Learning to Answer from Correct Demonstrations

Cong Ma
Department of Statistics, UChicago

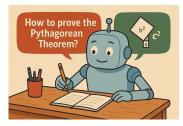
BDAI Conference, University of Chicago, Oct. 2025

Nirmit Joshi

Siddharth Bhandari

Nati Srebro

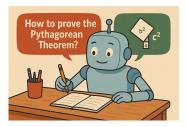
Answering questions is a big part of our life



(a) Math Problem Solving

(b) Coding

Answering questions is a big part of our life



I'll try to code!

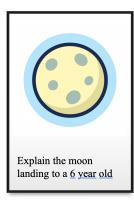
(a) Math Problem Solving

(b) Coding

- Feature: many equally good answers
- **Challenge:** *not* to reproduce all correct responses, but to generate *a single good answer*

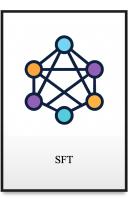
Learning from correct demonstrations

A timely example: supervised fine-tuning in large language models



A prompt is sampled from the prompt dataset

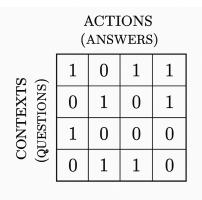
A labeler demonstrates the desired output



Fine-tune GPT-3 with supervised learning

Formulation via contextual bandits

- Question = context $x \in \mathcal{X}$
- Candidate response = action $y \in \mathcal{Y}$
- Rewards $r_*(x,y) \in \{0,1\}$ indicating correct or not



Learning goal

Suppose we observe $\{(x_i, y_i)\}_{1 \leq i \leq m}$ with

$$x_i \sim \mathcal{D}$$
, and $y_i \sim \pi_*(\cdot \mid x_i)$,

where $\pi_*(\cdot \mid x)$ is supported on the set of optimal actions for the context x, given by

$$\sigma_*(x) := \{ y \in \mathcal{Y} : r_*(x, y) = 1 \}$$

Goal: learn policy $\widehat{\pi}$ with small loss

$$L_{\mathcal{D},\sigma_*}(\widehat{\pi}) = \mathbb{E}_{x \sim \mathcal{D}, \widehat{y} \sim \widehat{\pi}(\cdot|x)} \left[\mathbb{1} \{ \widehat{y} \notin \sigma_*(x) \} \right]$$

Existing approach based on policy class assumption

Policy class assumption

A common approach to solve this problem is to assume that

$$\pi_* \in \Pi$$
 for some small $\Pi \subseteq (\Delta(\mathcal{Y}))^{\mathcal{X}}$

This motivates maximum likelihood estimator (MLE):

$$\widehat{\pi}_{\text{MLE}} \in \arg\max_{\pi \in \Pi} \prod_{i=1}^{m} \pi(y_i \mid x_i)$$

This is exactly how people solve supervised fine-tuning

Theory and practice of MLE

Proposition 1 (JGBKMS '25, adapted from Foster et al. '24)

Assume $\pi_* \in \Pi$. With high probability, any $\widehat{\pi}_{\mathrm{MLE}}$ obeys

$$L_{\mathcal{D}, \sigma_{\pi_*}}(\widehat{\pi}_{\mathrm{MLE}}) \lesssim \frac{\log(|\Pi|)}{m}$$

- **Pro:** minimax optimal for finite Π
- ullet Con: small $\log |\Pi|$ is often unrealistic

An alternative: Reward class assumption

Reward class assumption

We assume the underlying reward model class is small, i.e.,

$$\sigma_* \in \mathcal{S}$$
 for some small $\mathcal{S} \subseteq (2^{\mathcal{Y}})^{\mathcal{X}}$

ACTIONS (ANSWERS)

CONTEXTS (QUESTIONS)

(11118 (1218)				
,	1	0	1	1
	0	1	0	1
	1	0	0	0
	0	1	1	0

Comparisons between two assumptions

Given policy class Π , it is natural to define its associated reward class

$$S_{\Pi} := \bigcup_{\pi \in \Pi} \{ \sigma_{\pi} \mid \sigma_{\pi}(x) = \operatorname{supp} \pi(\cdot \mid x), \forall x \in \mathcal{X} \}$$

Similarly, given reward class S, define its associated policy class

$$\Pi_{\mathcal{S}} := \bigcup_{\sigma \in \mathcal{S}} \Pi_{\sigma}$$
, where $\Pi_{\sigma} := \{ \pi \mid \operatorname{supp} \pi(\cdot \mid x) \subseteq \sigma(x) \,, \, \forall x \in \mathcal{X} \}$.

Comparisons between two assumptions

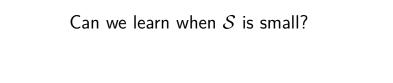
Given policy class Π , it is natural to define its associated reward class

$$S_{\Pi} := \bigcup_{\pi \in \Pi} \{ \sigma_{\pi} \mid \sigma_{\pi}(x) = \operatorname{supp} \pi(\cdot \mid x), \forall x \in \mathcal{X} \}$$

Similarly, given reward class S, define its associated policy class

$$\Pi_{\mathcal{S}} := \bigcup_{\sigma \in \mathcal{S}} \Pi_{\sigma}, \text{ where } \Pi_{\sigma} := \left\{ \pi \mid \operatorname{supp} \pi(\cdot \mid x) \subseteq \sigma(x) \,,\, \forall x \in \mathcal{X} \right\}.$$

Our assumption is weaker: $|S_{\Pi}| \leq |\Pi|$ while $|\Pi_{S}| \gg |S|$



Failure of MLE over $\Pi_{\mathcal{S}}$

Recall the associated policy class

$$\Pi_{\mathcal{S}} = \bigcup_{\sigma \in \mathcal{S}} \Pi_{\sigma}, \text{ where } \Pi_{\sigma} := \left\{ \pi \mid \operatorname{supp} \pi(\cdot \mid x) \subseteq \sigma(x) \,,\, \forall x \in \mathcal{X} \right\}.$$

It is natural to run MLE over Π_S :

$$\widehat{\pi}_{\text{MLE}} \in \arg\max_{\pi \in \Pi_{\mathcal{S}}} \prod_{i=1}^{m} \pi(y_i \mid x_i)$$

Failure of MLE over $\Pi_{\mathcal{S}}$

Recall the associated policy class

$$\Pi_{\mathcal{S}} = \bigcup_{\sigma \in \mathcal{S}} \Pi_{\sigma}, \text{ where } \Pi_{\sigma} := \left\{ \pi \mid \operatorname{supp} \pi(\cdot \mid x) \subseteq \sigma(x), \, \forall x \in \mathcal{X} \right\}.$$

It is natural to run MLE over $\Pi_{\mathcal{S}}$:

$$\widehat{\pi}_{\text{MLE}} \in \arg\max_{\pi \in \Pi_{\mathcal{S}}} \prod_{i=1}^{m} \pi(y_i \mid x_i)$$

This fails: it overfits training data and does not generalize to unseen

Failure instance: $\sigma_*(x) = \sigma_0(x) = \{0\}$, $\sigma_{01}(x) = \{0,1\}$ with large missing mass

Failure of MLE over $\Pi_{\mathsf{unif},\mathcal{S}}$

We may consider a restricted policy class $\Pi_{\mathsf{unif},\mathcal{S}}$ with size $|\mathcal{S}|$:

$$\Pi_{\mathsf{unif},\mathcal{S}} := \{\pi_{\mathsf{unif},\sigma} : \sigma \in \mathcal{S}\} \ \ \mathsf{where} \ \ \pi_{\mathsf{unif},\sigma}(\cdot \mid x) = \mathrm{Unif}(\sigma(x))$$

and run MIE

$$\widehat{\pi}_{\text{MLE}} \in \arg \max_{\pi \in \Pi_{\text{unif}, \mathcal{S}}} \prod_{i=1}^{m} \pi(y_i \mid x_i)$$

Failure of MLE over $\Pi_{\mathsf{unif},\mathcal{S}}$

We may consider a restricted policy class $\Pi_{\mathsf{unif},\mathcal{S}}$ with size $|\mathcal{S}|$:

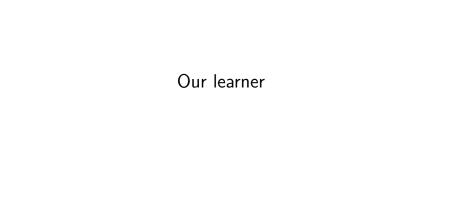
$$\Pi_{\mathsf{unif},\mathcal{S}} := \{\pi_{\mathsf{unif},\sigma} : \sigma \in \mathcal{S}\} \text{ where } \pi_{\mathsf{unif},\sigma}(\cdot \mid x) = \mathrm{Unif}(\sigma(x))$$

and run MLE

$$\widehat{\pi}_{\mathrm{MLE}} \in \arg\max_{\pi \in \Pi_{\mathsf{unif},\mathcal{S}}} \ \prod_{i=1}^{m} \pi(y_i \mid x_i)$$

This fails: $\Pi_{\mathsf{unif},\mathcal{S}}$ is misspecified in that π_* may not be in $\Pi_{\mathsf{unif},\mathcal{S}}$

Failure instance: $\sigma_1(x)=\{y^\star,a_1,\ldots,a_{s-1}\},\sigma_\star(x)=\sigma_2(x)=\{y^\star,b_1,\ldots,b_s\}$ and you only observe y^\star



Online learning from correct demonstrations

Adversary chooses $\sigma_* \in \mathcal{S}$. In each round t:

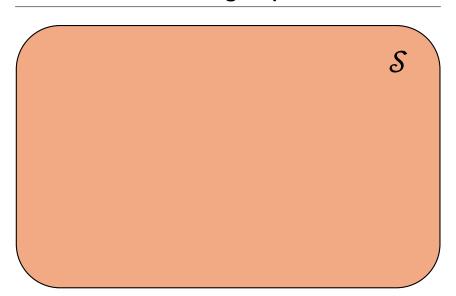
- Adversary chooses $x_t \in \mathcal{X}$
- Learner predicts $\widehat{y}_t \in \mathcal{Y}$
- Adversary shows some $y_t \in \sigma_*(x_t)$

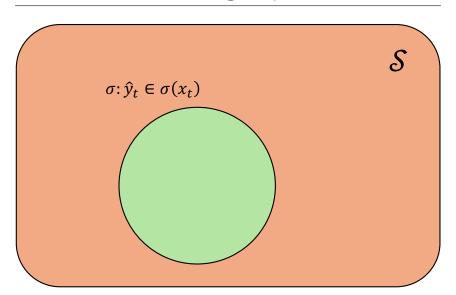
Online learning from correct demonstrations

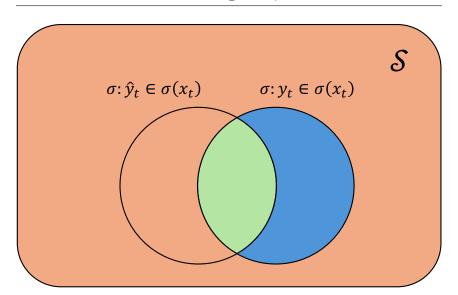
Adversary chooses $\sigma_* \in \mathcal{S}$. In each round t:

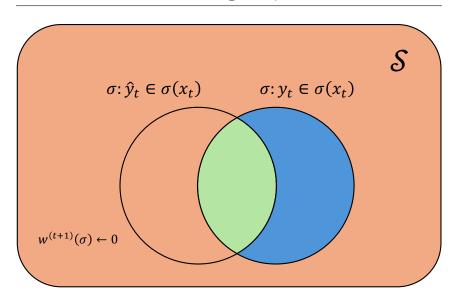
- Adversary chooses $x_t \in \mathcal{X}$
- Learner predicts $\widehat{y}_t \in \mathcal{Y}$
- Adversary shows some $y_t \in \sigma_*(x_t)$

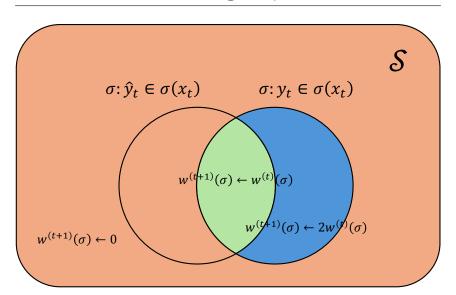
Challenge: learner does not know \widehat{y}_t was a mistake or not











Online mistake bounds

Theorem 1 (JGBKMS '25)

Our learner makes at most $\log_2 |\mathcal{S}|$ mistakes.

Online mistake bounds

Theorem 1 (JGBKMS '25)

Our learner makes at most $log_2 |S|$ mistakes.

Key proof idea:

- overall weight is decreasing
- ullet mistake inflates $w(\sigma_*)$ by 2

Statistical guarantees

Theorem 2 (JGBKMS '25)

With high probability, online-batch-conversion estimator $\widehat{\pi}$ obeys

$$L_{\mathcal{D},\sigma_*}(\widehat{\pi}) \lesssim \frac{\log |\mathcal{S}|}{m}$$

Features:

- No dependence on $|\mathcal{X}|, |\mathcal{Y}|$, or $\sup_x |\sigma_*(x)|$
- ullet Logarithmic dependence on $|\mathcal{S}|$, minimax optimal

Learning from suboptimal demonstrator

So far, we have assumed that π_* is optimal, i.e., $L_{\mathcal{D},\sigma_*}(\pi_*)=0$

What if π_* is suboptimal?

Learning from suboptimal demonstrator

So far, we have assumed that π_* is optimal, i.e., $L_{\mathcal{D},\sigma_*}(\pi_*)=0$

What if π_* is suboptimal?

Theorem 3 (JGBKMS '25)

A modification of our estimator $\widehat{\pi}$ obeys: for all $\sigma \in \mathcal{S}$

$$L_{\mathcal{D},\sigma}(\widehat{\pi}) \le 5 L_{\mathcal{D},\sigma}(\pi_*) + O\left(\frac{\log_2 |\mathcal{S}|}{m}\right)$$

• Takeaway: we can compete with arbitrary demonstrator

A notable extension

pass@k error minimization

We check if the correct answer appears in the top-k guesses:

$$L_{\mathcal{D},\sigma_*}(\widehat{\mu}) = \mathbb{E}_{x \sim \mathcal{D}}, \mathbb{E}_{\boldsymbol{y} = (y^{(1)},\dots,y^{(k)}) \sim \widehat{\mu}(\cdot|x)} \left[\mathbb{1}\{y^{(i)} \notin \sigma_*(x); \forall i \in [k]\} \right].$$

pass@k error minimization

We check if the correct answer appears in the top-k guesses:

$$L_{\mathcal{D},\sigma_*}(\widehat{\mu}) = \mathbb{E}_{x \sim \mathcal{D}}, \mathbb{E}_{\boldsymbol{y} = (y^{(1)},\dots,y^{(k)}) \sim \widehat{\mu}(\cdot|x)} \left[\mathbb{1}\{y^{(i)} \notin \sigma_*(x); \forall i \in [k]\} \right].$$

Theorem 4 (JGBKMS '25)

Variant of our algorithm achieves $\frac{\log_{k+1}(|\mathcal{S}|)}{m}$ error.

• Takeaway: pass@k gives you \log_{k+1} gain

Conclusions

Summary:

- Learning to answer from correct demonstrations
- An alternative assumption: low-complexity reward model class
- Optimal learner
- ullet Extend to pass@k and suboptimal demonstrators

Moving forward:

- Infinite S?
- Computationally efficient methods?

N. Joshi, G. Li, S. Bhandari, S. Kasiviswanathan, C. Ma, N. Srebro, "Learning to Answer from Correct Demonstrations," forthcoming, 2025