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ABSTRACT
Different from traditional intra-subject analysis, the goal of inter-subject analysis (ISA) is to explore the
dependency structure between different subjects with the intra-subject dependency as nuisance. ISA has
important applications in neuroscience to study the functional connectivity between brain regions under
natural stimuli. We propose a modeling framework for ISA that is based on Gaussian graphical models, under
which ISA can be converted to the problem of estimation and inference of a partial Gaussian graphical
model. The main statistical challenge is that we do not impose sparsity constraints on the whole precision
matrix and we only assume the inter-subject part is sparse. For estimation, we propose to estimate an
alternative parameter to get around the nonsparse issue and it can achieve asymptotic consistency even
if the intra-subject dependency is dense. For inference, we propose an “untangle and chord” procedure to
de-bias our estimator. It is valid without the sparsity assumption on the inverse Hessian of the log-likelihood
function. This inferential method is general and can be applied to many other statistical problems, thus it
is of independent theoretical interest. Numerical experiments on both simulated and brain imaging data
validate our methods and theory. Supplementary materials for this article are available online.
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1. Introduction

Inter-subject analysis (ISA) refers to the inference of the depen-
dency structures between different subjects with intra-subject
dependencies as nuisance. The subject may be a pathway con-
sisting of an assembly of genes or a group of stocks from the
same sector in financial markets. Often the dependency struc-
ture between different subjects is of scientific interest while the
dependencies within each subject are complicated and hard to
infer. The goal of ISA is to explore the inter-subject dependen-
cies with intra-subject dependencies as nuisance.

1.1. Motivating Example

To motivate the use of ISA, we consider the functional mag-
netic resonance imaging (fMRI) data analysis. fMRI provides
scientists a noninvasive way to observe the neural activity in
the human brain (Lindquist 2008). Traditionally, fMRI mea-
surements are obtained under highly controlled experimen-
tal settings where subjects are asked to perform identical and
demanding attention tasks. Recent studies show that neuronal
responses and brain activities are more reliable under natural-
istic stimuli, for instance, watching a movie episode or listening
to an audiobook (Mechler et al. 1998; Yao et al. 2007; Belitski
et al. 2008). This motivates the use of fMRI under more nat-
uralistic settings (Zacks et al. 2001; Hartley et al. 2003; Bartels
and Zeki 2004). However, this brings substantial noise to the
fMRI measurements since individual cognitive processes that
are not related to the ongoing stimuli cannot be constrained or
removed as in controlled research settings (Hasson et al. 2004;
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Simony et al. 2016). Conventional intra-subject analysis which
computes voxel-by-voxel correlations in the same subject can be
influenced by such noise and fail to detect the stimulus-induced
correlations.

Hasson et al. (2004) introduced inter-subject correlations
(ISC) to partially resolve this problem. Instead of computing the
intra-subject correlations, ISC calculates the correlation coef-
ficients of corresponding voxels across different experimental
subjects (see Figure 1). It is based on the assumption that indi-
vidual variations are uncorrelated across subjects and high ISC
indicate stimulus related activations. Although ISC can isolate
the individual noise, as a measure of marginal dependence,
it fails to eliminate the confounding effects of other factors
(Horwitz and Rapoport 1988; Lee et al. 2011). Conditional
dependence has long been studied to remedy this problem in
both statistics and biology community (Marrelec et al. 2006;
Huang et al. 2010; Varoquaux et al. 2012).

1.2. Modeling Framework

In this article, we propose a new modeling framework named
ISA to infer the conditional dependency between different sub-
jects. Formally, let X = (X1, . . . , Xd)

� ∼ N(0, �∗) be a
d-dimensional Gaussian random vector with precision matrix
�∗ = (ω∗

jk). LetG1 andG2 be two disjoint subsets of {1, 2, . . . , d}
with cardinality |G1| = d1 and |G2| = d2:=d − d1. We
use XG1 and XG2 to denote the corresponding subvectors of X
and they represent features of two different subjects. We use
�∗

1 , �∗
2 , and �∗

12 to denote the covariance within XG1 , within
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Figure 1. (a) The intra-subject correlations where the correlations among voxels in the same subject are calculated. (b) The inter-subject correlations where the correlations
of voxels are computed across subjects.

Figure 2. (a) A Gaussian graphical model with two subjects, where each color represents a subject. It can be seen that the inter-subject connections are sparse while the
connections within each subject are dense. (b) The heatmap of the precision matrix of the Gaussian graphical model. (c) The heatmap of the corresponding (�∗

G)−1. (d)

The heatmap of �∗ = �∗ − (�∗
G)−1. As can be seen, �∗ is sparse even if both �∗

1 and �∗
2 are dense.

XG2 , and between XG1 and XG2 , respectively. The submatrices
�∗

1, �∗
2, and �∗

12 are defined similarly. It is well known that
Xj and Xk are conditionally independent given the remaining
variables if and only if ω∗

jk = 0. Our modeling assumption is that
�∗

12 purely represents the dependency driven by the common
stimuli while �∗

1 and �∗
2 can be influenced by the individual

cognitive process. Hence, we are willing to assume that �∗
12 is

sparse while reluctant to put any sparsity constraint on �∗
1 or

�∗
2. The main statistical challenge we address in this article is to

obtain estimation consistency and valid inference of �∗
12 under

nonsparse nuisance parameters �∗
1 and �∗

2.

1.3. Contributions

There are two major contributions of this article.
Our first contribution is a new estimator for �∗

12 when
the precision matrix �∗ is not sparse. The idea is to find an
alternative sparse matrix to estimate. The candidate we propose
is �∗ := �∗ − (�∗

G)−1, where �∗
G = diag(�∗

1 , �∗
2 ) and

diag(A, B) denotes the block diagonal matrix whose diagonals
are A and B. The key observation is that if �∗

12 is sparse, then
�∗ is also sparse. More precisely, we have ||�∗||0 ≤ 2s2 + 2s
whenever ||�∗

12||0 ≤ s, where ||A||0 counts the number of
nonzero entries in A.1 This observation holds true even if both
�∗

1 and �∗
2 are dense. We illustrate this phenomenon using a

numerical example in Figure 2. Following this observation, we
can reparameterize the precision matrix using �∗ = �∗ +

1See Appendix in the supplementary materials for a proof of this observation.

(�∗
G)−1, in which �∗ contains the parameter of interest (as

�∗’s off-diagonal block �∗
12 = �∗

12) and (�∗
G)−1 is a nuisance

parameter. We then propose to estimate �∗
12 by minimizing

an �1 regularized pseudo-likelihood with respect to �. This
estimator, which is named sparse edge estimator for intense
nuisance graphs (STRINGS) achieves consistency under mild
conditions.

Our second contribution is to propose a general “untangle
and chord” procedure to de-bias high-dimensional estimators
when the inverse Hessian of the log-likelihood function is not
sparse. In general, a de-biased estimator β̂u takes the following
form:

β̂u = β̂ − M∇Ln(β̂),

where β̂ is the regularized estimator for the parameter of interest
β∗, M is a bias correction matrix, and Ln denotes the negative
log-likelihood function. By the Taylor expansion ofLn(β̂) at the
true parameter β∗, we have
√

n · (β̂u − β∗) ≈ −√
nM∇Ln(β

∗) − √
n[M∇2Ln(β

∗) − I]
× (β̂ − β∗).

Clearly, the leading term
√

nM∇Ln(β∗) is asymptotically
normal under mild conditions. And if the remainder term√

n[M∇2Ln(β∗) − I](β̂ − β∗) converges to 0 in probability,
we can conclude that β̂u is asymptotically normal. One way to
achieve this goal is to let M be a consistent estimator of the
inverse of ∇2Ln(β∗). This is why previous inferential methods
require the sparsity assumption on the inverse Hessian.
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It will be shown that the Hessian in ISA is not necessar-
ily sparse. To get around this issue, two crucial observations
are needed. First, it suffices to use constrained optimization
to control the statistical error of M∇2Ln(β∗) − I. Second, to
prevent M from tangling with ∇Ln(β∗) and sabotaging the
asymptotic normality of the leading term, we can split the data
into two parts: the untangle step estimates the parameter on
the first split and the chord step constructs M using the second
split. We show that the “untangle and chord” procedure de-
biases the STRINGS estimator and we can construct valid tests
and confidence intervals based on the de-biased estimator. The
“untangle and chord” strategy is general and can be applied
to many other high-dimensional problems without the sparsity
assumption on the inverse Hessian.

1.4. Related Work

Estimators for the precision matrix including the maximum
likelihood estimator and the column-wise estimator have been
considered in Yuan and Lin (2007), Banerjee, Ghaoui, and
d’Aspremont (2008), Rothman et al. (2008), Friedman, Hastie,
and Tibshirani (2008), Ravikumar et al. (2011), Meinshausen
and Bühlmann (2006), Yuan (2010), and Cai, Liu, and Luo
(2011). All of them require the sparsity of the whole precision
matrix. Hence, they are not applicable to ISA.

Inferential methods based on inverting KKT conditions
(van de Geer et al. 2014; Zhang and Zhang 2014) and decorre-
lated score functions (Ning and Liu 2017) have been extended to
Gaussian graphical models (Gu et al. 2015; Jankova and van de
Geer 2015). They all require the inverse Hessian of the log-
likelihood function to be sparse and hence cannot be applied
in our setting. One exception is the inference for the high-
dimensional linear model proposed by Javanmard and Monta-
nari (2014). Their result heavily depends on the special structure
of the linear model. First, the design matrix is independent
of the noise and second, the inverse Hessian matrix is simply
the inverse covariance of the design, which is irrelevant to the
regression parameters. Their method is difficult to extend to
general estimators.

Efforts have also been made to relax the sparsity assumption
on the precision matrix in Gaussian graphical model estimation.
Yuan and Zhang (2014) proposed a decoupling approach to
estimate �∗

12. However, their method requires at least one of the
diagonal blocks �∗

1 or �∗
2 to be sparse. And it is no longer valid

if both of them are dense. Liu et al. (2016) shared the similar
goal with ours. They proposed a density ratio framework to
estimate the dependency between two groups of variables. First,
their estimation theory does not apply to Gaussian distributions
due to the unboundedness of the density ratio. Second, their
procedure relies on approximating the normalization function
using two sample U-statistics which are complicated and com-
putationally expensive. Compared with the above works, our
work not only considers the estimation consistency but also
proposes valid procedures to assess uncertainty in the high-
dimensional setting.

1.5. Notation

The following notations are used throughout the article. For any
n ∈ N we use the shorthand notation [n] = {1, . . . , n}. For a

vector v = (v1, . . . , vd)
� ∈ R

d, let ||v||q = (
∑d

i=1 vq
i )

1/q, 1 ≤
q < ∞. Furthermore, let ||v||∞ = maxj |vj|. For a matrix
A = (Ajk) ∈ R

m×n, we define supp(A) = {(j, k)|Ajk �=
0}. We use Aj∗ and A∗k to denote the jth row and kth col-
umn of A, respectively. We use ||A||q = sup||x||q=1 ||Ax||q to
denote the induced �q-norm of a matrix. In particular, ||A||1 =
max1≤k≤n

∑m
j=1 |Ajk|, which is the maximum absolute column

sum of the matrix A. ||A||2 is the largest singular value of
A. ||A||∞ = max1≤j≤m

∑n
k=1 |Ajk|, which is the maximum

absolute row sum of the matrix A. We also use ||A||max =
maxjk |Ajk|, ||A||1,1 = ∑

jk |Ajk|, and ||A||F = (
∑

jk A2
jk)

1/2 to
denote the �max-, �1,1-, and �F-norms of the matrix A. λmin(A)

is used to denote the minimum eigenvalue of the matrix A
and |A| is used to denote the determinant of A. We use 	(x)

to denote the cumulative distribution function of a standard
normal random variable. For a sequence of random variables
Xn, we write Xn � X, for some random variable X, if Xn
converges in distribution to X.

2. The STRINGS Estimator

In this section, we present the STRINGS estimator for the inter-
subject precision matrix �∗

12. The basic idea is to use the maxi-
mum likelihood principle. Given a data matrixX ∈ R

n×d, where
rows of X represent iid samples from a Gaussian distribution
with mean 0 and covariance �∗, the negative log-likelihood for
the precision matrix is given by

L(�) = Tr(��̂) − log |�|, (1)
where �̂ = (1/n) · X�

X is the sample covariance matrix.
Since our focus is on estimating the inter-subject dependency

�∗
12, a naive reparameterization of the precision matrix is �∗ =

�∗
D +�∗

O, where �∗
D is the block diagonal matrix corresponding

to XG1 and XG2 , that is, �∗
D = diag(�∗

1, �∗
2). And �∗

O is
the off-diagonal part involving �∗

12 and �∗�
12 . Under such a

reparameterization, we can reformulate (1) as
L(�O, �D) = Tr[(�O + �D)�̂] − log |�O + �D|. (2)

Adopting the maximum likelihood principle, we want to mini-
mize the negative log-likelihood (2) with respect to the param-
eter �O. Hence, we can ignore the terms independent of �O in
(2). This gives us an equivalent minimization of Tr(�O�̂) −
log |�O + �D| with respect to �O. However, the objective
function still depends on the nuisance parameter �D and it is
difficult to obtain an estimator for �D. Thus, this naive repa-
rameterization will not work.

Recall that if �∗
12 is s-sparse, then �∗ = �∗ − (�∗

G)−1 is
(2s2 + 2s)-sparse. Based on this key observation, we reparame-
terize the precision matrix using �∗ and (�∗

G)−1, in which �∗
contains the parameter of interest (as �∗

12 = �∗
12) and (�∗

G)−1

is the nuisance parameter. Under the new reparameterization
�∗ = �∗ + (�∗

G)−1, we can rewrite (1) as
L(�, �−1

G ) = Tr[(� + �−1
G )�̂] − log |� + �−1

G |. (3)
Using the fact that

log |� + �−1
G | = log |�−1

G (�G��G + �G)�−1
G |

= log |�−1
G | + log |�G��G + �G |

+ log |�−1
G |,
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we can further decompose (3) into the following form:

L(�, �−1
G ) = Tr(��̂) + Tr(�−1

G �̂) − log |�−1
G |

− log |�G��G + �G | − log |�−1
G |. (4)

Ignoring the terms independent of � in (4), we have that
minimizing (4) with respect to � is equivalent to minimizing
Tr(��̂) − log |�G��G + �G | with respect to �. Now we still
have the nuisance parameter �G . However, in this case, we can
use the naive plug-in estimator for �G , that is, �̂G which is the
block diagonal matrix of �̂ corresponding to XG1 and XG2 . This
gives us the following empirical loss function for �:

Ln(�) = Tr(��̂) − log |�̂G��̂G + �̂G |. (5)

Correspondingly, we will use L(�) = Tr(��∗) −
log |�∗

G��∗
G + �∗

G | to denote the population loss function.
Since �∗ is sparse, we further impose a sparsity penalty on the
objective function. Here we choose the �1,1 penalty, and the
STRINGS estimator has the following form

�̂ = arg minLn(�) + λ||�||1,1. (6)

Note that for the empirical loss function Ln(�) in (5) to be
convex, �̂G needs to be positive definite. Otherwise, the log-
determinant term will always be −∞. However, in the high-
dimensional regime, the naive plug-in estimator �̂G will be
rank deficient. To resolve this issue, we can perturb our plug-
in estimator with

√
log d/n · I. This perturbation trick has

also been used to solve the initialization problem in Cai, Liu,
and Luo (2011). We choose the size of the perturbation to be√

log d/n so that it will not affect the concentration property
of the estimator �̂G . Although (6) is a convex program, solving
it in high dimensions using semidefinite programming is both
time-consuming and memory-consuming. We propose a com-
putationally efficient algorithm based on alternating direction
method of multipliers (ADMM) to solve (6). The details are
deferred to Appendix Section B in the supplementary materials.

3. “Untangle and Chord” the STRINGS

In this section, we introduce our proposed method to test the
existence of certain inter-subject interaction and construct a
confidence interval for entries in �∗

12. Formally, for 1 ≤ j ≤ d1
and d1 +1 ≤ k ≤ d, we are interested in the following two types
of inferential problems:

• Confidence interval: For a particular parameter θ∗
jk, where

θ∗
jk is the (j, k)th entry of �∗, how to construct a confidence

interval for it?
• Hypothesis testing: Consider the null hypothesis H0 : θ∗

jk =
0, how to construct a valid test for H0?

To address these two types of questions, we rely on obtaining an
asymptotically normal estimator of θ∗

jk. After this, constructing
confidence intervals and testing hypotheses follow naturally.
Hence in the following we introduce our way to de-bias the
STRINGS estimator.

As we mentioned in Section 1, KKT-inversion type of meth-
ods (van de Geer et al. 2014; Zhang and Zhang 2014) cannot be

applied here since they require the inverse Hessian to be sparse.
Recall that the population loss function is given by L(�) =
Tr(��∗) − log |�∗

G��∗
G + �∗

G |. Its Hessian can be calculated
as following:

∇2L(�) = [(�∗
G� + I)−1�∗

G] ⊗ [(�∗
G� + I)−1�∗

G].
Thus, we have [∇2L(�∗)]−1 = �∗ ⊗ �∗. We can see that
the inverse Hessian can be dense since we do not impose any
assumption on �∗. Getting around with this difficulty requires
new sets of inferential tools. Rather than inverting the KKT
conditions, we propose to de-bias the STRINGS estimator in
(6) utilizing the estimating equation for �∗. Moreover, sample
splitting is adopted to achieve the desired asymptotic normality.
To see this, recall the definition of �∗ that �∗ = �∗ − (�∗

G)−1,
we can derive the following estimating equation:

�∗�∗�∗
G + �∗ − �∗

G = 0. (7)

We first present a heuristic explanation on our debiasing pro-
cedure. Based on the sample version of (7), we construct a de-
biased estimator as following

�̂u = �̂ − M(�̂�̂�̂G + �̂ − �̂G)P�, (8)

where M and P are two bias correction matrices to be specified
later. To gain the intuition why �̂u defined in (8) is an asymp-
totically normal estimator, we calculate the difference between
�̂u and �∗ as follows.

�̂u − �∗ = �̂ − �∗ − M[�̂(�̂ − �∗ + �∗)�̂G

+ �̂ − �̂G]P�

= −M(�̂�∗�̂G + �̂ − �̂G)P� + �̂ − �∗

− M�̂(�̂ − �∗)�̂GP�.

Through some algebra, we have �̂u − �∗ = Leading +
Remainder, where

Leading = −M[(�̂ − �∗)(I + �∗�∗
G)

− (I − �∗�∗)(�̂G − �∗
G)]P�, (9)

Remainder = −M(�̂ − �∗)�∗(�̂G − �∗
G)P� + �̂ − �∗

− M�̂(�̂ − �∗)�̂GP�. (10)

First, to make the Remainder term in (10) small, it requires
M�̂ ≈ I and P�̂G ≈ I. In other words, M and P should
function as the inverse of �∗ and �∗

G , respectively. Second,
regarding the Leading term, we can see that it is an empirical
process type quantity. It is asymptotically normal provided that
M and P are independent of the remaining random quantities
in (9). This motivates us to utilize sample splitting to obtain
the two bias correction matrices M and P. In all, we have
an “untangle and chord” procedure to de-bias the STRINGS
estimator. Concretely, we split the data X ∈ R

2n×d into two
parts D1 and D2 with equal number of samples. Note that here
we inflate the sample size to 2n. This is purely for simplifying
the notations. The untangle step uses the first data D1 to get an
initial STRINGS estimator �̂. The chord step utilizes the second
data D2 to obtain the bias correction matrices M and P with
desired properties, that is, M�̂ ≈ I and P�̂G ≈ I. Precisely we
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use a CLIME-type procedure to get M and P. For M ∈ R
d×d, we

solve the following convex program:

min ||M||∞ (11)

subject to ||M�̂′ − I||max ≤ λ′,

where �̂′ is the sample covariance matrix of the second sample
D2 and λ′ is the approximation error we want to achieve. �̂′ and
λ′ can be viewed as two inputs to this CLIME-type procedure.
We solve a similar convex problem to obtain P ∈ R

d×d with
different inputs and an additional block constraint:

min ||P||∞ (12)

subject to ||P�̂′
G − I||max ≤ λ′,

P = diag(P1, P2), P1 ∈ R
d1×d1 , P2 ∈ R

d2×d2 ,

where �̂′
G is the block diagonal sample covariance matrix corre-

sponding to XG1 and XG2 on the second sample D2. Notice here
we add another constraint that P needs to be a block diagonal
matrix. This is expectable since �̂′

G is a block diagonal matrix.
Given the de-biased estimator �̂u = (θ̂u

jk) in (8), we can
obtain a confidence interval for θ∗

jk and conduct hypothesis
testing on H0 : θ∗

jk = 0 under a valid estimation of the
asymptotic variance of θ̂u

jk. The asymptotic variance is involved,
and we defer the details to Section 4.2.

4. Theoretical Results

4.1. Estimation Consistency

In the next theorem, we give the convergence rate for the
STRINGS estimator in (6).

Theorem 4.1. Suppose the inter-subject dependencies
||�∗

12||0 ≤ s and hence ||�∗||0 ≤ s∗:=2s2 + 2s. Further
we assume ||�∗||max ≤ K and ||�∗||1,1 ≤ R for some absolute
constants K and R. Under the sample size condition that
s∗2√log d/n = o(1), there exists a constant C > 0 such that
for sufficiently large n, if λ = 2C

√
log d/n, with probability at

least 1 − 4d−1, we have

||�̂12 − �∗
12||F ≤ 14C

ρ2
min

√
s∗ log d

n
and

||�̂12 − �∗
12||1,1 ≤ 56C

ρ2
min

s∗
√

log d
n

,

provided that λmin(�∗) ≥ ρmin > 0.

A few remarks on the assumptions are in order. First,
||�∗

12||0 ≤ s is the main assumption for our theoretical results.
It imposes sparsity on �∗

12, that is, the dependency structure
between XG1 and XG2 is sparse. Note that we do not make any
assumption about the sparsity of the overall precision matrix �∗.
It can be rather dense. Second, ||�∗||max ≤ K and ||�∗||1,1 ≤ R
are two regularity conditions on the Gaussian graphical model.
The first specifies that the covariance between any two variables
cannot be too large. It is weaker than ||�∗||2 ≤ K since
||�∗||max ≤ ||�∗||2. This assumption can be commonly found

in literatures on covariance and precision matrix estimation
(Bickel and Levina 2008; Rothman et al. 2008). An easy con-
sequence is that ||�∗

G ||max ≤ K since �∗
G is the block diagonal

of �∗. ||�∗||1,1 ≤ R requires the inter-subject dependency has
constant sparsity. Similar conditions can be found in literatures
on differential networks (Zhao, Cai, and Li 2014).

Theorem 4.1 shares the same spirit with the convergence
results for �1 regularized maximum likelihood estimator (Roth-
man et al. 2008), that is the rate for estimating an s∗-sparse
parameter �∗ is

√
s∗ log d/n in Frobenius norm. However, there

are two things worth to be noted here. The first is that in Theo-
rem 4.1, s∗ can be replaced with any upper bound of ||�∗||0 and
the result is still valid. We know s∗ is an upper bound of ||�∗||0.
In the worst case, ||�∗||0 can be as large as s∗ and when ||�∗||0 is
smaller, the rate in Theorem 4.1 can be improved. Second, recall
that s∗ � s2, where s is the sparsity of �∗

12. Considering our goal
is to estimate �∗

12, the rate seems to be suboptimal. Especially
in the case d1 = 1, neighborhood selection (Meinshausen and
Bühlmann 2006; Yuan 2010) and CLIME (Cai, Liu, and Luo
2011) can obtain the optimal rate

√
s log d/n for the Frobenius

norm. However, as we pointed out in Section 1, these methods
cannot be applied when d1 � d2 due to the violation of the
sparsity assumption on �∗.

4.2. Asymptotic Inference

In this section, we give the limiting distribution of the de-biased
estimator in (8). The asymptotic normality result is presented
in Theorem 4.3. Based on this, we propose valid asymptotic
confidence intervals and test statistics for parameters in �∗

12.
We first state a version of asymptotic normality result which

involves population quantities.

Theorem 4.2 (Asymptotic normality). Suppose the conditions
in Theorem 4.1 hold. Further assume ||�∗||1 ≤ L for some
absolute constant L > 0. Let �̂u be the de-biased estimator
with λ′ = C′√log d/n, where C′ is a sufficiently large constant.
For any 1 ≤ j ≤ d1 and d1 + 1 ≤ k ≤ d, define the asymptotic
variance as

ξ 2
jk = (Mj∗�∗M�

j∗)[Pk∗(I + �∗
G�∗)�∗

GP�
k∗] + (Mj∗�∗

GP�
k∗)

2

− (Mj∗�∗P�
k∗)

2

− [Mj∗(I − �∗�∗)�∗
G2(I − �∗�∗)M�

j∗](Pk∗�∗
GP�

k∗),
(13)

where �∗
G2

= diag(0, �∗
2 ). Under the scaling condition

s∗ log d/
√

n = o(1), we have
√

n · (θ̂u
jk − θ∗

jk)/ξjk � N(0, 1).

Remark 4.1. Note that the asymptotic variance ξ 2
jk in (13)

depends on the be-biasing matrices M and P, which are esti-
mated from the second half of the data.

Remark 4.2. ||�∗||1 ≤ L is a milder condition than the
sparsity constraints on �∗ in the sense that �∗ can be rather
dense. And this is the case for ISA. To further understand the
essence of this assumption, we discuss connections between
λmin(�∗) ≥ ρmin and ||�∗||1 ≤ L. Since �∗ = (�∗)−1, it
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is not hard to see that λmax(�
∗) ≤ 1/ρmin. Hence, we have

maxj∈[d] ||�∗∗j||2 ≤ 1/ρmin. Here, instead of the column-wise
�2-norm boundedness, we assume that maxj∈[d] ||�∗∗j||1 ≤ L.
It is indeed stronger than the �2 one, but it is weaker than the
sparsity assumption on �∗. Moreover, as shown by the lower
bound in Cai, Liu, and Zhou (2016), imposing this assumption
does not make it possible to consistently estimate the parameter.
Based on Theorem 1.1 in Cai, Liu, and Zhou (2016), we have
that the optimal rate for the matrix �1-norm is E||�̂ − �∗||21 �
d2 log d/n, which means no consistent estimator for the whole
precision matrix �∗ exists when d > n.

To obtain the formula for the asymptotic variance ξ 2
jk in (13),

we use the Isserlis’ theorem (Isserlis 1916) to calculate the fourth
order moment of the Gaussian distribution. We can see that ξ 2

jk
still depends on population quantities �∗ and �∗. Thus, ξ 2

jk is
unknown in practice, and we need to get a consistent estimator
ξ̂ 2

jk to construct confidence intervals for θ∗
jk.

Lemma 4.1 (Variance estimation). Define �̂G2 = diag(0, �̂2).
For any 1 ≤ j ≤ d1 and d1 + 1 ≤ k ≤ d, let ξ̂ 2

jk be the empirical
version of (13), that is,

ξ̂ 2
jk = (Mj∗�̂M�

j∗)[Pk∗(I + �̂G�̂)�̂GP�
k∗] + (Mj∗�̂GP�

k∗)
2

− (Mj∗�̂P�
k∗)

2

− [Mj∗(I − �̂�̂)�̂G2(I − �̂�̂)M�
j∗](Pk∗�̂GP�

k∗). (14)

Then under the conditions in Theorem 4.2, ξ̂jk/ξjk converges in
probability to 1.

Combining Theorem 4.2 and Lemma 4.1 with Slutsky’s theo-
rem, we can obtain the final version of the asymptotic normality
result which does not involve any population quantity.

Theorem 4.3. Suppose the conditions in Theorem 4.2 hold. Let
�̂u be the de-biased estimator with λ′ = C′√log d/n, where C′
is a sufficiently large constant. For any 1 ≤ j ≤ d1 and d1 + 1 ≤
k ≤ d, under the scaling condition s∗ log d/

√
n = o(1), we have

√
n · (θ̂u

jk − θ∗
jk)/ξ̂jk � N(0, 1).

Applying Theorem 4.3, it is easy to construct asymptotically
valid confidence intervals and test functions. For any 1 ≤ j ≤ d1
and d1 + 1 ≤ k ≤ d and the significance level α ∈ (0, 1), let

Ijk(α) = [
θ̂u

jk − δ(α, n), θ̂u
jk + δ(α, n)

]
, where

δ(α, n) = ξ̂jk√
n
	−1

(
1 − α

2

)
. (15)

Also for the null hypothesis H0 : θ∗
jk = 0, we can construct the

following test function

Tjk(α) =
{

1 if |√n · θ̂u
jk/ξ̂jk| > 	−1(1 − α/2),

0 if |√n · θ̂u
jk/ξ̂jk| ≤ 	−1(1 − α/2),

(16)

where α ∈ (0, 1) is the significance level of the test. Corollary 4.1
proves the validity of the confidence interval and the test func-
tion.

Corollary 4.1. Suppose the conditions in Theorem 4.3 hold. The
confidence interval in (15) is asymptotically valid and the Type
I error of (16) is asymptotically α, that is,

lim
n→∞P(θ∗

jk ∈ Ijk(α)) = 1 − α and

lim
n→∞Pθ∗

jk=0(Tjk(α) = 1) = α.

5. Numerical Experiments

In this section, we conduct numerical experiments on both sim-
ulated and real data to validate our STRINGS estimator and the
“untangle and chord” procedure. We also compare our method
with �1 regularized maximum likelihood estimator (GLASSO),
partial Gaussian graphical model (pGGM) in Yuan and Zhang
(2014) and the density ratio estimator (KLIEP) in Liu et al.
(2016).

5.1. Simulated Data

For each dimension d and probability p ∈ (0, 1) which governs
the sparsity s, we generate the precision matrix �∗ as follows.
First, we generate a symmetric matrix A, where it has zeros in
the diagonal and each off-diagonal entry of A is set to one with
probability p. Then, δ · Id is added to A to make its condition
number equal to d. Third, we add all-one matrices to the groups
G1 = {1, . . . , d/2} and G2 = {d/2 + 1, . . . , d} to represent the
dense within-group connections. Finally, the precision matrix
is standardized so that the diagonal entries of �∗ are all ones.
It is straightforward to see that the sparsity s is approximately
equal to d2p/4. Under this model, we generate n = 4d training
samples from the multivariate normal distribution with mean 0
and covariance �∗ = (�∗)−1.

5.1.1. Estimation Quality
Since we are estimating the support of �∗

12, we adopt standard
graphical plot, receiver operating characteristic curve (ROC
curve) to demonstrate the performance of different estimators.
ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR) for different values of the regularization
parameter λ.

For �̂12, absolute values above 1 × 10−3 are considered to be
nonzeros since we set the optimization accuracy to be 1 × 10−4.
We consider different values of d ∈ {50, 100, 200} and p ∈
{0.04, 0.08, 0.12}. The ROC curves are plotted in Figure 3. In
addition, for each configuration, we report the mean and the
standard error of the area under the ROC curve (AUC) over 100
replications in Table 1.

We can see that the STRINGS estimator outperforms other
estimators uniformly over all configurations of (d, p). This is
expected since (a) GLASSO is not tailored for estimation under
dense precision matrices; (b) pGGM can only tolerate one dense
block matrix.

5.1.2. Inference Quality
For inference, we only report the results for our “untangle and
chord” procedure since (a) GLASSO, not designed for partially
sparse graphical model estimation, performs poorly in terms of
estimation accuracy; and (b) pGGM and KLIEP do not provide
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Figure 3. ROC curves for different configurations of dimension d and sparsity.

Table 1. Mean (standard error) of AUC over 100 replications.

d p s ≈ d2p/4 GLASSO pGGM KLIEP STRINGS

50 0.04 25 0.986(0.004) 0.959(0.012) 0.875(0.016) 0.997(0.002)
50 0.08 50 0.958(0.006) 0.909(0.020) 0.820(0.018) 0.986(0.008)
50 0.12 75 0.932(0.007) 0.877(0.028) 0.777(0.016) 0.974(0.009)

d p s ≈ d2p/4 GLASSO pGGM KLIEP STRINGS

100 0.04 100 0.978(0.002) 0.967(0.004) nan(nan) 0.998(0.002)
100 0.08 200 0.969(0.003) 0.944(0.010) nan(nan) 0.990(0.003)
100 0.12 300 0.922(0.005) 0.880(0.012) nan(nan) 0.959(0.007)

d p s ≈ d2p/4 GLASSO pGGM KLIEP STRINGS

200 0.04 400 0.981(0.001) 0.958(0.007) nan(nan) 0.994(0.004)
200 0.08 800 0.963(0.001) 0.922(0.007) nan(nan) 0.988(0.003)
200 0.12 1200 0.934(0.002) 0.891(0.007) nan(nan) 0.961(0.003)

NOTE: The bold values highlight the superior performance of STRINGS over other
methods.

any inferential procedure. We generate another sample of size
4d to de-bias the initial STRINGS estimator. Guided by Theo-
rem 4.2, the tuning parameter λ′ in CLIME-type procedure is
chosen to be 0.5

√
log d/n. By Corollary 4.1, the (1 −α)× 100%

asymptotic confidence interval for parameter θ∗
jk is given by

Ijk(α) =
[
θ̂u

jk − ξ̂jk√
n
	−1

(
1 − α

2

)
, θ̂u

jk + ξ̂jk√
n
	−1

(
1 − α

2

)]
,

where �̂u is the de-biased estimator and ξ̂jk is specified in (14).
Throughout this section, we set α = 0.05. For every parameter
θ∗

jk, we estimate the probability that the true value θ∗
jk is covered

by the confidence interval Ijk(α) using its empirical version, that
is, α̂jk is the percentage of times that θ∗

jk is covered by Ijk(α) in
100 replications. Next for S = supp(�∗

12), we define the overall
coverage probability, the average coverage probability over S and
over Sc to be

Avgcov = 1
(d/2)2

∑
(j,k)

α̂jk, AvgcovS = 1
|S|

∑
(j,k)∈S

α̂jk,

AvgcovSc = 1
|Sc|

∑
(j,k)∈Sc

α̂jk, (17)

respectively. The result of these three quantities over 100 replica-
tions can be seen in Table 2. The coverage probabilities over the
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Table 2. Average coverage probabilities over 100 replications.

d p s ≈ d2p/4 Avgcov AvgcovS AvgcovSc

50 0.04 25 0.952(0.009) 0.942(0.046) 0.952(0.010)
50 0.08 50 0.945(0.012) 0.927(0.037) 0.947(0.012)
50 0.12 75 0.939(0.012) 0.921(0.033) 0.942(0.012)

100 0.04 100 0.947(0.006) 0.930(0.025) 0.948(0.006)
100 0.08 200 0.946(0.006) 0.934(0.018) 0.947(0.006)
100 0.12 300 0.941(0.005) 0.928(0.014) 0.943(0.006)

200 0.04 400 0.930(0.007) 0.907(0.022) 0.931(0.006)
200 0.08 800 0.926(0.007) 0.907(0.015) 0.927(0.007)
200 0.12 1200 0.927(0.004) 0.915(0.009) 0.930(0.004)

support S and the nonsupport Sc are around 95%, which matches
the significance level α = 0.05. And the coverage probability
over S decreases as the dimension d increases, as expected.

In Figure 4, we show the QQ-plot of
√

n · (θ̂u
jk −

θ∗
jk)/ξ̂jk when d = 200 and p = 0.04. We choose (j, k) ∈

{(101, 1), (101, 2), (101, 3)} to present. As we can see, the scat-
tered points of

√
n · (θ̂u

jk − θ∗
jk)/ξ̂jk in 100 replications are close

to the line with zero intercept and unit slope.

5.2. fMRI Data

In this section, we apply our estimation and inference methods
to an fMRI data studied in Chen et al. (2017). This dataset
includes fMRI measurements of 17 subjects while they were
watching a 23-min movie (BBC’s “Sherlock”). The fMRI mea-
surements were made every 1.5 sec, thus in total we have 945
brain images for each subject. As described in Chen et al. (2017),
the 23-min movie is divided into 26 scenes for further analysis.
For the original fMRI data, there are 271,633 voxels measured.
We adopt the method introduced in Baldassano, Beck, and Fei-
Fei (2015) to reduce the dimension to 172 regions of interest
(ROIs). We use the average of the first eight subjects as XG1 and
the average of the remaining nine subjects as XG2 for conducting
ISA. For preprocessing, each ROI is standardized to have zero
mean and unit variance. For estimation, the tuning parameter
λ is chosen through cross-validation. In inference, we threshold
the de-biased estimator at level 	−1(1−4α/d2) · ξ̂jk/

√
n, where

α = 0.05 and 4/d2 accounts for the Bonferroni correction
in multiple hypothesis testing. We pick the eighth scene and

the fifteenth scene for presentation. Scene 8 represents a press
conference held by the police department to describe the recent
suicides. Scene 15 contains the first meeting of Sherlock and
Watson during which Sherlock shows his deduction talent to
Watson.

In Figure 5, we show the brain networks for these two scenes
estimated by our method. Each purple circle represents an ROI.
We also show the snapshots of both the left and the right brain
hemispheres in Figure 6. The color represents the degree of
the ROIs in the inter-subject conditional independence graph.
And a redder area corresponds to the ROI with higher degree.
As we can see, for the eighth scene when the press conference
took place, the visual cortex and auditory cortex are highly acti-
vated since the subjects were mostly receiving audio and visual
information from the press conference. The high activation of
the visual and auditory cortices are ubiquitous in all 26 scenes.
This makes sense since the subjects were under an audio-visual
stimulus (“BBC’s Sherlock”). This also matches the results in
Chen et al. (2017). More specifically, during the fifteenth scene
when Sherlock and Watson met, we can see that the prefrontal
cortex especially the dorsolateral prefrontal cortex (DL-PFC)
has a large degree. DL-PFC is known for its function in working
memory and abstract reasoning (Miller and Cummings 2007).
And this coincides with scene 15 since the subjects might reason
about Sherlock’s deduction about Watson’s job.

6. Extensions to Multi-Subject Analysis

In this section, we discuss the extension of ISA to multiple
subjects. As a motivating example, let us revisit the fMRI data
considered in Section 5.2. In total, there are 17 subjects and we
artificially divide them into 8 and 9 to perform ISA. A more
principled way to analyze this data would be conducting multi-
subject analysis, which we detail below. Let X = (X1, . . . , XLd)

�
be an Ld-dimensional random vector, where L is the number
of subjects and d is the number of features for each subject. Let
G1 . . . ,GL be L disjoint subsets of {1, . . . , Ld} with cardinality
|G�| = d, each corresponding to a single subject. Denote by
XG�

the features of the �th subject. Let �∗ ∈ R
Ld×Ld be the

covariance matrix of X, with �∗
jk ∈ R

d×d being the covariance
between XGj and XGk . For the precision matrix �∗ = (�∗)−1,
we use �∗

jk to denote the dependency between XGj and XGk .

Figure 4. The QQ-plot of
√

n · (θ̂u
jk − θ∗

jk)/ξ̂jk for (j, k) = (103, 1), (103, 2), and (103, 3).
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Figure 5. The brain networks for two difference scenes. Each purple circle represents an ROI and the black edges represent the graph edges.

Figure 6. The brain images for both left and right hemisphere.

Define �∗
G = diag(�∗

11, . . . , �∗
LL) and �∗ = �∗ − (�∗

G)−1.
We have a similar observation to that in the two-subject case.

Proposition 6.1. If ||�∗
jk||0 ≤ s for all j �= k, then ||�∗||0 =

O(Ls2). Further assume that L = O(1), we have ||�∗||0 =
O(s2).

In words, this justifies the estimation of �∗, instead of �∗,
when we only know the off-diagonal parts of �∗ are sparse. In
addition, in cases like the fMRI data, it is often reasonable to
assume that all the off-diagonal blocks of �∗ are the same. This
is because all the subjects are under the same stimuli, that is, the
movie Sherlock. In this case, the multi-subject STRINGS esti-
mator amounts to solving the following optimization problem:

minimize�∈Ld×Ld Tr(��̂) − log |�̂G��̂G + �̂G |
+ λ||�||1,1 (18)

subject to �ij = �kl for any i �= j, k �= l.

In words, this formulation maximizes the regularized log-
likelihood under the constraint that all the off-diagonal blocks of
� are the same. It is straightforward to see that this multi-block

estimator reduces to the STRINGS estimator in the two-block
case. This is indeed a computationally efficient estimator that
can be solved by off-the-shelf software packages, however, its
theoretical guarantees are elusive. First, the establishment of the
estimation guarantees is complicated by the equality constraint.
Second, the debiasing technique in this multi-subject case is not
a priori clear. Last but not least, the number of parameters to
estimate is enlarged from s to Ls2, which could be a challenge
for real world applications that only contain limited amount of
data. Addressing these issues is of great importance and we leave
it as a future work.

7. Discussion

In this work, we consider the problem of ISA, where the goal
is to study the inter-subject dependency while the intra-subject
dependence is treated as nuisance. Under the framework of
Gaussian graphical models, we propose a consistent estimator,
STRINGS estimator, and a debiasing technique called Untan-
gle and Chord to construct confidence intervals in the high-
dimensional regime. There are numerous questions that are
interesting for future investigation and here we single out a few.
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• Handle moderate sparsity. Our result (cf. Theorem 4.1) guar-
antees a consistent estimator of �∗

12 in the high-dimensional
regime when s � n � d2 with s being the sparsity of �∗

12.
This excludes the case with s = O(d). How to construct a
consistent estimator in this challenging regime is an interest-
ing question to investigate.

• Inference without sample splitting. The current work utilizes
sample splitting to decouple the dependency between the
de-biasing matrices and the estimate �̂. This may not be
efficient since only half of the data is used for estimation and
may result in low power. It is of great importance to study
de-biasing techniques without sample splitting in the high-
dimensional regime beyond simple linear models.

Supplementary Materials

In the supplementary materials, we provide proofs for the theoretical results
in the main text.
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