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From fMRI to functional connectivity
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Controlled experimental settings

Each hand position was presented for 3.5 s. This is a task requiring
higher order motor coordination and motor planning and in the
FRB description, it was noted that this task should activate the
frontal and parietal areas.

In the OM task subjects were watching an image including a
central cross in the middle surrounded by 10 black boxes. Subjects
were instructed to concentrate on the central cross and saccade to
the surrounding box if it changed white for a moment. After this,
they should have returned their gaze immediately to the central
cross. In each ‘on’ block there were 20 fixation trials and 20 target
trials. There were four fixations of each of the following durations:
800 ms, 1000 ms, 1200 ms, 1400 ms, and 1600. These were
randomized and each were followed by a 200 ms target trial. This
way the task was supposed to activate the visual system and the
occipital lobe.

Finally, in the VG task, the images of certain objects were

Credit: Juha Pajula et al.
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Naturalistic settings

Adapted from Louise Freeman’s blogpost
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Naturalistic settings

Adapted from Louise Freeman's blogpost

Challenge: noise due to intrinsic cognitive processes.
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From intra- to inter-subject correlations

Intra-subject correlations Inter-subject correlations
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From intra- to inter-subject correlations

Intra-subject correlations Inter-subject correlations

Modeling assumption: individual noise is uncorrelated across subjects.

Problem: marginal dependence influenced by confounding effects! |

Inter-Subject Analysis 6/ 31



Confounding effects

e X and Y are marginally dependent.
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Confounding effects

e X and Y are marginally dependent.

@ @ e XY | Z

Correlation coefficient is weak criterion for measuring dependence.

Solution: conditional dependence. J
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This work: a formal theory for Inter-Subject Analysis!



Modeling framework for ISA

X =(X1,...,Xq)" ~N(0,2%).

o precision matrix * = (¥*)~! = (ij;)-

G1,Gs: disjoint subsets of [d].

o |G| =d;.
o ‘gg| :dg Szdfdl.

Xg, and Xg,: features of two different subjects.

o Xg,: voxels in subject A.
o Xg,: voxels in subject B.

Data X € R"*4.

o each row represents a measurement of two subjects.
o n measurements in total.
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Gaussian graphical models

Fact 1
For any j and k, X; 1L Xy | X\(jxy if and only if wj, = 0.
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Goal of ISA

Partition covariance and precision matrices into

Z* * Q* *
* 1 12 * 1 12
. lzg 23]’ . [%T QJ
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e ()7,: driven by common stimuli.
e Q7 and Q3: influenced by individual cognitive processes.

e When n < d, minimal assumption is that 27, is sparse.
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Goal of ISA

Partition covariance and precision matrices into

Z* * Q* *
* 1 12 * 1 12
. lzg 23]’ . [%T QJ

e ()7,: driven by common stimuli.
e Q7 and Q3: influenced by individual cognitive processes.

e When n < d, minimal assumption is that 27, is sparse.

Goal: estimate (infer) sparse 2}, under (possibly dense) Q] and €23 |
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How to estimate (27,7



Candidate strategy 1: estimate (0*

Penalized maximum likelihood estimator for 2* (GLASSO):

0= argming Tr(Qf]) —log |+ A1
——

negative log-likelihood  sparsity penalty

where Y is sample covariance matrix.
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Candidate strategy 2: estimate (2},

Column-wise estimator for €27

e Neighborhood selection: regress X; on X\ (3.

e CLIME:

Q.; = argming Bl
subject to  ||S3 — jlloc < A
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Candidate strategy 3: estimate ()],

A naive decomposition Q = Qp + Qo:

g [ Q| [ o] [o o
QL Q 0 Q| |9, o
Qp Q0
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0- O Qo _ | 0+ 0 O
QL 0 | TleL, ol

Qb Q0

—  L,(Q0,0) =Tr(Qo%) + Tr(QpS)  —log|Qo + Qpl.
N—_———

independent of Qp
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Candidate strategy 3: estimate ()],

A naive decomposition Q = Qp + Qo:

0- O Qo _ | 0+ 0 O
QL 0 | TleL, ol

Qb Q0

—  L£.(Q0,0p) = Tr(QW) + Tr(QpE)  —log|Qo + Qpl.
N—_———

independent of Qp

—  L£,(Q0) = Tr(Q03) — log Qo + Qp|.

Problem: estimating 2p is also hard. )
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Our strategy: an alternative parameter

Key parameter: ©* = Q* — (3%))71,  where 3%, = diag(Z3, X3). |
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Our strategy: an alternative parameter

Key parameter: ©* = Q* — (3%))71,  where 3%, = diag(Z3, X3). |

More concretely,

-1 -1
o [T Th| T _[m o] _[er e
DS 0 x| T lew e

Why ©%?

12 = Q. )
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O©* is also sparse

Fact 2 J

If Q35 is s-sparse, then ©* is at most (2s% + 25s)-sparse.
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STRINGS estimator

Under new decomposition Q2 = © + 7!, we have

L,(0,55Y) = Tr[(© + Z5HT] — log [© + X351
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STRINGS estimator

Under new decomposition Q2 = © + 7!, we have
L,(0,55Y) = Tr[(© + Z5HT] — log [© + X351
Separate © from Y7,

L,(0,55Y) =Tr(0%) + Tr(25'E) — 2log L5 —log |ZpOp + Tp| .
N— —

independent of © plug-in estimator

Sparse edge esTimatoR for Intense Nuisance GraphS:

O = argming Tr(0%) — 1og |SpO%p + Sp| + A||O]]1.1.
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Estimation consistency

Theorem 3

Suppose ||Qy]lo < s. Under sample size condition s*\/logd/n = O(1)
and some regularity conditions, if A < \/logd/n, with high probability

~ 21og d ~ logd
H@—e*\on(\/S zg ) andH@—G)*HLl:(’)(sQM Oi )
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Estimation consistency

Theorem 3

Suppose ||Qy]lo < s. Under sample size condition s*\/logd/n = O(1)
and some regularity conditions, if A < \/logd/n, with high probability

~ 21og d ~ logd
H@—e*\on(\/S zg ) andH@—G)*HLl:(’)(sQM Oi )

e Rate of convergence: intrinsic to this method.
o recall |©*[|p < 2.
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What about inference?



A general strategy: de-biasing estimators

Consider a general regularized estimator

~

B = argming Ln(B) + AlBI -
—— ~——
negative log-likelihood  regularizer
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A general strategy: de-biasing estimators

Consider a general regularized estimator

~

B = argming Ln(B) + AlBI -
—— ~——
negative log-likelihood  regularizer

A de-biased estimator takes following form:

gY=p8-— M VL,(B).
bias correction matrix
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Rationale behind general strategy

De-biased estimator: 3% = 3 — MV L, (B). J

Taylor expansion:

Vi (BY = ) & — aMVLL(BY) —ValMV2L,(87) — I)(B - 5Y).

asymptotically normal op(1)
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How to de-bias ©

De-biased estimator:

éuzé—M<§@§D+i—iD),

counterpart of Vﬁn(@)

where M is bias correction operator.
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where M is bias correction operator.
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Decomposition of o

~

O" — ©* = Leading + Remainder:

Leading = — M[(2 — £9)(I 4+ ©*S%) — (I — 2*0%)(Sp — £H)|P .
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Decomposition of o

~

O" — ©* = Leading + Remainder:
Remainder = — M(S — ©*)0*(Ep — &%) P T

—(MS —1)(® —0"(EpP" — 1)
—(ME-1)(©-0*) - (0—-0"EpP —1).
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Decomposition of o

~

O" — ©* = Leading + Remainder:
Remainder = — M(S — ©*)0*(Ep — &%) P T

—(MS —1)(® —0"(EpP" — 1)
—(ME-1)(©-0*) - (0—-0"EpP —1).

Problem: cannot estimate Q* and (X%)~! due to lack of sparsity. J
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Constrained optimization is sufficient

Remainder = — M (L — *)0*(Sp — %) PT
— (M- 1)(© —6*)(ZpP" —1)
—(ME-1)(6—-6*)—(0—-0"EpP" —1).

Key: M and P need not to be estimates of Q* and (X%,) L.
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Constrained optimization is sufficient

Remainder = — M (L — *)0*(Sp — %) PT
— (M- 1)(© —6*)(ZpP" —1)
—(ME-1)(6—-6*)—(0—-0"EpP" —1).

Key: M and P need not to be estimates of Q* and (X%,) L.

Instead, we can solve following optimization problems:

find M find P
st |ME —1I|lmax < XN. st |[PEp — Ilmax < N.

Inter-Subject Analysis 25/ 31



Sample splitting

~—~

~

M) P(Ep)

Leading:—\]\{/[@—E*)(H—@*EB)—(I—Z*@*)@D—Z}))] P .
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Sample splitting
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Not asymptotically normal since M and P are dependent on .
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Sample splitting

~~
M) P(Ep)

Leading:—\]\4/[@—2*)([4—@*23)—(I—Z*@*)@D—Z}))] P .

Not asymptotically normal since M and P are dependent on .

Trick: sample splitting. J

Inter-Subject Analysis 26/ 31



Sample splitting

Leading:—\]\4/[@—2*)([—1—@*2’5)—(I—E*@*)(ip—zj‘j)] 5; .
M) P(3)

Not asymptotically normal since M and P are dependent on .

Trick: sample splitting. J
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“Untangle and Chord”
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Asymptotic normality

Theorem 4

Suppose conditions in Theorem 3 hold. Further assume
|27l = O(1). Let ©" = (0};,) be de-biased estimator with

XN < \/logd/n. Under scaling condition s*logd//n = o(1),
Vi (8 = 05) /&~ N(0,1).
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Asymptotic normality

Theorem 4

Suppose conditions in Theorem 3 hold. Further assume
191 = O(1). Let ©" = (0%,) be de-biased estimator with

XN < \/logd/n. Under scaling condition s*logd//n = o(1),
Vi (8 = 05) /&~ N(0,1).

e Stronger scaling condition: s?logd/n = o(1) for estimation.

e Removal of sparsity condition: at the expense of ||2*||; = O(1).
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Synthetic data

Quantiles of Input Sample
o

3 I I I I I )
-3 -2 -1 0 1 2 3

Standard Normal Quantiles

Vi (0% —07,) /€
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Real data experiments
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Summary

e A formal theory for Inter-Subject Analysis motivated by fMRI.
o studied estimation and inference of precision matrix in absence of
sparsity.

e Future directions:

o lower bound for the estimation error?
o general inferential strategy: no sample splitting? no £;-norm
assumption?

Paper:

“Inter-Subject Analysis: Inferring Sparse Interactions with Dense Intra-Graphs”,

Cong Ma, Junwei Lu, Han Liu.
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