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Answering questions is a big part of our life

(a) Math Problem Solving (b) Coding

• Feature: many equally good answers
• Challenge: not to reproduce all correct responses, but to

generate a single good answer
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Learning from correct demonstrations

A timely example: supervised fine-tuning in large language models
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Formulation via contextual bandits
• Question = context x ∈ X
• Candidate response = action y ∈ Y
• Rewards r∗(x, y) ∈ {0, 1} indicating correct or not

Learning to Answer from Correct Demonstrations 5/ 22



Learning goal

Suppose we observe {(xi, yi)}1≤i≤m with

xi ∼ D, and yi ∼ π∗(· | xi),

where π∗(· | x) is supported on the set of optimal actions for the
context x, given by

σ∗(x) := {y ∈ Y : r∗(x, y) = 1}

Goal: learn policy π̂ with small loss

LD,σ∗(π̂) = Ex∼D,ŷ∼π̂(·|x) [1{ŷ /∈ σ∗(x)}]
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Existing approach based on policy class assumption

Policy class assumption

A common approach to solve this problem is to assume that

π∗ ∈ Π for some small Π ⊆ (∆(Y))X

This motivates maximum likelihood estimator (MLE):

π̂MLE ∈ arg max
π∈Π

m∏
i=1

π(yi | xi)

This is exactly how people solve supervised fine-tuning
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Theory and practice of MLE

Proposition 1 (JGBKMS ’25, adapted from Foster et al. ’24)
Assume π∗ ∈ Π. With high probability, any π̂MLE obeys

LD,σπ∗ (π̂MLE) ≲ log(|Π|)
m

• Pro: minimax optimal for finite Π
• Con: small log |Π| is often unrealistic
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An alternative: Reward class assumption

Reward class assumption

We assume the underlying reward model class is small, i.e.,

σ∗ ∈ S for some small S ⊆ (2Y)X
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Comparisons between two assumptions

Given policy class Π, it is natural to define its associated reward class

SΠ :=
⋃

π∈Π
{σπ | σπ(x) = supp π(· | x), ∀x ∈ X }

Similarly, given reward class S, define its associated policy class

ΠS :=
⋃

σ∈S
Πσ, where Πσ := {π | supp π(· | x) ⊆ σ(x) , ∀x ∈ X } .

Our assumption is weaker: |SΠ| ≤ |Π| while |ΠS | ≫ |S|
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Can we learn when S is small?



Failure of MLE over ΠS

Recall the associated policy class

ΠS =
⋃

σ∈S
Πσ, where Πσ := {π | supp π(· | x) ⊆ σ(x) , ∀x ∈ X } .

It is natural to run MLE over ΠS :

π̂MLE ∈ arg max
π∈ΠS

m∏
i=1

π(yi | xi)

This fails: it overfits training data and does not generalize to unseen

Failure instance: σ∗(x) = σ0(x) = {0}, σ01(x) = {0, 1} with large missing mass
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Failure of MLE over Πunif,S

We may consider a restricted policy class Πunif,S with size |S|:

Πunif,S := {πunif,σ : σ ∈ S} where πunif,σ(· | x) = Unif(σ(x))

and run MLE
π̂MLE ∈ arg max

π∈Πunif,S

m∏
i=1

π(yi | xi)

This fails: Πunif,S is misspecified in that π∗ may not be in Πunif,S

Failure instance: σ1(x) = {y⋆, a1, . . . , as−1}, σ∗(x) = σ2(x) = {y⋆, b1, . . . , bs}
and you only observe y⋆

Learning to Answer from Correct Demonstrations 13/ 22



Failure of MLE over Πunif,S

We may consider a restricted policy class Πunif,S with size |S|:

Πunif,S := {πunif,σ : σ ∈ S} where πunif,σ(· | x) = Unif(σ(x))

and run MLE
π̂MLE ∈ arg max

π∈Πunif,S

m∏
i=1

π(yi | xi)

This fails: Πunif,S is misspecified in that π∗ may not be in Πunif,S

Failure instance: σ1(x) = {y⋆, a1, . . . , as−1}, σ∗(x) = σ2(x) = {y⋆, b1, . . . , bs}
and you only observe y⋆

Learning to Answer from Correct Demonstrations 13/ 22



Our learner



Online learning from correct demonstrations

Adversary chooses σ∗ ∈ S. In each round t:
• Adversary chooses xt ∈ X
• Learner predicts ŷt ∈ Y
• Adversary shows some yt ∈ σ∗(xt)

Challenge: learner does not know ŷt was a mistake or not
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Online weight update

𝒮
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Online mistake bounds

Theorem 1 (JGBKMS ’25)
Our learner makes at most log2 |S| mistakes.

Key proof idea:
• overall weight is decreasing
• mistake inflates w(σ∗) by 2

Learning to Answer from Correct Demonstrations 17/ 22



Online mistake bounds

Theorem 1 (JGBKMS ’25)
Our learner makes at most log2 |S| mistakes.

Key proof idea:
• overall weight is decreasing
• mistake inflates w(σ∗) by 2

Learning to Answer from Correct Demonstrations 17/ 22



Statistical guarantees

Theorem 2 (JGBKMS ’25)
With high probability, online-batch-conversion estimator π̂ obeys

LD,σ∗(π̂) ≲
log |S|

m

Features:
• No dependence on |X |, |Y|, or supx |σ∗(x)|
• Logarithmic dependence on |S|, minimax optimal
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Learning from suboptimal demonstrator

So far, we have assumed that π∗ is optimal, i.e., LD,σ∗(π∗) = 0

What if π∗ is suboptimal?

Theorem 3 (JGBKMS ’25)
A modification of our estimator π̂ obeys: for all σ ∈ S

LD,σ(π̂) ≤ 5 LD,σ(π∗) + O

( log2 |S|
m

)

• Takeaway: we can compete with arbitrary demonstrator
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A notable extension



pass@k error minimization

We check if the correct answer appears in the top-k guesses:

LD,σ∗(µ̂) = Ex∼D,Ey=(y(1),...,y(k))∼µ̂(·|x)

[
1{y(i) /∈ σ∗(x); ∀i ∈ [k]}

]
.

Theorem 4 (JGBKMS ’25)

Variant of our algorithm achieves logk+1(|S|)
m error.

• Takeaway: pass@k gives you logk+1 gain
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Conclusions

Summary:
• Learning to answer from correct demonstrations
• An alternative assumption: low-complexity reward model class
• Optimal learner
• Extend to pass@k and suboptimal demonstrators

Moving forward:
• Infinite S?
• Computationally efficient methods?

N. Joshi, G. Li, S. Bhandari, S. Kasiviswanathan, C. Ma, N. Srebro, “Learning to
Answer from Correct Demonstrations,” forthcoming, 2025
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