and 0 < γ < δ′ with δ′ < min{δ, ρ/(2Lf )},
by (39) and (41), it holds that

∆(ε, ρ+ ε̃)−∆(0, ρ) ≤ λ̄ε̃+
(
BR + λ̄

∣∣f ′(1)∣∣) ε,
∆(0, ρ)−∆(−γ, ρ− γ) ≤ λ̄γ +

(
BR + λ̄Lf

)
γ,

which completes the proof.

C.3.4 Proof of Lemma C.5

Recall the dual formulation. There exists a pair (λ∗, ν∗) such that

w∗iso
f,ρ (x) = P[0,+∞)

{
(f ′)−1

(
[π(R)](x)− ν∗

λ∗

)}
.

According to the proof of Lemma C.4, we have already shown that λ∗ ≤ λ̄ < ∞. Since −λ∗f ′(1) ≤ ν∗ ≤
BR − f ′(1)λ∗ as is shown in the proof of Lemma C.4, if λ < λ∗ < λ̄, there exists ν̄ <∞ such that |ν∗| ≤ ν̄,
thus it holds that

∥w∗iso
f,ρ ∥∞ ≤ (f ′)−1

(
BR + ν̄

λ

)
<∞.
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Then, it remains to prove that λ∗ ̸= 0. To see this, consider the KKT condition:

−[π(R)](x) + λ∗f ′(w∗iso
f,ρ (x)) + ν∗ = 0,

λ∗
(
EP [f(w

∗iso
f,ρ (X))]− ρ

)
= 0,

ν∗
(
EP [w

∗iso
f,ρ (X)]− 1

)
= 0.

If λ∗ = 0, we have [π(R)](X) = ν∗ P -almost surely, which implies that w∗iso
f,ρ (X) = 1 P -almost surely, in

which case w∗iso
f,ρ is also bounded. Combining pieces above, we have shown that ∥w∗iso

f,ρ ∥∞ <∞.

C.4 Hardness of consistent estimation without isotonic constraints

We should note that the concentration bound in Theorem 4.1 with the presence of the noisy risk is not
possible without the isotonic constraint. To see this, consider a counterexample with the risk function
R(x) = 1/2, which leads to ∆(R;B) = 0, and the noisy risk ri = Bern(R(Xi)) = Bern(1/2) independently.
We consider the bound-constraint Ba,b with 0 ≤ a ≤ 1 ≤ b. To estimate the excess risk without the isotonic
constraint, consider the optimization problem

∆̂(r;Ba,b) = max
w≥0

1

n

∑
i≤n

w(Xi)ri −
1

n

∑
i≤n

ri subject to EP̂n
[w(X)] = 1, w#P̂n ∈ Ba,b,

for which we have the following proposition.

Proposition C.6. Assume R(X) = 1/2 P -almost surely and min{1 − a, b − 1} > 0. Then, there exists a
strictly positive constant C > 0 depending on a and b such that

∆̂(r;Ba,b)− 0 ≥ C > 0 with probability at least 1− n−1.

We defer the proof to Section C.4.1.

C.4.1 Proof of Proposition C.6

We follow the setup with ri ∼ Bern(R(Xi)) = Bern(1/2) independently. Consider the bounds constraint
B = Ba,b. The estimated excess takes the form

∆̂(r;Ba,b) = max
w≥0

1

n

∑
i≤n

w(Xi)ri −
1

n

∑
i≤n

R(Xi) subject to EP̂n
[w(X)] = 1, w#P̂n ∈ Ba,b.

According to Section 2, the worst-case weights take the form wi = w(Xi) = c1 · 1{ri = 0} + c2 · 1{ri = 1},
where a ≤ c1 ≤ 1 ≤ c2 ≤ b. Moreover, by the KKT condition, at least one of c1 = a and c2 = b holds. Then,
the estimated excess risk can be expressed as

∆̂(r;Ba,b) =
c2
n

∑
i≤n

ri −
1

n

∑
i≤n

R(Xi).

Since n−1
∑

i≤n wi = 1, we have
1

n

∑
i≤n

(1− ri) =
c2 − 1

c2 − c1
.

In the meantime, by Hoeffding’s inequality, there exists a universal constant c̃ > 0 such that with probability
at least 1− n−1,∣∣∣∣ 1n∑

i≤n

ri −
1

n

∑
i≤n

R(Xi)

∣∣∣∣ ≤ c̃

2

√
log n

n
,

∣∣∣∣ 1n∑
i≤n

R(Xi)− RP [R(X)]

∣∣∣∣ ≤ c̃

2

√
log n

n
,
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which implies

c2 − 1 ≥

(
EP [1−R(X)]− c̃

√
log n

n

)
·min{1− a, b− 1}.

If n is large enough such that min{(EP [1−R(X)])2, (EP [R(X)])2}n ≥ (1− κ)−2c̃2 log n, where 1/2 ≤ κ < 1

satisfies that

κ+ κ2EP [1−R(X)] ·min{1− a, b− 1} > 1 + c, (42)

for some 0 < c < EP [1−R(X)] ·min{1− a, b− 1}. Then, with probability at least 1− n−1, we have

c2 ≥ 1 + κEP [1−R(X)] ·min{1− a, b− 1}.

Consequently, for the excess risk, with probability at least 1− n−1, we have

∆̂(r;Ba,b) =
c2 − 1

n

∑
i≤n

ri +
1

n

∑
i≤n

(ri −R(Xi))

= (c2 − 1)EP [R(X)] +
c2 − 1

n

∑
i≤n

(ri − EP [R(X)]) +
1

n

∑
i≤n

(ri −R(Xi))

≥ (c2 − 1)EP [R(X)]− c2 · c̃
√

log n

n

≥ (κc2 − 1)EP [R(X)] ≥ c · EP [R(X)] =
c

2
,

where the last inequality holds according to (42). Choosing C = c/2 completes the proof.

D Additional simulation results

D.1 iso-DRL under componentwise order

In Section 5, we mainly focused on the partial order with respect to w0(x). In this section, to demonstrate
the effect of various choices of the partial (pre)order, we further consider an alternative choice of the partial
(pre)order: the componentwise order where

x ⪯ x′ if and only if xj ≤ x′j , for all j ∈ [m],

where we set m = 5 < d = 20. Let iso-DRL-comp denote the CP interval with calibrated target level
α′
iso = max{0, α− ∆̃iso}, where

∆̃iso =max
1

n

∑
i∈D3

wir̃
iso
i − 1

n

∑
i∈D3

ri

subject to
1

n

∑
i∈D3

wi = 1,
1

n

∑
i∈D3

wi logwi ≤ ρ, 0 ≤ wi ≤ Ω, (43)

and (r̃i)i∈D3 is the isotonic projection of (ri)i∈D3 with respect to the componentwise order.
We follow the exactly same settings with Section 5.1 with npre = 50 and vary ρ in [0.002, 6]. From

Figure 7 and 8, each of the coverage rate and average interval width of iso-DRL-comp lies between that of
DRL and iso-DRL-w0, which indicates that additional constraints will relieve the conservativeness of DRL,
but only a proper choice of the partial (pre)order will lead to desired performance close to the oracle weighted
CP.
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Figure 7: Results with varying ρ in the well-specified setting. (See Appendix D.1 for details.)
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Figure 8: Results with varying ρ in the misspecified setting. (See Appendix D.1 for details.)

D.2 Wine quality simulation: a proxy of the oracle KL-divergence

In this section, we examine the choice of ρ in the wine quality data experiment from Section 5.2. In a real
data setting, the true KL divergence, DKL (Ptarget∥P ), is of course unknown, so we need to use a data-driven
choice of ρ in order to implement a DRL procedure (with or without an isotonic constraint).

As is shown in Section 5.2, we denote ŵkde as the density ratio obtained by kernel density estimation
(Gaussian kernel with bandwidth 0.125). Accordingly, let dQ̂kde = ŵkde · dP be an estimate of Ptarget. With
a subsample {Xi}i≤K drawn the group of white wine (data distribution P ), a reasonable value for ρ̂ (i.e.,
an estimate of the true divergence ρ between the distributions P and Ptarget) can be calculated by

ρ̂ =
1

K

∑
i≤K

ŵkde(Xi) log (ŵkde(Xi))

≈ EP

{
dQ̂kde

dP
log

(
dQ̂kde

dP

)}
= DKL

(
Q̂kde∥P

)
.

To show the range for values of ρ̂, we repeatedly fit KDE on the 50% samples from each group (white
and red wine groups respectively). Figure 9 shows the histogram of ρ̂ with 1000 repetitions, of which the
median is approximately 0.859.
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