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Abstract

Recent years have seen a flurry of activities in designing provably efficient nonconvex
procedures for solving statistical estimation problems. Due to the highly nonconvex
nature of the empirical loss, state-of-the-art procedures often require proper reg-
ularization (e.g., trimming, regularized cost, projection) in order to guarantee fast
convergence. For vanilla procedures such as gradient descent, however, prior theory
either recommends highly conservative learning rates to avoid overshooting, or com-
pletely lacks performance guarantees. This paper uncovers a striking phenomenon
in nonconvex optimization: even in the absence of explicit regularization, gradient
descent enforces proper regularization implicitly under various statistical models. In
fact, gradient descent follows a trajectory staying within a basin that enjoys nice geom-
etry, consisting of points incoherent with the sampling mechanism. This “implicit
regularization” feature allows gradient descent to proceed in a far more aggres-
sive fashion without overshooting, which in turn results in substantial computational
savings. Focusing on three fundamental statistical estimation problems, i.e., phase
retrieval, low-rank matrix completion, and blind deconvolution, we establish that gra-
dient descent achieves near-optimal statistical and computational guarantees without
explicit regularization. In particular, by marrying statistical modeling with generic
optimization theory, we develop a general recipe for analyzing the trajectories of iter-
ative algorithms via a leave-one-out perturbation argument. As a by-product, for noisy
matrix completion, we demonstrate that gradient descent achieves near-optimal error
control—measured entrywise and by the spectral norm—which might be of indepen-
dent interest.
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1 Introduction
1.1 Nonlinear Systems and Empirical Loss Minimization

A wide spectrum of science and engineering applications calls for solutions to a
nonlinear system of equations. Imagine we have collected a set of data points y =
{yj}1<j<m, generated by a nonlinear sensing system,

yi & Aj(x*), 1<j<m,

where x* is the unknown object of interest and the A;’s are certain nonlinear maps
known a priori. Can we reconstruct the underlying object x* in a faithful yet efficient
manner? Problems of this kind abound in information and statistical science, prominent
examples including low-rank matrix recovery [19,64], robust principal component
analysis [17,21], phase retrieval [20,59], neural networks [103,132], to name just a
few.

In principle, it is possible to attempt reconstruction by searching for a solution that
minimizes the empirical loss, namely

m

minimize, f(x) = Z |Y,i - A./'(x)|2' @)

j=1

Unfortunately, this empirical loss minimization problem is, in many cases, nonconvex,
making it NP-hard in general. This issue of nonconvexity comes up in, for example,
several representative problems that epitomize the structures of nonlinear systems
encountered in practice.!

e Phase retrieval/solving quadratic systems of equations Imagine we are asked to
recover an unknown object x* € R”, but are only given the square modulus
of certain linear measurements about the object, with all sign/phase information
of the measurements missing. This arises, for example, in X-ray crystallography
[15], and in latent-variable models where the hidden variables are captured by the
missing signs [33]. To fix ideas, assume we would like to solve for x* € R” in the
following quadratic system of m equations

! Here, we choose different pre-constants in front of the empirical loss in order to be consistent with the
literature of the respective problems. In addition, we only introduce the problem in the noiseless case for
simplicity of presentation.

FoC'T
e,
@ Springer |03



Foundations of Computational Mathematics

where {a}1< < are the known design vectors. One strategy is thus to solve the
following problem

o 1 2 2

minimizeyecre f(x) = I X_:[ ] . 2)

e Low-rank matrix completion In many scenarios such as collaborative filtering, we
wish to make predictions about all entries of an (approximately) low-rank matrix
M* € R"™ " (e.g., a matrix consisting of users’ ratings about many movies), yet
only a highly incomplete subset of the entries are revealed to us [19]. For clarity
of presentation, assume M™ to be rank-r (r < n) and positive semidefinite (PSD),
ie., M* = X*X*T with X* € R"*", and suppose we have only seen the entries

Yik=M, =X'X*Djr.  (.bHeQ

within some index subset 2 of cardinality m. These entries can be viewed as
nonlinear measurements about the low-rank factor X*. The task of completing the
true matrix M* can then be cast as solving

2 2
minimize y crx f(X):Z— 3 (Yj,k—eJTXXTek) : 3)
(e

where the e’s stand for the canonical basis vectors in R”.

e Blind deconvolution/solving bilinear systems of equations Imagine we are inter-
ested in estimating two signals of interest &*, x* € CX, but only get to collect a
few bilinear measurements about them. This problem arises from mathematical
modeling of blind deconvolution [3,76], which frequently arises in astronomy,
imaging, communications, etc. The goal is to recover two signals from their con-
volution. Put more formally, suppose we have acquired m bilinear measurements
taking the following form

yj = b'j'-'h*x*Haj, l<j<=m,

wherea, b; € CK are distinct design vectors (e.g., Fourier and/or random design
vectors) known a priori and bjH denotes the conjugate transpose of b;. In order to
reconstruct the underlying signals, one asks for solutions to the following problem

m
. 2
minimizey yccx  f(h,x) = Z lyj — b'}'thaj
i=1

1.2 Nonconvex Optimization via Regularized Gradient Descent

First-order methods have been a popular heuristic in practice for solving nonconvex

problems including (1). For instance, a widely adopted procedure is gradient descent,
which follows the update rule
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x = x' — mVf(x'), =0, 4)

where 1, is the learning rate (or step size) and x° is some proper initial guess. Given
that it only performs a single gradient calculation V f(-) per iteration (which typically
can be completed within near-linear time), this paradigm emerges as a candidate for
solving large-scale problems. The concern is: whether x’ converges to the global
solution and, if so, how long it takes for convergence, especially since (1) is highly
nonconvex.

Fortunately, despite the worst-case hardness, appealing convergence properties have
been discovered in various statistical estimation problems, the blessing being that
the statistical models help rule out ill-behaved instances. For the average case, the
empirical loss often enjoys benign geometry, in a local region (or at least along certain
directions) surrounding the global optimum. In light of this, an effective nonconvex
iterative method typically consists of two stages:

1. acarefully designed initialization scheme (e.g., spectral method);
2. an iterative refinement procedure (e.g., gradient descent).

This strategy has recently spurred a great deal of interest, owing to its promise of
achieving computational efficiency and statistical accuracy at once for a growing list
of problems (e.g., [18,25,32,61,64,76,78,107]). However, rather than directly applying
gradient descent (4), existing theory often suggests enforcing proper regularization.
Such explicit regularization enables improved computational convergence by prop-
erly “stabilizing” the search directions. The following regularization schemes, among
others, have been suggested to obtain or improve computational guarantees. We refer
to these algorithms collectively as Regularized Gradient Descent.

e Trimming/truncation, which discards/truncates a subset of the gradient compo-
nents when forming the descent direction. For instance, when solving quadratic
systems of equations, one can modify the gradient descent update rule as

X' =x" =T (VF(x"), )

where 7 is an operator that effectively drops samples bearing too much influence
on the search direction. This strategy [25,118,126] has been shown to enable
exact recovery with linear-time computational complexity and optimal sample
complexity.

e Regularized loss, which attempts to optimize a regularized empirical risk

Tl =x! —p, (Vf(x")+ VR(x")). 6)

where R (x) stands for an additional penalty term in the empirical loss. For example,
in low-rank matrix completion R(-) imposes penalty based on the ¢, row norm
[64,107] as well as the Frobenius norm [107] of the decision matrix, while in
blind deconvolution, it penalizes the £, norm as well as certain component-wise
incoherence measure of the decision vectors [58,76,82].
FolCT
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Table 1 Prior theory for gradient descent (with spectral initialization)

Vanilla gradient descent Regularized gradient descent
Sample Iteration Step size Sample Iteration Type of
complexity complexity complexity  complexity regularization
Phase retrieval nlogn nlog % % n log % Trimming
[25,126]
. . ’ 7 1 .
Matrix completion  n/a n/a n/a nr % log ¢ Regularized loss
[107]
nr? r2 log % Projection
[32,131]
Blind deconvolution n/a n/a n/a Kpolylogm mlog é Regularized loss
and projection
[76]

e Projection, which projects the iterates onto certain sets based on prior knowledge,
that is,
X =P (x' —n,Vf(x"), (7

where P is a certain projection operator used to enforce, for example, incoherence
properties. This strategy has been employed in both low-rank matrix completion
[32,131] and blind deconvolution [76].

Equipped with such regularization procedures, existing works uncover appealing
computational and statistical properties under various statistical models. Table 1 sum-
marizes the performance guarantees derived in the prior literature; for simplicity, only
orderwise results are provided.

Remark 1 There is another role of regularization commonly studied in the literature,
which exploits prior knowledge about the structure of the unknown object, such as
sparsity to prevent over-fitting and improve statistical generalization ability. This is,
however, not the focal point of this paper, since we are primarily pursuing solutions
to (1) without imposing additional structures.

1.3 Regularization-Free Procedures?

The regularized gradient descent algorithms, while exhibiting appealing performance,
usually introduce more algorithmic parameters that need to be carefully tuned based
on the assumed statistical models. In contrast, vanilla gradient descent (cf. (4))—
which is perhaps the very first method that comes into mind and requires minimal
tuning parameters—is far less understood (cf. Table 1). Take matrix completion and
blind deconvolution as examples: to the best of our knowledge, there is currently no
theoretical guarantee derived for vanilla gradient descent.

The situation is better for phase retrieval: the local convergence of vanilla gradi-
ent descent, also known as Wirtinger flow (WF), has been investigated in [18,96].
Under i.i.d. Gaussian design and with near-optimal sample complexity, WF (com-
bined with spectral initialization) provably achieves e-accuracy (in a relative sense)
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Fig. 1 a Relative ¢, error of x’ (modulo the global phase) versus iteration count for phase retrieval
under i.i.d. Gaussian design, where m = 10n and n; = 0.1. b Relative error of X'X'T (measured by
[I-Ilg s II-1l+ II-lloo) Versus iteration count for matrix completion, where n = 1000, » = 10, p = 0.1, and
n: = 0.2. ¢ Relative error of hx! H (measured by |[|-||[g) versus iteration count for blind deconvolution,
where m = 10K and n; = 0.5

within O(n log (1/8)) iterations. Nevertheless, the computational guarantee is sig-
nificantly outperformed by the regularized version (called truncated Wirtinger flow
[25]), which only requires 0(log (1 /5)) iterations to converge with similar per-
iteration cost. On closer inspection, the high computational cost of WF is largely
due to the vanishingly small step size 1, = 0(1 / (n||x*||§))—and hence slow
movement—suggested by the theory [18]. While this is already the largest possible
step size allowed in the theory published in [18], it is considerably more conservative
than the choice n; = 0(1/ ||x*||%) theoretically justified for the regularized version
[25,126].

The lack of understanding and suboptimal results about vanilla gradient descent
raise a very natural question: Are regularization-free iterative algorithms inherently
suboptimal when solving nonconvex statistical estimation problems of this kind?

1.4 Numerical Surprise of Unregularized Gradient Descent

To answer the preceding question, it is perhaps best to first collect some numerical
evidence. In what follows, we test the performance of vanilla gradient descent for phase
retrieval, matrix completion, and blind deconvolution, using a constant step size. For
all of these experiments, the initial guess is obtained by means of the standard spectral
method. Our numerical findings are as follows:

e Phase retrieval For each n, set m = 10n, take x* € R” to be a random vector with

unit norm, and generate the design vectors @ i N(,1I,),1 <j < m.Figurela
illustrates the relative £, error min{||x’ — x*||2, |lx" + x*|2}/llx*||2 (modulo the
unrecoverable global phase) versus the iteration count. The results are shown for
n = 20, 100, 200, 1000, with the step size taken to be n; = 0.1 in all settings.

e Matrix completion Generate a random PSD matrix M* € R"*" with dimension
n = 1000, rank r = 10, and all nonzero eigenvalues equal to one. Each entry
of M* is observed independently with probability p = 0.1. Figure 1b plots the
relative error |HX[X[T — M*|||/|HM*||| versus the iteration count, where |||-||| can

either be the Frobenius norm ||-||g, the spectral norm || - ||, or the entrywise £
norm || - ||so. Here, we pick the step size as n; = 0.2.
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e Blind deconvolution For each K € {20, 100, 200, 1000} and m = 10K, generate

the design vectors a S N0, %IK) + iN(0, %IK) for 1 < j < m indepen-
dently,? and the b ;’s are drawn from a partial discrete Fourier transform (DFT)
matrix (to be described in Sect. 3.3). The underlying signals h*, x* € CK are
produced as random vectors with unit norm. Figure lc plots the relative error
A’ x™M — B*x*"||p/|lh*x*H||r versus the iteration count, with the step size taken
to be n; = 0.5 in all settings.

In all of these numerical experiments, vanilla gradient descent enjoys remarkable
linear convergence, always yielding an accuracy of 10~ (in a relative sense) within
around 200 iterations. In particular, for the phase retrieval problem, the step size is
taken to be ; = 0.1 although we vary the problem size from n = 20 ton = 1000. The
consequence is that the convergence rates experience little changes when the problem
sizes vary. In comparison, the theory published in [18] seems overly pessimistic, as it
suggests a diminishing step size inversely proportional to n and, as a result, an iteration
complexity that worsens as the problem size grows.

In addition, it has been empirically observed in prior literature [25,76,127] that
vanilla gradient descent performs comparably with the regularized counterpart for
phase retrieval and blind deconvolution. To complete the picture, we further conduct
experiments on matrix completion. In particular, we follow the experimental setup for
matrix completion used above. We vary p from 0.01 to 0.1 with 51 logarithmically
spaced points. For each p, we apply vanilla gradient descent, projected gradient descent
[32] and gradient descent with additional regularization terms [107] with step size n =
0.2 to 50 randomly generated instances. Successful recovery is declared if || X' X'T —
M*||g/||M*||g < 107> in 10* iterations. Figure 2 reports the success rate versus the
sampling rate. As can be seen, the phase transition of vanilla GD and that of GD with
regularized cost are almost identical, whereas projected GD performs slightly better
than the other two.

In short, the above empirical results are surprisingly positive yet puzzling. Why was
the computational efficiency of vanilla gradient descent unexplained or substantially
underestimated in prior theory?

1.5 This Paper

The main contribution of this paper is toward demystifying the “unreasonable” effec-
tiveness of regularization-free nonconvex iterative methods. As asserted in previous
work, regularized gradient descent succeeds by properly enforcing/promoting certain
incoherence conditions throughout the execution of the algorithm. In contrast, we
discover that

Vanilla gradient descent automatically forces the iterates to stay incoherent with
the measurement mechanism, thus implicitly regularizing the search directions.

This “implicit regularization” phenomenon is of fundamental importance, suggest-
ing that vanilla gradient descent proceeds as if it were properly regularized. This

2 Here and throughout, i represents the imaginary unit.
FolCT
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Fig.2 Success rate versus sampling rate p over 50 Monte Carlo trials for matrix completion with n = 1000
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explains the remarkably favorable performance of unregularized gradient descent in
practice. Focusing on the three representative problems mentioned in Sect. 1.1, our
theory guarantees both statistical and computational efficiency of vanilla gradient
descent under random designs and spectral initialization. With near-optimal sample
complexity, to attain e-accuracy,

e Phase retrieval (informal) vanilla gradient descent converges in 0(10gn log é)
iterations;

e Matrix completion (informal) vanilla gradient descent converges in O ( log %) iter-
ations;

e Blind deconvolution (informal) vanilla gradient descent converges in 0(10g %)
iterations.

In other words, gradient descent provably achieves (nearly) linear convergence in
all of these examples. Throughout this paper, an algorithm is said to converge (nearly)
linearly to x* in the noiseless case if the iterates {x’} obey

dist(x!, x*) < (1 — o) dist(x’, x*), V>0

for some 0 < ¢ < 1 that is (almost) independent of the problem size. Here, dist(-, -)
can be any appropriate discrepancy measure.

As aby-product of our theory, gradient descent also provably controls the entrywise
empirical risk uniformly across all iterations; for instance, this implies that vanilla
gradient descent controls entrywise estimation error for the matrix completion task.
Precise statements of these results are deferred to Sect. 3 and are briefly summarized
in Table 2.

Elol:;ﬂ
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Table 2 Prior theory versus our theory for vanilla gradient descent (with spectral initialization)

Prior theory Our theory
Sample Iteration Step size  Sample Iteration Step size
complexity —complexity complexity complexity
Phase retrieval nlogn nlog(l/e) 1/n nlogn lognlog(l/e) 1/logn
Matrix completion  n/a n/a n/a nr3 polylogn log(1/¢) 1
Blind deconvolution n/a n/a n/a K polylogm  log(1/e) 1

Notably, our study of implicit regularization suggests that the behavior of nonconvex
optimization algorithms for statistical estimation needs to be examined in the context
of statistical models, which induces an objective function as a finite sum. Our proof is
accomplished via a leave-one-out perturbation argument, which is inherently tied to
statistical models and leverages homogeneity across samples. Altogether, this allows
us to localize benign landscapes for optimization and characterize finer dynamics not
accounted for in generic gradient descent theory.

1.6 Notations

Before continuing, we introduce several notations used throughout the paper. First of
all, boldfaced symbols are reserved for vectors and matrices. For any vector v, we use
lv]l2 to denote its Euclidean norm. For any matrix A, we use 0;(A) and A;(A) to
denote its jth largest singular value and eigenvalue, respectively, and let A; . and A. ;
denote its jth row and jth column, respectively. In addition, [|A|l, [|AllF, [|All2,c0,
and || A || stand for the spectral norm (i.e., the largest singular value), the Frobenius
norm, the ¢» /£~ norm (i.e., the largest £> norm of the rows), and the entrywise £
norm (the largest magnitude of all entries) of a matrix A. Also, AT, AH, and A denote
the transpose, the conjugate transpose, and the entrywise conjugate of A, respectively.
I, denotes the identity matrix with dimension n x n. The notation O"*" represents
the set of all n x r orthonormal matrices. The notation [n] refers to the set {1, - - - , n}.
Also, we use Re(x) to denote the real part of a complex number x. Throughout the
paper, we use the terms “samples” and “measurements” interchangeably.

Additionally, the standard notation f(n) = O (g(n)) or f(n) < g(n) means that
there exists a constant ¢ > 0 such that | f(n)| < c|g(n)|, f(n) = g(n) means that
there exists a constant ¢ > 0 such that | f(n)| > c|g(n)|, and f(n) < g(n) means
that there exist constants c1, ¢ > 0 such that c1|g(n)| < |f(n)| < c2]1g(n)|. Also,
f(n) > g(n) means that there exists some large enough constant ¢ > 0 such that
|f(n)| = clg(n)|. Similarly, f(n) < g(n) means that there exists some sufficiently
small constant ¢ > 0 such that | f(n)| < c|g(n)|.

2 Implicit Regularization: A Case Study

To reveal reasons behind the effectiveness of vanilla gradient descent, we first examine
existing theory of gradient descent and identify the geometric properties that enable
Eo oy
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linear convergence. We then develop an understanding as to why prior theory is con-
servative, and describe the phenomenon of implicit regularization that helps explain
the effectiveness of vanilla gradient descent. To facilitate discussion, we will use the
problem of solving random quadratic systems (phase retrieval) and Wirtinger flow
as a case study, but our diagnosis applies more generally, as will be seen in later
sections.

2.1 Gradient Descent Theory Revisited

In the convex optimization literature, there are two standard conditions about the objec-
tive function—strong convexity and smoothness—that allow for linear convergence
of gradient descent.

Definition 1 (Strong convexity) A twice continuously differentiable function f :
R" +— R is said to be a-strongly convex for o > 0 if

V2f(x) = al,,  VxeR"

Definition 2 (Smoothness) A twice continuously differentiable function f : R" > R
is said to be S-smooth for g > 0 if

”V2f(x)H <B, VxeR"

It is well known that for an unconstrained optimization problem, if the objective
function f is both a-strongly convex and S-smooth, then vanilla gradient descent (4)
enjoys ¢ error contraction [9, Theorem 3.12], namely

* 2 *
[ = x*; < (1 - W) [ — x|

< (1 _ L) %0 - x*]
Bla+ 1

as long as the step size is chosen as n, = 2/(« + B). Here, x* denotes the global
minimum. This immediately reveals the iteration complexity for gradient descent: the
number of iterations taken to attain e-accuracy (in a relative sense) is bounded by

o (élog 1)
o €

In other words, the iteration complexity is dictated by and scales linearly with the
condition number—the ratio 8/« of smoothness to strong convexity parameters.

Moving beyond convex optimization, one can easily extend the above theory to
nonconvex problems with local strong convexity and smoothness. More precisely,
suppose the objective function f satisfies

,» and ||x’—x*||2

L 120, ®)

Vif(x)=al and Vi) <p
Elol:;ﬂ
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over a local £; ball surrounding the global minimum x*:
Bs(x) := {x | llx —x*[l2 < 8llx*|I2}. &)

Then the contraction result (8) continues to hold, as long as the algorithm is seeded
with an initial point that falls inside Bs(x).

2.2 Local Geometry for Solving Random Quadratic Systems

To invoke generic gradient descent theory, it is critical to characterize the local strong
convexity and smoothness properties of the loss function. Take the problem of solving
random quadratic systems (phase retrieval) as an example. Consider the i.i.d. Gaussian

design in which a; S "N(0,1,),1 < j < m,and suppose without loss of generality
that the underlying signal obeys |[x*||2 = 1. It is well known that x* is the unique
minimizer—up to global phase—of (2) under this statistical model, provided that the
ratio m/n of equations to unknowns is sufficiently large. The Hessian of the loss
function f(x) is given by

V2f (x) = %Z [3 (a]Tx)2 - y,-] aja]. (10)

j=1

e Population-level analysis Consider the case with an infinite number of equations
or samples, i.e., m — 0o, where V2 f(x) converges to its expectation. Simple
calculation yields that

E[V2f(x)] =3 (||x||§1n n 2xxT> (1,1 +2x*x *T) .

It is straightforward to verify that for any sufficiently small constant § > 0, one
has the crude bound

I, < E[V’f(x)] < 10I,, VxeBskx):|x—x*], <

meaning that f is 1-strongly convex and 10-smooth within a local ball around x*.
As a consequence, when we have infinite samples and an initial guess x* such that
[x0—x*|, <6 Hx* ’2, vanilla gradient descent with a constant step size converges
to the global minimum within logarithmic iterations.

e Finite-sample regime with m =< nlogn Now that f exhibits favorable landscape in
the population level, one thus hopes that the fluctuation can be well controlled so
that the nice geometry carries over to the finite-sample regime. In the regime where
m =< nlogn (which is the regime considered in [18]), the local strong convexity
is still preserved, in the sense that

Vf@) = (1/2) - L, Vx: x = x|, < 8]x*,
FoE'ﬂ
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occurs with high probability, provided that § > 0 is sufficiently small (see [96,101]
and Lemma 1). The smoothness parameter, however, is not well controlled. In fact,
it can be as large as (up to logarithmic factors)?

IV fe)| <n

even when we restrict attention to the local £, ball (9) with § > 0 being a fixed
small constant. This means that the condition number 8/« (defined in Sect. 2.1)
may scale as O (n), leading to the step size recommendation

ne < 1/n,

and, as a consequence, a high iteration complexity O (n log(1/ E)). This underpins
the analysis in [18].

In summary, the geometric properties of the loss function—even in the local ¢>
ball centering around the global minimum—are not as favorable as one anticipates, in
particular in view of its population counterpart. A direct application of generic gradient
descent theory leads to an overly conservative step size and a pessimistic convergence
rate, unless the number of samples is enormously larger than the number of unknowns.

Remark 2 Notably, due to Gaussian designs, the phase retrieval problem enjoys more
favorable geometry compared to other nonconvex problems. In matrix completion and
blind deconvolution, the Hessian matrices are rank-deficient even at the population
level. In such cases, the above discussions need to be adjusted, e.g., strong convexity
is only possible when we restrict attention to certain directions.

2.3 Which Region Enjoys Nicer Geometry?

Interestingly, our theory identifies a local region surrounding x* with a large diameter
that enjoys much nicer geometry. This region does not mimic an ¢, ball, but rather,
the intersection of an £, ball and a polytope. We term it the region of incoherence and
contraction (RIC). For phase retrieval, the RIC includes all points x € R” obeying

||x - x"”2 < 6||x*||2 and (11a)
max ]aJT(x —x*)| < Vlogn |x*|,. (11b)

l<j=<m

where § > 0 is some small numerical constant. As will be formalized in Lemma 1,
with high probability the Hessian matrix satisfies

(1/2) - I, < V?f(x) < O(logn) - I,

3 To demonstrate this, taking x = x* + (§/||lay|l2) - a; in (10), one can easily verify that, with high
probability, | V2 f ()| = ‘3(a1rx)2 - y1’ |ara] |/m — 01) 2 62n%/m < §%n/logn.
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Fig. 3 a The shaded region is an illustration of the incoherence region, which satisfies |a}r(x - x*)| <

/Togn for all points x in the region. b When x0 resides in the desired region, we know that x! remains
within the £, ball but might fall out of the incoherence region (the shaded region). Once x! leaves the
incoherence region, we lose control and may overshoot. ¢ Our theory reveals that with high probability, all
iterates will stay within the incoherence region, enabling fast convergence

simultaneously for x in the RIC. In words, the Hessian matrix is nearly well conditioned
(with the condition number bounded by O (logn)), as long as (i) the iterate is not very
far from the global minimizer (cf. (11a)) and (ii) the iterate remains incoherent* with
respect to the sensing vectors (cf. (11b)). Another way to interpret the incoherence
condition (11b) is that the empirical risk needs to be well controlled uniformly across
all samples. See Fig. 3a for an illustration of the above region.

The following observation is thus immediate: one can safely adopt a far more
aggressive step size (as large as n, = O(1/logn)) to achieve acceleration, as long
as the iterates stay within the RIC. This, however, fails to be guaranteed by generic
gradient descent theory. To be more precise, if the current iterate x’ falls within the
desired region, then in view of (8), we can ensure ¢, error contraction after one iteration,
namely

|
T x* < Ix" = x*2,

llx
and hence x'*! stays within the local ¢, ball and hence satisfies (11a). However, it
is not immediately obvious that x’*! would still stay incoherent with the sensing
vectors and satisfy (11b). If x’ ! leaves the RIC, it no longer enjoys the benign local
geometry of the loss function, and the algorithm has to slow down in order to avoid
overshooting. See Fig. 3b for a visual illustration. In fact, in almost all regularized
gradient descent algorithms mentioned in Sect. 1.2, one of the main purposes of the
proposed regularization procedures is to enforce such incoherence constraints.

2.4 Implicit Regularization

However, is regularization really necessary for the iterates to stay within the RIC?

To answer this question, we plot in Fig. 4a (resp. Fig. 4b) the incoherence measure

Tt

. AT (x>
max ’ajx max ’aj (x"—x")

Toerinl, (resp. W) versus the iteration count in a typical Monte Carlo
2

4 If x s aligned with (and hence very coherent with) one vector @, then with high probability one has
|a;!— (x=x*)12 |a;!—x| = /n||x||2, which is significantly larger than /logn||x||>.
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Incoherence

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration count Iteration count
(a) (b)

. Tt ox
i maxls_/5m|aj (x"—x%)

Fig. 4 The incoherence measure W (in a) and B T ra— (in b) of the gra-

max <j<m ‘aTxt |

dient iterates versus iteration count for the phase retrieval problem. The results are shown for n €
{20, 100, 200, 1000} and m = 10n, with the step size taken to be n; = 0.1. The problem instances
are generated in the same way as in Fig. 1a

trial, generated in the same way as for Fig. 1a. Interestingly, the incoherence measure
remains bounded by 2 for all iterations ¢ > 1. This important observation suggests
that one may adopt a substantially more aggressive step size throughout the whole
algorithm.

The main objective of this paper is thus to provide a theoretical validation of the
above empirical observation. As we will demonstrate shortly, with high probability all
iterates along the execution of the algorithm (as well as the spectral initialization) are
provably constrained within the RIC, implying fast convergence of vanilla gradient
descent (cf. Fig. 3c). The fact that the iterates stay incoherent with the measurement
mechanism automatically, without explicit enforcement, is termed “implicit regular-
ization.”

2.5 A Glimpse of the Analysis: A Leave-One-Out Trick

In order to rigorously establish (11b) for all iterates, the current paper develops a
powerful mechanism based on the leave-one-out perturbation argument, a trick rooted
and widely used in probability and random matrix theory. Note that the iterate x’ is
statistically dependent with the design vectors {a;}. Under such circumstances, one
often resorts to generic bounds like the Cauchy—Schwarz inequality, which would not
yield a desirable estimate. To address this issue, we introduce a sequence of auxiliary
iterates {x">'} for each 1 < I < m (for analytical purposes only), obtained by running
vanilla gradient descent using all but the /th sample. As one can expect, such auxiliary
trajectories serve as extremely good surrogates of {x’} in the sense that

1<l<m, t>0, (12)
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N EE B B -] {2b8 7
el I_ : o
t N\,
BEE E= & —> = {Zle=a X
s Em N u - Y N
. \
"B S = o B
EEE [ | [ | ~ — — 7 incoherence region
B = = w.r.t. a;
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Fig.5 Illustration of the leave-one-out sequence w.r.t. a;. a The sequence {x”° 0y >0 is constructed without

using the /th sample. b Since the auxiliary sequence {x’ -0y is constructed without using ay, the leave-one-
out iterates stay within the incoherence region w.r.t. a; with high probability. Meanwhile, {x’} and {x’ *(1)}
are expected to remain close as their construction differ only in a single sample

since their constructions only differ by a single sample. Most importantly, since x )
is independent with the /th design vector, it is much easier to control its incoherence
w.r.t. @; to the desired level:

la (x"© = x*)| < logn || x*|,. (13)

Combining (12) and (13) then leads to (11b). See Fig. 5 for a graphical illustration of
this argument. Notably, this technique is very general and applicable to many other
problems. We invite the readers to Sect. 5 for more details.

3 Main Results

This section formalizes the implicit regularization phenomenon underlying unregular-
ized gradient descent and presents its consequences, namely near-optimal statistical
and computational guarantees for phase retrieval, matrix completion, and blind decon-
volution. Note that the discrepancy measure dist (-, -) may vary from problem to
problem.

3.1 Phase Retrieval

Suppose the m quadratic equations

yj = (a;.rx*)z, j=1,2,....m (14)

are collected using random design vectors, namely a ; N (0, I,), and the noncon-
vex problem to solve is

o 1 ¢ 2 ?
minimizeyecre  f(x) 1= EZ[(“}T“‘C) —yjj| . (15)
j=1
EIOE?—'—]
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The Wirtinger flow (WF) algorithm, first introduced in [18], is a combination of spec-
tral initialization and vanilla gradient descent; see Algorithm 1.

Algorithm 1 Wirtinger flow/gradient descent for phase retrieval

Input: {a;}1<j<m and {yj}1<j<m-
Spectral initialization: Let A1 (Y) and %0 be the leading eigenvalue and eigenvector of

1 m
= Z (16)
m _7
respectively, and set x0 =/ ) /3 xO
Gradient updates: fort =0,1,2,. — 1do
Mt =t — Vs (x"). a7

Recognizing that the global phase/sign is unrecoverable from quadratic measure-
ments, we introduce the ¢ distance modulo the global phase as follows

dist(x, x*) := min {lx — x*|l2. [lx + x*[|2} . (18)
Our finding is summarized in the following theorem.

Theorem 1 Letx* € R" be a fixed vector. Suppose a S N0, 1,)foreachl < j <
m and m > con log n for some sufficiently large constant co > 0. Assume the step size
obeys ns =n =rcy/ (logn . ||x0||%) for any sufficiently small constant ¢ > 0. Then
there exist some absolute constants 0 < ¢ < 1 and ¢y > 0 such that with probability
at least 1 — O (mn_s), Algorithm 1 satisfies that for all t > 0,

dist(x’, x*) < e(1 — nllx*(|3/2)" [|x*|l2, (19a)
max |a (x' = x*)| < c2/lognllx* . (19b)

1<j<m
Theorem 1 reveals a few intriguing properties of Algorithm 1.

e Implicit regularization Theorem 1 asserts that the incoherence properties are satis-
fied throughout the execution of the algorithm (see (19b)), which formally justifies
the implicit regularization feature we hypothesized.

o Near-constant step size Consider the case where ||x*||, = 1. Theorem 1 establishes
near-linear convergence of WF with a substantially more aggressive step size
n =< 1/logn. Compared with the choice n < 1/n admissible in [18, Theorem
3.3], Theorem 1 allows WF/GD to attain e-accuracy within O (lognlog(1/€))
iterations. The resulting computational complexity of the algorithm is

1
0 (mn logn log —) ,
€
FoE'ﬂ
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which significantly improves upon the result O(mn2 log (1/ e)) derived in [18].
As aside note, if the sample size further increases tom < n 10g2 n, then a constant
step size n < 1 is also feasible, resulting in an iteration complexity log(1/¢). This
follows since with high probability, the entire trajectory resides within a more
refined incoherence region max ; |a]T(x’ — x*)| < |Ix*|l2. We omit the details
here.

e [ncoherence of spectral initialization We have also demonstrated in Theorem 1
that the initial guess x falls within the RIC and is hence nearly orthogonal to all
design vectors. This provides a finer characterization of spectral initialization, in
comparison with prior theory that focuses primarily on the ¢ accuracy [18,90].
We expect our leave-one-out analysis to accommodate other variants of spectral
initialization studied in the literature [12,25,83,88,118].

Remark 3 As it turns out, a carefully designed initialization is not pivotal in enabling
fast convergence. In fact, randomly initialized gradient descent provably attains &-
accuracy in O(logn + log %) iterations; see [27] for details.

3.2 Low-Rank Matrix Completion

Let M* € R™" be a positive semidefinite matrix> with rank r, and suppose its
eigendecomposition is
M*=U*3s*U*T, (20)

where U* € R"*" consists of orthonormal columns and £* is an r x r diagonal matrix
with eigenvalues in a descending order, i.e., omax = 01 > -+ > 0, = Omin > O.
Throughout this paper, we assume the condition number x := Oppax/Omin is bounded
by a fixed constant, independent of the problem size (i.e., n and r). Denoting X* =
U*(X*)'/2 allows us to factorize M* as

M*=X*X*T. (1)

Consider a random sampling model such that each entry of M* is observed indepen-
dently with probability 0 < p < 1,i.e,forl < j <k <n,

M;’k + Ej ., with probability p,

22
0, else, 22)

Yjk =

where the entries of E = [E; ;]1<j<k<n are independent sub-Gaussian noise with
sub-Gaussian norm o (see [116, Definition 5.7]). We denote by 2 the set of locations
being sampled, and Pq(Y) represents the projection of ¥ onto the set of matrices
supported in 2. We note here that the sampling rate p, if not known, can be faithfully
estimated by the sample proportion |Q|/n?.

5 Here, we assume M* to be positive semidefinite to simplify the presentation, but note that our analysis
easily extends to asymmetric low-rank matrices.

FolCT
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To fix ideas, we consider the following nonconvex optimization problem

1
minimizex e f (X) = o S (] XXTer—Y4)" (23)
(e

The vanilla gradient descent algorithm (with spectral initialization) is summarized in
Algorithm 2.

Algorithm 2 Vanilla gradient descent for matrix completion (with spectral initializa-
tion)

Input: Y = [quk]lgj,kgn’ r, p.

Spectral initialization: Let U 0%0u9T pe the rank-r eigendecomposition of

MO = lPQ(Y) = l739 (M* +E),
p P

1/2
and set X0 = U9 (20 / .

Gradient updates: forr =0,1,2,...,7 — 1 do

XH =X —pvr(x'). (24)

Before proceeding to the main theorem, we first introduce a standard incoherence
parameter required for matrix completion [19].

Definition 3 (Incoherence for matrix completion) A rank-r matrix M* with eigende-
composition M* = U*T*U*" is said to be p-incoherent if

* lu’ * Mr
0", < = 0] = 2 @)

In addition, recognizing that X* is identifiable only up to orthogonal transformation,
we define the optimal transform from the zth iterate X’ to X* as

H' := argmin |X'R - Xx*
ReOrxr

[ (26)

where O is the set of r x r orthonormal matrices. With these definitions in place,
we have the following theorem.

Theorem 2 Let M* be a rank-r, ji-incoherent PSD matrix, and its condition number
Kk is a fixed constant. Suppose the sample size satisfies n’p > Cu’rn log3 n for some
sufficiently large constant C > 0, and the noise satisfies

n Omi
o - < —. (27)
P Ji3urlogin
Elol:;ﬂ
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With probability at least 1 — O (n’3), the iterates of Algorithm 2 satisfy
v = x] = (Contnr—= m;@ ],

1
X x|, = (Csp w,/ Ky °g”) Xl st
o—[ )Ix] (280

forall0 <t <T = O(ns), where C1, C4, Cs, Cg, Co, and Cyo are some absolute
positive constants and 1 — (omin/5) - n < p < 1, provided that 0 < n; = n <
2/ (25K omax)-

(28a)

|x'H - x*| < <C9,0 ur

Theorem 2 provides the first theoretical guarantee of unregularized gradient descent
for matrix completion, demonstrating near-optimal statistical accuracy and computa-
tional complexity.

e Implicit regularization In Theorem 2, we bound the £, /¢, error of the iterates in
a uniform manner via (28b). Note that HX — X*”Z,oo = max; ||ejT (X — X*) |2,
which implies the iterates remain incoherent with the sensing vectors through-
out and have small incoherence parameters (cf. (25)). In comparison, prior works
either include a penalty term on {||e X2} 1<j<n [64,107] and/or || X g [107] to
encourage an incoherent and/or low- norm solution, or add an extra projection oper-
ation to enforce incoherence [32,131]. Our results demonstrate that such explicit
regularization is unnecessary.

e Constant step size Without loss of generality, we may assume that o, = ||M*| =
O (1), which can be done by choosing proper scaling of M*. Hence, we have a
constant step size n; < 1. Actually, it is more convenient to consider the scale-
invariant parameter p: Theorem 2 guarantees linear convergence of the vanilla
gradient descent at a constant rate p. Remarkably, the convergence occurs with
respect to three different unitarily invariant norms: the Frobenius norm | - ||, the
£3/€o norm || - ||2,00, and the spectral norm || - ||. As far as we know, the latter two
are established for the first time. Note that our result even improves upon that for
regularized gradient descent; see Table 1.

e Near-optimal sample complexity When the rank r = O(1), vanilla gradient descent
succeeds under a near-optimal sample complexity n2p > npoly logn, which is
statistically optimal up to some logarithmic factor.

o Near-minimal Euclidean error In view of (28a), as t increases, the Euclidean error
of vanilla GD converges to

"H _ x* 7 Mx
e N

which coincides with the theoretical guarantee in [32, Corollary 1] and matches
the minimax lower bound established in [67,89].

(29)
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e Near-optimal entrywise error The €5/l error bound (28b) immediately yields
entrywise control of the empirical risk. Specifically, as soon as ¢ is sufficiently
large (so that the first term in (28b) is negligible), we have

[xxT = < |XH (XH - X)) |+ (B - X)X T

< [X'H' |, X B -X*|, X H =X, X[,
o [nlogn .

Sy LYV
min p

where the last line follows from (28b) as well as the facts that || X’ H - x* 2,00 <
1X*|12.00 and [|M*||o = ||X*||%’Oo. Compared with the Euclidean loss (29), this
implies that when r = O(1), the entrywise error of X’ X' is uniformly spread out
across all entries. As far as we know, this is the first result that reveals near-optimal
entrywise error control for noisy matrix completion using nonconvex optimization,
without resorting to sample splitting.

Remark 4 Theorem 2 remains valid if the total number 7 of iterations obeys 7' =
n?W In the noiseless case where o = 0, the theory allows arbitrarily large T

Finally, we report the empirical statistical accuracy of vanilla gradient descent in
the presence of noise. Figure 6 displays the squared relative error of vanilla gradient
descent as a function of the signal-to-noise ratio (SNR), where the SNR is defined to
be

2
Yimea (M5)" M2
(b Var (Ej r) n*o?
and the relative error is measured in terms of the square of the metrics as in (28) as
well as the squared entrywise prediction error. Both the relative error and the SNR
are shown on a dB scale (i.e., 101log;,(SNR) and 10log;(squared relative error) are
plotted). The results are averaged over 20 independent trials. As one can see from

the plot, the squared relative error scales inversely proportional to the SNR, which is
consistent with our theory.°

SNR :=

(30)

3.3 Blind Deconvolution

Suppose we have collected m bilinear measurements

yj=biwxta;,  1<j<m, 31)
where a; follows a complex Gaussian distribution, i.e., a; S N (0, %I K) +
iN (0, %IK) forl < j <m,and B :=[by,--- , byu)" € C"*K is formed by the first

6 Note that when M* is well conditioned and when r = O(1), one can easily check that SNR ~
(IlM *le:) / (n2a2) = "éin / (n202), and our theory says that the squared relative error bound is pro-
portional to o2 / Ux%ﬁn'
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Fig.6 Squared relative error of -10 T T T T T T
the estimate X (measured by relative || - [l error for X
Il 1 112,00 modulo 20} rlative | | eror for X _|4
. relateive || - ||2,5 error for X
global transformation) and ) )
30k ——relative || - ||« error for M |

M= fi’T (measured by ||-|lo0)
versus SNR for noisy matrix
completion, where n = 500,
r=10, p=0.1,and n; = 0.2.
Here X denotes the estimate
returned by Algorithm 2 after
convergence. The results are
averaged over 20 independent
Monte Carlo trials
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K columns of a unitary discrete Fourier transform (DFT) matrix F € C"*™ obeying
FF" = I,, (see Appendix D.3.2 for a brief introduction to DFT matrices). This setup
models blind deconvolution, where the two signals under convolution belong to known
low-dimensional subspaces of dimension K [3].” In particular, the partial DFT matrix
B plays an important role in image blind deblurring. In this subsection, we consider
solving the following nonconvex optimization problem

m
2
minimizey, yccx  f (h, x) = Z ’b;'thaj - yi| - (32)
j=1

The (Wirtinger) gradient descent algorithm (with spectral initialization) is summarized
in Algorithm 3; here, Vy, f (h, x) and Vy f (h, x) stand for the Wirtinger gradient and
are given in (77) and (78), respectively; see [18, Section 6] for a brief introduction to
Wirtinger calculus.

It is self-evident that 2* and x* are only identifiable up to global scaling, that is,
for any nonzero « € C,

h*x*H — éh* (le*)H

IS

In light of this, we will measure the discrepancy between
z7:= |:h:| eC*X  and 7= |:h*:| e C2K (33)
x x

via the following function

dist (z z = min H h—h* +||ozx—x*||2 (34)

aeC

7 For simplicity, we have set the dimensions of the two subspaces equal, and it is straightforward to extend
our results to the case of unequal subspace dimensions.
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Algorithm 3 Vanilla gradient descent for blind deconvolution (with spectral initial-
ization)
Input: {aj}lgjgm ’ {bj}lgjfm and {yj}lgjfm'

~0 . . . . .
Spectral initialization: Let oy (M), h  and %0 be the leading singular value, left and right singular vectors
of

m
M = Z yjbja;',
j=1

v0 .
respectively. Set K = Joir(M) h and x0 = Joi1(M) 70,
Gradient updates: forr =0,1,2,...,7 — 1 do

Bt Bt thf(h’,x’)
= — 2 ) (35)
et e R

-
IR 113

Before proceeding, we need to introduce the incoherence parameter [3,76], which
is crucial for blind deconvolution, whose role is similar to the incoherence parameter
(cf. Definition 3) in matrix completion.

Definition 4 (Incoherence for blind deconvolution) Let the incoherence parameter
of h* be the smallest number such that

max ‘b;'h* (36)

l<j=<m

< 2w,

The incoherence parameter describes the spectral flatness of the signal 2*. With this
definition in place, we have the following theorem, where for identifiability we assume
that |h* |, = [lx*|l,.

Theorem 3 Suppose the number of measurements obeys m > Cu*K log® m for some
sufficiently large constant C > 0, and suppose the step size n > 0 is taken to be some
sufficiently small constant. Then there exist constants c1, c2, C1, C3, C4 > 0 such that

with probability exceeding 1 — cym™ — cyme™ 2K the iterates in Algorithm 3 satisfy
dist (z',2%) = €1 (1 - i)l Lz, (37a)
- 16/ log*m 2
1
H t..t * *
lrélla;n ‘al (a X —x ) < Cglong ||x ||2 (37b)
max b}";h’ < C4L log? m | h*| (37¢)
1<i<m ol - Jm 2
forallt > 0. Here, we denote ' as the alignment parameter,
1 : 2
o :==argmin | =h' —h*| + |ox' —x*Hz. (38)
aeC || 2
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Theorem 3 provides the first theoretical guarantee of unregularized gradient descent
for blind deconvolution at a near-optimal statistical and computational complexity. A
few remarks are in order.

e Implicit regularization Theorem 3 reveals that the unregularized gradient descent
iterates remain incoherent with the sampling mechanism (see (37b) and (37c)).
Recall that prior works operate upon a regularized cost function with an additional
penalty term that regularizes the global scaling {|| /]2, ||x||2} and the incoherence
{|b'}'h [}1<j<m [58,76,82]. In comparison, our theorem implies that itis unnecessary
to regularize either the incoherence or the scaling ambiguity, which is somewhat
surprising. This justifies the use of regularization-free (Wirtinger) gradient descent
for blind deconvolution.

e Constant step size Compared to the step size n, < 1/m suggested in [76] for
regularized gradient descent, our theory admits a substantially more aggressive
step size (i.e., n; < 1) even without regularization. Similar to phase retrieval, the
computational efficiency is boosted by a factor of m, attaining e-accuracy within
O (log(1/€)) iterations (vs. O (m log(1/¢€)) iterations in prior theory).

e Near-optimal sample complexity It is demonstrated that vanilla gradient descent
succeeds at a near-optimal sample complexity up to logarithmic factors, although
our requirement is slightly worse than [76] which uses explicit regularization.
Notably, even under the sample complexity herein, the iteration complexity given
in [76] is still O (m/poly log(m)).

e Incoherence of spectral initialization As in phase retrieval, Theorem 3 demon-
strates that the estimates returned by the spectral method are incoherent with
respect to both {a;} and {b}. In contrast, [76] recommends a projection operation
(via a linear program) to enforce incoherence of the initial estimates, which is
dispensable according to our theory.

e Contraction in |-||g It is easy to check that the Frobenius norm error satisfies
”h’x’ H_ gyt HF < dist (z’, z*), and therefore, Theorem 3 corroborates the
empirical results shown in Fig. 1c.

4 Related Work

Solving nonlinear systems of equations has received much attention in the past decade.
Rather than directly attacking the nonconvex formulation, convex relaxation lifts the
object of interest into a higher-dimensional space and then attempts recovery via
semidefinite programming (e.g., [3,19,20,94]). This has enjoyed great success in both
theory and practice. Despite appealing statistical guarantees, semidefinite program-
ming is in general prohibitively expensive when processing large-scale datasets.
Nonconvex approaches, on the other end, have been under extensive study in the
last few years, due to their computational advantages. There is a growing list of
statistical estimation problems for which nonconvex approaches are guaranteed to
find global optimal solutions, including but not limited to phase retrieval [18,25,90],
low-rank matrix sensing and completion [7,32,48,115,130], blind deconvolution and
self-calibration [72,76,78,82], dictionary learning [106], tensor decomposition [49],
EOE';W
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joint alignment [24], learning shallow neural networks [103,132], robust subspace
learning [34,74,86,91]. In several problems [40,48,49,75,77,86,87,105,106], it is fur-
ther suggested that the optimization landscape is benign under sufficiently large sample
complexity, in the sense that all local minima are globally optimal, and hence non-
convex iterative algorithms become promising in solving such problems. See [37] for
a recent overview. Below we review the three problems studied in this paper in more
detail. Some state-of-the-art results are summarized in Table 1.

e Phase retrieval Candes et al. proposed PhaseLift [20] to solve the quadratic sys-
tems of equations based on convex programming. Specifically, it lifts the decision
variable x* into a rank-one matrix X* = x*x*" and translates the quadratic
constraints of x* in (14) into linear constraints of X*. By dropping the rank con-
straint, the problem becomes convex [11,16,20,29,113]. Another convex program
PhaseMax [5,41,50,53] operates in the natural parameter space via linear program-
ming, provided that an anchor vector is available. On the other hand, alternating
minimization [90] with sample splitting has been shown to enjoy much better
computational guarantee. In contrast, Wirtinger flow [18] provides the first global
convergence result for nonconvex methods without sample splitting, whose sta-
tistical and computational guarantees are later improved by [25] via an adaptive
truncation strategy. Several other variants of WF are also proposed [12,68,102],
among which an amplitude-based loss function has been investigated [117-
119,127]. In particular, [127] demonstrates that the amplitude-based loss function
has a better curvature, and vanilla gradient descent can indeed converge with a con-
stant step size at the orderwise optimal sample complexity. A small sample of other
nonconvex phase retrieval methods include [6,10,22,36,43,47,92,98,100,109,122],
which are beyond the scope of this paper.

e Matrix completion Nuclear norm minimization was studied in [19] as a con-
vex relaxation paradigm to solve the matrix completion problem. Under certain
incoherence conditions imposed upon the ground truth matrix, exact recovery
is guaranteed under near-optimal sample complexity [14,23,38,51,93]. Concur-
rently, several works [54,55,60,61,63-65,71,110,123,129,129] tackled the matrix
completion problem via nonconvex approaches. In particular, the seminal work by
Keshavan et al. [64,65] pioneered the two-stage approach that is widely adopted by
later works. Sun and Luo [107] demonstrated the convergence of gradient descent
type methods for noiseless matrix completion with a regularized nonconvex loss
function. Instead of penalizing the loss function, [32,131] employed projection to
enforce the incoherence condition throughout the execution of the algorithm. To
the best of our knowledge, no rigorous guarantees have been established for matrix
completion without explicit regularization. A notable exception is [63], which uses
unregularized stochastic gradient descent for matrix completion in the online set-
ting. However, the analysis is performed with fresh samples in each iteration. Our
work closes the gap and makes the first contribution toward understanding implicit
regularization in gradient descent without sample splitting. In addition, entrywise
eigenvector perturbation has been studied by [1,26,60] in order to analyze the
spectral algorithms for matrix completion, which helps us establish theoretical
guarantees for the spectral initialization step. Finally, it has recently been shown

Elol:;ﬂ
@ Springer Lﬁjog



Foundations of Computational Mathematics

that the analysis of nonconvex gradient descent in turn yields near-optimal statis-
tical guarantees for convex relaxation in the context of noisy matrix completion;
see [28,31].

e Blind deconvolution In [3], Ahmed et al. first proposed to invoke similar lifting
ideas for blind deconvolution, which translates the bilinear measurements (31) into
a system of linear measurements of a rank-one matrix X* = h*x*". Near-optimal
performance guarantees have been established for convex relaxation [3]. Under
the same model, Li et al. [76] proposed a regularized gradient descent algorithm
that directly optimizes the nonconvex loss function (32) with a few regularization
terms that account for scaling ambiguity and incoherence. In [58], a Riemannian
steepest descent method is developed that removes the regularization for scaling
ambiguity, although they still need to regularize for incoherence. In [2], a linear
program is proposed but requires exact knowledge of the signs of the signals.
Blind deconvolution has also been studied for other models—interested readers
are referred to [35,72,73,81,82,120,128].

On the other hand, our analysis framework is based on a leave-one-out perturbation
argument. This technique has been widely used to analyze high-dimensional problems
with random designs, including but not limited to robust M-estimation [44,45], sta-
tistical inference for sparse regression [62], likelihood ratio test in logistic regression
[108], phase synchronization [1,133], ranking from pairwise comparisons [30], com-
munity recovery [1], and covariance sketching [79]. In particular, this technique results
in tight performance guarantees for the generalized power method [133], the spectral
method [1,30], and convex programming approaches [30,44,108,133]; however, it has
not been applied to analyze nonconvex optimization algorithms.

Finally, we note that the notion of implicit regularization—broadly defined—arises
in settings far beyond the models and algorithms considered herein. For instance,
it has been conjectured that in matrix factorization, over-parameterized stochastic
gradient descent effectively enforces certain norm constraints, allowing it to converge
to a minimal-norm solution as long as it starts from the origin [52]. The stochastic
gradient methods have also been shown to implicitly enforce Tikhonov regularization
in several statistical learning settings [80]. More broadly, this phenomenon seems
crucial in enabling efficient training of deep neural networks [104,125].

5 A General Recipe for Trajectory Analysis

In this section, we sketch a general recipe for establishing performance guarantees
of gradient descent, which conveys the key idea for proving the main results of this
paper. The main challenge is to demonstrate that appropriate incoherence conditions
are preserved throughout the trajectory of the algorithm. This requires exploiting
statistical independence of the samples in a careful manner, in conjunction with generic
optimization theory. Central to our approach is a leave-one-out perturbation argument,
which allows to decouple the statistical dependency while controlling the component-
wise incoherence measures.
EOE';W
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General Recipe (a leave-one-out analysis)
Step 1: characterize restricted strong convexity and smoothness of f, and

identify the region of incoherence and contraction (RIC).

Step 2: introduce leave-one-out sequences {X 0y and {H"®} for each [,
where { X"} (resp. {H""}) is independent of any sample involving
@, (resp. ¥));

Step 3: establish the incoherence condition for {X’} and {H'} via induction.
Suppose the iterates satisfy the claimed conditions in the 7th iteration:

(a) show, via restricted strong convexity, that the true iterates
(X', H'"*1!) and the leave-one-out version (X't gt+1.(0)
are exceedingly close;

(b) use statistical independence to show that X’ TLO _ x*
(resp. H't1-® — H*) is incoherent w.r.t. ¢, (resp. ¥;); namely,
I (X 1O — X*)|1 and |y H (HFHD — H*)||; are both well
controlled;

(c) combine the bounds to establish the desired incoherence condition
concerning max lof (X H1—X*") 2 andmlax Iy CH T —HY)|,.

5.1 General Model

Consider the following problem where the samples are collected in a bilinear/quadratic
form as
v =viHX"¢,.  1<j=<m, (39)

where the objects of interest H*, X* € C"*” or R**" might be vectors or tall matrices
taking either real or complex values. The design vectors {w j} and {¢;} are in either
C" or R", and can be either random or deterministic. This model is quite general and
entails all three examples in this paper as special cases:

e Phase retrieval: H* = X* = x* € R", and 1/Ij = qu =aj;
e Matrix completion: H* = X* € R"*" and 1/Ij,¢j cfer,---,e,l;
e Blind deconvolution: H* = h* € CK, X* = x* € CKX, qu =aj, and wj =b;.

For this setting, the empirical loss function is given by
T 2
F(@) = fH.X) = — 3 [pHHX g, — )
j=1

where we denote Z = (H, X). To minimize f(Z), we proceed with vanilla gradient
descent

2t =27 —gvf(z'), vt>0
Elol:;ﬂ
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following a standard spectral initialization, where 7 is the step size. As a remark, for
complex-valued problems, the gradient (resp. Hessian) should be understood as the
Wirtinger gradient (resp. Hessian).

It is clear from (39) that Z* = (H*, X™) can only be recovered up to certain global
ambiguity. For clarity of presentation, we assume in this section that such ambiguity
has already been taken care of via proper global transformation.

5.2 Outline of the Recipe

We are now positioned to outline the general recipe, which entails the following steps.

e Step 1: characterizing local geometry in the RIC Our first step is to characterize a
region R—which we term as the region of incoherence and contraction (RIC)—
such that the Hessian matrix V2 f(Z) obeys strong convexity and smoothness,

0 <ol <V2f(Z) < BI, VZ € R, (40)

or at least along certain directions (i.e., restricted strong convexity and smooth-
ness), where 8/« scales slowly (or even remains bounded) with the problem size.
As revealed by optimization theory, this geometric property (40) immediately
implies linear convergence with the contraction rate 1 — O(«/f) for a properly
chosen step size 1, as long as all iterates stay within the RIC.

A natural question then arises: What does the RIC R look like? As it turns out,
the RIC typically contains all points such that the ¢, error |Z — Z*||r is not too
large and

(incoherence)  max ¢ (X — X*)|, and max |y (H — H")|,
J J

are well controlled. 41

In the three examples, the above incoherence condition translates to:

— Phase retrieval: max }a—jr(x — x*)] is well controlled;

— Matrix completion: ||X - X ||2 o is well controlled;

— Blind deconvolution: max ; ‘a}r(x — x*)| and max ; ‘b}—(h - h*)] are well con-
trolled.

e Step 2: introducing the leave-one-out sequences To justify that no iterates leave
the RIC, we rely on the construction of auxiliary sequences. Specifically, for
each 1, produce an auxiliary sequence {Z">® = (X*© H"®)} such that X*©
(resp. H"®) is independent of any sample involving ¢, (resp. ¥;). As an exam-
ple, suppose that the ¢;’s and the ¥,’s are independently and randomly generated.
Then for each [, one can consider a leave-one-out loss function

1 2
FO@) == 3 [wHHX", —
Jij#l
EOE';W
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that discards the /th sample. One further generates {Z")} by running vanilla
gradient descent w.r.t. this auxiliary loss function, with a spectral initialization
that similarly discards the /th sample. Note that this procedure is only introduced
to facilitate analysis and is never implemented in practice.

e Step 3: establishing the incoherence condition We are now ready to establish the
incoherence condition with the assistance of the auxiliary sequences. Usually, the
proof proceeds by induction, where our goal is to show that the next iterate remains
within the RIC, given that the current one does.

— Step 3(a): proximity between the original and the leave-one-out iterates As
one can anticipate, {Z'} and {Z’ (DY remain “glued” to each other along the
whole trajectory, since their constructions differ by only a single sample. In
fact, as long as the initial estimates stay sufficiently close, their gaps will never
explode. To intuitively see why, use the fact V f (Z") ~ V f D (Z" to discover
that

Zt+1 B Zt+1,(1) — 7l _ nvf(zl) _ (Zl‘(l) _ ﬂvf(l) (Zl’(l)))
~ Zl _ Zt,(l) _ nvzf(zt)(zt _ Zl,(l))’

which together with the strong convexity condition implies £, contraction
||Zl‘+1 _ Zl‘-‘r],(l) HF ~ H (I _ nvZf(zt>)(zt _ Zt,(l))HF < ||Zl‘ _ Zt,(l) H2

Indeed, (restricted) strong convexity is crucial in controlling the size of leave-
one-out perturbations.

— Step 3(b): incoherence condition of the leave-one-out iterates The fact that
Z'* and Z'1 O are exceedingly close motivates us to control the incoher-
ence of Z'*1® — Z* instead, for 1 < [ < m. By construction, X'*1®
(resp. H't1- D) is statistically independent of any sample involving the design
vector @, (resp. ¥,), a fact that typically leads to a more friendly analysis for
controlling ¢! (X' 1@ — Xx*) |, and | Yy (HTNO — H*) I,-

— Step 3(c): combining the bounds With these results in place, apply the triangle
inequality to obtain

H¢;4(Xt+1 _ X*) ”2 < H¢l”2HXt+l _ x!+LO ”F + ”¢}-|(Xt+l,(l) _ X*)}

27

where the first term is controlled in Step 3(a) and the second term is controlled
in Step 3(b). The term ||¢}'(H'*" — H*)|, can be bounded similarly. By
choosing the bounds properly, this establishes the incoherence condition for
all 1 <[ < m as desired.

6 Analysis for Phase Retrieval

In this section, we instantiate the general recipe presented in Sect. 5 to phase retrieval

and prove Theorem 1. Similar to the section 7.1 in [18], we are going to use 1; =
Elol:;ﬂ
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c1/(logn - ||x*||%) instead of ¢y /(logn - ||x0||%) as the step size for analysis. This is
because with high probability, ||x¢|l2 and ||x*||; are rather close in the relative sense.
Without loss of generality, we assume throughout this section that Hx* H2 = 1land

dist(x%, x*) = lx0 — x*[l2 < 2 + x*l2. (42)

In addition, the gradient and the Hessian of f (-) for this problem (see (15)) are given,
respectively, by

Vfx)= %i |:(aij)2 - yj:| (a}—x) aj, (43)
V2 f(x) = %2’":[3 (a;rx)2—yj] aja}—, (44)

which are useful throughout the proof.

6.1 Step 1: Characterizing Local Geometry in the RIC

6.1.1 Local Geometry

We start by characterizing the region that enjoys both strong convexity and the desired
level of smoothness. This is supplied in the following lemma, which plays a crucial
role in the subsequent analysis.

Lemma 1 (Restricted strong convexity and smoothness for phase retrieval) Fix any
sufficiently small constant C1 > 0 and any sufficiently large constant C» > 0, and

suppose the sample complexity obeys m > conlogn for some sufficiently large con-
stant co > 0. With probability at least 1 — O (mn~"'0),

Vi) = (1/2)- 1,
holds simultaneously for all x € R" satisfying ||x — x*|, < 2Cy, and
V2f (x) < (5C2 (10 + C) logn) - 1,

holds simultaneously for all x € R" obeying

Jx —x*|, = 2€1, (452)
1Isnjasxm a]T (x — x*)| < Ca2y/logn. (45b)
Proof See Appendix A.1. O
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In words, Lemma 1 reveals that the Hessian matrix is positive definite and (almost)
well conditioned, if one restricts attention to the set of points that are (i) not far away
from the truth (cf. (45a)) and (ii) incoherent with respect to the measurement vectors

{a;}, < j<m (cf. (45D)).
6.1.2 Error Contraction

As we point out before, the nice local geometry enables ¢, contraction, which we
formalize below.

Lemma 2 There exists an event that does not depend on t and has probability 1 —
O(mn_lo), such that when it happens and x' obeys conditions (45), one has

provided that the step size satisfies 0 <n <1/ [5C2 (10 4+ C2) log n]

L

x*

, = =n/2) " —x*, (40)

Proof This proof applies the standard argument when establishing the ¢, error contrac-
tion of gradient descent for strongly convex and smooth functions. See Appendix A.2.
O

With the help of Lemma 2, we can turn the proof of Theorem 1 into ensuring that
the trajectory {x’ } lies in the RIC specified by (47).8 This is formally stated in
the next lemma.

0<t<n

Lemma 3 Suppose forall0 <t < Ty := n, the trajectory {x’ }falls within the region
of incoherence and contraction (termed the RIC), namely

|x" —x*], < €1, (47a)

< C4/logn, (47b)

T t_
122’21‘“1 (x" —x*)

then the claims in Theorem 1 hold true. Here and throughout this section, C1, C, > 0
are two absolute constants as specified in Lemma 1.

Proof See Appendix A.3. O

6.2 Step 2: Introducing the Leave-One-Out Sequences

In comparison with the £, error bound (47a) that captures the overall loss, the incoher-
ence hypothesis (47b)—which concerns sample-wise control of the empirical risk—is
more complicated to establish. This is partly due to the statistical dependence between
x! and the sampling vectors {a;}. As described in the general recipe, the key idea is

8 Here, we deliberately change 2C1 in (45a) to Cy in the definition of the RIC (47a) to ensure the correctness
of the analysis.
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the introduction of a leave-one-out version of the WF iterates, which removes a single
measurement from consideration.
To be precise, for each 1 < [ < m, we define the leave-one-out empirical loss

function as 5
1 2
FO@ =3 [(a}x) —yj] : (48)
Jij#l

and the auxiliary trajectory { xH® } ;>0 1s constructed by running WF w.r.t. f D (x).In

addition, the spectral initialization x*® is computed based on the rescaled leading
eigenvector of the leave-one-out data matrix

1
Y(I) = n—1 Z yja.,'a}—. 49)

Clearly, the entire sequence {x’ 40 } ;>0 1s independent of the /th sampling vector a;.
This auxiliary procedure is formally described in Algorithm 4.

Algorithm 4 The /th leave-one-out sequence for phase retrieval

Input: {a;}1<j<m,jz and {yjh1<j<m, j#-
Spectral initialization: let 1| (Y(l )) and 0@ be the leading eigenvalue and eigenvector of

1
0 — E aial
YV = " yjajaj,
Jij#l

respectively, and set

O] 70.() o |150,() _ ~0,(l)
o [P O ARO[ ey < [0 e,

—W 70D else.

Gradient updates: forr =0,1,2,...,7 — 1 do

xr+1,(l) — xt,(l) _ nsza)(xr’(l)). (50)

6.3 Step 3: Establishing the Incoherence Condition by Induction

As revealed by Lemma 3, it suffices to prove that the iterates {x’ Yo<i<T, satisfies (47)
with high probability. Our proof will be inductive in nature. For the sake of clarity, we
list all the induction hypotheses:

[x —x*], = Cu, (51a)
EOE';W
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max [|x" — xh® ”2 < Cs,/ logn (51b)
1<i<m n

max ’aJT (x' = x*)‘ < Cyy/logn. (51c)

1<j<m

Here C3 > 01is some universal constant. For any r > 0, define &, to be the event where
the conditions in (51) hold for the ¢th iteration. According to Lemma 2, there exists
some event £ with probability 1 — O (mn~'0) such that on & N &£ one has

|

This subsection is devoted to establishing (51b) and (51c) for the (# + 1)th iteration,
assuming that (51) holds true up to the rth iteration. We defer the justification of the
base case (i.e., initialization at ¢t = 0) to Sect. 6.4.

x| <. (52)

2

e Step 3(a): proximity between the original and the leave-one-out iterates The leave-
one-out sequence {x’ *(1)} behaves similarly to the true WF iterates {x’} while
maintaining statistical independence with a;, a key fact that allows us to control
the incoherence of /th leave-one-out sequence w.r.t. a;. We will formally quantify
the gap between x’*! and x’*1-® in the following lemma, which establishes the
induction in (51b).

Lemma 4 Suppose that the sample size obeys m > Cn log n for some sufficiently large
constant C > 0 and that the step size obeys 0 < n < 1/[5C2(10 + C») logn]. Then
on some event E41.1 C & obeying P(& N 5;4],1) = O(mn~19), one has

lo
max th+1 — x!TLO H < C3,/ en. (53)
1<l<m 2 n

Proof The proof relies heavily on the restricted strong convexity (see Lemma 1) and
is deferred to Appendix A.4. O

e Step 3(b): incoherence of the leave-one-out iterates By construction, x'*1® is
statistically independent of the sampling vector a;. One can thus invoke the stan-
dard Gaussian concentration results and the union bound to derive that on an event
1.2 € & obeying P(E NEL, | ,) = O(mn~10),

< 5,/logn}|x’+1’(1) — x*||2
2 5\/@(||xt+l,(l) _xz+1”2 + ‘

(i) 1
;5 logn <C3 Ogn-l-Cl)

max
1<i<m

alT(szrl,(l) _ x*)

xt+l _ x*

)

n

< Cy44/logn (54)
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holds for some constant C4 > 6C; > 0 and n sufficiently large. Here, (i) comes
from the triangle inequality and (ii) arises from the proximity bound (53) and the
condition (52).

e Step 3(c): combining the bounds We are now prepared to establish (51c) for the
(t 4+ Dth iteration. Specifically,

max ‘al—r (x"H —x*)
I<i<m

< max ‘al'l'(xt-i-l _xz+1,(1))‘ + max ‘al'l'(xt+1,(l) —x*)
=t=m <l<m

? lagllz [+ =2+, + €4 /logn
1<l<m

(i) 1
< V- C3)[ 2+ Cayflogn < Cologn. (55)
n

where (i) follows from the Cauchy—Schwarz inequality and (54), the inequality
(ii) is a consequence of (53) and (98), and the last inequality holds as long as
C1/(C3 4 Cy) is sufficiently large. From the deduction above we easily get P(&; N
£ ) = 0(mn™'0).

Using mathematical induction and the union bound, we establish (51) for all r <
Ty = n with high probability. This in turn concludes the proof of Theorem 1, as long
as the hypotheses are valid for the base case.

6.4 The Base Case: Spectral Initialization

In the end, we return to verify the induction hypotheses for the base case (+ = 0),
i.e., the spectral initialization obeys (51). The following lemma justifies (51a) by
choosing § sufficiently small.

Lemma5 Fix any small constant § > 0, and suppose m > conlogn for some large
constant ¢y > 0. Consider the two vectors x° and X° as defined in Algorithm 1, and
suppose without loss of generality that (42) holds. Then with probability exceeding
1 — 019, one has

1Y —E[Y]ll <3, (56)

Ix* —x*l2 <28 and ¥ —x*], < V2. (57)
Proof This result follows directly from the Davis—Kahan sin® theorem. See
Appendix A.S. O

We then move on to justifying (51b), the proximity between the original and leave-
one-out iterates for ¢ = 0.

Lemma 6 Suppose m > conlogn for some large constant co > 0. Then with proba-
bility at least 1 — O (mn~'%), one has

max ||x0 —x%0 ||2 <Cs logn. (58)
1<l<m n

FolCT
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Proof This s also aconsequence of the Davis—Kahan sin® theorem. See Appendix A.6.
]

The final claim (51c) can be proved using the same argument as in deriving (55)
and hence is omitted.

7 Analysis for Matrix Completion
In this section, we instantiate the general recipe presented in Sect. 5 to matrix com-

pletion and prove Theorem 2. Before continuing, we first gather a few useful facts
regarding the loss function in (23). The gradient of it is given by

VfX)= %799 [XXT - (M* + )| x. (59)
We define the expected gradient (with respect to the sampling set €2) to be
VF(X) = [XXT — (M + E)] X
and also the (expected) gradient without noise to be
V faean (X) = ~Pg, (XXT - M*) X and  VFiean (X) = (XXT - M*) X.
g (60)

In addition, we need the Hessian V2 felean (X)), which is represented by an nr x nr
matrix. Simple calculations reveal that for any V € R"*",

1 2
vee (V) V2 fotean (X) vee (V) = HPQ (VXT + XVT) HF
p
1
+- <PQ (XXT — M*) , VVT>, 61)
P
where vec(V) € R" denotes the vectorization of V.

7.1 Step 1: Characterizing Local Geometry in the RIC
7.1.1 Local Geometry

The first step is to characterize the region where the empirical loss function enjoys
restricted strong convexity and smoothness in an appropriate sense. This is formally
stated in the following lemma.

Lemma 7 (Restricted strong convexity and smoothness for matrix completion) Sup-
pose that the sample size obeys n>p > Ck’*urnlogn for some sufficiently large
FoC'T
‘_I o
@ Springer Lﬁjog



Foundations of Computational Mathematics

constant C > 0. Then with probability at least 1 — O (nflo), the Hessian V* Sfelean(X)
as defined in (61) obeys

Omin

vec (V)T V2 fojean (X) vec (V) > 5

Omax

(62)

5
VIR and |V faen 0| = 3

forall X and V. =YHy — Z, with Hy := argmingcorxr |Y R — Z||g, satisfying:

RER & FINET b o P (63a)
1Z — X*|| < 38]I1X*], (63b)

where € < 1/y/i3urlog>n and § < 1/k.
Proof See Appendix B.1. O

Lemma 7 reveals that the Hessian matrix is well conditioned in a neighborhood
close to X* that remains incoherent measured in the ¢ /¢~ norm (cf. (63a)), and
along directions that point toward points which are not far away from the truth in the
spectral norm (cf. (63b)).

Remark 5 The second condition (63b) is characterized using the spectral norm || - ||,
while in previous works this is typically presented in the Frobenius norm || - ||g. It is
also worth noting that the Hessian matrix—even in the infinite-sample and noiseless
case—is rank-deficient and cannot be positive definite. As a result, we resort to the form
of strong convexity by restricting attention to certain directions (see the conditions on
V).

7.1.2 Error Contraction

Our goal is to demonstrate the error bounds (28) measured in three different norms.
Notably, as long as the iterates satisfy (28) at the ¢th iteration, then || X 'H — Xx* 12,00
is sufficiently small. Under our sample complexity assumption, X 'H' satisfies the
{2 /€~ condition (63a) required in Lemma 7. Consequently, we can invoke Lemma 7
to arrive at the following error contraction result.

Lemma 8 (Contraction w.r.t. the Frobenius norm) Suppose thatn* p > Ci>u3r3n log®
n for some sufficiently large constant C > 0, and the noise satisfies (27). There exists
an event that does not depend on t and has probability 1 — O (n~'9), such that when
it happens and (28a), (28b) hold for the tth iteration, one has

o . 1 . o [n .
e B = ot e+ o 1

provided that 0 < n < 2/(25k0max), | — (omin/4) - n < p < 1, and C} is sufficiently
large.

EOE';W
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Proof The proof is built upon Lemma 7. See Appendix B.2. O

Further, if the current iterate satisfies all three conditions in (28), then we can derive
a stronger sense of error contraction, namely contraction in terms of the spectral norm.

Lemma 9 (Contraction w.r.t. the spectral norm) Suppose n>p > Ci>u’r3nlog’ n for
some sufficiently large constant C > 0, and the noise satisfies (27). There exists an
event that does not depend on t and has probability 1 — O (n=19), such that when it
happens and (28) holds for the tth iteration, one has

= 1
” xR x| < C()ptﬂwﬁ x| + Cloé\/g Ix*| (o4

provided that 0 < n < 1/ 20max) and 1 — (omin/3) -n < p < L.

Proof The key observation is this: the iterate that proceeds according to the population-
level gradient reduces the error w.r.t. || - ||, namely

|X'H — 1V Faean(X'H') — X*|| < |[X'H' — X*|

’

as long as X’ H'is sufficiently close to the truth. Notably, the orthonormal matrix H'
is still chosen to be the one that minimizes the || - || g distance (as opposed to || - ||), which
yields a symmetry property X*T X'H' = (X’I?Z)TX*, crucial for our analysis. See
Appendix B.3 for details. O

7.2 Step 2: Introducing the Leave-One-Out Sequences

In order to establish the incoherence properties (28b) for the entire trajectory, which
is difficult to deal with directly due to the complicated statistical dependence, we
introduce a collection of leave-one-out versions of {X d } /-0 denoted by {X 80 } >0

foreach 1 <[ < n.Specifically, {X d '(l)} >0 is the iterates of gradient descent operating

on the auxiliary loss function
FO(x) = - [Po-i [XXT - (° + B)] H2 41 [P (xx7 - mr) ’2
Tap T F 4 F

(65)

Here, Pgq, (resp. Pq- and P;) represents the orthogonal projection onto the subspace
of matrices which vanish outside of the index set ; := {(i, j) €e Q| i =l or j =}
(resp. Q.= {(,j))eQi#1,j#l}and{(i, j) | i =1 or j = [}); thatis, for any
matrix M,

[PQ (M)]. o M; j, if i=1lorj=1)and(, j) €, 66)
[ " 0, else,

[73 - (M)]- = M j, ifi #land j #land (i, j) € 2 and
¢ " 0, else
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0, ifi #land j # 1,

o . (67)
Mi,j9 if i =lOI‘] =1.

[P (M)];,; = {
The gradient of the leave-one-out loss function (65) is given by
0] 1 T - T *
Vi) = Pa [XX — (M + E)]X+771 (XX -M )X. (68)

The full algorithm to obtain the leave-one-out sequence { X"V} >0 (including spectral
initialization) is summarized in Algorithm 5.

Algorithm 5 The /th leave-one-out sequence for matrix completion
Input: ¥ =[Y; ; M M} .1, p.
Spectral initialization: Let U 0.0 xOy0OT pe the top-r eigendecomposition of

]lfi,jgn ’

1 1
MO = > Pat D+ P (M*) = Pt (M* + E) + P (M*)

with 77971 and P; defined in (67), and set xX0.0 = UO’(Z)(E(]))I/Z.

Gradient updates: forr =0,1,2,...,7 — 1do

xHLO Z xt O g p O (x10), (69)

Remark 6 Rather than simply dropping all samples in the /th row/column, we replace
the /th row/column with their respective population means. In other words, the leave-
one-out gradient forms an unbiased surrogate for the true gradient, which is particularly
important in ensuring high estimation accuracy.

7.3 Step 3: Establishing the Incoherence Condition by Induction

We will continue the proof of Theorem 2 in an inductive manner. As seen in Sect. 7.1.2,
the induction hypotheses (28a) and (28c) hold for the (¢ + 1)th iteration as long as
(28) holds at the rth iteration. Therefore, we are left with proving the incoherence
hypothesis (28b) for all 0 < ¢ < T = O(n”). For clarity of analysis, it is crucial to
maintain a list of induction hypotheses, which includes a few more hypotheses that
complement (28), and is given below.

—~ 1
XA~ x|, < <c4p i+ 1 \f) 1x*]. (70a)
—~ 1
WA =y = (coun 2 s 2 ,/"°g”) X,
(70b)
FoE"ﬂ
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xR - x*] < (cgp W}+cmi\/i> 1x*].

ogn nlogn N
s 0w, (o [P 7 [ e,

(70c¢)

(70d)
1 o [nlogn
(x"OH"Y —x%), |, <[ C2p' Co—o X+ 70
x| olle = { Coptur—m 4 o [ N 1K e (700)
hold for some absolute constants 0 < p < 1 and Cy,---, Cio9 > 0. Here, H”~’ a-? and
R"" are orthonormal matrices defined by
A" —arg min [X"OR-Xx*| | (71)
Reorxr F
R"":=arg min |X"OR-X"H'|.,. (72)

ReOrxr

Clearly, the first three hypotheses (70a)—(70c) constitute the conclusion of Theorem 2,
i.e., (28). The last two hypotheses (70d) and (70e) are auxiliary properties connecting
the true iterates and the auxiliary leave-one-out sequences. Moreover, we summarize
below several immediate consequences of (70), which will be useful throughout.

Lemma 10 Suppose n’p > Ci3u?r’n log n for some sufficiently large constant C >
0, and the noise satisfies (27). Under hypotheses (70), one has

H x'B - x-Opg-® HF <5 HX’?I’ —xHORLO HF (73a)
LD _ yx 0. pt.() _ 0o 1 o n] g
[x OB — x| < [x0ORND 0| < {2C4p pr s 201 Umin\/;} 1%
(73b)
I !
”Xz,(l)Rt,(l) 7X*||2 o < i(c3 +Cs)plur [logn + (Cg + C7) L. [nlogn } ”X*Hz .
’ np Omin p ’
(73c¢)
xt OO _x*) < {2c fr— 420102 \ﬁ} x| 73d
I = 2Con s +2C0 o o IX] (73d)
In particular, (73a) follows from hypotheses (70c) and (70d).
Proof See Appendix B.4. O

In the sequel, we follow the general recipe outlined in Sect. 5 to establish the
induction hypotheses. We only need to establish (70b), (70d), and (70e) for the (4 1)th
iteration, since (70a) and (70c) are established in Sect. 7.1.2. Specifically, we resort
to the leave-one-out iterates by showing that: first, the true and the auxiliary iterates
remain exceedingly close throughout; second, the /th leave-one-out sequence stays
incoherent with e; due to statistical independence.

e Step 3(a): proximity between the original and the leave-one-out iterates We demon-
strate that X'*! is well approximated by X'*1-® up to proper orthonormal
Fol:'ﬂ
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transforms. This is precisely the induction hypothesis (70d) for the (¢ + 1)th iter-
ation.

Lemma 11 Suppose the sample complexity satisfies n>p > Cik*u3r3nlog> n for some
sufficiently large constant C > 0, and the noise satisfies (27). Let & be the event where
the hypotheses in (70) hold for the tth iteration. Then on some event £411 C &
obeying P(E, N EfHJ) = 0(n~19), we have

o logn .
HXt+1H’ —X’“’U)RM(DHF < C3p™pr el Lo PR
o |nlogn
c 2T I x+ 74
—+ 7O’min ) ” ||2,oo ( )

provided that 0 < n < 2/(25k0max), 1 — (Omin/S) -n < p < 1, and C7 > O is
sufficiently large.

Proof The fact that this difference is well controlled relies heavily on the benign
geometric property of the Hessian revealed by Lemma 7. Two important remarks
are in order: (1) both points X’ H' and X" R"" satisty (63a); (2) the difference
X'H' — X"OR"® forms a valid direction for restricted strong convexity. These two
properties together allow us to invoke Lemma 7. See Appendix B.5. O

e Step 3(b): incoherence of the leave-one-out iterates Given that X' +1-® is suffi-
ciently close to X'*!, we turn our attention to establishing the incoherence of this
surrogate X't1:® w.r.t. ¢;. This amounts to proving the induction hypothesis (70e)
for the (¢ + 1)th iteration.

Lemma 12 Suppose the sample complexity meets n>p > Ck3>r3nlog’ n for some
sufficiently large constant C > 0, and the noise satisfies (27). Let & be the event
where the hypotheses in (70) hold for the tth iteration. Then on some event E12 € &
obeying P(&; N Sf_H’z) = 019, we have

1
Jnp

nlogn
p

H (XH_L(Z)F\IZ-H,(]) _ X*)[ H < C2,0t+],UJ‘ ||X*||2 o + CGL ||X
>l ’ Omin

*”2,00
(75)
solong as 0 < n < 1/omax, | — (0min/3) -1 < p < 1, C2 > kCo, and Ce >

kC10/+/logn.

Proof The key observation is that X’+1-() is statistically independent from any sample
in the /th row/column of the matrix. Since there are an order of np samples in each
row/column, we obtain enough information that helps establish the desired incoherence
property. See Appendix B.6. O

e Step 3(c): combining the bounds Inequalities (70d) and (70e) taken collectively
allow us to establish the induction hypothesis (70b). Specifically, for every 1 <

[ < n, write
FoC
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(X“”H’“ X*)l (Xf“H’H X!+ (Z)Ht+1 (1))
(Xz+1 (Z)Ht+1 (D X*)l,-’

l,-

and the triangle inequality gives
[ B = x), [, = XA xe oo,
+E R —x), [, a6

The second term has already been bounded by (75). Since we have established the
induction hypotheses (70c) and (70d) for the (¢ 4+ 1)th iteration, the first term can
be bounded by (73a) for the (¢ 4+ 1)th iteration, i.e.,

th+1 gyt o gttt o H

<5 HX’HI/TH _ xHLO Rr+1LO H
F
Plugging the above inequality, (74), and (75) into (76), we have

Hlerlﬁl"'l _ X*

2,00
1 C I
< e (e 288 e o 1 e, )
min
1 Ce nlogn
r+1 *
+ Cap M”M ”2,00 Umina |x ||2,o<>
logn . Cg nlogn
< Csp't! | X%y + —0 1% 0

aslongas Cs/(kC3+C»>) and Cg/(k C7+Ce) are sufficiently large. This establishes
the induction hypothesis (70b). From the deduction above, we see & N EF

1 =
O (n~ ') and thus finish the proof.

7.4 The Base Case: Spectral Initialization

Finally, we return to check the base case; namely, we aim to show that the spectral
initialization satisfies the induction hypotheses (70a)—(70e) for ¢t = 0. This is accom-
plished via the following lemma.

Lemma 13 Suppose the sample size obeys n*>p > Cu?r’n log n for some sufficiently
large constant C > 0, the noise satisfies (27), and k = omax/Omin < 1. Then with
probability at least 1 — O (nflo), the claims in (70a)—(70e) hold simultaneously for
t=0.

Proof This follows by invoking the Davis—Kahan sin® theorem [39] as well as the
entrywise eigenvector perturbation analysis in [1]. We defer the proof to Appendix B.7.
O
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8 Analysis for Blind Deconvolution

In this section, we instantiate the general recipe presented in Sect. 5 to blind decon-
volution and prove Theorem 3. Without loss of generality, we assume throughout that
], = 1112 = 1.

Before presenting the analysis, we first gather some simple facts about the empirical
loss function in (32). Recall the definition of z in (33), and for notational simplicity,
we write f (z) = f(h, x). Since z is complex-valued, we need to resort to Wirtinger
calculus; see [18, Section 6] for a brief introduction. The Wirtinger gradient of (32)
with respect to k and x are given, respectively, by

Vif @ =Vaf(hx)=Y (b;'tha,- — y,») bjax; 77
=1

Vef @) =Vef (h.x) =Y (bhxta; —yj)a;blih. (78)
=1

It is worth noting that the formal Wirtinger gradient contains Vy f (h,x) and
Vxf (h, x) as well. Nevertheless, since f (h, x) is a real-valued function, the fol-
lowing identities always hold

Vif(h,x)=Vgf(h,x) and Vyf(h,x)=Vzf(h x).

In light of these observations, one often omits the gradient with respect to the conju-
gates; correspondingly, the gradient update rule (35) can be written as

R =n' — ” tI Z(b”h’x’“aj —y])b alx'! (79a)
x

xt+1 =x' = H ,H Z(thtx;Haj _ yj)aijht (79b)
2]

We can also compute the Wirtinger Hessian of f(z) as follows,

A B
Vf(z )—[ A] (80)
where
B 2
m H HH m Hp H . .H
A= Lj-i ‘aix‘ bib; " 2= (bfhx a-’2 yf)bfaj c C2Kx2K.
H H
> [(b hxta;— y,)b a’ ] P ‘bjh‘ aja"l
B T
m pH ~H
B — 0 . ZJ':l bjbjh (a.,ajx) c C2Kx2K
Y ajallx (bjb'j'-'h) 0
FoE'ﬂ
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Last but not least, we say (h1, x1) is aligned with (h3, x7), if the following holds,

2
2 2 .
k1 — hall5 + llx1 — x2||5 = min {
aeC

1
‘:hl —h>
o

2
+ llaxy — lelz} .
2

To simplify notations, define 7' as

N '}‘l‘t %h[
-]

with the alignment parameter o’ given in (38). Then we can see that 7' is aligned with
z* and

dist (z', z%) = dist (7', 2*) = |2 — 2", .
8.1 Step 1: Characterizing Local Geometry in the RIC
8.1.1 Local Geometry
The first step is to characterize the region of incoherence and contraction (RIC),

where the empirical loss function enjoys restricted strong convexity and smoothness
properties. To this end, we have the following lemma.

Lemma 14 (Restricted strong convexity and smoothness for blind deconvolution) Let
¢ > 0 be a sufficiently small constant and

§ = c/log” m.
Suppose the sample size satisfies m > cou’ K log® m for some sufficiently large con-

stant co > 0. Then with probability 1 — O (m_lo + e Klog m), the Wirtinger Hessian
V2 f (z) obeys

DV @+ V2 @D]uz (/4 Il and |V @ <3

simultaneously for all

hy —hy vilg
z= I::] and u= Z: :Zi and D= Ik il
x| — X2 r2lk
where z satisfies
max{”h—h*”z, x—x*”z}f& (82a)

FoC'T
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1
H * .
llsnjasxm ‘aj (x x )‘ =26 log3/2m7 (82b)
H K 2.
115111'agxm ‘bjh‘ < 2C4ﬁ log” m; (82¢)

(hy, x1) is aligned with (hy, x3), and they satisfy

max (|10 — 1],

[ = 7], |

X1 _x*Hz’ X2 _X*Hz} <9 (83)

and finally, D satisfies for y1, y» € R,
max {|y; — 1, |y2 — 1} < 4. (84)

Here, C3, C4 > 0 are numerical constants.
Proof See Appendix C.1. O

Lemma 14 characterizes the restricted strong convexity and smoothness of the loss
function used in blind deconvolution. To the best of our knowledge, this provides the
first characterization regarding geometric properties of the Hessian matrix for blind
deconvolution. A few interpretations are in order.

e Conditions (82) specify the region of incoherence and contraction (RIC). In par-
ticular, (82a) specifies a neighborhood that is close to the ground truth in £, norm,
and (82b) and (82c) specify the incoherence region with respect to the sensing
vectors {a;} and {b,}, respectively.

e Similar to matrix completion, the Hessian matrix is rank-deficient even at the
population level. Consequently, we resort to a restricted form of strong convexity
by focusing on certain directions. More specifically, these directions can be viewed
as the difference between two pre-aligned points that are not far from the truth,
which is characterized by (83).

e Finally, the diagonal matrix D accounts for scaling factors that are not too far from
1 (see (84)), which allows us to account for different step sizes employed for h
and x.

8.1.2 Error Contraction

The restricted strong convexity and smoothness allow us to establish the contraction
of the error measured in terms of dist(-, z*) as defined in (34) as long as the iterates
stay in the RIC.

Lemma 15 Suppose the number of measurements satisfies m > Cu>K log® m for
some sufficiently large constant C > 0, and the step size n > 0 is some sufficiently
small constant. There exists an event that does not depend on t and has probability
1-0 (m_lo + e Klog m), such that when it happens and

dist (z', z*) <&, (85a)
EOE';W
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max ‘a» ® —x%)| < (85b)

log'dm’
1r<nja<xm b'}'flt‘ < C4\7—% logzm (85¢)

hold for some constants C3, C4 > 0, one has
dist (24, 2) = (1 = n/16)dist (z', 2°)..

Here, 1 and ¥ are defined in (81), and & < 1/ log? m.
Proof See Appendix C.2. O

As aresult, if z’ satisfies condition (85) forall 0 <t < T, then
dist (z', z*) < p dist (zt_l, z*) < p'dist (zo, z*) <plc;, O0<t<T,

where p := 1 — n/16. Furthermore, similar to the case of phase retrieval
(i.e., Lemma 3), as soon as we demonstrate that conditions (85) hold forall0 <t < m,
then Theorem 3 holds true. The proof of this claim is exactly the same as for Lemma 3
and is thus omitted for conciseness. In what follows, we focus on establishing (85) for
all0 <t <m.

Before concluding this subsection, we make note of another important result that
concerns the alignment parameter «’, which will be useful in the subsequent analysis.
Specifically, the alignment parameter sequence {a'} converges linearly to a constant
whose magnitude is fairly close to 1, as long as the two initial vectors #° and x° have
similar £, norms and are close to the truth. Given that o’ determines the global scaling
of the iterates, this reveals rapid convergence of both ||’ ||, and | x’||,, which explains
why there is no need to impose extra terms to regularize the £, norm as employed in
[58,76].

Lemma 16 When m > 1 is sufficiently large, the following two claims hold true.

o If|la’| — 1] < 1/2 and dist(z', z*) < C1/log® m, then
t+1

cCy

log® m

o

— 1| < edist(z', z2¥) <

al

for some absolute constant ¢ > 0;
° If‘|oz0| — 1| < 1/4 and dist(z*, z*) < C1(1 — n/16)*/log> m forall 0 < s < 1,
then one has

et = 1] <1/2, 0<s<t.

Proof See Appendix C.2. O

The initial condition ||a®] — 1| < 1/4 will be guaranteed to hold with high proba-
bility by Lemma 19.
FolCT
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8.2 Step 2: Introducing the Leave-One-Out Sequences

As demonstrated by the assumptions in Lemma 15, the key is to show that the whole
trajectory lies in the region specified by (85a)—(85¢). Once again, the difficulty lies in
the statistical dependency between the iterates {z } and the measurement vectors {a; }.
We follow the general recipe and introduce the leave-one-out sequences, denoted by

{ht’(l), x”(l)} . for each 1 < [ < m. Specifically, {ht’(l), x"(l)} . is the gradient
> >

sequence operating on the loss function
2
FO oy = 3 [Bl (hat = ) g (86)
Jij#l

The whole sequence is constructed by running gradient descent with spectral initializa-
tion on the leave-one-out loss (86). The precise description is supplied in Algorithm 6.

(D
For notational simplicity, we denote z/"®) = BM} and use f(z"?) =

f(n' D gt 1)y interchangeably. Define similarly the alignment parameters

1 2
oD = argmin | =h"D — B*|| + ”ozxt’(l) —x*| 2, (87)
aeC || 2
2
0
and denote 7" = 11 where
2.0
~ 1 _
B0 = —n O and 7O =g OxhO, (88)

a0

Algorithm 6 The /th leave-one-out sequence for blind deconvolution

Input: {a }l<]<m J#EL {b }1<]<m ];ﬁl and {yj}l<j<m J#EL
Spectral initialization: Let o (M (1)), h and 0O bethe leading singular value, left and right singular
vectors of .
MO = Z yjbja
Jij#

v 1A o
respectively. Set no 0 = Vol WMD) ho’( ) and x0-) = Vorm®y % 0.0,
Gradient updates: forr =0,1,2,...,7 — 1 do

1 1 1
[h’“v(l)] |:ht,(l)i| 2 (1)”2 Vi fO (O 1 0) )
L || 0 |7 I 1 I
L 0! T (1)”2fo()("’() D)
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8.3 Step 3: Establishing the Incoherence Condition by Induction

As usual, we continue the proof in an inductive manner. For clarity of presentation,
we list below the set of induction hypotheses underlying our analysis:

dist (z', 2*) < c— (90a)

' = log?m’

2K log” m

dist(z"0,3") < ¢ 208 90b
max ist(z"",7") < N p (90b)
max |af (¥ —x*)| < C3——<— ! . (90c)

I<l=m log m

H —

113125,1 ’bl h ’ < C4f10g m, (90d)

where Z’, X', and 7" are defined in (81). Here, C1, C3 > 0 are some sufficiently small
constants, while C», C4 > 0 are some sufficiently large constants. We aim to show
that if these hypotheses (90) hold up to the zth iteration, then the same would hold
for the (¢ + 1)th iteration with exceedingly high probability (e.g., 1 — O (m~'0)). The
first hypothesis (90a) has already been established in Lemma 15, and hence, the rest
of this section focuses on establishing the remaining three. To justify the incoherence
hypotheses (90c) and (90d) for the (# 4 1)th iteration, we need to leverage the nice
properties of the leave-one-out sequences and establish (90b) first. In the sequel, we
follow the steps suggested in the general recipe.

e Step 3(a): proximity between the original and the leave-one-out iterates We first
justify hypothesis (90b) for the (# + 1)th iteration via the following lemma.

Lemma 17 Suppose the sample complexity obeys m > Cu?K log? m for some suf-
ficiently large constant C > 0. Let & be the event where hypotheses (90a)—(90d)
hold for the tth iteration. Then on an event £ 41,1 < & obeying P(& N gtc+1,1) =

om0 + me_”K)for some constant ¢ > 0, one has

9
max dist( +1.0) t+1) C, p | u*Klog’m
1<l<m Jm m

and  max [FHO —FH| < 0 -e M’

I<l<m f

provided that the step size n > 0 is some sufficiently small constant.

Proof As usual, this result follows from the restricted strong convexity, which
forces the distance between the two sequences of interest to be contractive. See
Appendix C.3. O

e Step 3(b): incoherence of the leave-one-out iterate x' 1 w.r.t. a; Next, we show
that the leave-one-out iterate ¥'+!-()—which is independent of @;—is incoherent
Ww.r.t. @; in the sense that

Fol:'ﬂ
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(a}"(?c““’(” _ x*)

= 10Cy 91)

log3/2m

with probability exceeding 1 — O (m~'0 + e~ logm). To see why, use the sta-
tistical independence and the standard Gaussian concentration inequality to show
that

max ‘a}" @O —x¥)
1<i<m

< 5/logm max ”gt-kl,(l) - x*”2
1<i<m

with probability exceeding 1 — O (m~'0). It then follows from the triangle inequal-
ity that

”;‘;m,(z) _x* ||2 < ||55z+1,<z) _ it ”2 n Hgm Xt

2
O ce, b [12KIogm 1
- Jm m log® m
W01
- log>m’

where (i) follows from Lemmas 15 and 17 and (ii) holds as soon as m/ (WAVK
log!3/2 m) is sufficiently large. Combining the preceding two bounds establishes
9n).

e Step 3(c): combining the bounds to show incoherence of x!*w.rt. {a;) The above
bounds immediately allow us to conclude that

1

=6 log*? m

H=t+1
lrggn\az (* x*)

with probability at least 1 — O (m =10 + e=X log m), which is exactly hypothesis
(90c) for the (¢ + 1)th iteration. Specifically, for each 1 < [ < m, the triangle
inequality yields

afi @t — )

< ‘aZH(;m _;z+1,(1>)‘ + )ay(gm,(n —x*)

D) L -
< laill, ‘ g+ _ g0 H2 n ‘ar(xm,u) )

(ii) 2K log® 1
< 3VK-cO-— B2 2R 100, —5—
Jm m log®? m

(iii) c 1
< C3—err—.
= log®/? m

Here (i) follows from Cauchy—Schwarz; (ii) is a consequence of (190), Lemma 17,

and bound (91); and the last inequality holds as long as m /(u” K log® m) is suffi-
ciently large and C3 > 11C;j.

FoC
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ht—H ht—H

e Step 3(d): incoherence of w.r.t. {b;} It remains to justify that is also
incoherent w.r.t. its associated design vectors {b;}. This proof of this step, however,
is much more involved and challenging, due to the deterministic nature of the b;’s.
As aresult, we would need to “propagate” the randomness brought about by {a;}
to ' in order to facilitate the analysis. The result is summarized as follows.

Lemma 18 Suppose that the sample complexity obeys m > Cu”K log® m for some
sufficiently large constant C > 0. Let & be the event where hypotheses (90a)—(90d)
hold for the tth iteration. Then on an event 412 < & obeying P(E N 51‘41’2) =

O (m™1%), one has

1<i<m

as long as Cy is sufficiently large and n > 0 is taken to be some sufficiently small
constant.

Proof The key idea is to divide {1, ---,m} into consecutive bins each of size
poly log(m), and to exploit the randomness (namely, the randomness from a;) within
each bin. This binning idea is crucial in ensuring that the incoherence measure of
interest does not blow up as ¢ increases. See Appendix C.4. O

With these steps in place, we conclude the proof of Theorem 3 via induction and
the union bound.

8.4 The Base Case: Spectral Initialization

In order to finish the induction steps, we still need to justify the induction hypotheses
for the base cases; namely, we need to show that the spectral initializations 79 and
{zo‘(l) } | <1< Satisfy the induction hypotheses (90) at 7 = 0.

To start with, the initializations are sufficiently close to the truth when measured
by the £> norm, as summarized by the following lemma.

Lemma 19 Fix any small constant & > 0. Suppose the sample size obeys m >
Cu*K log? m/&€? for some sufficiently large constant C > 0. Then with probabil-
ity at least 1 — 0 (m~19), we have

ae(rcx}liﬁ:]{Haho—h*Hz—i—Haxo—x*”z}52;‘ and 92)
Lmin_ [lan®® —mo [, + Jox®O — x|} <6, 1=i=m 03

and ||ag| — 1] < 1/4.

Proof This follows from Wedin’s sin® theorem [121] and [76, Lemma 5.20]. See

Appendix C.5. O
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i
@Sprmger L0



Foundations of Computational Mathematics

From the definition of dist(-, -) (cf. (34)), we immediately have

. . , 1 P
dist(2".2°) = min |2 = |+ o =713
()
R R R S,
aeC
(i) : 0 (111) 1
faeg},l;}:][?!“h — 0]y + ox® 27} S Cliogm O

as long as m > Cu?K log® m for some sufficiently large constant C > 0. Here (i)
follows from the elementary inequality that a> + b> < (a + b)? for positive a and
b, (ii) holds since the feasible set of the latter one is strictly smaller, and (iii) follows
directly from Lemma 19. This finishes the proof of (90a) for t = 0. Similarly, with
high probability we have

1
log>m’
1<l <m. (95)

aeC,|a|=1

(20, 27) = win {Joh®O = p ], + fox®O -2t} £ ——

Next, when properly aligned, the true initial estimate z° and the leave-one-out
estimate z ) are expected to be sufficiently close, as claimed by the following lemma.
Along the way, we show that h° is incoherent w.r.t. the sampling vectors {b;}. This
establishes (90b) and (90d) for t = 0.

Lemma 20 Suppose that m > Cu*K log® m for some sufficiently large constant C >
0. Then with probability at least 1 — O (m~'%), one has

2K log®
max dist(zo’(l),io) < CZL‘/ pROE W (96)
1<l<m /M m

2
max |blh | M.

1<i<m m

Proof The key is to establish that dist(zo’ O} “0) can be upper bounded by some linear

and

97

scaling of |b}"ﬁ , and vice versa. This allows us to derive bounds simultaneously for
both quantities. See Appendix C.6. O

Finally, we establish (90c) regarding the incoherence of x® with respect to the
design vectors {a;}.

Lemma 21 Suppose that m > C > K 1og® m for some sufficiently large constant C >
0. Then with probability exceeding 1 — O (m~'%), we have
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1
log! m

a7 — )

max < Cj

1<l<m

Proof See Appendix C.7. O

9 Discussion

This paper showcases an important phenomenon in nonconvex optimization: even
without explicit enforcement of regularization, the vanilla form of gradient descent
effectively achieves implicit regularization for a large family of statistical estimation
problems. We believe this phenomenon arises in problems far beyond the three cases
studied herein, and our results are initial steps toward understanding this fundamental
phenomenon. There are numerous avenues open for future investigation, and we point
out a few of them.

e Improving sample complexity In the current paper, the required sample complex-
ity O (,u3r3nlog3 n) for matrix completion is suboptimal when the rank r of
the underlying matrix is large. While this allows us to achieve a dimension-free
iteration complexity, it is slightly higher than the sample complexity derived for
regularized gradient descent in [32]. We expect our results continue to hold under
lower sample complexity O (/Lzrzn log n) but it calls for a more refined analysis
(e.g., a generic chaining argument).

e Leave-one-out tricks for more general designs So far, our focus is on indepen-
dent designs, including the i.i.d. Gaussian design adopted in phase retrieval and
partially in blind deconvolution, as well as the independent sampling mechanism
in matrix completion. Such independence property creates some sort of “statis-
tical homogeneity,” for which the leave-one-out argument works beautifully. It
remains unclear how to generalize such leave-one-out tricks for more general
designs (e.g., more general sampling patterns in matrix completion and more
structured Fourier designs in phase retrieval and blind deconvolution). In fact,
the readers can already get a flavor of this issue in the analysis of blind deconvolu-
tion, where the Fourier design vectors require much more delicate treatments than
purely Gaussian designs.

e Uniform stability The leave-one-out perturbation argument is established upon a
basic fact: when we exclude one sample from consideration, the resulting esti-
mates/predictions do not deviate much from the original ones. This leave-one-out
stability bears similarity to the notion of uniform stability studied in statistical
learning theory [8]. We expect our analysis framework to be helpful for analyzing
other learning algorithms that are uniformly stable.

o Other iterative methods and other loss functions The focus of the current paper
has been the analysis of vanilla GD tailored to the natural squared loss. This is by
no means to advocate GD as the top-performing algorithm in practice; rather, we
are using this simple algorithm to isolate some seemingly pervasive phenomena
(i.e., implicit regularization) that generic optimization theory fails to account for.
The simplicity of vanilla GD makes it an ideal object to initiate such discussions.
That being said, practitioners should definitely explore as many algorithmic alter-
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natives as possible before settling on a particular algorithm. Take phase retrieval for
example: iterative methods other than GD and/or algorithms tailored to other loss
functions have been proposed in the nonconvex optimization literature, including
but not limited to alternating minimization, block coordinate descent, and sub-
gradient methods and prox-linear methods tailed to nonsmooth losses. It would be
interesting to develop a full theoretical understanding of a broader class of iterative
algorithms, and to conduct a careful comparison regarding which loss functions
lead to the most desirable practical performance.

e Connections to deep learning? We have focused on nonlinear systems that are
bilinear or quadratic in this paper. Deep learning formulations/architectures, highly
nonlinear, are notorious for their daunting nonconvex geometry. However, iterative
methods including stochastic gradient descent have enjoyed enormous practical
success in learning neural networks (e.g., [46,103,132]), even when the architecture
is significantly over-parameterized without explicit regularization. We hope the
message conveyed in this paper for several simple statistical models can shed light
on why simple forms of gradient descent and variants work so well in learning
complicated neural networks.

Finally, while the present paper provides a general recipe for problem-specific anal-
yses of nonconvex algorithms, we acknowledge that a unified theory of this kind has
yet to be developed. As a consequence, each problem requires delicate and somewhat
lengthy analyses of its own. It would certainly be helpful if one could single out a few
stylized structural properties/elements (like sparsity and incoherence in compressed
sensing [13]) that enable near-optimal performance guarantees through an overarching
method of analysis; with this in place, one would not need to start each problem from
scratch. Having said that, we believe that our current theory elucidates a few ingredi-
ents (e.g., the region of incoherence and leave-one-out stability) that might serve as
crucial building blocks for such a general theory. We invite the interested readers to
contribute toward this path forward.
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A Proofs for Phase Retrieval

Before proceeding, we gather a few simple facts. The standard concentration inequality
for x? random variables together with the union bound reveals that the sampling vectors
{a;} obey

max aj], < v6n ©8)
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with probability at least 1 — O (me™1"). In addition, standard Gaussian concentration

inequalities give
Tx*| <5/logn (99)

—10).

max ‘a
1<j<m

with probability exceeding 1 — O (mn
A.1 Proof of Lemma 1
We start with the smoothness bound, namely V2 f(x) < O(logn) - I,. It suffices

to prove the upper bound || v? < logn. To this end, we first decompose the
Hessian (cf. (44)) into three components as follows:

sz (x) = %i [(a}—x)z — ( ij*)z] tlj(l;'r

Jj=1

=A

m
2
Z (a}x*) ajtztjT -2 (I,, + 2x*x*T) +2 (I,, + 2x*x*T),

j=1

+

S|

=A =A3
where we have used y; = (aij*)z. In the sequel, we control the three terms A, A»,
and A3 in reverse order.
e The third term A3 can be easily bounded by

1Asl = 2 (Il + 2 e

)-s

e The second term A; can be controlled by means of Lemma 32:

A2l =26
for an arbitrarily small constant § > 0, as long as m > con log n for ¢ sufficiently

large.
e It thus remains to control A . Toward this, we discover that

m
e Z\ (x —x*

‘a; (x +x%)

aja;|. (100)

< (C»+/logn and fact (99), we

Under the assumption maxj<;<m ‘ajT (x —x%)
can also obtain

T * . T T
1rinjafxm‘aj (x+x) §2max15]5m‘ajx* ‘aj (
< (10 4+ C») /logn.
Fol:'ﬂ
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Substitution into (100) leads to

1 m
IA1]l <3C (10 + Cy) logn - HE Z:aja;-r <4C, (10 + C2) logn,
j=1

where the last inequality is a direct consequence of Lemma 31.

Combining the above bounds on A1, A, and A3 yields

|27 @) < 1AL+ 1Al + 1A] < 4C2 10+ Co) logn +25 + 6
<5C; (10 + C;) logn,
as long as n is sufficiently large. This establishes the claimed smoothness property.

Next, we move on to the strong convexity lower bound. Picking a constant C > 0
and enforcing proper truncation, we get

VZf (x) = % Z |:3 (a;-—x)2 — yji| aja;r

j=1
3m 2 lm 2
T T T * T
= 25 (@) e 00— D (a5 ]
z - (ajx) Ha,Tx‘sC}a/aJ - a;x*) aja;
j=1 : j=1

=Ay :=Aj5

We begin with the simpler term As. Lemma 32 implies that with probability at least
1—0m19,

HAS _ (In + 2x*x*T) H <5

holds for any small constant § > 0, as long as m/(n logn) is sufficiently large. This
reveals that

As < (1+8)-I,+2x*x*T.

To bound A4, invoke Lemma 33 to conclude that with probability at least 1 — c3e~“2"
(for some constants ¢;, ¢3 > 0),

|As =3 (BrexT + paxI31,)

2
| < 81x13

for any small constant § > 0, provided that m /n is sufficiently large. Here,

Bri=E[6' Ljgza) |~ B[ lesc| and foi=E [ g<c],

where the expectation is taken with respect to & ~ A/(0, 1). By the assumption
lx —x*||, < 2Cy, one has
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el < 14261, [Ixl3 = 1513 =201 dCy + 1, xtxT — x|
<6C| (4C1 +1),

which leads to

HA4 _3 (ﬂlx*x*T + ,321n) ‘
< |As=3(BraxT + palwI3n)|
+3 H (,31x*x*T + /321,,) - (;31xxT + ﬂzllxll%ln)

< sllx13 + 381 |
<5 ~|—2C1)2 + 1881C1 (4C1 + 1) +66,C1 (4C1 + 1).

1, —x|351,

P xxTH + 38 ‘

This further implies
Ay =3 (pxxT + Bl
- [3 (142C1)% + 18B1C1 (4C) + 1) + 68,C; (4C) + 1)] I,

Recognizing that 81 (resp. B2) approaches 2 (resp. 1) as C grows, we can thus take
C1 small enough and C large enough to guarantee that

Putting the preceding two bounds on A4 and A5 together yields
V2 F (k) = Sx*x*T 4+ 20, — [(1 +8) I, + 2x*x*T] = (1/2) -1,
as claimed.

A.2 Proof of Lemma 2

Using the update rule (cf. (17)) as well as the fundamental theorem of calculus [70,
Chapter XIII, Theorem 4.2], we get

X —x =% =V f(x') - [x* =0V (x")]

1
= [In — n/ V2 f(x (t))dr] (x' —x*),
0

where we denote x () = x* + t(x! — x*), 0 < T < 1. Here, the first equality makes
use of the fact that V f(x*) = 0. Under condition (45), it is self-evident that for all
0<t<l,
FolCTM
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|x (@) —x*||, = lex" =xM)]2 <2C1 and

< C4/logn.

T *’ ’ T t *
max |a; (x(t) —x")| < max |a, T (x' —x

lglgm‘ ! ( @ ) T <l<m ! ( )
This means that forall0 <t < 1,

(1/2) - 1, < V2 f (x(2)) < [5C2 (10 + C2) logn] - I,

in view of Lemma 1. Picking < 1/ [5C (10 + C5) logn] (and hence ||V f (x (1)) ]|
< 1), one sees that

1
o<1, -0 [ Vr@@dr a1,
0
which immediately yields
=<

th+l _ x*
2

1
I —n / V2 f (x (1) dr
0

e =xy = A=ng2y |2t -],

A.3 Proof of Lemma 3

We start with proving (19a). For all 0 < ¢ < Tjy, invoke Lemma 2 recursively with
conditions (47) to reach

e = x'], = =/ |~ '], = Q=02 [, ct0n
This finishes the proof of (19a) for 0 < ¢ < Tj and also reveals that

*

1
, =G =020 [, < ~ [, (102)

HxTO —-X

provided that n < 1/logn. Applying the Cauchy—Schwarz inequality and fact (98)
indicate that

max ‘a,T (xTO - x*)
1<i<m

1
< max |la|2llx™ —x*|» < vV6n - —|x*|l2» <« C2/logn,
1<l<m n
leading to the satisfaction of (45). Therefore, invoking Lemma 2 yields

1
HxT0+1 —x* < = 1x* 2.
2 T n

, = =n/2) HxTO —x*

One can then repeat this argument to arrive at for all r > Ty

1
|x" — x|, < A =n/2)" |x° —x*], < C1 (1 —n/2) |x*], < ;IIX*Hz. (103)
EOE';W
@Springer Lﬁjog



Foundations of Computational Mathematics

We are left with (19b). It is self-evident that the iterates from 0 < ¢t < Tj satisfy
(19b) by assumptions. For ¢+ > Ty, we can use the Cauchy—Schwarz inequality to
obtain

max ‘a;-r(x’ —x*)| < max |a; H2 (B3 —x*”2 L J/n- % < Cy+/logn,

I<j<m I<j<m

where the penultimate relation uses conditions (98) and (103).

A.4 Proof of Lemma 4

First, going through the same derivation as in (54) and (55) will result in

< Cy/logn (104)

for some C4 < C3, which will be helpful for our analysis.
We use the gradient update rules once again to decompose

max ‘a,T(xt’(l) —x*)
1<l<m

X HLO v f(x) — [xt,(l) _ ,,Vfa)(xr,(l))]
=x' V[ (x) = [x"O = v (x"©)]
- [Vf(xml)) _ me(xr,(z))]
=x' =30y [Vf (&) = Vr ()]

@D
=v;

0 [(a ¥ 0) ~ (a] )] (@] ¥ O)ar,

D
=V,

where the last line comes from the definition of V f (-) and V f© (.).

1. We first control the term vg), which is easier to deal with. Specifically,

I laill2 |, + 2 T o2l T ra
19912 < =2 |(a] x") = (a x*)? | |a] x|

@) nlogn [logn (i) logn
S CalCa+ 5)(Ca + 10y ™22 82 o 28,

for any small constant ¢ > 0. Here (i) follows since (98) and, in view of (99) and

(104),
)

‘(a,Txt,(z))z _ (asz*)2‘ < ‘a?(x”(l) —x*) (’alT(xz,(n —x*)

< C4(C4 + 10) logn,

+2 ’al—rx*
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and ’al—l—x”(l)‘ < ‘a?(x”(l) —x*)
< (C4+ 5)+/logn.

And (ii) holds as long as m > nlogn.

2. For the term vgl), the fundamental theorem of calculus [70, Chapter XIII, Theorem

4.2] tells us that

+ ‘a?x*

1
vﬁl) = |:In - 77/ V2 £ (x (7)) d‘L’i| (x! —x”(l)),
0

where we abuse the notation and denote x (7) = x"® + ¢ (x’ — x"®). By the
induction hypotheses (51) and condition (104), one can verify that

e @) -, = el x4 (- 0 -], 226 and
max<j<m |a; (x (1) — x*)| < Tmaxi<<p @) (x" —x*)[+ (1 = 1)
max|<j<m |a; (x"? —x*)| < C2/logn (105)

forall 0 < r < 1, as long as C4 < C,. The second line follows directly from
(104). To see why (105) holds, we note that

logn

0 7], = [0 =, [ 7], < 052

n

where the second inequality follows from the induction hypotheses (51b) and
(51a). This combined with (51a) gives

logn

|x @ —x*|,<tCi+1—-1) (03 — C1> <2C

as long as n is large enough, thus justifying (105). Hence, by Lemma 1,
V2 f (x (1)) is positive definite and almost well conditioned. By choosing 0 <
n < 1/[5C2 (10 + C2)logn], we get

v, = A =n/2) | = x-O,.

3. Combine the preceding bounds on vil) and v(zl) as well as the induction bound
(51b) to arrive at

th+1 _ L0 ”2 <1 -7/2) “xt _xt® ”2 +en [logn < /k)ﬂ'
n n

(106)

This establishes (53) for the (¢ 4 1)th iteration.
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A.5 Proof of Lemma 5

In view of the assumption (42) that ||x0 —x* H2 < ||x0 + x* ||2 and the fact that x© =

VA1 (Y) /3 %0 for some A (Y) > 0 (which we will verify below), it is straightforward
to see that

e e R

One can then invoke the Davis—Kahan sin® theorem [124, Corollary 1] to obtain

o . 1Y —E[Y]]
|%° —x ”252\/5)Ll EY]D) -1 EXYD

Note that (56)—|Y — E[Y]|| < §—is a direct consequence of Lemma 32. Addi-
tionally, the fact that E[Y] = I 4+ 2x*x*" gives A; (E[Y]) = 3, 2 (E[Y]) = 1,

and A; (E[Y]) — A, (E[Y]) = 2. Combining this spectral gap and the inequality
|Y —E[Y]| <8, we arrive at

”350 _x*Hz < V2s.

To connect this bound with x°, we need to take into account the scaling factor
A1 (Y) /3. To this end, it follows from Weyl’s inequality and (56) that

@) =3=m @) -1 EXD =Y -E[Y]| =<3

and, as a consequence, A1 (Y) >3 —§ > 0 when § < 1. This further implies that

8, 107
3 (107)

M(Y)_l'z B -1 <‘A1<Y>_

a4

where we have used the elementary identity /a — /b = (a — b) /(/a + +/b). With
these bounds in place, we can use the triangle inequality to get

A
e - _‘ 1(Y)~o o ” 0o 2o 0
2 3
2
1 (Y)
_‘X/L_l +H,~c«o_x*
3 2
1
5§3+«/§5525.
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A.6 Proof of Lemma 6

To begin with, repeating the same argument as in Lemma 5 (which we omit here for
conciseness), we see that for any fixed constant § > 0,

HY“) —E [Y<’>]H <5, X00—xtp <25, |FO—x|,<V25, 1<i=m

(108)
holds with probability at least 1 — O (mn~'0) as long as m > nlogn. The £, bound
on ||x0 —x%0 |l2 is derived as follows.

1. We start by controlling |¥° — ¥%® ||2 Combining (57) and (108) yields
[0 -2 0], 2 8 e+ [0 -], 205

For § sufficiently small, this implies that ||¥° — %% ||2 < |¥°+x%® ||2, and
hence, the Davis—Kahan sin® theorem [39] gives

[(¥ =¥ O)zO

~0 _ ~0,()
|#° -9, < i (Y) — 2 (YO)

< (¥ —y©)z*O,. (109)

Here, the second inequality uses Weyl’s inequality:

2 (Y) =22(Y®) = M @YD — Y —E[Y]] - 2@Y D) - [YO —E[y |
>3-6—-1-6>1,

with the proviso that § < 1/2.
2. Wenow connect [|x? —x0 @ ||, with |¥° -0 @ ||,. Applying the Weyl’s inequality
and (56) yields

M@ =3 <Y -E¥]|<sd = MX)e[3-63+5]C][2,4]
(110)
and, similarly, ,; (Y ), | Y|, 1Y P € [2, 4]. Invoke Lemma 34 to arrive at

I =¥,y
R0, = S (2 ) -

< 6] (v - YO0, am

1
ﬁ”’co -

where the last inequality comes from (109).
3. Everything then boils down to controlling H (Y - Y(l)) %00 Hz Toward this, we
observe that

1 2
(H\==0,() _ T % T~0,()
lrélla;xm || (Y -Y )x ||2 = lléllagxm — (al X ) aa; x

2 ~
() a0 ],

T l<l<m m

2
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(2 logn - /logn - \/n
~ m

_ llogn.nlogn. (112)
n m

Inequality (i) makes use of the fact max; |alTx*| < 5./logn (cf. (99)), the bound
max; |la;]2 < 64/n (cf. (98)), and max, }aleo*(l)‘ < 5./logn (due to statistical
independence and standard Gaussian concentration). As long as m/(nlogn) is
sufficiently large, substituting the above bound (112) into (111) leads us to conclude

that
logn

max ||x0 —x%0 ||2 < Cj (113)

1<i<m n

for any constant C3 > 0.

B Proofs for Matrix Completion

Before proceeding to the proofs, let us record an immediate consequence of the inco-
herence property (25):

Kur

|x*
n

x| . (114)

K L
oo = 2 ) =

where Kk = 0max/0Omin is the condition number of M*. This follows since

|x*

”2,00

* * 2 * * 2
= v =), =10 (=)

< JE Qo1 2 < 2 10 o

2y
- n

KJLr
X = [0 e

Unless otherwise specified, we use the indicator variable §; x to denote whether
the entry in the location (j, k) is included in €2. Under our model, §; x is a Bernoulli
random variable with mean p.

B.1 Proof of Lemma 7

By the expression of the Hessian in (61), one can decompose

vec (V) V2 fetean (X) vec (V) = HPQ (VXT + XVT) ”i

1
2p
1
i <7>Q (XXT — M*) , VVT>
V4
Elol:;ﬂ
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2 1 2
HPQ (VX*T 1 X*VT) H
p F

1
- vxT XVT>H -
2p HPQ< + Fo2

=

n %(PQ (XXT _ M*) , VVT>

i=an
1 T > 1 T T|?
+—H7>Q (VX* + X'V )H _ - ‘VX* F XV H
2p F 2 F

=3

1 2
4- HVX*T + X*VTH .
2 F

=04

The basic idea is to demonstrate that: (1) a4 is bounded both from above and from
below, and (2) the first three terms are sufficiently small in size compared to o4.

1. We start by controlling a4. It is immediate to derive the following upper bound

2 2
ar = |[VXT| 4| XV <202 IVIR = 20ma VI

When it comes to the lower bound, one discovers that

=3

]i +|xvT Hi YTy (X*TVX*TV)}

> omin [|V[12 + Tr [(z +x -2) v(Zz+x -2)" V]

> omn VIR +Tr (27VZTV) 2| Z=x" | 1ZI IV I} - | 2-X" 2 1V I

> (min — 580max) |V[2 + Tr (ZTVZTV) : (115)
where the last line comes from the assumptions that
|z-x[<s|x| < x| ana zi<|z-x]+|x0] <220,
With our assumption V = Y Hy — Z in mind, it comes down to controlling

Tr (ZTVZTV) —Tr [zT (YHy —Z)Z' (YHy — Z)] .

From the definition of Hy, we see from Lemma 35 that Z'Y Hy (and hence
ZT (YHy — Z)) is a symmetric matrix, which implies that

Tr [ZT (YHy —Z)Z' (YHy — Z)] > 0.
EOE';W
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Substitution into (115) gives

2
a4 > (Omin — 380max) ”V”F Z T~ O0Omin ”V”F

10

provided that «§ < 1/50.

2. For a1, we consider the following quantity

[Pa (vXT+xvT)
= (Pa (VXT). Pa (VXT))+ (Pa (VXT). Pa (xvT))
+(Pa (XVT) . Pa (VXT))+ (Pa (xVT). Pa (V7))
=2(Pa (VXT), Po (VXT))+2(Pa (vXT). Pa (xVT)).

2 as well.

Similar decomposition can be performed on |Po (VX*T + X*V 1) |

These identities yield

o1 = [Py 30 (va7)) - P (v7) P (v
[(Pa(vxT), P (XVT>> —(Pa (VvX'T), Pa (xvT))].

=p2

1
P

For f2, one has

B = %(PQ (vix-x)").Pa((x-x)vT))
+ %(PQ (v(x-x9").pe (xvT))
+ %(PQ (vxT). Pe ((x - x7)v7))
which together with the inequality |(A, B)| < || A[[¢]| B gives

o123 =) =2 () o)
This then calls for upper bounds on the following two terms

P va-xnl, w Lle(ev),

FoE'ﬂ
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The injectivity of Pgq (cf. [19, Section 4.2] or Lemma 38)—when restricted to the
tangent space of M*—gives: for any fixed constant y > 0,

e (v = aen v s asn x v

with probability atleast 1 — O (n_lo) , provided that n? p / (unr log n) is sufficiently
large. In addition,

Lo (v (x - x|
= l Z 8k [ij (ka' - XZ")T]Z

p 1<j.,k=n

|
= > Vi > S s (X — X5 (X - X5) | V]

1<j<n 1<k<n

IA

1
max |~ Y 874 (Xe. — X5) " (X = X3) [ IVIE

Isj=n | P\ 52,

IA

1 2
s, 3 ot | e X3 i
— 1<k=n

IA

A+yn|X =X _IVIZ,

”2,00

with probability exceeding 1 — O (n_lo), which holds as long as np/logn is

sufficiently large. Taken collectively, the above bounds yield that for any small
constant y > 0,

Bal < AL+ )n | X = X*[5 L IVIE
2/ +pn | X=X 2 IVIE- A+ 92 | X IV

< (X7 +evm XL, 1571 ) IVIR.

where the last inequality makes use of the assumption | X —X* 2,00 < €[|X™[|2,00-

The same analysis can be repeated to control 8. Altogether, we obtain

ot < 1Bl + 182 S (ne? | X* |5 o + Ve | X+ ||X*||) ||V||%

() kepr [k
=< ( 2 + \/_ >0max ||V||F = O'mln ||V||F )

where (i) utilizes the incoherence condition (114) and (ii) holds with the proviso

that e /k3ur < 1.
FoE'ﬂ
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3. To bound a3, apply the Cauchy—Schwarz inequality to get

=

laa| = KV %Pg (XXT — M*) V>

%799 (XXT — M*)

‘ IVIE.
In view of Lemma 43, with probability at least 1 — O (n’lo),
< 2me? | X* 3, + 4ev/nlogn | X*], ., | X*]

1
< 2ne? +4de/nlogn [det Omax < — Omin
n n 10

as soon as €+/k3urlogn < 1, where we utilize the incoherence condition (114).
This in turn implies that

H %PQ (XXT - M*)

1
o] < o omin VI
Notably, this bound holds uniformly over all X satisfying the condition in
Lemma 7, regardless of the statistical dependence between X and the sampling
set €2.
4. The last term o3 can also be controlled using the injectivity of Pg when restricted

to the tangent space of M™*. Specifically, it follows from the bounds in [19, Section
4.2] or Lemma 38 that

T o T > 1 2
3| <y |VX" + X'V - < 4y 0omax ”V”F =< 1_05m1n ||V||F

for any y > 0 such that «y is a small constant, as soon as n>p > k>urnlogn.
5. Taking all the preceding bounds collectively yields

vee (V)T V2 futean (X) vee (V) = ay — |ag| — |ea| — o3
9 3 1
> <E - E) omin [V I = Zomin |V 12
for all V satisfying our assumptions, and

vee (V)T V2 fuean (X) vee (V)| < s + lan| + loa] + o]
< (zamax + %omm) IVIE < Somes VIR
for all V. Since this upper bound holds uniformly over all V, we conclude that
|9 faean 00 = 2omas
as claimed.
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B.2 Proof of Lemma 8

. ~1+1 . L. . .
Given that H o is chosen to minimize the error in terms of the Frobenius norm
(cf. (26)), we have

H xH g xr

< |x B - x
=

= o v ey - xe

F F

)

X'H —nVf(X'H') - x*

)

~ ~ 1 ~
X'H -y [Vfclean(X’H’) — —Pq (E) XfH’] -x*
p

F

)

~ ~ 1 ~
= HXIH[ - nvfclean(Xth) - (X* - rlvfclean(X*))HF +n H;PQ (E) XrHt
F

=0 =

(117)

where (i) follows from the identity V f(X'R) = V f (X') R for any orthonormal
matrix R € O™, (ii) arises from the definitions of V f (X) and V fcjean (X) (see (59)
and (60), respectively), and the last inequality (117) utilizes the triangle inequality and
the fact that V fijean (X™) = 0. It thus suffices to control a| and ;.

1. For the second term « in (117), it is easy to see that with probability at least
1—0 (n719),

1 ~
@ <n H S Pa () H |xa’

1
<2y H—Pg (E)H |X*| < 2nCo |21 X" 1IF
F p p

for some absolute constant C > (. Here, the second inequality holds because

|X'H'|, < |Xx'H' — X*|| + | X*||z <2|X*|. following hypothesis (28a)
together with our assumptions on the noise and the sample complexity. The last
inequality makes use of Lemma 40.

2. For the first term « in (117), the fundamental theorem of calculus [70, Chapter

XIII, Theorem 4.2] reveals

=51

vee [X'H' = 1V fuean (X' H') = (X" = 19 forean(X")) |

= vee [X'H' — X*] 0 vee [V fuean(X'H') = ¥ fuean (X*)]

1
_ <1n, — / V2 fotean (X (7)) dr)vec (X’I?’ - X*) , (118)
0

=A
where we denote X (1) := X* + t(X’ H - Xx *). Taking the squared Euclidean
norm of both sides of equality (118) leads to
(@)? =vec(X'H = X*)" (I, —nA)? vec(X'H' — X*)
= vec(X’I?t - X")T (I,,r —2nA + 172A2> Vec(X’fIt - X*)

FolCT
H_ A
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t Tyt *2 2 2 t Tyt *2
SHXH - x| _+n714l HXH -x|

—2nvee(X'H' - X*) A vec(X'H' — X*), (119)

where in (119) we have used the fact that

t ! T 42 t ! * 2 t ! * 2
veo(X'H' = X*) " A%vee(X' A" — X*) = I AI? |vee(x'H' - X*)|

—~ 2
= A2 HXth -x|

Based on condition (28b), it is easily seen that Vt € [0, 1],

. logn nlogn .
|X (@) - X*|, =< (CSMV‘/ T ) x5 00 -
min

Taking X = X (1),Y = X', and Z = X* in Lemma 7, one can easily verify the
assumptions therein given our sample size condition n?p > «3u3r3nlog® n and
the noise condition (27). As a result,

vee(X'H' = X*) A vee(X'B' - X*) = 22| x'H' - X*[

5
and Al < Eama)v

Substituting these two inequalities into (119) yields

4
<(1— Z0y) [x A - xt

25 ~
@)? < (1 +Bpe2 ammn) X8~ x|

E

aslongas 0 < 1 < (2omin)/ (2502

max

), which further implies that

o‘mm

o = (1= 22) XA - X*||.

3. Combining the preceding bounds on both «| and oy and making use of hypothesis
(28a), we have
+20co 2 x0],

o *
< (1 %m0 (car'r o |07+ €157 2 31 )+ 2000 [ |3
x5+ (1—”‘"‘“n e o [ x]
\/@ F 4 F

1 o n
=< Can e X € 2

Fo C 'ﬂ
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aslong as 0 < 7 < 2omin)/(2562,), 1 — (Omin/4) -1 < p < 1, and Cy is
sufficiently large. This completes the proof of the contraction with respect to the
Frobenius norm.

B.3 Proof of Lemma 9

To facilitate analysis, we construct an auxiliary matrix defined as follows

- 1
¥ x'H - n=Pq [X’X’T —(M* + E)] X*. (120)
p

With this auxiliary matrix in place, we invoke the triangle inequality to bound

”Xt-i-lﬁﬂrl _ X*” < ”Xt+1l’_jt+l _ i H n ”3'(t+1 _ X*H ) (121)

= =2

. . STEE I
1. We start with the second term «; and show that the auxiliary matrix X "*1is also
o |
not far from the truth. The definition of X' allows one to express

U
o = ‘ X'H - 1 Pa [x'X'T - (M*+ E)] x* - x*

<7 ”ﬁPg (E)H |x*| + HX’?I’ - nﬁpg (xxT—xxT)x* - x°

< ” Lpg ) H Jx| + | x B = (xxT - x"xT) X x*
P

=pi

1
+1 H—PQ (X xT - xxT)x - (XxT - xxT) x|, (123)
p

=h2

where we have used the triangle inequality to separate the population-level compo-
nent (i.e., B1), the perturbation (i.e., 87), and the noise component. In what follows,
we will denote

5!

A':=X'H - X*

which, by Lemma 35, satisfies the following symmetry property

A 'x"x =x"xH = ATxX*=xTA". (129
EOE';W
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(a) The population-level component B is easier to control. Specifically, we first
simplify its expression as

ﬂ] — HAt—T)(AtAtT+AtX*T+X*AtT)X*

< “AI—U(AIX*T—i—X*AIT) X*

+n HAZ‘AZ‘TX*

=N =02

The leading term y; can be upper bounded by

y=|Ar—nArE—x-aTxe

— HAI _nAtZ*_nX*X*TAt

= H %A’ (I, —2n=*) + % (I, —2nM™) A’

1 * *
=5 ([1r = 2027 + [ 1, — 207 ]) [ A7
where the second identity follows from the symmetry property (124). By

choosing n < 1/(2omax), one has 0 < I, — 2nX* < (1 — 2n0min) I, and
0 <1, —2nM* < I,, and further one can ensure

1
71 = 5 [0 = 2nomin) + 11 [A"] = (1 = nowin) [A"] . (125)
Next, regarding the higher-order term y», we can easily obtain
ye <A’ [x*. (126)
Bounds (125) and (126) taken collectively give
Bi < (I — nowin) | A +n | A" | X*] . (127)
(b) We now turn to the perturbation part 8, by showing that
lﬂz — lPQ (AtAtT + AZX*T + X*AtT> X*
n p

_ I:AIAIT + AtX*T +X*A1T:| X*

IA

1
_PQ (AtX'kT) X* _ (Atka-r> X*
p

F

=0,

FoC'T
e,
@ Springer |03



Foundations of Computational Mathematics

1
+ H_PQ (X*AIT) X* _ (X*AIT) X*
p

F

=0

+ H%PQ (AaT)x— (A'AT) x| (128)

F

=063

where the last inequality holds due to the triangle inequality as well as the fact
that ||A|| < ||A|lp. In the sequel, we shall bound the three terms separately.
e For the first term 6; in (128), the /th row of %PQ (A’X*T) X —

(A'X*T) X* is given by
—Z 81.j—p) Al X3IX% = A %Z 81.j — p) X351 X%
j=1

where, as usual, §; ; = 1y¢, j)eq). Lemma 41 together with the union
bound reveals that

n

1
—> (6 - p) X31X5,

P
1
< (VoI 1P roen + X[ togn)

_ \/uX*n%momax logn_ 1X* 13, log
= ’ -

for all 1 < < n with high probability. This gives
n

1
Al Y (i —p) X5IX5
Jj=1 2

= |ai., —Z 8 = p) X X,

\/MX*n%mamax logn 1X* 15,0, log

< || AL
<Al ; .

FoE'ﬂ
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which further reveals that

2
n
1
b= |2 |5 2 (6 —p) ALXIXS,
I=1 j 5
< At IX*13 oomax logn [ X*|I3 ., logn
sla'ly o D1 1

) X*3 1 X*3 1
N \/ X 13 oo oman logn 7IX* 1B, logn
P P
kprtlogn  kur3/?logn

)
< | f R SR

(iii)
= YOmin |

for arbitrarily small y > 0. Here, (i) follows from H Al ||F < Jr ||
(i1) holds owing to the incoherence condition (114), and (iii) follows as
long as n?p > k3 urnlogn.

e For the second term 6; in (128), denote

A= PQ (X*AIT> X* —p (X*AIT> X*,

whose /th row is given by
Z (8. — p) AT X% (129)

Recalling the induction hypotheses (28b) and (28c), we define

o |nlogn ”

n * o * .
”X HZ,oo +Cs Ommin » X ||2,oo =§

(130)

Lx 4 o2 2 x*] = (131)
NG “’m\/; =V

[A);,00 = Cso'ur

[A] < Cop'r

With these two definitions in place, we now introduce a “truncation level”

w = 2p&omax (132)
FoE'ﬂ
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that allows us to bound 6, in terms of the following two terms

n 1 n
DI TR i D Y E YR NP
=1 =1

=i

1 " 2
+ DAL L f,z0) -
=1

=

We will apply different strategies when upper bounding the terms ¢
and ¢, with their bounds given in the following two lemmas under the
induction hypotheses (28b) and (28¢).

Lemma 22 Under the conditions in Lemma 9, there exist some constants ¢, C > 0
such that with probability exceeding 1 — c exp(—Cnr logn),

91 < &\ Poma | X*13 onr logn (133)

holds simultaneously for all A" obeying (130) and (131). Here, £ is defined in (130).

Lemma 23 Under the conditions in Lemma 9, with probability at least 1 — O (n’lo),

¢ S E\kur2plogin | x| (134)

holds simultaneously for all A' obeying (130) and (131). Here, & is defined in (130).
Bounds (133) and (134) together with the incoherence condition (114) yield

1 . 1 * 2
0 < ;5\/pgmax||x I3 sonr log? n + ;SW x|

2 2
[kur?log®n
S Tsamax-

e Next, we assert that the third term 63 in (128) has the same upper bound as 6,. The
proof follows by repeating the same argument used in bounding 8, and is hence
omitted.

Take the previous three bounds on 61, 6>, and 63 together to arrive at

o~ [rkpr?login
B2 < n (1611 + 1621 4 163]) < nyomin |A"| + Cn demax

for some constant C > 0.
FolCTM
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(c) Substituting the preceding bounds on B; and B; into (123), we reach

@ 1
2 2 (1= omin + 17w + 1 | A[[X]) |&] 41| LPa B ]

2 2
~ |kpr<logsn
+Cn fgamax (CSPIIJ”"

@ Omin . 1 "
2 (1= T &) 0 | Pa | 7]

logn  _, o [nlogn,
e

2 2
~ [kur<logen logn o nlogn
+Cn,/pomax(c5pfm B b 0, [T [

2 (1= ) o)+ oo [ 0]

+6 '/K K rzlog n”max (CSP IU’\/>+ 8\/7) ”X*H (135)

for some constant C > 0. Here, (i) uses the definition of & (cf. (130)), (ii) holds
if y is small enough and || Al X*H <& Omin, and (iii) follows from Lemma 40
as well as the incoherence condition (114). An immediate consequence of (135)

is that under the sample size condition and the noise condition of this lemma, one
has

!~ X %] < owias2 (136

if0 < n <1/omax-
2. We then move on to the first term «1 in (121), which can be rewritten as

t+1

)

o] = ||Xt+1ﬁtR1 — i(

with
Ri=#)"'H" =ag min |[XTHR-X"|,. (137)
RGOrXr
(a) First, we claim that X ol satisfies
I, =arg min [X'R-Xx*|, (138)

Re@Orxr

. S+ N . . .
meaning that X g already rotated to the direction that is most “aligned” with
X*. This important property eases the analysis. In fact, in view of Lemma 35,

(138) follows if one can show that X*T X “lis symmetric and positive semidef-

inite. First of all, it follows from Lemma 35 that X*T X' H "is symmetric and,
hence, by definition,

XX =X TR - X TP XX - (MY + E)| X
P
Fol:rﬂ
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is also symmetric. Additionally,
TR = b < R - 2] X < o2

where the second inequality holds according to (136). Weyl’s inequality guar-
antees that

St+1
X*TX > —ominlr,

| =

thus justifying (138) via Lemma 35.
(b) With (137) and (138) in place, we resort to Lemma 37 to establish the bound.

Specifically, take X| = )?t“ and X, = X”lflt, and it comes from (136)
that
X1~ X[ |X°] < omar2

Moreover, we have

s

IX) - Xl [ X7 = X' H - X x

in which
XHE X = <X’ - n%PQ [X'X'T (M + E)] X’) i
-~ [X’I?t —~ n%PQ [X’X’T — (M + E)] X*}
— _n%PQ [x'x'T - (M*+ E)| (XA~ x*).
This allows one to derive

e a X

1 .
<n H —Pq [X’X’T - M*] (X’Ht — X*)
P

< (20 &R .+ avinogn | A |X°] + Co M) AT a9

+7 H éPQ(E) (Xffl’ - X*)

for some absolute constant C > 0. Here the last inequality follows from
Lemmas 40 and 43. As a consequence,

EOE';W
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1X1 = Xo || X*|
< (20|87 avtogn | &', 1]+ co 2 ) a7 ).

Under our sample size condition and the noise condition (27) and the induction
hypotheses (28), one can show

X1 — Xall | X*|| < omin/4.
Apply Lemma 37 and (139) to reach

o] < 5/<||Xt+1H XH_IH

<50 (20 |13+ 2iogn |47, |57+ Co [2) 1)
3. Combining the above bounds on « and «, we arrive at

HXz+1Hl+1 x* ”

< (1-%3m) &) +co 2 ]
~ 31 1
b Gy [ logn <C5,0 pr | +—of) x|

#5020 ||Af||m+zflognnw||m||x*||+ch )14

| +co= 2 |xe],
Omin V P

with the proviso that p > 1 —(omin/3) -1, k is a constant, and n2p > ,u3r3n log3 n.

< C9,Ot+1

B.3.1 Proof of Lemma 22

In what follows, we first assume that the § j.k’s are independent and then use the
standard decoupling trick to extend the result to symmetric sampling case (i.e.,§; x =
Ok, j)-

To begin with, we justify the concentration bound for any A’ independent of €,
followed by the standard covering argument that extends the bound to all A’. For any
A! independent of €2, one has

w2
B := max X7 (81.j— p) A?TXj 5= | x Hz,oo
n ) T
and V:=|E Z (51,j - P) X?AZTX; (X;AZTX;)
Jj=1
FoE’ﬂ
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n
<pIXL G IX 1 | 2o AT A
j=1

= p X7 51415 0 v
<2p ”X*”;oo ézgmax,

where & and y are defined, respectively, in (130) and (131). Here, the last line makes
use of the fact that

[ X)), 00 ¥ <& X*] = &/Omar, (140)

as long as n is sufficiently large. Apply the matrix Bernstein inequality [114, Theorem
6.1.1] to get

ct2
2pE20man | X3 41 | X3

2

P{HAL'HQ > t} <2rexp| —

ct

4p&20max | X5

<2rexp| —

for some constant ¢ > 0, provided that

t < 2pomaxé.

This upper bound on ¢ is exactly the truncation level @ we introduce in (132). With
this in mind, we can easily verify that

l AL, Lypa,),20)

is a sub-Gaussian random variable with variance proxy not exceeding
2 . . .
0 <p$2omax ”X* ||20010g r). Therefore, invoking the concentration bounds for

quadratic functions [57, Theorem 2.1] yields that for some constants Cyp, C > O,
with probability at least 1 — Coe~C"" 108",

n
2
¢ =D 1AL Uja, ), <o) S PE omax I X* 15 conr log” n,
=1

Now that we have established an upper bound on any fixed matrix A’ (which holds
with exponentially high probability), we can proceed to invoke the standard epsilon-
net argument to establish a uniform bound over all feasible A’. This argument is fairly

standard and is thus omitted; see [111, Section 2.3.1] or the proof of Lemma 42. In
conclusion, we have that with probability exceeding 1 — Coe_%c”’ logn
EOE';W

@ Springer Lﬁjog



Foundations of Computational Mathematics

n
S 1A a0} SV PE Ol X B o log?n (141
=1

holds simultaneously for all A" € R"*" obeying the conditions of the lemma.
In the end, we comment on how to extend the bound to the symmetric sampling pat-
tern where §; x = d, ;. Recall from (129) that the diagonal element §; ; cannot change

the £, norm of A;,. by more than || X* ||§ oo &+ As aresult, changing all the diagonals

{811} cannot change the quantity of interest (i.e., ¢1) by more than /n || X*||§’OO
This is smaller than the right-hand side of (141) under our incoherence and sample
size conditions. Hence, from now on, we ignore the effect of {§; ;} and focus on off-
diagonal terms. The proof then follows from the same argument as in [48, Theorem
D.2]. More specifically, we can employ the construction of Bernoulli random vari-
ables introduced therein to demonstrate that the upper bound in (141) still holds if the
indicator &; ; is replaced by (7; ; + 7/ ) /2, where 7; j and 7/ j are independent copies
of the symmetric Bernoulli random Varlables Recognizing that sup: @1 is a norm of
the Bernoulli random variables 7; ;, one can repeat the decoupling argument in [48,
Claim D.3] to finish the proof. We omit the details here for brevity.

B.3.2 Proof of Lemma 23

Observe from (129) that

n

lAi ], < X750 | D (81— p) AT XY (142)
j=1

n

= X oo | | 208058555, + p AT 7]
j=1

§1,1X7

=1} N N LRV AR | | B | B A b ol
81X}

< X[, (161 (A 1235 [ X*] + pvr |X°]). (143)

where 1 is as defined in (131) and Gy (+) is as defined in Lemma 41. Here, the last
inequality follows from Lemma 41; namely, for some constant C > 0, the following
holds with probability at least 1 — O (n~1°)

§1,1X7 !
- (P X7 + €y pIXIE o [ X* P oz + CIX1B o 10%”)

Sl,n
FoE'ﬂ
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S(p%—C/p%ﬂlogn—i—C@) ||X*”<12f||X*

(144)

where we also use the incoherence condition (114) and the sample complexity condi-
tion np > kurnlogn. Hence, the event

” Ay, ”2 > w = 2pomax§
together with (142) and (143) necessarily implies that

n

;
Z (81,j — p) At/TX’j' > 2pOmax ————  and
j=1
 2pomnE 2/plIX g
s~ e, VPV

o (a)) = I — s e X,

15\/_H

Hm

where the last inequality follows from bound (140). As a result, with probability at
least 1 — O(n_lo) (i.e., when (144) holds for all I’s) we can upper bound ¢; by

n n
2 2
; | 4s.-]3 Lijjas |20} = ; 4151 {||G (At)||_1sfsm}

[1Ix*1l>

where the indicator functions are now specified with respect to H G, (A’ ) ||
Next, we divide into multiple cases based on the size of H G, ( ) ” By Lemma 42,
for some constants ¢, ¢; > 0, with probability at least 1 — c¢; exp (—canr logn),

an

; H6ian 124 pu+vime) = 263 (143)

for any k > 0 and any o 2 logn. We claim that it suffices to consider the set of
sufficiently large k obeying

2
V2krg > 4,/py  orequivalently k > log I;W (146)
otherwise, we can use (140) to obtain
4Py +V2kre <8py < 1. 5[HX “ x|,
2,00
FoCT

@ Springer |04



Foundations of Computational Mathematics

which contradicts the event H A || ) = 0. Consequently, we divide all indices into the
following sets

Se={1=t=n: ]G (A")] e (V2tre, V2ir1r¢] (147)

defined for each integer k obeying (146). Under condition (146), it follows from (145)
that

n

an
< < —
1_21 Yieian zvamre) = 1_21 Hiianlizaypvvae) = 23
meaning that the cardinality of Sy satisfies
an an
ISeial = = o ISl = 5=

which decays exponentially fast as k increases. Therefore, when restricting attention
to the set of indices within Sg, we can obtain

Sl 2”/|sk| %2 12V e yp x| + pu 7]

leSy

75 | X L (V2 e B | X + X

(11)

s | Xy V2 e B | X7
(12) 32,/ aucur? pé ||X"||2

where (i) follows from bound (143) and constraint (147) in S, (ii) is a consequence
of (146), and (iii) uses the incoherence condition (114).

Now that we have developed an upper bound with respect to each S, we can add
them up to yield the final upper bound. Note that there are in total no more than
O (logn) different sets, i.e., Sy = @ifk > c1 logn for c; sufficiently large. This arises
since

IGI (AN < |A" g < VAl A 2,00 < V€ < /ni/r
and hence

Hiiany |z pyviire) =0 and - Se=

Fo C 'ﬂ
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if k/ log n is sufficiently large. One can thus conclude that

cylogn

Bz Y Llakis (Veurst 1) oen

16py2 L€,
k=log 7rggj k

leading to ¢ < &/akpur?plogn | X* ”2 The proof is finished by taking & = clogn
for some sufficiently large constant ¢ > 0.

B.4 Proof of Lemma 10

1. To obtain (73a), we invoke Lemma 37. Setting X = X' H' and X, = X" O R"®),
we get

() 1 C Inl (i) 1
“Xl - X*H ”X* ” é CQPZMV\/T—pamax + Unj:](f ! (;gnamax % Eamim

where (i) follows from (70c) and (ii) holds as long as n? p > Kz,u,zrzn and the
noise satisfies (27). In addition,

1X1 — Xoll | X*] < I1X1 — Xollg | X*]

0 logn C7 nlogn «
(c3p [ e g [ uz,m) x|

(ii) / / n log n
< C;p ur Umax p — Omax
min

@ii) 1
< g
=3 Omin,

where (i) utilizes (70d), (ii) follows since | X*||, =< |X*|. if
n%p > k> p?r’nlogn and the noise satisfies (27). With these in place, Lemma 37
immediately yields (73a).

2. The first inequality in (73b) follows directly from the definition of """ The
second inequality is concerned with the estimation error of X R" @ with respect
to the Frobenius norm. Combining (70a), (70d), and the triangle inequality yields

HXt,(l)Rt,(l) _x*

< foﬁ]’ —x| + foﬁ’ _ xtORLO H
F F F

[ 1 N Cio [n o, [ logn .
= Cuptr s [t 217 [0 0+ ot [ [
Cio0 [nlogn | _,
X
+ 0 [

FoE'ﬂ
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. Cio . logn [ip o,
X 222 e ot B2 S e

Ca nlogn fkp, o,

o Vo 1Kl
2Ci0 [n

X* — = ||X”

ﬁﬂ|M+mm/jwu

where the last step holds true as long as n > «u logn.
3. To obtain (73c), we use (70d) and (70b) to get

< C4p’ur

<2C4p'pr (148)

”Xt,(l)Rz,(l) _x*
2,00

| x|,

e v

logn Cg nlogn

| x*

5,00 + X7

/1o Cio nlogn N
+C3,0 ur ” ”200 rjlin ”X ”200
logn . Cg + C7 nlogn N
<(C3+Cs) /Ot,W,/ T ”X ”2,00 + ot o P HX Hz,oo'

4. Finally, to obtain (73d), one can take the triangle inequality

< Csp'pr

|xeo0 - a_x

«| < ”Xz,a)ﬁt,(l) _

= s |[xB' - x"ORO| 4| XA - x|,

where the second line follows from (73a). Combine (70d) and (70c) to yield

sz O FtO _ xr

. nlogn | _,
< Sk (C3p wur ||X H2 0 —_ |x ||2,oo>
mm p
+ Cotur IMW+9%-QMW
Jnp Omin p

* C o *
= ]+ 2 2 e
<2Cyp' s 1 X*| 2CIOG\/7||
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@ Springer u.. :‘0 E|




Foundations of Computational Mathematics

where the second inequality uses the incoherence of X* (cf. (114)) and the last
inequality holds as long as n >> «3ur logn.

B.5 Proof of Lemma 11

From the definition of R*T1® (see (72)), we must have

meg,tﬂ _ x!HLO L0 H < megt _ x!HLO gt® H _
F~ F
The gradient update rules in (24) and (69) allow one to express
X[-‘rlﬁt _ Xl+1,(l)Rl,([)

=[x = v s (X))] 0 [Xz,(z) _ 77Vf(l)(Xt,(l))] RiD

—X'R' - V(xR - [Xz,(z)Rz,(z) _ v fO (Xt,(l)Rt,(l)):I

= (x'A' - x"ORMD) I:Vf(Xtﬁt) _ Vf(Xt,(l)Rt,(l))]

_ [Vf(X'vU)R’»(’)) _v 0 (Xz,mRtm)] ’

where we have again used the fact that V f (X ! ) R = V f(X'R) for any orthonormal

matrix R € O™ (similarly for V f ) (X t’(l))). Relate the right-hand side of the above
equation with V fijean (X) to reach

Xl+lﬁt _ Xf+1,(l)Rl,(l)
=(X'H' - x"OR"0) —y [Vfclm (X'H') - vfclean(xmnRz,(z))]

_g»
=B

- |:l'le (Xf,(l)XI»(l)T _ M*) —-P (XI»(I)XI,(I)T _ M*):| x-O gt
p

50
] . ]
+ —Pq (E) (X’H’ _ X”(Z)R”(l)) +1n=Pq, (E) X" O RO, (149)
P p
— 5 5

where we have used the following relationship between V £ (X) and V f (X):

v £ _ _ l T _ * T g+
O (X) = Vf (X)— —Pq, [XX (M +E)]X+7>, (XX M )X
P (150)
forall X € R"*" with Pg, and P; defined, respectively, in (66) and (67). In the sequel,
we control the four terms in reverse order.
EOE';W
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1. The last term Bg) is controlled via the following lemma.

Lemma 24 Suppose that the sample size obeys n®p > Cu*r*nlog® n for some suffi-
ciently large constant C > 0. Then with probability at least 1 — O (n_lo), the matrix

Bg) as defined in (149) satisfies

nlogn
4

|5, 5 ney =7 1%

" ”2,00 :
2. The third term B g) can be bounded as follows
1 ~ n —~
) 2 tgg! _ oyt pt.()| < m tgt _ yt.() pt.()
e P [ R e M
where the second inequality comes from Lemma 40.
3. For the second term Bg), we have the following lemma.
Lemma 25 Suppose that the sample size obeys n>p > u>r*nlogn. Then with prob-

ability exceeding 1 — O (n_lo), the matrix Bg) as defined in (149) satisfies

kZu?r2logn

O H
B <
H 2 g~ np

‘Xt,(l)Rt,(l) _x*
2

Omax- (151)
00

4. Regarding the first term BY), apply the fundamental theorem of calculus [70,
Chapter XIII, Theorem 4.2] to get

vee(B) = <1n, — fl V2 fotean (X (1)) dr) vec (X’fl’ - X”(Z)R”(l)) ,
0 (152)
where we abuse the notation and denote X(z) = X-OR-O 4
T (X 'H' — X" OR! ’(1)). Going through the same derivations as in the proof of
Lemma 8 (see Appendix B.2), we get

HBY) “F < (1 _ Uiin 77) thﬁz _ xt O pt.) HF (153)

with the proviso that 0 < n < 2omin)/ (250§lax).
Applying the triangle inequality to (149) and invoking the preceding four bounds, we
arrive at

H Y FH et O gl O) H
F

= (155 [ A - oro],

FoC'T
e,
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k2ur2logn
np

~ Ty gt _ o) t,(l)H ~ nlogn , .
+Cno\/;HXH X ORO| 4 Eno [FUEE X0

- (1 szn—FCno\/») |x B’ - x-ORmO HF

+ C n Omax

th,(z)Rt,u) _x*
2

~ k2u2r21oen
+Cn M—g ”Xf,(l)R[’(l) —X* Omax
np 2
~ nlogn
+ Cno ” ”2,00
p
(1= ) e oo
~ 2,2/210
+Cn u ”Xfa(l)Rﬁ(l) - X* Omax
np 2
~ nlogn
+ Cno H ”2,00

for some absolute constant C > 0. Here the last inequality holds as longas o /n/p <
Oomin, Which is satisfied under our noise condition (27). This taken collectively with
hypotheses (70d) and (73c) leads to

HXtHfIerl _ xt+LO pr+1,() H
F

20 logn o nlogn
=< <1 — %U) <C3:0[IU’ np ||X*H2,OO +C7m P ”X*}Z,oo)

~ [K2u2r210gn logn o [nlogn
+CnJﬁ (C3+Cs) puar | 222+ (Cg + ) —— 2220 |X*], o, oma
np np Omin p '

nlogn

+5ncr

1% 00

_ Omin t l()ﬂ * 9 nlogn *
= (1= 22) C3p'ur | wp 1 200+ €10 — == [ X5 0

as long as C7 > 0 is sufficiently large, where we have used the sample complexity
assumption n%p > k*u?r’nlogn and the step size 0 < 7 < 1/(20max) < 1/(20min)-
This finishes the proof.

B.5.1 Proof of Lemma 24

By the unitary invariance of the Frobenius norm, one has
FoE'ﬂ
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1 n
21, 2lpa 2200,

where all nonzero entries of the matrix Pg, (E) reside in the /th row/column. Decouple
the effects of the /th row and the /th column of Pg, (E) to reach

(1
Z 51,,/E1,ij,.()
Ji#l

, (154)

H U
n F 2

n

(1
Y s E XY |+
j=t 12

=u;

where §; ; := 1y, j)eq) indicates whether the (/, j)th entry is observed. Since X tO
is independent of {8}, j}1<;<n and {E} j}1<j<u, We can treat the first term as a sum of
independent vectors {u}. It is easy to verify that

i), < [x], oiEisly, o |50,

where || - ||y, denotes the sub-exponential norm [66, Section A.1]. Further, one can
calculate

n n
L 2 vt,() vt,(DT 2 t,() vt,(DT
V= ||E Z(s,,jE,,j) x;0x < po’ |E ZXJ.’. X'
j=1 j=1

2
_ 2|yt H
= X .
po H F

Invoke the matrix Bernstein inequality [66, Theorem 2.7] to discover that with prob-
ability at least 1 — O (n~19),

|22 wif, < vViogn + [iusia | 1087 n
- 1
S \/]70'2 ||Xf,(l) “ilogn + a”Xl,(l) ||2,Oo 10g2n

SoVnplogn| X"V, 4o X"O, log*n

< o aploga] X0 .

where the third inequality follows from ” xH® ||§ <n ” x-® || ;OO and the lastinequal-

ity holds as long as np >> log® n.
Additionally, the remaining term « in (154) can be controlled using the same argu-
ment, giving rise to

o« Soy/nplogn| XD, .
Elol:;ﬂ |
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We then complete the proof by observing that

[0, = R ORO < EORD ]y 2]y <2

(155)
where the last inequality follows by combining (73c), the sample complexity condition
n’p > u?r’nlogn, and the noise condition (27).

”2,00 ”2,00

B.5.2 Proof of Lemma 25

For notational simplicity, we denote
C = Xl,(l)x[,(l)T _ M* — Xt,(l)xt,(l)T _ X*X*T. (156)

Since the Frobenius norm is unitarily invariant, we have

H By Hp - ’7” BPQ, ) -"P (c)}xum

F

=W

Again, all nonzero entries of the matrix W reside in its /th row/column. We can deal
with the /th row and the /th column of W separately as follows

n
ol 4 Y DOCYESDIERE Sl IR D DECEEO R[N v B
' = 2\ A
n
S DICHRLNE S IRV N S
2

j=1

where 8, j := 1(q, j)eq) and the second line relies on the fact that } ° ;. ; (81,j — p)2 =
np. It follows that

L= max (5 — p) X0, 1€ [X°0]220€00 X7,
V= iE[(Sl, =) 1t x5 Ox 0T < plci ;ZIX’,-’F.”X;;(.”T
pm =
= plci |x O € apici | x[.
Here, (i) is a consequence of (155). In addition, (ii) follows from
0 = [0 r 0] < xR x| e =2
FoC
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where the last inequality comes from (73b), the sample complexity condition n2p >
uzrzn log n, and the noise condition (27). The matrix Bernstein inequality [114, The-
orem 6.1.1] reveals that

n

> (6 —p) CLx50

j=1

<plciz, ||X*||§logn +Clloe | X* o Tog

<Vlogn+ Llogn

with probability exceeding 1 — O (n_lo), and as a result,

%HB&” le < Vplogn IClls | X* [ + VAP ICll | X*],..  (57)

as soon as np > logn.
To finish up, we make the observation that

IClloo = er,(l)Rz,(z) (Xz,(l)Rt,(l))T _x*x*T

‘ oo

< H (Xz,(l)Rt,(l) _ X*)(Xz,(l)Rt,(l))TH + ‘ X*(Xr,(l)Rz,(l) _ X*)T _x*x*T
oo

‘ o0

< HX’*(Z)RL(I) oy

xHO gt HZ.oo T HX*”z,oo HXI,(I)Rt,(l) _x*

2,00 H 2,00

<3| xtORNO - x* N b o Py (158)

where the last line arises from (155). This combined with (157) gives

1
|B0], <1/ 2 1t 140 hC X

®  [logn
< T th’(l)Rt’(l) - X~ - ||X*||2,oo ”X*”F
N F R S S

01) /logn /K;Lr
H x-O RO _ x* - o

K ur
+1 /; HXt,(l)Rf,(l) —X* - %O'max
2,22
K*u~rslogn
< g [l T0gR HX“(”R”(I) — X" Omax,
np 2

where (i) comes from (158) and (ii) makes use of the incoherence condition (114).
FoE'ﬂ
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B.6 Proof of Lemma 12
We first introduce an auxiliary matrix
~ -~ 1
X0 = xrogt O _y [;sz [X’*(I)X”(I)T —(M* + E)]
+P (X”(Z)X”(I)T - M)] X*. (159)
With this in place, we can use the triangle inequality to obtain

t+1,) gyt+1.(0) +1,0) i+l i+l ()
H(X 74 -x), |, = | om -x0), |

=)

o G X*)Z’AHZ. (160)

=
In what follows, we bound the two terms «1 and o) separately.

1. Regarding the second term «y of (160), we see from the definition of x o

(see (159)) that

()?Hrl,(l) _ X*);, _ [Xz,(l)ﬁt,(l) _ n(Xt,(l)Xt,(l)T _ X*X*T)X* _ X*:Il ’
(161)
where we also utilize the definitions of Pq— and P; in (67). For notational conve-
nience, we denote

AYO = xt O _xr, (162)
This allows us to rewrite (161) as
()NIH]’(Z) _ X*)l _ Af’.(l) — I:(At,(l)X*T + X*At,(Z)T> X*]
- [Az,(l)At,(l)TX*]
I,

_ A;,’-(l) . UA;:FI)Z* _ an-At,(l)TX* _ nA;:fl)At,(l)TX*’

I,

which further implies that

a < HAjj,(’) —nap Oz

. +7 HX;,'AI,([)TX*

| A AT X

2

S I R T S N P D S E P N N B Y

< |ALO], 11, = vz ] + 20 2], |45 .

2.0
FoCT
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Here, the last line follows from the fact that H At 0 H |X * . To see this,

one can use the induction hypothesis (70e) to get

”2,00

1 N o |nlogn . N
= 1 L+ G B o < X7 o
(163)

as long as np > uzr and o,/(nlogn) /p < Omin- By taking 0 < n < 1/0omax.,
we have 0 < I, — nX* < (1 — nonin) I, and hence can obtain

7] =

Yl -1 b o T PRI P o PG

a2 < (1 — nomin) ||2,oo ‘

An immediate consequence of the above two inequalities and (73d) is
a2 < 1 X7]12,00- (165)
2. The first term o1 of (160) can be equivalently written as

) = H (X OFOR, - 3‘t+1’(1))z,.’

’

2
where
R, = (I?t’(l)) gt =arg min x OO _ x*
ReOrxr F
Simple algebra yields
1 t+1,(d
< (ot —g0) | Il i1
Ll PO —
=h2

=P

Here, to bound the second term, we have used

O R

, XL, = e+ X7, =2 X7,

where the last inequality follows from (165). It remains to upper bound g1 and
B5. For both f; and ,32, a central quantity to control is X'+ O g _ O
By the definition of X0 (159) and the gradient update rule for X'+1-® (see
(69)), one has

Xr+l,(l)ﬁt,(l) _ ;(m.u)

_ {Xr,(/)ﬁr,(t) . [%7’94 [Xt,(l)Xt,(l)T _ o+ E)}

Fo C 'ﬂ
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+P (Xr,(l)Xt,(l)T _ M*)] Xt,(l)lqt,(l)}
_ {Xr,(l)ﬁt,d) . [lPQ_z [Xz,(l)Xr,(l)T — o+ E)} P (Xt,(l)Xt,(l)T _ M*)] X*}
p
- [173971 (Xt,(l)Xr,(l)T _ X*X*T> P (Xr,(l)Xt,(l)T B X*X*T)] Al
p

n %Pg,, (E) A D). (166)
It is easy to verify that

1 (1 (i) n (i) §
—|Pot (B)| < ~ 1Pa(B)I S 0./~ < ~Omin
p p p 2

for § > 0O sufficiently small. Here, (i) uses the elementary fact that the spectral
norm of a submatrix is no more than that of the matrix itself, (ii) arises from
Lemma 40, and (iii) is a consequence of the noise condition (27). Therefore, in
order to control (166), we need to upper bound the following quantity

lPQ—I <XI,(Z)XI,(Z)T _ X*X*T) + 7)[ (Xl,(l)X[,(l)T _ X*X*T>

7|

p
(167)
To this end, we make the observation that
1739 (Xt,(l)Xz,(l)T . X*X*T) ‘
p
=Y
1
+ H ;PQI (Xty(l)Xfa(l)T _ X*X*T) -7 (Xt,(l)Xt,(l)T _ X*X*T> ’
=02
(168)
where Pg, is defined in (66). An application of Lemma 43 reveals that
Y1 <2n ”X”(I)R”(l) — X* _ H4/mlogn | X" OR-O — X

where R e O™ is defined in (72). Let C = X>Ox>OT — x*X*T as in
(156), and one can bound the other term y, by taking advantage of the triangle
inequality and the symmetry property:

2 *
szpJZ(c?u CI,N\fncnooN\fHX’“)R’(” X

j=1

g e

FoE'ﬂ
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where (i) comes from the standard Chernoff bound Z i—1 (81 j p)2 = np, and
in (ii) we utilize the bound established in (158). The previous two bounds taken
collectively give

y <2n HX’*(Z)R“”) x|
- 2,00

+4logn | X ORD - x*|
oo

+C % |xOReO - xt
P 2,00

for some constant C > 0 and § > 0 sufficiently small. The last inequality follows
from (73c), the incoherence condition (114), and our sample size condition. In
summary, we obtain

x|

§
”X*”Z,oo = Eamin (169)

—~ ~ 1
e i L R |
p

(170)

for § > O sufficiently small. With the estimate (170) in place, we can continue our
derivation on B and B;.

(a) With regard to B, in view of (166) we can obtain

B ® ” H <Xt,(l)Xt,(l)T _ X*X*T> ALO
I,

2
<7 H (Xt,(l)Xt,(l)T _ X*X*T>l

)

(11)

[Az 0 (Xz OF (1>)T n X*A”(m}
I,

=
=o([af2], o] 1 o o
o P N R RN P e

where (i) follows from the definitions of Po— and P; (see (67) and note that
all entries in the /th row of P () are identically zero) and identity (ii) is due
to the definition of A>?) in (162).

(b) For B,, we first claim that

)th+l’(l)R _Xx*

I, :=arg min

, 172
ReOrxr F ( )

whose justification follows similar reasonings as that of (138) and is therefore

omitted. In particular, it gives rise to the facts that X STxTLO g symmetric
and i
X)X = Sominl. (173)
FoE'ﬂ
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We are now ready to invoke Lemma 36 to bound B,. We abuse the notation
and denote C := ()?Hl’(l))TX* and E := (X’“’(l)ﬁt’(l) — XHI’(I))TX*.
We have

1
IE| < zomin < o0, (C).
2
The first inequality arises from (170), namely
I < [ OB - X0 ) < v [0 7]
() 2 () 1

< 180min ”X*H = Eaminv

where (i) holds since || A || < ||X * || and (ii) holds true for § sufficiently
small and n < 1/0max. Invoke Lemma 36 to obtain

2
=R —I,| < IE||
& = 6 (€ + oy ()

x+HLogh®O _ gtho H ||X*“ (174)

IA

Omin

<28y HA”(’) H x| (175)

where (174) follows since o1 (C) > o, (C) > omin/2 from (173), and the
last line comes from (170).
(c) Putting the previous bounds (171) and (175) together yields

o =0 ]AL0)

S [ R EAN C

+asn[x*],, |anO] x7]. (176)
3. Combine (160), (164), and (176) to reach

(e

A1), + 201X a7 O 2]

< (I = 10min) 2,00 |
2

e |80, [ O a0 ][00 aon o a0 1)

X7

|
2
e I T R N P

(ii) ( Omin P 1 Ce nlogn
< (1- n) Crp'ur + o X*
2 /1P Omin p ” ”2’

* * t 1 * 2Cy0 n *
2] 13 (2000 00— 3] 4 2200 [2 ] )

Ce nlogn
Xy o 2o

(i) 1
< Cop'ur

Jip

|x*

H2,oo'

FolCT
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Here, (i) follows since ” AL || < ||X * || and § is sufficiently small, (ii) invokes
hypotheses (70e) and (73d) and recognizes that

s 1X+

el =201 (e et 232 ) <2
np 2

holds under the sample size and noise condition, while (iii) is valid as long as
1 — (omin/3)-n < p <1,Cy> kCy,and Cg > kCio/+/logn.

B.7 Proof of Lemma 13

For notational convenience, we define the following two orthonormal matrices

and QU :=arg min |[U"PR - U*||F.

ReOrxr

Q :=arg min

U°R - U*
REOV Xr F

The problem of finding H' (see (20)) is Called the orthogonal Procrustes problem
[112]. It is well known that the minimizer H' always exists and is given by

H' =sgn (X’TX*) .
Here, the sign matrix sgn(B) is defined as
sgn(B) :=UV" (177)

for any matrix B with singular value decomposition B = UX VT, where the columns
of U and V are left and right singular vectors, respectively.

Before proceeding, we make note of the following perturbation bounds on M° and
M® (as defined in Algorithms 2 and 5, respectively):

a2 o e
D i o [T x| N~
L N e L e I S AN LW
(iii) /1 o n o @)
<C {ILV E«/ Omax + m ; ”X ” < Omin, (178)

for some universal constant C > 0. Here, (i) arises from the triangle inequality, (ii)

utilizes Lemmas 39 and 40, (iii) follows from the incoherence condition (114), and

(iv) holds under our sample complexity assumption that n>p > u?r*n and the noise
Fol:'ﬂ
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condition (27). Similarly, we have

[ 1
5 {,ur E\/Umax + \/%\/g} HX’(” < Omin- (179)

Combine Weyl’s inequality, (178), and (179) to obtain

<o

< Omins,
(180)

<o

& oy and H):(” 3

ST

which further implies

1 1
Eo'min =or (EO) =0l (ZO) < 20max and EUmin = or (Z(Z)) =0l (Z(l)) < 20max-
(181)

We start by proving (70a), (70b), and (70c). The key decomposition we need is the
following

X°A° - x* =" (20)1/2 (- Q) +U° [(20)1/2 ¢-e (E*)l/z}
Hvre-vr) (=)' e

1. For the spectral norm error bound in (70c), the triangle inequality together with
(182) yields

o= | () 7] |70~ 0] + (=) 0 02"
+/omax U0 Q — U,

where we have also used the fact that || U°|| = 1. Recognizing that ||M0 — M*H <
omin (see (178)) and the assumption omax/omin < 1, we can apply Lemmas 47,
46, and 45 to obtain

18~ o s —— |a0—ar]. (183
Omin
H ():0)]/2 0-003)" < S YUY (183b)
4/ Omin
jvPe-vt| s — M -ar|. (183¢)
min
EOE';W
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These taken collectively imply the advertised upper bound

1

A 1
X7’ - x*| < Jomm ”MO—M* MO — M+
H “ 5  Omax Omin + A/ Omin

< M

Omin
1 /o o n
oo 2 [ e,
npy Omin Omin \ P

where we also utilize the fact that || (20)1/2 | < V20max (see (181)) and the
bounded condition number assumption, i.e., Omax/Omin S 1. This finishes the
proof of (70c).

2. With regard to the Frobenius norm bound in (70a), one has

< VxR - x|

F
@ /1 o [n .
g:ur —+ —}\/7||X ||
np Omin
A/ O
{/’Lr } \/_ - vV mlﬂ
V Omin Umm

(i) 1
S {W’ —+ 2}\/’7|‘X*HF'
np P

Here (i) arises from (70c) and (ii) holds true since omax /Omin =< 1 and /7 /omin <
| p» thus completing the proof of (70a).

3. The proof of (70b) follows from similar arguments as used in proving (70c).
Combine (182) and the triangle inequality to reach

” X7’

HXOI?O _Xx*

<o, ] )1 o] <) 0 01

+ +/Omax UOQ -U* ’

|

Plugging in the estimates (178), (181), (183a), and (183b) results in

N P e L LA
+omax ||U°Q — U* )
oo
Fol:rﬂ
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It remains to study the component-wise error of U°. To this end, it has already
been shown in [1, Lemma 14] that

1 o n
1090 -0 5 (4o 4 2 o) 107t (001, 5 107

(184)
under our assumptions. These combined with the previous inequality give

1 o n
< . . _ *
s [W,/np + Umm,/p} Ve
1 o n
S | —+ [= 11X 500 s

where the last relation is due to the observation that

HXOFIO - Xx*

Vomax U5 o S vomin [U* 5,0 = [ X750 -

4. We now move on to proving (70e). Recall that Q) = argmingcor«r
|U*®R — U*||,.. By the triangle inequality,

” (XO’(I)I?O’([) _ X*)l»'Hz < HX?’,.(I)(I?O,(I)_Q(Z))H2+ H (XO,(l)Q(l)_X*)z,.H

2
0.() 0. () ! 0,() p *
<[00 180 - 00+ |0 0-x7), |,
(185)
Note that X; = M} U* (Z*)_l/2 and, by construction of M,
0.() ) 70,0 D\=1/2 _ apx 770,01 ny—1/2
x,; 0 =M v Oz =y U0 (20)
We can thus decompose
(Xo,a)Q(l) _ X*) - M; {Uo,a) [(2(1))71/2 0" — ¥ (2*)*1/2]
» .
+ (UO,(Z) o0 — U*) (E*)—1/2} ’
which further implies that
H (XO,(Z) 0" — X*)z H2 < HM* “2 N {H (Z(z))—l/zg(z) 10 (E*)—l/z H
1
+—— [U"D " —u* } (186)
A/ Omin
EOE';W
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In order to control this, we first see that

H(Z(l))fl/Z Q(l) _ Q(l) (Z*)fl/z H
= H (E(l))_1/2 [Q(I) (E*)I/Z _ (Z(I))I/ZQ(I)] (Z*)—I/Z H

1 12 —1/2
< .”Qw 2 (z0) /Qa)”
Omin
1
O _ M+
S [0 -]

min

where the penultimate inequality uses (181) and the last inequality arises from
Lemma 46. Additionally, Lemma 45 gives

< — (MO — M

Omin

H U0 o _y*

Plugging the previous two bounds into (186), we reach

H (X000 _ x ‘ MO _ pm

)|, s = 3/2 | | M,

mm

/1 o [n
< — 4 — /=X .
~ {/U' np " Gmin p} ” ”2,00

where the last relation follows from || M"||2’OO = ||X*X*—r ||2,OO < /Omax ||X* HZOO

and estimate (179). Note that this also implies that HX?’_U) H2 <2|x* ||2)OO. To
[x00] = |20 00| <[xe00—x), | + %71, <2081,

Substituting the above bounds back to (185) yields in

H (X(),(l)i‘lo (D) X*)l H < ||X* ”2 H 70 _ o0 H

+ _ 4 “Hx
r — [e—
o np Omin V P 2,00
1 o n
<Stur [—+ 2 /21X,

where the second line relies on Lemma 47, bound (179), and condition
Omax/Omin < 1. This establishes (70e).
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5. Our final step is to justify (70d). Define B := argmingcor= |[U*®OR — U° ||F

From the definition of R%-®) (cf. (72)), one has
R N
F F
Recognizing that
XOOBg_x0 = yo® [(2@)1/23—3 (=) 1/2} + (v B-v°) ():O)]/2 ,
we can use the triangle inequality to bound

(Z(l))l/ZB_B (EO>1/2

(=)"].

-] -
-

o
F F

In view of Lemma 46 and bounds (178) and (179), one has
1
A/ Omin

From Davis—Kahan’s sin® theorem [39] we see that

[(=0)"B - B3'?| <
F

0_ OO
(M° = MO0 .

1

om0, =
F

(M° — M©)yO-O HF .

Omin

These estimates taken together with (181) give

1
X"0p - x| <
H F v/ Omin

It then boils down to controlling | (M® — M®) U% | . Quantities of this type
have shown up multiple times already, and hence, we omit the proof details for
conciseness (see Appendix B.5). With probability at least | — O (n_lo),

logn nlogn
B s L™
F np p 2,00

If one further has

(M° = MOy 0|

1
4/ Omin

then taking the previous bounds collectively establishes the desired bound

~ 0 log + — ! X
Y < r i 2,00
F np Omin

FolCT
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@Springer L0
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Proof of Claim (187) Denote by M(!)-%™ the matrix derived by zeroing out the /th
row/column of M®, and UD?™ ¢ R"*" containing the leading r eigenvectors of
M®-7€9 Op the one hand, [1, Lemma 4 and Lemma 14] demonstrate that

1),
max |UD7]; o < |U*[12,00-
1<i<n

On the other hand, by the Davis—Kahan sin ® theorem [39] we obtain

S

F Omin

3

(M(z) . M(l),zero) y O -zero )
(188)

H U%Osen (Uo,(z)TU(l),zero> _ yW.zero

where sgn(A) denotes the sign matrix of A. For any j # [, one has

(M(l) _ M(l),zero) . yh-zero _ (M(l) _ M(I),zero) ; Ul(l?,zero —0,,,,
Js Js ’
since the /th row of U l(l,)’zem is identically zero by construction. In addition,

H (M(l) _ M(l),zero) 'U(I),zero ) < ”M*szoo < Omax ” U* ”2’00.

’

_ * (1),zero
=|m;v

2

As a consequence, one has

H (M(l) _M(l),zero) U(l),zero

. — H (M(l)_M(l),zem)l U(l),zero

< o [V
2

which combined with (188) and the assumption omax/0omin < 1 yields

H U Dsgn (Uo,(Z)TU(l),zero> _ yW.zero

S0,

Claim (187) then follows by combining the above estimates:

HUO,(Z) H2 _ H U0 Dsgn (Uo,(l)TU(z),zero)
, 00

‘2,00

< Doy, 4+ HUO’(l)sgn (Uo,(z)TU(z),zero) —uDmEe] < Ut
< , s 00
where we have utilized the unitary invariance of ||-[|2, - O
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C Proofs for Blind Deconvolution

Before proceeding to the proofs, we make note of the following concentration results.
The standard Gaussian concentration inequality and the union bound give

< 5./logm (189)

max ‘a}"x*
1<i<m

with probability at least 1 — O (m~!°). In addition, with probability exceeding 1 —
Cm exp(—cK) for some constants ¢, C > 0,

max flay; < 3WVK. (190)
=i=m

In addition, the population/expected Wirtinger Hessian at the truth z* is given by

Ik 0 0 hx*'
0 Ix x*B*T 0
2 *\ _
VIF(2") = 0 (@) I 0 (191)
e o 0 I

C.1 Proof of Lemma 14

First, we find it convenient to decompose the Wirtinger Hessian (cf. (80)) into the
expected Wirtinger Hessian at the truth (cf. (191)) and the perturbation part as follows:

V3@ = V(@) + (V2 @ - V2P (). (192)

The proof then proceeds by showing that (i) the population Hessian V2 F (z*) satisfies
the restricted strong convexity and smoothness properties as advertised and (ii) the
perturbation V2 f (z) — V2F (z*) is well controlled under our assumptions. We start
by controlling the population Hessian in the following lemma.

Lemma 26 Instate the notation and the conditions of Lemma 14. We have

H V2F(z*)

=2 and  w*[DVEF(2") + V2F(2)D|u = ul}.
The next step is to bound the perturbation. To this end, we define the set
S = {z : z satisfies (82)},
and derive the following lemma.
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Lemma 27 Suppose the sample complexity satisfies m > p*Klog”m, ¢ > 0is a
sufficiently small constant, and § = c/log? m. Then with probability at least 1 —
o (m_10 +e K logm), one has

sup H V2f(z) — V?F (2%
zeS

<1/4.

Combining the two lemmas, we can easily see that for z € S,

|vr @ = |v*F @) <2+41/4<3,

+ H V2f (z) — V2F (%)
which verifies the smoothness upper bound. In addition,

u" [Dsz (2) + V2 f (2) D] u
=u" [DV?F (') + V2F (2*) D] u+ a"D [ V2 f (2) = V2F () |
+u" [sz (z) — V2F (z*)] Du

@

> u" [DVEF (%) + V2F (27) D] u = 21D1 | V21 @) = V2F (2°) | Iul3

(ii) 1
> a3 =2 (1+8) - 7 flul3
(i) 1 2
>
> 7 3.

where (i) uses the triangle inequality, (ii) holds because of Lemma 27 and the fact that
ID|| < 146, and (iii) follows if § < 1/2. This establishes the claim on the restricted
strong convexity.

C.1.1 Proof of Lemma 26

We start by proving the identity || V2F (z*) || = 2. Let

M n* 0 h*
_1 0 _1 x* _1 0
A T R 2 1 A I
| x* 0 —Xx*
()
_1 x*
u4_,\/§ _h*
L 0
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Recalling that ||h*|, = [|x*||2 = 1, we can easily check that these four vectors form
an orthonormal set. A little algebra reveals that

V2F (Z*) =145 + ulu'l" + uzu;| — u3u3H — u4uT,
which immediately implies

H V2F ()

We now turn attention to the restricted strong convexity. Since u? DV2F (z*) u is
the complex conjugate of u"'V2 F (z*) Du as both V> F(z*) and D are Hermitian, we
will focus on the first term u"H DV2 F (z*) u. This term can be rewritten as

uHDV?F (z")u
___\H
o [(h — )™ (x1 — )", (h1 - hz) (o —xz)H} D
[ Ig 0 0 'x*T 7 h—h
0 Ix xB*T 0 x| —Xo
0 (r)" 1k 0 hi —hs
()0 0 Iy |Lyvi—x

) o
@ [7/1 (= k)" 2 (e —x2)"y (hl h2> 72 (¥ _XZ)H}

hy —hy + 1 x* T (x| —x2)

X —xz +x*h* T (h) — hy)
(x*h* ) (x1 —x2) + (hy — hy)
(e () — o) + 1 —x2)

H
= [)’1 (h —h)" o ey —x2)™y (h1 hz) 2 (% —xz)H}

hy —hy +h* (x1 — x)" x*
X1 —x2+x* (hy — ho)" h*
hi —hy + h* (x) — x2)H x*
X1 — X2 +x* (hy — ho)" B

=2y lhy — hal3 + 2y 1x1 — X203
+ 1+ 1) (hy — )P R (x1 —x)P X + (1 4 y2) (B — k)P R (x) — x2)P X7,
=f =B

(193)

where (i) uses the definitions of u and V2F (z*), and (ii) follows from the definition
of D. In view of the assumption (84), we can obtain

21 Iy = Ball3 4+ 292 llxy = %213 2 2min (1, y2) (I = al3 + 1 — x213)
> (1= 8)llul3,
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where the last inequality utilizes the identity
2lhy = hall3 + 21x1 = x2]13 = Jlul3. (194)

It then boils down to controlling 8. Toward this goal, we decompose 8 into the
following four terms
B = (hi —h)" hy (x1 — x2)™x2 + (R — k)P (B* — h2) (x1 — x2)™ (x* — x2)
=p1 =pH
+ (hy — h)™ (B* — 1) ey —x)Mx2 4+ (B — b)) o (01 — x)P (x* = x2) .
=pB3 =Pa

Since |hy — h*||, and |lx2 — x*||, are both small by (83), B2, B3, and By are well
bounded. Specifically, regarding S8, we discover that

|Bal < ||B* — B ||, |** — x2, 11 — Rallz X1 — X2l
<8 lhy — hally llxy — x20ly < 8 1kt — hally x1 — x2ll,

where the second inequality is due to (83) and the last one holds since § < 1. Similarly,
we can obtain

[B3] < 8 llx2lly 1k — hally lx1 — x21lp < 28 [k — hall; lx1 — x2]l; , and
[Bal < 8 llhallx 1kt — hally lIx1 — x2ll <268 |k — hally X1 — %2115,

where both lines make use of the facts that

1+ <2 and
1+6 <2. (195)

Ix2lly < [z —x*], + |«*|,
lholly < k2 — h*|), + |B*],

IA

IA

Combine the previous three bounds to reach

|2l + 1B3] + |Bal < 58 lh1 — hally llx1 — x2ll2
2
<55 Iy — Ball3 + Xy —x203 5

5 =7 llul3,

where we utilize the elementary inequality ab < (a® + b%)/2 and identity (194).
The only remaining term is thus 8;. Recalling that (k1, x1) and (h,, x7) are aligned
by our assumption, we can invoke Lemma 56 to obtain

(h1 — k)" hy = |lx1 — x2]15 + x5 (x1 — x2) — |y — hall3,
which allows one to rewrite 8] as
B1 = {IIX1 —x2l3 + x5 (x1 —x2) — Ik —hzllg} (1 —x)Mxs

2
= (o1 =" xa (I = %2l = M = hald) + 1 = x2)x
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Consequently,

— 2
B+ B = 2|1 —x2)" x|+ 2Re[ (o1 —xo) 2| (1 — w203 — 1 — a3

= 2Re| (1 = x2)"xa | (Ilx1 = w23 =l — Bl

@
= — |1 = 2o i3

(ii)
> —48 lull3 .

Here, (i) arises from the triangle inequality that
2 2 2 2 1 2
lx1 —x203 = k1 = hall3| < llx1 —x2llz + k1 — h2ll; = 5 llullz

and (ii) occurs since [lx; — x2(2 < [[x1 — x*[l2 + [lx2 — x*[]2 < 2 and [|x2[]2 < 2
(see (195)).

To finish up, note that y; + y» < 2(1+46§) < 3 for§ < 1/2. Substitute these bounds
into (193) to obtain

uDV2F (") u = (1= 8) [ul} + (1 +v2) (B + B)
> (1=8) lul3 + (i+92) (Bi+B1) — 21 +72) (1Bal + 183] + 1 Bal)

5
> (1= 8) a3 — 128 3 = 6 73 w3

v

(1—20.58) lu3

v

1

5 lul3
as long as ¢ is small enough.
C.1.2 Proof of Lemma 27

In view of the expressions of V2 f (z) and VZF (z*) (cf. (80) and (191)) and the
triangle inequality, we get

H V2 f (2) — V2F (2¥)|| < 201 + 20 + 4a3 + 4oy, (196)

where the four terms on the right-hand side are defined as follows

" 2 " 2
o] = Z‘a;'x‘ bjb;i—IK , oy = Z‘blj—'h‘ aja;'—IK s
Jj=1 j=I1

a3 = Z (b]Hthaj - yj> bja]'f| , Q4= ibjb]"-'h (ajaJHx)T —h*x*T

j=1 j=1
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In what follows, we shall control sup, g o for j = 1, 2, 3, 4 separately.

1. Regarding the first term o, the triangle inequality gives

2
b —Ig

H H Hox H Hox
< ] p — ] p" ]
a; < Z‘ajx‘ b]bj Z‘ajx b,bj + Z‘a]x
Jj=1 Jj=1 j=1

=p1 =h2

e To control B, the key observation is that a'j'.'x and a'}'x* are extremely close.
We can rewrite 81 as

2 2
H | HLx
‘ajx‘ ‘ajx

<

m
)
j=1

ﬁ1=|§:<a;'x2‘a;'x* bt (197)
=1

2
H
)bjbj

where

2
H H_.x
‘lljx‘ ‘ajx

]
H H H

[aJH (x - x*)] al (x —x*) + [aJH (x - x*)] allx* + <a?x*> a (x —x*)

@ | oy

< |af (x—x7)

®

)aHx*

2
+2’a'}' (x —x*) !

i 1 1
< 4C31 3 +4C3 373 -5y/logm
og”’m log”“m

Here, the first line (i) uses the identity for u, v € C,

H

|u|2 — |v|2 =uMu — oty = (u — v)H(u —v)+ (u — v)Hv + vH(u — ),

the second relation (ii) comes from the triangle inequality, and the third line
(iii) follows from (189) and assumption (82b). Substitution into (197) gives

H
‘ajx

:

B1 < max - ’a'}'x*

I<j<m

2| | & 1
o s
o logm

where the last inequality comes from the fact that Z?:l b; b]'f| =1Ik.
e The other term 8, can be bounded through Lemma 59, which reveals that with

probability 1 — O (m~1?),
K
B2 S/ —logm.
m
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Taken collectively, the preceding two bounds give

K 1
supa; S —logm—i-C31 .
zeS m ogm

Hence, P(sup,cg 1 < 1/32) =1 — 0(m~19).
2. We are going to prove that P(sup,.gaz < 1/32) =1 — O (m~'9). The triangle
inequality allows us to bound a5 as

@ = Z)b“h] ajaff = W3 1| + [1m13 1k — 1 -

=01 (h) =0, (h)

The second term 6, (h) is easy to control. To see this, we have
O2h) = [1113 = 1| = [ 11l = 1] 1kl + 1) = 38 < 1/64,
where the penultimate relation uses the assumption that || h—h* H , < d and hence

[kl —1] <8, |kl <1+8<2.

For the first term 6 (h), we define a new set

H;:{he(CK |h—h*|| <8 and max )th‘_

<]<m

2C4pulog? m
Vm '

Itis easily seen that sup,c g 01 < supycp 01. We plan to use the standard covering
argument to show that

P (sup 01 (h) < 1/64) =1-—0m 9. (198)
heH

To this end, we define ¢ (h) = |b'j'-'h|2 for every 1 < j < m. It is straightforward
to check that

2
2C4log?m
0, (h) = Zc(h)(a, —IK) , lgljajm|c,|<<7g) ,

(199)
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2 Hy 4 Hy (2 Hy 2 Hy 2 2
i = b"h|” <{ max |bh b"h|- ={ max |b'h h
]; j J_le Whlt < {l§j§m| tihl }j}_ln | {1§.i§m| i }n E

2 2m\?
< g 2Canlogm m) (200)
NG

for h € H. In the above argument, we have used the facts that ZT:I b; b'}| =1k
and

m m
SR =h (Y bp" | h=h13 < (14 8) <4,
j=1 j=1

together with the definition of 7{. Lemma 57 combined with (199) and (200)
readily yields that for any fixed & € H and any ¢ > 0,

2
~ ~ t t
P@1(h) >t) <2exp| C1K — Co min —=m3
maxi<j<mlcjl 32, c5
~ mtmin{l,t/4}>

< 2exp (511( -G i log'm (201)

where C 1, 52 > (0 are some universal constants.
Now we are in a position to strengthen this bound to obtain uniform control of 6;
over H. Note that for any k{, hy € H,

m
01 ) — 01Gi)| = | 3 (1B = 1B 12) @l | + 1113 = 113
j=1

m
= max {16812 = 68Ra?] |3 ajat| + (1013 = 1al3]
j=1

1<j<m

where
18" ha > — |b']'-'h1|2’ = ’(hz — h)M;b Ry + BB B (s — hl))
< 2max{||h1 2, [lh2ll2} k2 — k1112116113
< Al — Lol 13 = 2 — Il
and

1113 = al3] = |y = o) = Gy = B
< 2max{||h1ll2, [lh2ll2} k2 — hill2 < 4llh1 — h2l2.
FoC'T
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Define an event & = {H ZT:I a ja'jf' H < Zm}. When &y happens, the previous
estimates give

01(h1) — O01(h2)| < BK +4)[|h1 — h2l2 < 10K ||hy — hall2,  Vhi, hy € H.

Let e = 1/(1280K), and H be an &-net covering ‘H (see [116, Definition 5.1]).
We have

1 1
sup 01 (h) < N&y {sup 0 < —}
({he% 128 heH 64

and, as a result,

1 1
P (sup 01(h) > —) <P{sup0i(h) > — | +P(&)
he 64 - 128 0

1
< |H| max PP (91 (h) > —) +P(&).
heH 128

Lemma 57 forces that P(£7) = O(m_lo) Additionally, we have log IHI <
C3K log K for some absolute constant Cg > 0 according to [116, Lemma 5.2].
Hence, (201) leads to

1
P —
IH]| - ;lneaHx (91(h)2 128)

=~ ~ ~ 1/128) min {1, (1/128)/4
§2exp <C3K10gK+C1K—C2m( / )min {1, ( / )/ })

4C3 2 log* m

~ Cam
< ZCXp 2C3K10gm - m

for some constant C4 > 0. Under the sample complexity m > u?K log> m, the
right-hand side of the above display is at most O (m"o). Combine the estimates
above to establish the desired high-probability bound for sup, g a2.

3. Next, we will demonstrate that

P(sup a3 < 1/96) = 1 — O (m—“) ek 1ogm) .
zeS

To this end, we let

A= G(meK’ B = E(meK’
H H
am bm
FoE'ﬂ
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c1(2)
C = C2(Z)“. e cmxm.

cm (2)

where foreach 1 < j < m,
cj(z) == b'}'thaj -y = b'jf'(th - h*x*H)aj.

As a consequence, we can write a3 = || BHCA|.

The key observation is that both the £o, norm and the Frobenius norm of C are
well controlled. Specifically, we claim for the moment that with probability at least
1—0 (m™19),

wlo 32 m
IClleo = max |e;| < c%; (2022)
2 2
ICIE =" |e;[* < 1262, (202b)

j=1

where C > 0 is some absolute constant. This motivates us to divide the entries in
C into multiple groups based on their magnitudes.

To be precise, introduce R := 1 4 [log,(Cu 10g7/2 m)] sets {Z,}1<,<r, where

Cplog’/? Cplog’?
2 Jm =1 Jm
and Zgp = {1, --- ,m}\ (Ufz_ll I,). An immediate consequence of the definition

of 7, and the norm constraints in (202) is the following cardinality bound

IClI% 1282 128%4"
7] < 7 < 3= m (203
min;c7, ¢ (cmogmm) C-p~log’>m
2’ﬁ —8,—/
for1 <r < R — 1. Since {Z,}1<,<g form a partition of the index set {1, - - - , m},
it is easy to see that
R
B"CA =) (Bz, )"Cz, 1,41, ..
r=1

where D7 7 denotes the submatrix of D induced by the rows and columns of

D having indices from Z and 7, respectively, and D7 . refers to the submatrix
FolCT
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formed by the rows from the index set Z. As a result, one can invoke the triangle
inequality to derive

Az,

R [ R 5 I [ R VT

R—1
o3 < Z |Bz,..
r=1

(204)
Recognizing that BHB = I'g, we obtain
|Bz,.| <1BI =1

for every 1 <r < R. In addition, by construction of Z,, we have

Cuplog’?m
C =max|c;| < —=———
[€7,2.| = maxie;l < ==
for 1 <r < R, and specifically for R, one has
Culogd > m 1

|€7 22| = maxe;1 <

<
2R=1 /m  ~ Jmlogm’

which follows from the definition of R,i.e., R = 1+[log,(C 10g7/2 m)].Regard-
ing |Az,..|. we discover that |A,..| < IA] and, in view of (203),

|Az,.. ., l=<r<R-1

| < sup |Az.
T m

[<ér
Substitute the above estimates into (204) to get

R—-1 5/2

w < S ErEm _ar (205)
; N V/mlogm

It remains to upper bound ||A|| and supz.z|<s. ||Az,_ || Lemma 57 tells us that
| All < 2/m with probability at least 1 — O (m~'?). Furthermore, we can invoke
Lemma 58 to bound supz.i7i<s ”AI, || foreachl <r < R —1.1Itis easily seen

from our assumptions m > u?K log® m and § = ¢/log? m that 8, > K /m. In
addition,

12824R_1 128241+10g2(Cu10g7/2m) 48¢

< < = 4882 log® m = < 1.
T Cullogim T C2u2log> m g log? m
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By Lemma 58, we obtain that for some constants 52, 53 >0

~ ~

IP( swp Az, | = /4Cs.m log(e/s, )) <2exp (—ﬂa mlog(e/s, >)

T:|Z|<8,m
) < 20K

Taking the union bound and substituting the estimates above into (205), we see
that with probability at least 1 — O (m~'%) — O ((R — D)e~K),

< 2exp (—

Culog?m ~ 2 m
o3 < Z - 1\/_ \/4C38,m log(e/zsr) + W
R—-1

= 2
< ) 48/12C3log(e/s,) + Toam

r=1
1
< (R — 1)84/log(e/81) + ——.
logm

Note that u < /m, R — 1 = [log,(Clog’/? m)] < logm, and

e eC2u2log’ m
flog £ = |log [ EH 8 M) <160 .
og og ( 1552 <logm

Therefore, with probability exceeding 1 — O (m_lo) -0 (e_K log m),

1
supaz < 8log?m + ——.
ze8S logm

By taking ¢ to be small enough in § = ¢/log? m, we get

P (:2};0[3 > 1/96) <0 <m*‘°) ) (e*" logm)

as claimed.
Finally, it remains to justify (202). For all z € S, the triangle inequality tells us
that

el < ‘b;‘h(x — x")Mg;

H *\ .xH
B(h — h")xa, |

H H H Hy* Ho
< [offn] - |a] + ([offn|+ [pffn]) - Jafix
2C4ulog® m 2C3 <2C4u log® m m
< — ) 5{/lo
ST gm0 e T gm Tm) Ve
Fol:rﬂ
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5/2
- Culog m

= 7’

for some large constant C > 0, where we have used the definition of S and fact
(189). Claim (202b) follows directly from [76, Lemma 5.14]. To avoid confusion,
we use w to refer to the parameter p therein. Let L = m, N = K, dy = 1,
w1 = Caplog?m/2, and e = 1/15. Then

S C Ny NNy, NN,

and the sample complexity condition L >> /,L%(K + N) log? L is satisfied because
we have assumed m > u?K log® m. Therefore, with probability exceeding 1 —
O (m~'%+ ¢~K), we obtain that for all z € S,
5 2
ICIE <3 Hth — h*xH ‘F.

Claim (202b) can then be justified by observing that

”th et

. " H o *H
‘F—Hh(x x) +(h h)x ‘F
< Ihlly [ = x*[, + [[h = B* |, |x*], < 35.

4. It remains to control o4, for which we make note of the following inequality

" m
os < | > bl — wx D@t | S bt T @ agt — 1k
j=1 pt

03 64

with @; denoting the entrywise conjugate of a;. Since {a;} has the same joint
distribution as {a}, by the same argument used for bounding o3 we obtain control
of the first term, namely

P(supbs > 1/96) = 0(m ™'+ ¢ K logm).
zeS

Note that m > u?K logm /8% and § < 1. According to [76, Lemma 5.20],

P(supbsy >1/96) <P (supbs>68)=0m'.
zeS zeS

Putting together the above bounds, we reach P(sup,cgas < 1/48) = 1 —
Om~19 4+ e~ Klogm).
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5. Combining all the previous bounds for sup, s o; and (196), we deduce that with
probability 1 — O (m™10 4 =K logm),

<2. 1+2 1+4 1+4 L1
32 32 96 48 4’

H Vif(z)— V2F ()] <

C.2 Proofs of Lemmas 15 and 16

Proof of Lemma 15 In view of the definition of o’ ! (see (38)), one has

2

2
diSt(ZH_l,Z*) — ht+1 h* +H t+1 t+1 x*

2

at+1

ht—H h* t t+1 — x* 2

Ol[

+ | .
2

The gradient update rules (79) imply that

ol ol

1, 1 . W ~t
1, +1=:(h L )) )
atthl = at (xt ||ht||2 xf( )) = ~t ~? ZVXf (21) 5

A 113
where we denote ' = Q:Ith’ and ¥ = of'x as in (81). Let B’ = %h’“ and
X'+ = a'x'*!. We further get
P TR [l
alab ) D L I#1: %1k
A L R O 7 ”;‘;z “;2
R 7], 1
=D
Vi f EZf;
Vi f (2
Vinf (Z') (206)
Ve f (&)
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The fundamental theorem of calculus (see Appendix D.3.1) together with the fact that

Vf (z*) = 0 tells us
Wfﬁ; Wfﬁvaav B —n
Vi f (2 IRREY Z') = Vi f (z¥) Y X —x*
Vhf(ft) - Vhf(?)—vhf(z*) _A Vif(z(r))dr ol
Ve f () Vef (@) = Ve f (2% i ¥ %
(207)

where we denote z (t) 1= z* + 7 (E’ — z*) and V2 f is the Wirtinger Hessian. To
~r+1
|:h :| Identity (207) allows us to rewrite

further simplify notation, denote ' = | 2 |
x
=t *
7 -z
AL (208)
7 - z*:|

>t+1 _ 7*

(206) as
t+1 _ %
[i zj|=(l—nDA)[

Take the squared Euclidean norm of both sides of (208) to reach

PN L A " H 7 -z
”z -z H =-|z—=| d—nDA" I —nDA) | z——
2 2|z =z Z =z
17z -z 1" 7 -z
=== | (1+rPAD?A—n(A+AD)) | 5—
2172 -z z —z*
20 4121 P2 > 7 -z7" -z
§U+nHMHWHw?—fL—§[?_v}(DA+Am[?_K}
(209)

Since z (t) lies between Z' and z*, we conclude from assumptions (85) that for all

0<t<l,
x(t)—x*|,} <dist(z',2*) <& <&

max{”h (1) — h*”z,

H
et =)

)

< (3

log®? m

H H 2
max ‘bjh(r)‘ §C4ﬁlog m

l<j=<m
for & > 0 sufficiently small. Moreover, it is straightforward to see that

n=[Fl and = |E

satisfy
#-x,) =0

max {|y; — 1], |y2 — 1|} S max{”ﬁt —h* ’2,

FolCT
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as long as £ > 0 is sufficiently small. We can now readily invoke Lemma 14 to arrive
at

[AIDII <3(1+46) <4 and

7 — " 7 -z 1
o [F=2]=
T -z z -z 4

-7 1. .
[m”z: 57 =2

Substitution into (209) indicates that

H/z\tﬂ g

2 2
, = (1+16n2—n/4) Iz -z ||2

When 0 < n < 1/128, this implies that

[ -zl <a-ws [z -

and hence

- < fov -], < a—we e - 2, < 4 - sy it 2.
(210)

This completes the proof of Lemma 15. O

~t+1
Proof of Lemma 16 Reuse the notation in this subsection, namely 7+ = |:£ 4l :|
X

Lo+l o~
with i’ ' = %ht“ and ¥’ = o’x'*!. From (210), one can tell that
o

HNI+1 *

< ”?“ -z

< dist(z’, z%).
2 2~ ( )

Invoke Lemma 52 with B = ' to get

s

< ”’z\t-i-l —z*

~

, < dist(z’, 7%).

This combined with the assumption ||a| — 1| < 1/2 implies that

t+1 at+1 t

1

|a’| > 3 and ad

—a .
Sdist(z',z%) S C

logZm’

_1'2

ol

This finishes the proof of the first claim.

The second claim can be proved by induction. Suppose that ||as | — 1} < 1/2 and
dist(z*, z*) < C1(1 — n/16)*/1log?>m hold for all 0 < s < v < ¢, then using our
result in the first part gives

FoC'T
e
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T T
1
™ — 1] < [1e®] — 1| + Z ! —af| < i +chist(zS,z*)
s=0 s=0
1 cCq 1
= T T2 =2
4 qglogtm 2
for m sufficiently large. The proof is then complete by induction. O

C.3 Proof of Lemma 17

Define the alignment parameter between z">¢) and 7' as

Lo — 1y

al

2 2
1.() i 4 Haxz,(l) oyt
2

amutua

| i= argmin
aeC

2t.()
Further denote, for simplicity of presentation, 7' = ,’it o with
Rl
RO RS SR 0 — O 10
h = Wh and X = Qo ua .
¥mutual

Clearly, 2@ is aligned with Z".
Armed with the above notation, we have

Lo _ L g
o altl

of 1t & o _ hr+1
a1 ﬁ ol

2
+ ext+L O — ittt ”5

M<“'*'><a*1x~~~—w+'>

dist(z'+1’<]), EH'I) = min \/

[*2
= min
[*3

2

2

ol +1 2
< of 1 . pttLo _ ht+l of oDty _ g yttl (211)
= i+l o0 mutual N

Ymutual
t+1,(0) _ 1 pr+1
_ alt! o = “) ——h h (2 | 2)
= max o ||ttt mu%d L0 {1 ’
Yutal® —ax 2

ot ()
o! “mutual”

to work with when controlling the gap between z"*®) and z’.
We can then apply the gradient update rules (79) and (89) to get

The latter bound is more convenient

where (211) follows by taking o =

t+1,() _ 1 i+l
r(1> ——h th

T? t+1,(l) 14141
mutual® —ax

FoE'ﬂ
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[ N _ 1 O (0 .0 I

(30 = g (10 0) ) = s (= o 1)
Ymutual ” x ” 2

t,()

hrtnal (xt’“’—w Ve O (00, "(”)>‘“’ <x’ Vi f (0 ,xt))

[~0) 0 2 ~
W e O )~ (7 - ||~f|| Vs 2))

o~ 1, (1) o~ ~t ~
w0 - k" (”uz Ve f O, 20) (x Vo s (i t)>

I ||2

By construction, we can write the leave-one-out gradients as
Vit O (hx) = Vi f (h,x) — (b hx"a; — i) bialfx  and
Ve fO (h,x) = Vi f (h, x) — (b hxPa; — yp)aiblh,

which allow us to continue the derivation and obtain

L gl _ Ll

ol (l) al
t?3 t+1,(l) 1 1+1
Y utual® —ax

a0 _ = (1)” f(At D 2, (1) <~t ”Nt” (h[ ~,)>
~ t(l) ~ ~t o~
xh0 - =, (1) xf(A xt (Z) =1 Vx f(h t)
(I8 Hh I3
Ht, (D) o~
T, (”l W - yl) hafz
~t,(D~t (1 Hg Hyt, (D
s (B e~y Jaud
2

=J3

This further gives

t+1,() _ 1 gt+1
l(/) ——h ,h

o/ RO

mutual

=1, (1) " A0 2.0
L PTG ( ( ( HA’(’)H hf( >)
. Hx ”2
=) _ AU o (N’ ~t>
X 7 (I)H xf( ;t\t'(])Hz fo h , X
2

=v

XL _ iyt

M|
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(Hi‘}nz |~a>|) s (i %)

+1 N Y (213)
L_ ) Ve f (h Xt

(U v, L

=vy

N—"

In what follows, we bound the three terms v, v5, and v3 separately.

1. Regarding the first term v, one can adopt the same strategy as in Appendix C.2.
Specifically, write

. n ( t z, )

IIA’ © !I2 IIA’ O || PRGN
o~ s [ ~ -
0 - ”A, <1>H Vi (@) (xt ‘Ar U)H Vef (@ ) O _xt
=0 X 7)) RO
h %" FOR ||2 ( %" FOR uz (z O _F

_’x‘t,(l) 2 (1) ( t % ([) Zt )
ol
’ ~.(0 |2
7], 1x
' O e
RN
=D
Vif @) = Vi f (2')
Vef @0) = Vief ()
Vs @0) — Vs (7)
Vel @0)—Vef (7
The fundamental theorem of calculus (see Appendix D.3.1) reveals that
Vif @ P) = Vi f(Z) i
VoS (3Z0) - Ve f (7) L 70 5
Sr ) v @) |~ VO T |
fo (/z\t'(l)) - fo (Zt) =A i'\t’(l) - ;t
where we abuse the notation and denote z () =7’ + 7 (A’ (D — ) In order to

invoke Lemma 14, we need to verify the conditions required therein. Recall the
induction hypothesis (90b) that

7z > 2K log’
dist(z0.7) = [20 7] = Coy [ 5 B
FoE"ﬂ
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and the fact that z (7) lies between 2D andZ' . Forall0 <t < I:

(@) If m > u2v/K 1og"3/? m, then

le @ =2y < man [ [0 = |7 =2} < [ =+ [ -7,

- w | uPK log m_ e

- 1logzm f - llogzm’
where we have used the induction hypotheses (90a) and (90b);

(b) Ifm > u’K log6 m, then

2, [of @ =)

= max ‘m?(’f”(l) -¥)+ a'}' (X' —x*)

1<j<m
t,() _ H _
< max [ @0 = %)+ max [al] (&~ )
< max oy, |20~ + Oy oy
u?K log’ 1 1
< 3K - sz og'm + C3 log3/2m =< 2C310g37m, (214)

which follows from bound (190) and the induction hypotheses (90b) and (90c);
(c) If m > ukK logs/2 m, then

max ‘b?h(r)‘: max |th(At © ~)—l—b';zt|

lfjfm 1<I<m
HGEO _ g HE
= lr<n/a<xm bj (\ ) * linla}m |b " |
o
< max (b, o[ — ', + max [p]H]

IA

K w | 2K log’ m m ) " )
‘/C—f———%Q—MmQW—mW
(215)

which makes use of the fact ||b; [, = /K /m as well as the induction hypothe-
ses (90b) and (90d).

These properties satisfy condition (82) required in Lemma 14. The other two
conditions (83) and (84) are also straightforward to check, and hence, we omit it.
Thus, we can repeat the argument used in Appendix C.2 to obtain

Ivill, < (1 =n/16) - |20 =7,

Fo C 'ﬂ
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2. In terms of the second term v, it is easily seen that

||ﬁ1 ||h’1<”|\2 H[Vhfgz”

5

1

EIHNEEH)

[lv2ll, < max

2

We first note that the upper bound on ||V2 f () || (which essentially provides a
Lipschitz constant on the gradient) in Lemma 14 forces

=&)L

where the first identity follows since Vj f (z*) = 0, and the last inequal-
ity comes from the induction hypothesis (90a). Additionally, recognizing that
Hx’H = |x"® ||2 = 1, one can easily verify that

1

2 3

< 7 <
7 -2l 5 O

H|:Vhf ') Vhf(z*)}
') = Vi f (@)

1 1

IR HE

) e

%15 - =1

A similar bound holds for the other term involving k. Combining the estimates
above thus yields

|10, - 7)) < 170 - %,

1 ~
Ivall2 S €1 |20 =7,

3. When it comes to the last term v3, one first sees that

l (l)A 1, (l)A ~
H (bH 1.(OH, yz) bia! Ht, () H ’th LOHg, _ yz‘ 1Byl |aH , (1)|

(216)
Bounds (189) and (214) taken collectively yield

1
Sw/logm—i—C\g}—/zx logm.
log”“m

‘ t(l)) ‘H*

+ ‘alH @D —x*)

In addition, the same argument as in obtaining (215) tells us that

=~t,(l)

* M
B (h"" — )| < C4ﬁlog2m.

Combine the previous two bounds to obtain

~t.(1) ~,
‘thl()xz,(l)Hal —

< |b}"ﬂl’(l)(’£"(l) _ x*)Ha1| + |b;-|(ﬁf»(/) _ h*)x*Ha1|

AI (l)|

< B af G ) Y ) o
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@ Springer u.. jO E|



Foundations of Computational Mathematics

< (B = 1| + [ r*]) - af @O = x| + [ B = %) - |af'x"]

log? m I 1 log? m log®? m
<(cC — - C C - /1 <C .
~< W T ) Clogm TR T ViR R Gk

Substitution into (216) gives

_ 1
H (b}"h[’(l)ic‘”(’)"' y,) bial'®" <’>H <o Og ‘/ Jlogm. (217)

Similarly, we can also derive

< )br’ﬁl‘,(l)»ft,(l)H " 0 ‘

~t,(I) ~, " 0
H bRz (WM yl)a;b, ap — )’l‘ la:l ‘bz

lo
S Cap g\/_ VK - C4T10g m

Putting these bounds together indicates that

nm Klog m
lvslly < (Ca)? E—

f

The above bounds taken together with (212) and (213) ensure the existence of a
constant C > 0 such that

atJrl t

dist( L0 ’“)gmax{ — |- 0% }{(1_1_6+Ccml g1m>
2 9
”At RO ” + C(C4)2 \/_ % Klog m
O 1—mn/21 _ S0 g
=T1-1/20 (1 20) [z |-
2 9
+C(C4)2 j_ M
2Klogg'm
_ TN st ~t 2 Ve T
=(1 ) Iz |, +2C (Ca)*n f
3 n O I 2Klog9m
= (1 21>dlst( ') +2C (Ca) 7 i

(ii) 2K log®
O
Jm m
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Here, (i) holds as long as m is sufficiently large such that CC1/log?m < 1 and

o
max

al

t+1 t

o

pwES] (218)

3

1—n/21
< )
1—1n/20

which is guaranteed by Lemma 16. Inequality (ii) arises from the induction hypothesis
(90b) and taking Cy > 0 is sufficiently large.
Finally, we establish the second inequality claimed in the lemma. Take (h1, x1) =

(ﬂtH XYy and (hy, x0) = (iz\tﬂ’(l),f’“*(l)) in Lemma 55. Since both (k1, x) and
(hy, x7) are close enough to (h*, x*), we deduce that

”~t+l (D) ”2 < ”At-i—l D _ Hz < Cy MzKloggm

f

as claimed.

C.4 Proof of Lemma 18

Before going forward, we make note of the following inequality

1 t
by ——n'"!
at+l

=
ol 1

max
1<l<m

max
1<l<m

1
b}'|=tht+l

o

1
b;'i=[ht+l
o

<(149) 1mlax
<l<m

for some small § =< 10g_2 m, where the last relation follows from Lemma 16 that

Oll—l—l

<3$

— 1‘ <
of ~ log?m
for m sufficiently large. In view of the above inequality, the focus of our subsequent
analysis will be to control max;, ‘b}"%h’“ ‘

The gradient update rule for A’ +l (cf. (79a)) gives

1
:tht-‘r] h _nszb bH tNtH — Wx *H)a a|l‘|xt
o

j=1

where ' = h’ and X' = a’x'. Here and below, we denote & = 1/||¥ ||2 for nota-
tional convenience. The above formula can be further decomposed into the following
terms

at

1 ~ < ~
R e DO Z b;b"h*x*aa"F
J=1

FoE'ﬂ
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= (1 —nE Hx*”i) B — ijb;'ﬁt(|a;'f’|2 — |a'}'x*|2)

j=1

=v

—nEY b; bH aHx* — | x* +17$ b th*x*Ha a %,
Z ( j
j=1

=0y =03

where we use the fact that ZT:] b jb'}' = I k. In the sequel, we shall control each
term separately.

1. We start with |b}"v1| by making the observation that

m
< 30 (oo { s 085} ] ma o -

1<]<m lfjfm

Combining the induction hypothesis (90c) and condition (189) yields

H. . %
/x

4+ max ‘a

max ‘a"-'f" < max ‘aH (X' —x*)
! I<j=<m

I<j<m I=j=m

< O3+ 5/logm < 6/logm

as long as m is sufficiently large. This further implies

He~t
(‘a]x

Substituting it into (219) and taking Lemma 48, we arrive at

+ ‘aHx*

max ’a]H (x' —x*) :

1<j<m

) < C;l — - 11logm < 11C3

L‘b}"vl‘glogm~{ max |b h|} Cs —<C3 max |th|<01 max |b h|
né lgm

1<j<m 1<j<m 1<j<m

with the proviso that C3 is sufficiently small.
2. We then move on to |b'l'| v3|, which obeys

’b, ”3‘ < Zbrb th*x*Ha/aHx* + Zb}"b th*x*HaJ H (X' —x)|.
j=1
(220)
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Regarding the first term, we have the following lemma, whose proof is given in
Appendix C.4.1.

Lemma 28 Supposem > CK log? m for some sufficiently large constant C > 0. Then
with probability at least 1 — O (m_lo), one has

m
3 bbbt xa et — b <

m

For the remaining term, we apply the same strategy as in bounding |b}"v1 | to get

Zbl bib ' h*x*a;a (¥ — x*)

']"(x —x*)

m
< Z ‘brbj‘ max ‘th*‘ max
‘ 1<jsm |/ 1<j<m

!

max ’aHx*
1<j<m !/

7

<4logm \/_%.Cslog%/zm -5y/logm
n

< O3——,

~

where the second line follows from incoherence (36), the induction hypothesis (90c),
condition (189), and Lemma 48. Combining the above three inequalities and incoher-
ence (36) yields

1 ) H i
—bv3‘§bh*+ ro <oyl
g s ST G v
3. Finally, we need to control ‘br V) ’ For convenience of presentation, we will only

bound
idea is to group {b }

b'{'vz‘ in the sequel, but the argument easily extends to all other b;’s. The

1<j<m into bins each containing t adjacent vectors, and to
look at each bin separately. Here, T < poly log(m) is some integer to be specified
later. For notational simplicity, we assume m /7 to be an integer, although all
arguments continue to hold when m /7 is not an integer. Foreach0 <[ <m — ,

the following summation over t adjacent data obeys
a 2
H H 70 (|, H *
b; Zbl+jbl+jh (‘alﬂ-x - ||x “2)

S A (T

Jj=1
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T - 2
+ b Z (b1+jbr+j - bz+1b;‘+1> h' (‘“IHH"*’ - ||x*||§>

j=1

T

= Z <‘al+1

j=1

~ |[3) { Bt 7

T
D MR AN (TR

j=1

T ~ 2
+ 0 Y bt (brey — b)Y (\a}i,»x*( - ||x*||§) SeaR)

j=1

We will now bound each term in (221) separately.

e Before bounding the first term in (221), we first bound the pre-factor
‘Z;zl (|alH+jx* 1 — llx*113) ‘ Notably, the fluctuation of this quantity does not
grow fast as it is the sum of i.i.d. random variables over a group of relatively

2
large size, i.e., T. Since 2 ‘a'}'x*‘ follows the X22 distribution, by standard

concentration results (e.g., [95, Theorem 1.1]), with probability exceeding
1—0(m™19),

T
> (|lafy xF = 1*13)| S Ve logm.

With this result in place, we can bound the first term in (221) as

T
[Z (|"1H+j"*|2 - ||x*||%)l NRUA

j=1

< tlogm ‘b'{'bzﬂ) max ‘b;"zt‘ .

Taking the summation over all bins gives

m_ 1

T T
ST (s P = 1x13) § B beer bl B
k=0 j=1
m_y
< J7logm ;;) ‘bﬁ'bkm ‘ max ‘btht‘ . (222)

It is straightforward to see from the proof of Lemma 48 that

m_

H
> ‘blbkr+l
k=0
T
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Substituting (223) into the previous inequality (222) gives

Ik
2 ~t
ST (lals x| = 1xt13) § B b B, T
k=0 | | j=1
K./t lo log3
< gm |8 ‘b, A ‘
m T l<l<m

<0.1 max ’b,

<<m

as long as m > K/t Togm and 7 >> log> m.
e The second term of (221) obeys

T - 2
bII' Z (b[+j - bH—l) b}—'+jht (‘a;'-i-jx* - “x*“;)
j=1

~t
< max ‘b}"h
1<i<m

T T
S [88 s~ ben)|” |0 (latt e~ 1)’
j=1 '

2 2
> ‘b? (bij — bit1)
Jj=1

< /T max

1<l<m

bl

3

where the first inequality is due to Cauchy—Schwarz, and the second one holds
because of the following lemma, whose proof can be found in Appendix C.4.2.

Lemma 29 Suppose T > C log* m for some sufficiently large constant C > 0. Then
with probability exceeding 1 — O (m_lo),

- H *2 * |2 g
> (Jateef - 1x12) 50
j=1

With the above bound in mind, we can sum over all bins of size T to obtain

- =[]

i
sivr Yy Z(bﬁ‘ (bir —b,{m))2 max ‘b,h ‘
k=0 \/ j=1

1<i<m

L

bH Z Z bk‘[-‘rj _bkf+l)bkt+]h {‘al‘i’]

k=0 j=1

< 0.1 max )b}"ﬁt
1<i<m
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Here, the last line arises from Lemma 51, which says that for any small constant ¢ > 0,
as long as m > tK logm

m
i

> | [bl Grers =] =
1 \Pkr+j — Okr+1 =C—F=.
k=0 \| j=1 VT

e The third term of (221) obeys

T
B> byt (b — bier) " B { ‘a,ijx*
j=1

)

2 ~
‘a}"Hx*‘ - Hx*Hi (bryj — bl+1)Hht

< ‘b}?bl+l) zf:

J=1

max
O<l<m-—t,1<j<t

max
O<i<m-—t,1<j<t

H~
St ‘b'flblﬂ (bi+j —bie1) B

’

where the last line relies on the inequality

2
=13 ~ 1) 50

T
2
<V |3 (fat

j=1

>

j=1

H
’alﬂ-x

owing to Lemma 29 and the Cauchy—Schwarz inequality. Summing over all bins
gives

m_)

T T - 2
S bie g (brey) — bk‘[+l)H B {’alljr+jx* - ||x*||§}
k=0 j=1

m_

H H =t
ST Z ‘blbkt+l‘0<l max (bryj—bir1) h
k=0

<m-rt,1<j<t

<logm max (b1+j - b1+1)H n

O<i<m—t, 1<j<t ’

where the last relation makes use of (223) with the proviso that m > Kt. It then
boils down to bounding maxo<<m—r, 1<j<r | (bi+; — bl+1)H hl|. Without loss of

generality, it suffices to look at |(b j—b 1)Hﬁ[| forall 1 < j < 7. Specifically, we
claim for the moment that

max
l<j=t

< cCitogm (224)

HN
(b, —b)" R N
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for some sufficiently small constant ¢ > 0, provided that m > TK log* m. As a
result,

m_|

T T
Z b?thIH (bkr+j_bkr+l) s {’akr+J ‘ Hx ” }

k=0 j=1

< cC4L log2 m.
m

~

e Putting the above results together, we get

m_y

1 i -
SAUCED I ST |

k=0 j=1

2
- +°I2]

Hp ! o2
<0.2 121@” ’bl h ’ + O (CC4ﬁlog m) .

4. Combining the preceding bounds guarantees the existence of some constant Cg >
0 such that

‘bl t+l‘

< (1+5){(1 — ng) (blh +0.37 max ‘blh ‘

<<m

+Cy(1 +C2)n§ﬁ +cgnscc4flog m}

(i)
< (1+0< )) {(1—0.7n§)C4%10g2m

+Cy(1 + Ca)ng—= + CngcCy—— 1og? m}

i
Jm Jm
(i)

2 C4%10g m.

Here, (i) uses the induction hypothesis (90d), and (ii) holds as long as ¢ > 0 is
sufficiently small (so that (1 +8)Cgnéc < 1) and n > 0 is some sufficiently small
constant. In order for the proof to go through, it suffices to pick

T =rc]0 10g4 m

for some sufficiently large constant cjg > 0. Accordingly, we need the sample
size to exceed

m > /,LZ'CK 10g4m = MZK loggm.

Finally, it remains to verify claim (224), which we accomplish in Appendix C.4.3.
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C.4.1 Proof of Lemma 28
Denote

— Hypx .xH H, *
wj_blbb hx"a;aix”.

Recognizing that E[a ja'j'.'] = I g and ZT:] b jb]"-' = I g, we can write the quantity of
interest as the sum of independent random variables, namely

m

Zb, b xta;atlx —b'nt =) (w; — E[w;]).

Jj=1 Jj=1

Further, the sub-exponential norm (see definition in [116]) of w; — E [w j] obeys

‘ (i) uf
Jm T oom
where (i) arises from the centering property of the sub-exponential norm (see [116,

Remark 5.18]), (ii) utilizes the relationship between the sub-exponential norm and
the sub-Gaussian norm [116, Lemma 5.14], (iii) is a consequence of the incoherence

condition (36) and the fact that Ha'j"x < 1, and (iv) follows from (1B [, = /K /.

oy == willy, 22 gl oo [ fattee || S ot

H
a]

Let M = max jem) |wj — [wj]”w] and

2 2 2
H iz M » MK
Z ||w1 “wl (‘bl bj‘ ﬁ) = ; ||bl||2 = F,

j=1

2
which follows since Z;’Ll ‘b;'bj‘ = (27‘:1 bjb;') b = b5 = K/m. Let
aj = |w; —E[w;]|,, and X; = (w; —E[w;])/a;. Since || X,lly, = 1, Y7_  a] =
V2 and max jelm] laj| = M, we can invoke [116, Proposition 5.16] to obtain that

t 12
ZaJX >t | <2exp| —cmin u V2

j=1

where ¢ > 0 is some universal constant. By taking r = p/,/m, we see there exists
some constant ¢’ such that

Zb,“b Bt et — bt = L=

m
Jj=1

2
< 2exp (—le {M/f W /m })

M V2
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<2exp (—c’min{ M/ﬁ, w/m })
,u\/?/m w*K /m?

=2exp (—c/ min {W, m/K}) )

We conclude the proof by observing that m > K log? m as stated in the assumption.

C.4.2 Proof of Lemma 29

From the elementary inequality (a — b)> < 2 (a2 + bz), we see that

) =2 (jaie
(225)

where the last identity holds true since |[x*|[, = 1. It thus suffices to control

> (Jae

T
N =23t
2)_2 ‘ajx
j=1

o j=1 ‘a x ‘ Let & = aHx which is a standard complex Gaussian random vari-
able. Since the &;’s are statlstlcally independent, one has

ar <Z I&I“) < Gyt
i=1

for some constant C4 > 0. It then follows from the hypercontractivity concentration
result for Gaussian polynomials that [99, Theorem 1.9]

P{i:O&ﬁ—Eﬁ&ﬂ)zcr}

i=1
1/4
- C C2T2 /
<Cexp|-o|——m—
Var (357, 114)

22\ 4 2\ 4 L
<Cexp|—c2 Cit =Cexp|—c C_4 T

< 0(m™'9,

for some constants c, ¢p, C > 0, with the proviso that T > log4 m. As a consequence,
with probability at least 1 — O (m~1?),
4
=T,

T T
4
Hox| < H_*
E ‘ajx ST+ E E[‘ajx
j=1 j=1

which together with (225) concludes the proof.
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@ Springer u.. jO E|



Foundations of Computational Mathematics

C.4.3 Proof of Claim (224)

We will prove the claim by induction. Again, observe that

at—l

“ e

1
< (1+5)‘(bj—b1)“ —

al~

N

al~

(b — )"

H 1
= |- 00" 2| -

for some & < log™% m, which allows us to look at (b; — bl)H %ht instead.
o

Use the gradient update rule for i’ (cf. (79a)) once again to get

1

t__ 1 t—1 t—1 t 1H * .xH —1
—h _F<h = 1”2be1 (h — h*x )a,a x! )

=1

! —r;OZblbl ( By h*x*H>a;a}'|35’_1,

where we denote 6 := 1/ Hx’ ! || This further gives rise to

1

al~

= (b, —b)" BT = (b — b)) Zblbl (A% — ) agaffz !
=1

=(b;—b) "7 0o (b, — b)) i oft (B = ) 3

_,79 b — b Hibl ( W 1~t 1H h*x*H>(alal _IK>~z 1
=1

( — po|I¥ 1”2) (b] ) ~t—l 410 (bj B b])H h* (x*Hft_l)
=p1

—n0 (b; — by) Zb by ( g M h*x*H> (a;alH—IK>Et_1,

=p2

(bj — b)) —n
J

where the last identity makes use of the fact that ;" | blb}" = I k. For B, one can
get

1
I (ORI
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where we utilize the incoherence condition (36) and the fact that ¥'~! and x* are
extremely close, i.e.,

Regarding the second term S, we have

i:t—] — x*

, = dist (zt_l,z*> <l = ¥ <2

b}’ (7/‘1;’*1“ - h*x*H) (ala}" - IK)?’]‘ .

=y

1 m
) 12| = :;‘(h, —b])Hbl‘} max.

The term 1 can be bounded as follows

~—1 oy
Y < max )b}"h Fi-1H (ala I) ¥ + max ’th* *H (alal IK) 1’
1<i<m 1<l<m
~t—1 ~f— ~
< max ‘b?h max )xt 1H (alal —IK) = ]‘
1<i<m I<i<m

+ max ‘blh max )x H(alal —IK) X' 1‘

1<i<m 1<i<m

“1 K
<1 ‘b ‘ LN
~ Ogm{l‘l‘i’in ! +¢m}

Here, we have used the incoherence condition (36) and the facts that

(G (araf = 1) & < e |2+ 72 S togm

™ (af = 1) %7 < [afF 1 fafle |, + [ e < ogm,

which are immediate consequences of (90c) and (189). Combining this with
Lemma 50, we see that for any small constant ¢ > 0

1 1 ~t—1 M
= <c b ‘ _~
R e L

holds as long as m > tK log* m.
To summarize, we arrive at

(b — )" T

§(1+5){<1—n9)

)l -0
ranoL oo

! max ‘bHﬁFl‘ + o
Jm logm | 1<i=m ! NZAR
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@Sprmger U_.joj



Foundations of Computational Mathematics

Making use of the induction hypothesis (85¢) and the fact that ”x’ 1” > 0.9, we
reach

Htl

‘(b_j—b])Hﬁt‘g(l-i-S){(1—0.9n€)‘(bj—b) logm +

0
‘ +cCqnf—= Sl }

f Jmlogm

Recall that § =< 1/log? m. As a result, if n > 0 is some sufficiently small constant

and if

< 200C4L logm

H7r—1 17 "
b, —by) h ‘<10 Cs—1 _—
‘( J 1) - C( 4 ogm -+ n@ﬁlogm) - Jm

Jm

holds, then one has

= I
(b — )" W] < 20¢Cy~logm.

Therefore, this concludes the proof of claim (224) by induction, provided that the
base case is true, i.e., for some ¢ > 0 sufficiently small

‘(bj _bl)“ZO‘ < 20cc4%10gm. (226)

Claim (226) is proved in Appendix C.6 (see Lemma 30).
C.5 Proof of Lemma 19

Recall that h and x° are the leading left and right singular vectors of M, respectively.
Applying a variant of Wedin’s sin® theorem [42, Theorem 2.1], we derive that

| o ci |M —E[M]]
min (o =iy + ok =t} = SR = e

for some universal constant ¢; > 0. Regarding the numerator of (227), it has been
shown in [76, Lemma 5.20] that for any & > 0,

IM—E[M]| <& (228)
with probability exceeding 1 — O (m~'°), provided that

oK log’m
for some universal constant ¢, > (. For the denominator of (227), we can take (228)
together with Weyl’s inequality to demonstrate that
o1 (EM]) =02 (M) > 01 (E[M]) — o2 (E[M]) — M -E[M]||>1-§,

Fo C 'ﬂ
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where the last inequality utilizes the facts that o7 (E[M]) = 1 and oy (E[M]) = 0.
These together with (227) reveal that

c1é

g saE (29

: 0 * Y. *
Lomin ek —ht [+ ok — x| <

aslongas & < 1/2.
Now we connect the preceding bound (229) with the scaled singular vectors h° =

<0 . . ..
Jor (M) b and x° = /o (M) %°. For any a € C with |a| = 1, from the definition
of h® and x° we have

Jah® = h* [, + ax® = 5[, = | Vor ) (k) — b

Tt Hm(aio) —x

5

. 0 . . . . .
Since ah , ok are also the leading left and right singular vectors of M, we can invoke
Lemma 60 to get

Hoeho e

+ Hozxo —x*
2 2

0 0 . 2|01 (M) — o1 (E[M))]
< Vo1 GIM) ([’ - b*|, + |ai "”2)+¢m(M>+¢m<E[M]>

<0 2 M) —o (EM
_ Hozh | o+ Ha,\?o—x* 4 2on@) — o1 (EIM) (230)
2 2 Jor (M) + 1
In addition, we can apply Weyl’s inequality once again to deduce that
lot(M) — o (E[M])| < M — E[M]|| <&, (231)

where the last inequality comes from (228). Substitute (231) into (230) to obtain

Haho — |+ Haxo _x Hz < Haizo —w| + Haico —xt| +2s @3
Taking the minimum over «, one can thus conclude that
omin o =]+ o -]
< .min_ {lok” = me ], + ok® —x*[,} + 28 < 2008 + 22,

where the last inequality comes from (229). Since & is arbitrary, by taking
m/(u*K log® m) to be large enough, we finish the proof for (92). Carrying out similar
arguments (which we omit here), we can also establish (93).
The last claim in Lemma 19 that ||ag| — 1] < 1/4 is a direct corollary of (92) and
Lemma 52.
EOE';W
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C.6 Proof of Lemma 20

The proof is composed of three steps:

e In the first step, we show that the normalized singular vectors of M and M are
close enough; see (240).

e We then proceed by passing this proximity result to the scaled singular vectors;
see (243).

e Finally, we translate the usual £; distance metric to the distance function we defined
in (34); see (245). Along the way, we also prove the incoherence of h° with respect
to {b;}.

~0 v . .
Here comes the formal proof. Recall that & and 0 are, respectively, the leading

-0, . .
left and right singular vectors of M, and h O and ¥* O are, respectively, the leading

left and right singular vectors of M), Invoke Wedin’s sin® theorem [42, Theorem
2.1] to obtain

. ~0 v0<l) v
min_ [k’ =i, + ok - 20, )

aeC,lal=1
o a0y« i
o1(M©D) — oy (M)

)
2

=

for some universal constant ¢; > 0. Using the Weyl’s inequality we get

o1 (M?V) — oy (M) = 01 (EIM D) — |1MD —E[MD]) — 0p (B[M]) — |M — E[M]]
>3/4— MO —EMDO]|| - |M - E[M]|| > 1/2,

where the penultimate inequality follows from
o1 (EIM?V]) = 3/4

for m sufficiently large, and the last inequality comes from [76, Lemma 5.20], provided
that m > cru”K log®> m for some sufficiently large constant ¢ > 0. As a result,

denoting
0 v0 !
g0 .= argmin H||oeh A

aeC,lal=1 ||2 + ok -0 “2} (233)

allows us to obtain
~0,() .
I, + |8” R I

620k ~ i
<20, [ (0 — M O)ROO 4 i

M-mO),}. e

It then boils down to controlling the two terms on the right-hand side of (234). By
construction,

M — MO =pph*x*Haal.
FoE'ﬂ
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e To bound the first term, observe that

H (M — M©)*O H2 _ Hb,b}*h*x*“a,a;'xw H2 = 1Bl ‘b}*h* al'x*| - |al'& 0|
K log?
<30 . [2esm (235)
m m

where we use the fact that || b;||» = /K /m, the incoherence condition (36), bound
(189), and the fact that with probability exceeding 1 — O (m’lo),

max |a Hx0: (Z)| < 5/logm,

1<i<m

due to the independence between ¥ and a.

e To bound the second term, for any & obeying || = 1, one has

o)

v0,(OH
i bt M ayal H ||al||2’bth*

() 1 0.0
<3VK - N -5/logm - [bf'R |

(") 2K 1 K1 . +0,(

215 [ LRI 0 ﬂw\b, i)
(iii) 2K 1 K1 v 0,(l
D g5 [ 2K e oy g5 (10K e [K g0 oo |

Here, (i) arises from the incoherence condition (36) together with bounds (189)
and (190), inequality (ii) comes from the triangle inequality, and the last line (iii)
holds since ||b;||» = /K /m and |a| = 1.

Substitution of the above bounds into (234) yields

vO(l)|

(o'

~0 ~0,( . .
H B-OR _ i <>H n H BOO30 _ 200 H

Kl 2K
<2 30— \/ o8 m+15\/ Ogm‘ Py

2K1 K -v0 vo.
15,/ H-Roem /_Hah _ ”H
m m 2
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Since the previous inequality holds for all |&| = 1, we can choose @ = S%® and
rearrange terms to get

2K 1 K L0 +0,0 L0
| —30¢,, 2208 [ (Hﬂo,a)h i ()H n Hﬂo,a)xO_xo,(l)H )
m m 2 2
K1 WK 1 i
< g0c, J . [Klogwm Ocry | 22 [t
\/_

Under the condition that m > uK log!/?>m, one has 1 — 30c;/u2K logm/m -
VK/m > %, and therefore,

o,(Z);lO _ ,;0’(1) H H 0,050 _ 0.0 H
L e :

| K log? [u2K 1 .0
< 12061L L jAloerm + 60c; po & fogm ‘b}"h
Jm m m

which immediately implies that

L0 +0,( .
max {608 0]+ g0z -0 )

1<i<m

| K log? / 2K |
< 120C1L . ﬂ HoR Jogm )bl h ‘ (236)
Jm m 1<l<m

+ 0 . < 0
We then move on to ‘b}"h ‘ The aim is to show that maxi</<p ‘b'l"h ‘ can also

be upper bounded by the left-hand side of (236). By construction, we have Mx° =
¥ 0
o1 (M) h , which further leads to

L0
b}t | =

- (M) [Bitm

m

22y (b, ) B0 x*Ha;atis

j=1
<2 ‘b,b‘ max Hb'}'h" aj"-'x* aIHJEO}
1<j<m ’
=1
(i) o o
%810gm (5\/logm> max ”a]"-ixo’(’))—i- ||aj||2H,BO’(/)xO—xO’(J)H ]
1<j<m 2
1 2 2K 1 3
5200“ og~m +120 w ngo OHFAY VO(J)H (237)
ﬂ m l<j<m
FolCTM
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where %) is as defined in (233). Here, (i) comes from the lower bound o (M) >
1/2. Bound (ii) follows by combining the incoherence condition (36), bound (189), the

triangle inequality, as well as the estimate Z;f;] ‘bIHb j‘ < 4logm from Lemma 48.

The last line uses the upper estimate maxj<; <y ‘a'}'fco’m ‘ < 54/logm and (190). Our
bound (237) further implies

.0 log? [ 12K log?
max ‘b?h ‘SZOOM—i— 120 pRogm max Hﬂo D0 _ 50 (])H
1<i<m vm m 1<j<m

(238)
The above bound (238) taken together with (236) gives
0.0 _ ;00 0.(0) 20 _ £0.0) u [Klogim
s, ([0 0 030 00 | < 21
w2K logm wlog?m u2K log? m 0.0)50 _ 50.0)
+60c; 200 4120, IR0 Hﬂ j j H
m \/171 m 1<]<m
(239)

Aslong as m > u?K log? m, we have 60ci/ 12K logm /m - 120/ 42K log® m/m <

1/2. Rearranging terms, we are left with

max {Hﬂo,a);,o_;l&(l) H H'Bo (D30 _ 0.0 H } j_ 2K10g m

1<i<m
for some constant ¢z > 0. Further, this bound combined with (238) yields

2 2 5 2
blh‘<200 Klogm /uKlongCzui(;%m
V Jm m m

(241)

(240)

max
1<i<m

for some constant c; > 0, with the proviso that m >> u?K log? m.
We now translate the preceding bounds to the scaled version. Recall from bound
(231) that
12<1-§<|M|=01(M)=1+§ =<2, (242)

~0 . .
as long as &€ < 1/2. Forany « € C with |¢| = 1, ah ,ax are still the leading left
and right singular vectors of M. Hence, we can use Lemma 60 to derive that

o1 (M) = o1 (M)
. +0,( . .
] R e i R R AT

~0,(
< oor -0y 2 0+ o 20}
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and
o 00—

= H\/Ul (M) (ailo) — /o1 (M(l) 0 (])'

H\/Ul( )le —,/01 M(l) 00

R
? Vo1 (M) + o (MD)
[~ |5, o]

N

Taking the previous two bounds collectively yields

o =00+ Jon® =20 < 2 (01 - )0,

~0,( . .
#6{Jed” 0] + s -0 ).

which together with (235) and (240) implies

O(I)H} e —2K10g e

> Jm

min [”aho .y A H + Haxo
aeC,|al=1 2

for some constant c¢s5 > 0, as long as & is sufficiently small. Moreover, we have

1
= ] x|, <2 o] -
20 20 2 2 2

for any |a| = 1, where o is defined in (38) and, according to Lemma 19, satisfies
1/2 < e’ < 2. (244)

Therefore,

min \/‘ —n— hO 0] H + Haoxo — aa0x0: () H

aeC,|a|=1
o
< min :ho — —hO| + H(xo — aa®x%® H
aeC,lal=1 | || o0 o0

SN [ R N
aeC,|al=1 2 2

2K log® m
fZCSL noB logmm
m m
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Furthermore, we have

dist(z%©, 70) mm\/” pOO _ ho” Jr”leom_woxo”
aeC
S B e
ote(C la|=1
2K 1
<cs K JREROEM (245)
Jm m

where the second line follows since the latter is minimizing over a smaller feasible
set. This completes the proof for claim (96).

Regarding |b}"7l ,

‘b,”ho’ - ‘mbl“ilo‘ < «/502%,

where the last relation holds due to (241) and (242). Hence, using the property (244),
we have

~0 wlog?m
|6l'R"| = |b} hO h0 <22, 228
< T

which finishes the proof of claim (97).

Before concluding this section, we note a by-product of the proof. Specifically, we
can establish the claim required in (226) using many results derived in this section.
This is formally stated in the following lemma.

Lemma 30 Fix any small constant ¢ > 0. Suppose the number of samples obeys
m > tK log* m. Then with probability at least 1 — O (m_lo), we have

max
I<j=<t

(bj — bl)H ZO‘ < c% logm.

Proof Instate the notation and hypotheses in Appendix C.6. Recognize that

1 .
‘(bj — b])H :0\/01 (M)ho
o

d

(65— 00| = |0~ 50)" =

oL (M) |(b; — b))k

<4, — )"0’

where the last inequality comes from (242) and (244). It thus suffices to prove that
<0
‘(bj — b1)H h ’ < cplogm//m for some ¢ > 0 small enough. To this end, it can be
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seen that
H YO 1 H . .0
b —b)'R| = ’b~—b Mx’
() =) = 3 (b =)
m
<23 (b; — b1)" bebfh*xMaallz°
k=1
" H
<2 ‘b_b b‘ ”th* H * HVO}
= <I;(J 1) k>11<1}f‘<xm k agx
Qo 1 .
éc 3 (i/logm) max Ha;'io’(j)‘
log=m 1<j<m
. 0.()30 _ vo,u)H ]
+||a,||2Ha # -0
(ii) 1
<t < 10gm, (246)

~ cﬁlogm T Jm

where (i) comes from Lemma 50, the incoherence condition (36), and estimate (189).
The last line (ii) holds since we have already established (see (237) and (240))

max ”a?io,o)“”aj” H O(J)xo_xo(j)H } Jlogm.

1<j=m
The proof is then complete. O
C.7 Proof of Lemma 21

Recall that o® and «* ) are the alignment parameters between z° and z*, and between
79D and z*, respectively, that is,

1
o := argmin { H —h’ —n*
a

aeC

bt s -3},

1
o ® = argmin { H —h%O _ p*
&7

aeC

b e -3}
Also, we let

1 1
al’(illgil)lal = argmln { H :ho’([) — :hOH% + ”leo’(l) — Oloxoui} .
aeC o ab

The triangle inequality together with (94) and (245) then tells us that

2 2
Tl W LA R
amutual
Elol:;ﬂ
@ Springer uog



Foundations of Computational Mathematics

Y mutual

H: o (I)H +” 00 _ 00 xo,(l)H2
o0 0.0 2
mutual

1 0 * :

+ —h’"—h
a0 2

[ 12K log’ 1

§2C5L # o8 m+C1 3
Jm m log” m

1

logZm’

+ ex® — x|

<2C|———

where the last relation holds as long as m > u?v/K log®/? m.

Let
1
X1 = aoxo, hy=—hy and xp= agsg‘ﬂxo (l), hy = —po0,
a0 0,()
X mutual

Itiseasytoseethatx, ki, x», hy satisfy the assumptions in Lemma 55, which implies

/H —— L p00 _ Oho Hz + (|20 Ox0.00 — q0x0 |2
o

tual

< g o e —etue
N0 mu 2

Y utual

2 5
< K u=Klog>m

~ \/ﬁ m ’

where the last line comes from (245). With this upper estimate at hand, we are now
ready to show that with high probability,

(247)

)

< )| + [alf (o0x? — 0% Ox00)|

(11)
Sw/logmH 0. x0.1 _ y* )

‘aﬁ (aoxo —x*) all (ao’(l)xo‘(l) —x*

+ llaill2 Haoxo _ 0D 0.0) ”2

(i) 12K log’
logm - + VK- #
log? m Jm
(iv)
; ;,
~ log®*m

where (i) follows from the triangle inequality, (ii) uses Cauchy—Schwarz and the

independence between x* @) and ay, (iii) holds because of (95) and (247) under the
condition m > u?K log® m, and (iv) holds true as long as m > u?K log* m.

FoE"ﬂ
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D Technical Lemmas
D.1 Technical Lemmas for Phase Retrieval

D.1.1 Matrix Concentration Inequalities

i.i.d.
Lemma 31 Suppose that a; K N0, 1,) for every 1 < j < m. Fix any small
constant § > 0. With probability at least 1 — Cre~?™, one has

1 m
ZZ‘”“/T —1,| <5$,
Jj=1

as long as m > con for some sufficiently large constant cy > 0. Here, Cp, ¢y > 0 are
some universal constants.

Proof This is an immediate consequence of [116, Corollary 5.35]. O

iid.
Lemma 32 Suppose that a; K N (0, 1,), for every 1 < j < m. Fix any small
constant § > 0. With probability at least 1 — O (n~'0), we have

S

m
2
T T 2 T 2
> (a)x*) aja) = (1130, +2x"%*T) | < slx13,
j=1

provided that m > con log n for some sufficiently large constant co > 0.

Proof This is adapted from [18, Lemma 7.4]. O

ii.d.
Lemma 33 Suppose that a; S N0, 1,), for every 1 < j < m. Fix any small
constant § > 0 and any constant C > 0. Suppose m > con for some sufficiently large
constant cy > 0. Then with probability at least 1 — Cye™ 2",

| — 2
=3 (a]%) Lyarsecyaia] — (BrxxT + BallxI3L) | < SlxI3, vx < R,
j=1

holds for some absolute constants ¢y, Cy > 0, where
pr=E [541{\5\56}] -k [SZIHS\SC] and pr =E [52 1IEISC]

with & being a standard Gaussian random variable.

Proof This is supplied in [25, supplementary material]. O
Elol:;ﬂ
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D.1.2 Matrix Perturbation Bounds

Lemma 34 Let A1(A), u be the leadmg eigenvalue and eigenvector of a symmetric
matrix A, respectively, and i (A) U be the leading eigenvalue and eigenvector of a
symmetric matrix A, respectively. Suppose that L1(A), A](A) IA]l, ||A|| € [Cy, C7]
for some C1, Cy > 0. Then,

SM <\/»+ )Ilu—ullz

H\/)\l(A)u—\/M(A)u N

Proof Observe that

H,/AI(A) u— /(A
2

M(A) u— A (A) u| +
2

H\/M(Z) u— \/M(Z) i 2

xl(A>—\/x1(7x)'+\/mZ> lu — il (248)

where the last inequality follows since |u|, = 1. Using the identity /a — v/b =
(a — b)/(Ja + /b), we have

r(A) = 1i(A)] 21(A) = 11(A)|
VA1 (A) — /21 (A) ‘ | < ,
’ 1 ‘«/)LI(A + V@) 27/C

where the last inequality comes from our assumptions on Aj(A) and )q(?l). This
combined with (248) yields

)» A (A
< _ @) - ud@)] +VC lu—iil,.  (249)

H\/M(A)u—\/)»l(A)u N

To control |A1 (A)
eigenvector to obtain

, use the relationship between the eigenvalue and the

A1(A) — 11 (A)] = )uTAu —ﬁTZii‘
) A A ’+‘TAu—uTAu‘+‘TAu—uTAu
I

(4= Aul,

IA

FoE'ﬂ
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which together with (249) gives

— A—Aul, +2u—1),|A N
H\/M(A)u—\/M(A)u < I ) ”sz 2 ”—l-\/Czllu—ullz
2
A—Au C N
< I > ’_Cf ”2+< —él + C2> lu —ull,
as claimed. O

D.2 Technical Lemmas for Matrix Completion
D.2.1 Orthogonal Procrustes Problem

The orthogonal Procrustes problem is a matrix approximation problem which seeks
an orthogonal matrix R to best “align” two matrices A and B. Specifically, for A, B €
R"™7 define R to be the minimizer of

minimizegeor< ||AR — Bl . (250)

The first lemma is concerned with the characterization of the minimizer R of (250).

Lemma35 For A, B € R"*", R is the minimizer of (250) if and only ifﬁTATB is
symmetric and positive semidefinite.

Proof This is an immediate consequence of [112, Theorem 2]. O

Let ATB = UXV be the singular value decomposition of AT B € R"*"_ It is
easy to check that R := UV satisfies the conditions that R"ATBisboth symmetric
and positive semidefinite. In view of Lemma 35, R = U VT is the minimizer of (250).
In the special case when C := A" B is invertible, R enjoys the following equivalent
form:

R=HQC) =C (CTC)_I/z, 251)

where H (-) is an R"*"-valued function on R"*". This motivates us to look at the
perturbation bounds for the matrix-valued function H (-), which is formulated in the
following lemma.

Lemma36 Let C € R™™" be a nonsingular matrix. Then for any matrix E € R"™"
with || E|| < omin (C) and any unitarily invariant norm ||| |||, one has

. _ 2
H(C+E -H(C E
||H (C + E) ( )IIISGH (C)+a,(C)”| Il

where H (+) is defined above.

Proof This is an immediate consequence of [85, Theorem 2.3]. O
Elol:;ﬂ
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With Lemma 36 in place, we are ready to present the following bounds on two
matrices after “aligning” them with X*.

Lemma 37 Instate the notation in Sect. 3.2. Suppose X 1, X» € R™™" are two matrices
such that

[ X1 = x| [ x*] < omin/2, (252a)
X1 — Xall | X*| < omin/4 (252b)

Denote

R := argmin ||X1R - X"”F and  R; := argmin ||X2R - X*”F.
ReOrxr ReOrxr

Then the following two inequalities hold true:
[X1R1—XoRo|| <5k || X1 — Xoll  and  [[X1R1—X2Rollp < 5k | X1—Xo2|E.

Proof Before proving the claims, we first gather some immediate consequences of

assumptions (252). Denote C = X}—X* and E = (X2 — X1 X* Itis easily seen

that C is invertible since

. ) (ii)

= HXI -X “ “X || < Omin/2 — 0r (C) = omin/2,
(253)

where (i) follows from assumption (252a) and (ii) is a direct application of Weyl’s

inequality. In addition, C + E = X ZTX * is also invertible since

HC _ X*TX*

(1) (ii)
IE| < IX1 — Xall | X*| < omin/4 < 0, (C),

where (i) arises from assumption (252b) and (ii) holds because of (253). When both

C and C + E are invertible, the orthonormal matrices R and R, admit closed-form
expressions as follows

172

R =C(CTC)7 and R, =(C+E) [(C+E>T(C+E)]7l/2.

Moreover, we have the following bound on || X1 ||:

(i) (i) Opmin Omax (iii)
X1l < || X1 = X*| 4+ | X" < o7 + | X < 5o + X7 = 2]|X°

’

(254)
where (i) is the triangle inequality, (ii) uses assumption (252a), and (iii) arises from

the fact that ”X*“ = /Omax.
With these in place, we turn to establishing the claimed bounds. We will focus on

the upper bound on || X1R; — X2 R>||g, as the bound on [[X1R; — X, R»|| can be
EOE';W
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easily obtained using the same argument. Simple algebra reveals that

IX1R1 — XoRs|lg = [1(X1 — X2) Ro+ X1 (R — R2) I
<1X1 — Xallg + IX 11l IRy — Ra|lg
<IXi— Xa2llp + 2| X*|| IR — RalE, (255)

where the first inequality uses the fact that || R>|| = 1 and the last inequality comes
from (254). An application of Lemma 36 leads us to conclude that

2
R — Rallp < IE|
"o (Ot (€T
< X2 — X' Xx* (256)
Omin F
2 *
< — X2 - Xilg | X*]. (257)
Omin
where (256) utilizes (253). Combine (255) and (257) to reach
4 2
IX 1Ry — X2Rollp < X1 — Xallp + — 1 X2 — Xu g | X*|
Omin
< +40) X1 — Xallg,
which finishes the proof by noting that ¥ > 1. O

D.2.2 Matrix Concentration Inequalities

This section collects various measure concentration results regarding the Bernoulli
random variables {§; r}1<;j x<n, which is ubiquitous in the analysis for matrix com-
pletion.

Lemma 38 Fix any small constant 8 > 0, and suppose that m > 82 unr logn. Then
with probability exceeding 1 — O (n’lo), one has

1
1 =8IBlr < —=IPaB)|r < (1+I|B
A=l IIF_ﬁII oB)|r = (A +OIB|Fr

which holds simultaneously for all B € R™*" lying within the tangent space of M*.

Proof This result has been established in [19, Section 4.2] for asymmetric sampling
patterns (whereeach (i, j),i # j,isincludedin €2 independently). Itis straightforward
to extend the proof and the result to symmetric sampling patterns (where each (i, j),
i > j,isincluded in 2 independently). We omit the proof for conciseness. O

FoC'T
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Lemma 39 Fix a matrix M € R"™". Suppose n>p > conlogn for some sufficiently
large constant co > 0. With probability at least 1 — O (nflo), one has

n
=C /=M,
p

Proof See [64, Lemma 3.2]. Similar to Lemma 38, the result therein was provided
for the asymmetric sampling patterns but can be easily extended to the symmetric
case. O

Hl'PQ M) —M
14

where C > 0 is some absolute constant.

Lemma 40 RecallfromSect.3.2that E € R"*" is the symmetric noise matrix. Suppose
the sample size obeys n*>p > conlog’ n for some sufficiently large constant co > 0.
With probability at least 1 — O (n_lo), one has

n
SCO' )
V P

Proof See [32, Lemma 11]. O

1
”—PQ (E)
p

where C > 0 is some universal constant.

Lemma 41 Fix some matrix A € R"™" withn > 2r and some 1 < | < n. Suppose

{51, f}l <j<p are independent Bernoulli random variables with means { p f}lg/’ ~p 110
more than p. Define
Gi(A) =814 81247 -+ 8aA] | € RN,
Then one has
, 2114113
Median[[|G; (A)|] < \/ PIAIP +/2p 1413 o A1 log (4r) + = log (4r)
and for any constant C > 3, with probability exceeding 1 — p—15C-D
n
Y Grj—pAj A, =C <\/p A1 o I1AI* log n + ||A||%,oologn) :
j=1
and
1G1 (A < \/p IAI?+C (\/p JAIZ o 1AIP logn + A1 logn).
FolCT
u o
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Proof By the definition of G; (A) and the triangle inequality, one has

n
16 AIP = |61 (4) G )T | = > 6,47 .4;.
j=1

n

Y (6 —pi) Al Aj |+ pIAIP.
j=1

IA

Therefore, it suffices to control the first term. It can be seen that

{(31, j—Pi)A] A }1 are i.i.d. zero-mean random matrices. Letting
<j<n
L= max (6~ pj) AT A, <141«
and V= ZE[&] ) AT.A;.A] A

n
2
<E[(1; — )| 1AB [ YA 4| < pIAIR L 1N

and invoking matrix Bernstein’s inequality [114, Theorem 6.1.1], one has forall ¢ > 0,

n

2
—12)2
P 8i—pi)AT A | =1} <2rexp :
2 (81j—pj)Aj A, P IAR o IAI? + 1A . -1/3

j=1
(258)
We can thus find an upper bound on Median [HZ?:] (81.; — pj) A./T,-AJ'" H] by find-

ing a value ¢ that ensures the right-hand side of (258) is smaller than 1/2. Using this
strategy and some simple calculations, we get

Median |:

and for any C > 3,

4. :

2)|Al3
} < \/2p IAI3 o IAI? log (4r) + ———2% log (4r)

n

Y (j—pi)A] A =C (\/p IA113, oo 1 A1 Tog n + ||A||§,oologn)

J=1

Fo C 'ﬂ
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holds with probability at least 1 —n~1-3¢=D_Ag a consequence, we have

211Al3 00

Median [/ G/ (A)]]] < \/p IAI2 + /2 1413, 1111 log (4r) + log (4r),

and with probability exceeding 1 — n~(1->¢=D,

IGI (WI? < plIAIP +C (/p IAI3 o 14117 logn + ||A||%,oologn) :

This completes the proof. O

Lemma42 Let {81’j}1<l<j<n be i.i.d. Bernoulli random variables with mean p and
81,j = 8. For any A € R"™", define

Gi(A) = [81A]. 81247 .- 0uA, | e RN

Suppose the sample size obeys n*p > kurn log2 n. Then for any k > 0 and a > 0
large enough, with probability at least 1 — cje~@Cnrlogn/2,

2an log n

Z [\|G;(A>|\>4f¢+2dﬁs} =

holds simultaneously for all A € R"*" obeying

logn | _, nlogn | _,
[All2,00 < CSP'W,/ T [ X*[, o + Cs0 p [0 =8
— x|+ G 2 x| = v
NG Ty T

where c1, Cs, Cg, Cg, C19 > 0 are some absolute constants.

and A < Cop'ur

Proof For simplicity of presentation, we will prove the claim for the asymmetric
case where {81, j } 1<l j<n T€ independent. The results immediately carry over to the
symmetric case as claimed in this lemma. To see this, note that we can always divide
G;(A) into
Gi(A) = G (A) + G (A),
where all nonzero components of Guloper (A) come from the upper triangular part (those
blocks with [ < j ), while all nonzero components of Glower(A) are from the lower
triangular part (those blocks with/ > j). We can then look at{ G™'(A)|1<1<n}
and {G;"""(A) | 1 <1 < n} separately using the argument we develop for the asym-
metric case. From now on, we assume that {51, i } 1<l j<n 1€ independent.
FoE'ﬂ
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Suppose for the moment that A is statistically independent of { 8, } Clearly, for
any A, A € R"™",

161 ) | = [6:@)]] < |G (&)~ Gi(A) | < [ G1(A) = Gi(A)
= [ Y la5-A ],
j=I1
= d(A, A),

whichimplies that | G; (A) || is 1-Lipschitz with respect to the metric d (-, -). Moreover,

121};1;! ||81,jAj,.H2 <[Ally, 0o <&

according to our assumption. Hence, Talagrand’s inequality [24, Proposition 1] reveals
the existence of some absolute constants C, ¢ > 0 such that forall A > 0

P{IG: ()] — Median [ Gy (A)[] = A} < Cexp(—ci?).  (259)

We then proceed to control Median [||G; (A)||]. A direct application of Lemma 41
yields

2 2
Median[||G; (A)]|] < \/2171#2 +/plog (4r)éy + % log (4r) < 2./pV¥,

where the last relation holds since py> > &2logr, which follows by combining
the definitions of ¥ and &, the sample size condition np > kurlog®n, and the
incoherence condition (114). Thus, substitution into (259) and taking A = +/kr give

P { 1G; (A)]| > 2/p¥ + m;} < Cexp (—ckr) (260)

for any k > 0. Furthermore, invoking [4, Corollary A.1.14] and using bound (260),
one has

tlogt

P (Z IL{|\G,(A)|\32J§¢+«/I§£] > tnC exp (—ckr)> < 2exp (— nC exp (—ckr))

=1

for any 1 > 6. Choose t = alogn/ [kC exp (—ckr)] > 6 to obtain

anlogn

n
aC
P (;ﬂnalmnzzﬁwms} = T) = 2¢exp (—an log”> - (6D
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So far, we have demonstrated that for any fixed A obeying our assumptions,

n . . . . o
Do 1{IIG1(A)|\22ﬁw+~/I<7§} is well controlled with exponentially high probability.

In order to extend the results to all feasible A, we resort to the standard e-net argument.
Clearly, due to the homogeneity property of ||G; (A)]|, it suffices to restrict attention
to the following set:

S={A|min{§ ¢} <[Al < ¥}, (262)

where /& S I X*|I/11X*]12.00 < 4/n1. We then proceed with the following steps.

1. Introduce the auxiliary function

1 if G (A)]] = 4 /Py +2vkré,
IGI (M) -2PY—kreE .

xi(A) = IHPENTERE G (A € 2Py + Vg, 4Py + 2VkrE]
0, else.

Clearly, this function is sandwiched between two indicator functions

) = Ly6,@z2 pysvire)

<
Hieianzsymiavire) =X
Note that x; is more convenient to work with due to continuity.
2. Consider an e-net NV [111, Section 2.3.1] of the set S as defined in (262). For any
e = 1/n°W one can find such a net with cardinality log [N | < nrlogn. Apply
the union bound and (261) to yield

- 1
P(Zx[m) > 250 va ej\/€>

=1

anlogn

n
=F (;H{IIGI(A)Iﬁﬁer«/ﬁE] =T A GNG)
C C
< 2|N¢|exp <—a7nr logn> <2exp <_ozan log n> ,

as long as « is chosen to be sufficiently large.
3. One can then use the continuity argument to extend the bound to all A outside the
€-net, i.e., with exponentially high probability,

" 2anlogn
Yo s =R vAes
=1

n n
2anlogn
— ;1{”61(&”2“5“2@&}sl;‘xz(A)s—k , VAES.

This is fairly standard (see, e.g., [111, Section 2.3.1]) and is thus omitted here.
We have thus concluded the proof. O
EOE';W
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Lemma 43 Suppose the sample size obeys n>p > Ci urnlogn for some sufficiently
large constant C > 0. Then with probability at least 1 — O (n’lo),

H %7?9 (XXT - X*X*T)

< 206 [ X*[ o + de/mlogn [ X7, o, [X7]

holds simultaneously for all X € R"*" satisfying

|x -x*|,  <e|X* (263)

”2,00 ”2,00 ’

where € > 0 is any fixed constant.

Proof To simplify the notations hereafter, we denote A := X — X*. With this notation
in place, one can decompose

XXT XX T =AX*T + X*AT + AAT,

which together with the triangle inequality implies that

H Lpg (XxxT—xxT)| < PQ (axT) H (x*a7T)| + H Lrg (aa7)
p p
= prg AAT +2 H fPQ AX*T) . (264)
p p
=y =
In the sequel, we bound o1 and «, separately.
1. Recall from [84, Theorem 2.5] the elementary inequality that
ICll = (265)
where |C| := [|c;,j|]1<i,j<n for any matrix C [ci,jli<i,j<n- In addition, for

any matrix D := [d; jli<i j<n such that |d; ;| > |c; ;| for all i and j, one has
|||C||| < |||D|||. Therefore,

Lemma 39 then tells us that with probability at least 1 — O (n~10),

<C \/E (266)
p

for some universal constant C > 0, as long as p > logn/n. This together with
the triangle inequality yields

1
H —Pg (117)
p
FoE'ﬂ
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o] =

;P ([aa7))

1
< 113 o H;PQ (17)

H%PQ (11T) T

%PQ (11T) -’

+ HnTH < C\/?—i-n <2n, (267)
P
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provided that p > 1/n. Putting together the previous bounds, we arrive at
a1 <2n A3 - (268)

2. Regarding the second term «, apply the elementary inequality (265) once again
to get

which motivates us to look at ||PQ (| AX*T |) || instead. A key step of this part is
to take advantage of the €5, norm constraint of P (|AX *T |). Specifically, we
claim for the moment that with probability exceeding 1 — O (n~19),

)

[Pe (axT)] = [Pa (jaxT

|Pa (|axT

2
), = 2poma 1813, =0 (269)
2,00

holds under our sample size condition. In addition, we also have the following
trivial £~, norm bound

Pa((ax

). < 18 1] o, = 270)
In what follows, for simplicity of presentation, we will denote

A =P (‘AX*T

) . 271)
(a) To facilitate the analysis of ||A||, we first introduce kg + 1 = %log (kur)
auxiliary matrices” B € R"*" that satisfy

ko—1

1AL < | B | + D I1Bsll- (272)
s=0

To be precise, each Bj is defined such that

1 : 1 1
sV f Aj S S s s 5
[Bx]j,k:{g)/ 11 j.k (2+1V 7] for0 <s <ko— 1 and
s clse,

1 . ) 1
[Bk ] _ 2T0y9 if A],k = 270%
01j.k 0, else,

which clearly satisfy (272); in words, B is constructed by rounding up those
entries of A within a prescribed magnitude interval. Thus, it suffices to bound

9 For simplicity, we assume % log (x ur) is an integer. The argument here can be easily adapted to the case
when % log (« ur) is not an integer.

Eo oy
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|| Bs| for every s. To this end, we start with s = ko and use the definition of
By, to get

) (ii) 1 .
[Bio || = [ Bioll oy @1p)* < 4np S 1Al Dol Py

KT

’

(iii) )
< 4npllAlle | X

where (i) arises from Lemma 44, with 2np being a crude upper bound on the
number of nonzero entries in each row and each column. This can be derived by
applying the standard Chernoff bound on €2. The second inequality (ii) relies
on the definitions of y and kq. The last one (iii) follows from the incoherence
condition (114). Besides, for any 0 < s < kg — 1, by construction one has

1
IBsl13 o <40 =8pomax |Al5 o and  [[Byllog = e

where 6 is as defined in (269). Here, we have used the fact that the magnitude
of each entry of B is at most two times that of A. An immediate implication
is that there are at most

”Bs”%,oo - 8 POmax ”A”%oo
2 - 2
”Bs”oo (%)/)

=k

nonzero entries in each row of B and at most
ke = 2np

nonzero entries in each column of B;, where k. is derived from the standard
Chernoff bound on 2. Utilizing Lemma 44 once more, we discover that

1
1Byl = 1 Bslloo Vkeke = 55y Vkike = \/16np20max A3 oo

=4Vnp Al | X
for each 0 < s < ko — 1. Combining all, we arrive at

ko—1

LA < > IBsll + | Biy | < (ko + 1) 4v/np Al o | X
s=0

< 2nplog(kur) | Al o | X*|
< Zﬁp logn ||A||2,oo HX*

’

where the last relation holds under the condition n > « ur. This further gives

1
s Al <2vnlogn Al | X*] - (273)
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(b) In order to finish the proof of this part, we need to justify claim (269). Observe

that
2
))..

[P, ,

_y T\
=y (A,,‘Xj,.él,])

n
— A (Z,-:1 81,.,'X;’T,X;’,> Al

2 n T
SN

’ (274)

for every 1 < [ < n, where §; ; indicates whether the entry with the index
(1, j) is observed or not. Invoke Lemma 41 to yield

n Cy* [ oyx
sz:] 6l,jX]‘,4X]',.

2
= H [51.1X’1’T, SaXx5T, ,Sl,nXZ,T]H

= pome € (Jp %43 oo ¥ g + ||x*<|§,oo1°g">

wur logn kurlogn
S(P"‘C‘/p Hn £ +C 'ung )Umax

< 2pomax, 275)
with high probability, as soon as np > « ur log n. Combining (274) and (275)
yields
” [Pa([axT])] | =2vomulBlle.  1<i=n.
2
as claimed in (269).

3. Taken together, the preceding bounds (264), (268), and (273) yield

H %PQ (XXT ~ X*X*T>

‘ < a1+ 20 < 20 A3 o + 4V logn [ Al | X7

The proof is completed by substituting the assumption [|All; o < € || X* O

”2,00 :

In the end of this subsection, we record a useful lemma to bound the spectral norm
of a sparse Bernoulli matrix.

Lemma44 Ler A € {0, 1}"'"*"2 be a binary matrix, and suppose that there are at most
ky and k. nonzero entries in each row and column of A, respectively. Then one has

Al = Vkck.

Proof This immediately follows from the elementary inequality IAIZ < |All1>1
A llco— oo (see [56, equation (1.11)]), where ||A|l1—1 and || A]|co— oo are the induced
1-norm (or maximum absolute column sum norm) and the induced co-norm (or max-
imum absolute row sum norm), respectively. O

EOE';W
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D.2.3 Matrix Perturbation Bounds

Lemma45 Let M € R"*" be a symmetric matrix with the top-r eigendecomposition
UXUT. Assume HM - M* H < Omin/2, and denote

0 := argmin ||UR -U

arginin -

Then there is some numerical constant ¢z > 0 such that
A * 3 *
lve-vr| = —|m-m|.
Omin
Proof Define Q = U ' U*. The triangle inequality gives

lve-v'|<|u@-0)+|ve-v|<[e-e|+|vvTv-uv
(276)

[1, Lemma 3] asserts that

12— 2] <4 (M~ M| Jomin)*

as long as |[M — M*|| < omin/2. For the remaining term in (276), one can use
U*TU* = I, to obtain

HUUTU* —u

— ”UUTU* _ U*U*TU*

S HUUT _ U*U*T

which together with the Davis—Kahan sin® theorem [39] reveals that

< 2 |u -

Omin

HUUTU* v

for some constant ¢ > 0. Combine the estimates on || @ - 90|. |lvvTur - U ||

and (276) to reach

>

% * 4 * ? 2 * 3 *
jvo-u*| = <_ |M — M ||> +— MM = — M- M
Omin Omin Omin

for some numerical constant ¢3 > 0, where we have utilized the fact that
M — M*| Jomin < 1/2. o

Lemma46 Let M, M € R™" be two symmetric matrices with top-r eigendecom-

positions ULU" and ﬁfij respectively. Assume HM - M* || < Omin/4 and

HA~/I -M *” < Omin/4, and suppose omax /Omin i bounded by some constant c1 > 0,
Elol:;ﬂ
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With omax and omin the largest and the smallest singular values of M*, respectively.
If we denote

0=

Re(Orxr

then there exists some numerical constant ¢3 > 0 such that
HZWQ—QEWH541WM—MH and
1

R A (LS L

Proof Here, we focus on the Frobenius norm; the bound on the operator norm follows
from the same argument, and hence we omit the proof. Since ||-||g is unitarily invariant,
we have

s120 _ )~:1/2H _ H Tyl/20 _ )~:1/2H

220 08" =[oTz'20 ;

where Q' £!/2 Q and 3!/ are the matrix square roots of Q' X Q and s, respectively.
In view of the matrix square root perturbation bound [97, Lemma 2.1],

1
O'mm[ (2)1/2 ] + Umln (2)1/2

QTEQ—EHF, 277)

=20 - 057, le"=e-%],

IA

Omin
where the last inequality follows from the lower estimates

Omin (X) > Omin (Z*) — IM — M*|| > omin/4

and, similarly, amin(fi) > Omin/4. Recognizing that ¥ = UTMU and & = ﬁTA~/ll7,
one gets

loze 3|, - [wo) wwo) 07w,
=|ve)'Mue) -we) Hue >H+H( 0)' o) -T o)
+ |0 (o) -0 MU

< | (4 = U | +2[U @ - T | ] < | (3 - M)U |, + dorma

(278)
where the last relation holds due to the upper estimate

HMH = “M*H + HM - M*H = Omax +Gmin/4 < 20max.
FoE"ﬂ
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Invoke the Davis—Kahan sin® theorem [39] to obtain

~ ) ~ 2co ~
U0g-U|. < ~ M-MU|.<——|(M-M)U|.,
|00 -1, = s ([ = M| = 2 |1~ )
(279)
for some constant ¢, > 0, where the last inequality follows from the bounds
or (M) = o, (M*) = ||M — M*|| = 30min/4,
Or1(M) < 0ps1 (M*) + IM — M*|| < omin/4.
Combine (277), (278), (279), and the fact omax /Omin < c1 to reach
x'20 - 08| < |(#1- M)y
H FE— m H( ) HF
for some constant c¢3 > 0. O

Lemma 47 Let M € R"*" be a symmetric matrix with the top-r eigendecomposition
UXU'". Denote X = UX'/? and X* = U*(T*)Y/2, and define

Q :=argmin [UR - U*||, and H :=argmin |[XR — X" ..

REOrxr Reorxr
Assume ||M - M~ || < Omin/2, and suppose omax /Omin is bounded by some constant
c1 > 0. Then there exists a numerical constant c3 > 0 such that

|0 -

=

| <

= M- M|
Omin

Proof We first collect several useful facts about the spectrum of X. Weyl’s inequality
tells us that ||): — Z*H < ||M - M* || < Omin/2, which further implies that

0, (2) >0, (2*) = |[E=2*| = omin/2 and  [Z < |Z*] +||Z — Z*|| < 20max.
Denote
Q=U'U* and H=X'X"
Simple algebra yields

H = E]/ZQ ():*)1/2 _ EI/Z(Q - ’Q) ():*)1/2 + ():1/2@ _ ’QZ]/Z) ()3*)1/2

=FE

-~ 1/2
+0(zzh)'"”
—— ——
=A
Elol:;ﬂ
@ Springer Lﬁjog



Foundations of Computational Mathematics

It can be easily seen that 0,—1 (A) > 0, (A) > omin/2, and

1Bl <[22 [e- 0] - (=) +]|="22- 0= | (=)
< 20max ||Q_Q|| ++/Omax 2;1/2Q_Qzl/2 ’
——————

= ::/3
which can be controlled as follows.

e Regarding «, use [1, Lemma 3] to reach

a=]0-0f <4|M—m|/o;

min*
e For 8, one has

(1) (111)

0'x12g 31

@A—EWTHQZQ p)

2(7,

1 P
T/Z)HEQ— 0%|,

207 (

where (i) and (iii) come from the unitary invariance of ||-|| and (ii) follows from
the matrix square root perturbation bound [97, Lemma 2.1]. We can further take
the triangle inequality to obtain

|Z0-0%|=|Z0-02+2(0 -0 - (0- OF|
<IzQ-ozI+2IzI|Q- Q|
=|vm-myuT 0z - ”+2||>:|| le-0]|

”U M-MUT|+]Q (= H+2||Z|| le- 0|
<2|M — M*| + 4omua,
where the last inequality uses the Weyl’s inequality || X* — X|| < ||M — M*| and

the fact that || X || < 20max-
e Rearrange the previous bounds to arrive at

IE] < 20omaxa + A/ Umax\/— (2 HM M*” + 4O'maxa) = HM M* H

for some numerical constant ¢; > 0, where we have used the assumption that
Omax/Omin 1 bounded.

Recognizing that Z) = sgn (A) (see definition in (177)), we are ready to invoke
Lemma 36 to deduce that
2

o~ o~ C3
—H| < E|<—— |M-M*
le | = or-1(A) + 0, (A) IEN= Omin ” ”

for some constant ¢z > 0. O
FoE'ﬂ
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D.3 Technical Lemmas for Blind Deconvolution
D.3.1 Wirtinger Calculus
In this section, we formally prove the fundamental theorem of calculus and the mean
value form of Taylor’s theorem under the Wirtinger calculus; see (283) and (284),
respectively.

Let f : C* — Rbe areal-valued function. Denote z = x +iy € C", and then f (-)

can alternatively be viewed as a function R>” — R. There is a one-to-one mapping
connecting the Wirtinger derivatives and the conventional derivatives [69]:

;)-(1
wG)-reol]) o
wG)-ro(e o

where the subscripts R and C represent calculus in the real (conventional) sense and
in the complex (Wirtinger) sense, respectively, and

(1, i1,
J= [In —iln]'

With these relationships in place, we are ready to verify the fundamental theorem
of calculus using the Wirtinger derivatives. Recall from [70, Chapter XIII, Theorem
4.2] that

o (] D=L GED ] G-I
Lol=0l(G-0)

Substitute identities (280) into (281) to arrive at
H 71 H 22
rer ([5])-mer ([2])
1
H z (1) —1 21| _ | %2
e (ES)) e (5)-(2))
1
H 2 z (1) 1 22
rife S E]-ED e

where

an

FoC'T
e,
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where z; =x; +iy;, 22 =x2+iy,and

ol =Bl (5]

Simplification of (282) gives

e ([])-ver ((2]) - [ = (ED ] (2]-[2])

(283)

Repeating the above arguments, one can also show that

— 1 _ H _
f @)= f(z2) = Vef @)" |:z1 Z2]+—|:z1 z2:| Véf(f)[zl zz],

71— 22 2121—22 71 — 22
(284)

where Z is some point lying on the vector connecting z; and z;. This is the mean value
form of Taylor’s theorem under the Wirtinger calculus.

D.3.2 Discrete Fourier Transform Matrices

Let B € C™*K be the first K columns of a discrete Fourier transform (DFT) matrix
F € C™* ™ and denote by b; the [th column of the matrix BH. By definition,

b= (qu—l)’wz(l—l),...,w<K—1><l—1>)H,
m

where @ := e~ with i representing the imaginary unit. It is seen that for any j # [,

| K=l N | k=l X
b, = — Z k=D kG- & L Z WK1 | =i — L Z (w’—/)
n k=0 " k=0 n k=0

G 11— oKD

m 1—ow=/

(285)

Here, (i) uses ¥ = w~* for all « € R, while the last identity (ii) follows from the
formula for the sum of a finite geometric series when !~/ # 1. This leads to the
following lemma.

Lemma48 Foranym > 3 and any 1 <[ < m, we have

m
Z ‘b}"bj‘ < 4logm.
j=1
EOE';W
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Proof We first make use of identity (285) to obtain

wKU=D) 2L [sin[K (1)) Z]
sin [(l ) %]

’

\b,b = b+ Z‘

Jij#

where the last identity follows since | b; II% = K/m and, for all @ € R,

» I » I : I
— ‘eﬂ%a (el%()[ _ e*l%a)

Without loss of generality, we focus on the case when [ = 1 in the sequel. Recall that
for ¢ > 0, we denote by | c| the largest integer that does not exceed c¢. We can continue
the derivation to get

|1—a)"‘| = )1 —ef’zl"‘

=2 ’sin (a%)‘ . (286)

" 1 & |sin K(l—J)” (1)1 " K
be' = — 4 _ | < — -
;‘l-/) mlz; sm(l—]);] mz (]_1)71] m
L3]+1 m
1 1 K
= — — |+ |+ =
m ( ; sin[(j — 1) Z] jz%iﬂ sin[(j — 1D %] ) m
131+ "
Giy 1 1 1 K
= — — |t + —,
" ( 2 [sG-n7] - ZJZ sm[<m+1—j>:,:]) m

where (i) follows from [sin (K (1 — j) Z)| < 1 and [sin (x)| = [sin (—x)|, and (ii)
relies on the fact that sin (x) = sin (w — x). The property that sin (x) > x/2 for any
x € [0, /2] allows one to further derive

L”’J+1 om m -
BHb; ‘ < - o _om
Z‘ ; (j—l)n+ Z m+1—-j)=m
j=2 j=1%1+2
m mEl g
LK 2 A J e LK
m 7 k k m
k=1 k=1

where in (i) we extend the range of the summation, (ii) uses the elementary inequality
ZZ;] kl<1+4 log m, and (iii) holds true as long as m > 3. O

The next lemma considers the difference of two inner products, namely (b; —b)" b Iz

Fo C 'ﬂ
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Lemmad49 Forall0<l—-1<71< L%J, we have

4t K 8t/ fOV l“l‘TSjSL%J“r‘ly

(- l> m ' (j—I)?
(bl bl) b, ‘ { K 8t/m .
m— (j Dm m—G—D1? for L%J tl<j=m-—rt.

In addition, for any j and l, the following uniform upper bound holds
K
| —b)" b, <2
m

Proof Given (285), we can obtain for j # [ and j # 1,

111 =kl=D 1= pKd=p
(b[—bl)Hbj = — @ — — @ -
: m| 11—/ 1— ol
L1l — KD | — K= | _ oK(=i) | _ K=
Tm| 11—l 1=l -7 1—wlJ
1 K =i _ k=i A A | — oK1=1)
I L S S
m 1 —owl-J (1-o=7) (1 - o)
_ L — k=D L2 (1 1_,) 1
— | —_— — s - ,
“m| l—owi m (1-0'=7) (1 —o')

where the last line is due to the triangle inequality and |w®| = 1 for all « € R. Identity
(286) allows us to rewrite this bound as

. . - sin[(1—1) Z]
R ka—-1n= O T md L
(b1 — bl) bj ‘_m sln[(l—f) ] {‘sm[ ¢ )m]‘—i_ sin[(l—j)%] }
(287)
Combined with the fact that [sin x| < 2 |x| forall x € R, we can upper bound (287)
as
1 T 2%
b —b)"b; ot =z T lsnta h =l (-
)(1 " )_m sin[(— j) Z] { TN sin[(l—j)%]}

where we also utilize the assumption0 </ —1 < 7. Thenforl+t < j < |m/2]+1,
one has

LT s T T
I B B (e P
m 2 m 2

Therefore, utilizing the property sin (x) > x/2 for any x € [0, /2], we arrive at

2 4 4 K 8
(J-DOm m o j—1 G=Dm (G-=1
FoE'ﬂ
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where the last inequality holds since j — 1 > j — . Similarly, we can obtain the upper
bound for |m /2] +1 < j < m — t using nearly identical argument (which is omitted
for brevity).

The uniform upper bound can be justified as follows

(b1 —bD)"b;j| < (lbrlly + 1b1112) B ], < 2K /m.

The last relation holds since ||b1||% =K/mforalll <l <m. O
Next, we list two consequences of the above estimates in Lemmas 50 and 51.

Lemma 50 Fix any constant ¢ > 0 that is independent of m and K. Suppose m >
CtK log* m for some sufficiently large constant C > 0, which solely depends on c. If
0<l!—1<rt, then one has

Z‘(bl —b)"b;| <
j=1

og’m’

Proof For some constant ¢g > 0, we can split the index set [m] into the following
three disjoint sets

Alz{j:l~|—corlog2m§j§ L%J},
Az—{] L J+l<]<m—corlog m}

and Az = [m]\ (A1 U A).

With this decomposition in place, we can write

S [(b =801, = 3 [b— 80", 4 X |- b b |+ 3 [b— 8075,
j=1 JGAI Jj€A2 JEA;
We first look at A;. By Lemma 49, one has for any j € Aj,

4t K 8t/m
R _+ . 2
Jj—=ltm (j=D

‘(bz _bl)Hbj‘ <

and hence
e ks
il £ ()
jeA j:l+corlog2m J (J )
_ 4K i 1
Z X =
=1 kc()tlogzm
FoE'ﬂ
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167 1
< 8r—logm 4+
7 corlog?m’

—1

where the last inequality arises from ) ;. k < 14 logm < 2logm and

S kT2 <2/c.
Similarly, for j € Aj;, we have

4t 5 8t/m
—G=Dm  [m—(G—-DP

| — b0y <

which in turn implies

16 1
Z ‘(bl —bl)Hb ‘ < ST—logm-i——T—
ety 7 c¢otlog?m

Regarding j € A3, we observe that

|Asz] <2 (cor 10g2m + l) <2 (cor logzm + 14+ 1) <dcpt logzm.
This together with the simple bound ‘(bl —b)"p j‘ < 2K /m gives

8cot K log? m
> |bi-b) b\<2—|A3| < ST ogm
m
jeAs

The previous three estimates taken collectively yield

m 2
16 K1 32 1 8coTK 1 1
Z ’(bl b])H T ogm 4 T . + c0T og~m <c .
— m T cotlog?m m log=m
aslong as co > (32/m) - (1/c) and m > 8cot K 10g4m/c. O

Lemma 51 Fix any constant ¢ > 0 that is independent of m and K. Consider an
integer T > 0, and suppose that m > Ct K logm for some large constant C > 0,
which depends solely on c. Then we have

LmX/EJ XT: " 2 c
‘bl (bretj — bkr+l)‘ < —.
k=0 \ j=1 VT

Proof The proof strategy is similar to the one used in Lemma 50. First, notice that

H
‘b? (bretj — bkr+l)‘ = ‘(bm —buyi—j) birl.
FoE'ﬂ
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As before, for some ¢; > 0, we can split the index set {1, .-, [m/t]} into three

disjoint sets
Blz{k:cl <k< L(L%J+l—j)/fJ}v

{k: L(L’;J 1_]>/1J+1§k§ L(m+1—j)/TJ—Cl},

{1,...,L?J}\(Blu82),

B2

and B3

where 1 < j <.
By Lemma 49, one has

4t K 8t/m

—, k € B;.
krm ) :

‘(bm - bm-‘rl—]) bk‘[

Hence, for any k € Bj,

i 2 4t K 8t/m 4K 8/m
H o st — 22 9T
Z ‘bl (bkr+] bkr+1)‘ = \/? (k'[ m + (k‘[)z) \/? (k m + kz'[ ) )

j=1

which further implies that

T 2 " (4K 8
Z Z)bll-l(bkr+j—bkr+l)’ Sﬁzq(%Z_i_ké_Z)

keBy j=1

where the last inequality follows since Y 3" k~! < 2logm and Y L. k=% < 2/c.
A similar bound can be obtained for k € ;.
For the remaining set 33, observe that

IB3] < 2cy.

This together with the crude upper bound ‘(bl —b)Mp j ‘ < 2K /m gives

> Z\bl (biss — bie)| <|63|\/rmax{b1 (biess — bies)|

keBz '\ j=1
2K 4ClﬁK
<|BlVT — < ——.
Fol:rﬂ
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The previous estimates taken collectively yield

[m/zJ T
Klogm 16 1 1 4c1/TK 1
JE ‘b bkr+] bkz-%—l)‘ <2<8f £ *7*)‘% lf <c

T TC m
k=0 \| j=1 1

5

aslongascy > 1/candm/(citK logm) > 1/c. O

D.3.3 Complex-Valued Alignment

Let g x (-) : C — R be a real-valued function defined as

2

1
ghr (@) = H:h —h| o+ fex — 27
o 2

which is the key function in definition (34). Therefore, the alignment parameter of
(h,x) to (h*, x*) is the minimizer of gj , (). This section is devoted to studying
various properties of g » (-). To begin with, the Wirtinger gradient and Hessian of
8h.x (+) can be calculated as

08h.x (@, @) 2 H I, 2 5 uH
e alxlls —x"x* —a ' (@ h|5 + @) “h*"h
vgh,x(a)z[w}_[ <113 @2 Il + @ ];

= @lxl; —xx — @~ a2 k)3 + o 2"
(288)
2 42 1 =3 12 3 4H
R e @7 kI3 - 2@
N B LRy L :
ohr @ = ) Vot s ez e 1h1
(289)

The first lemma reveals that, as long as (%h ,Bx) is sufficiently close to (h*, x*),
the minimizer of g » (o) cannot be far away from f.

Lemma 52 Assume there exists B € C with 1/2 < |B| < 3/2 such that
max { H%h —h* . lBx — x*||2] < § < 1/4. Denote by Q the minimizer of gp x (@),

and then we necessarily have

[@ — 18| < [@ — Bl < 185.

Proof The first inequality is a direct consequence of the triangle inequality. Hence,
we concentrate on the second one. Notice that by assumption,

2

1
ghx (B) = th —h*| +|Bx—x* ||§ <2682, (290)
2

which immediately implies that gj, (@) < 282. 1t thus suffices to show that for any «
obeying o — B| > 188, onehas gp x () > 282, and hence, it cannot be the minimizer.
FoE"ﬂ
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To this end, we lower bound gp,_x (o) as follows:
g (@) = flax —x*[5 = | = B)x + (Bx —x*)5
= la— B2 Ix[3 + | Bx — x* |+ 2Re [ (@ — p) (Bx —x*)"x]
> lo = P %13 — 21 — B | (B — )" x|.
Given that ||fx —x*|, <& < 1/4 and ||x*|, = 1, we have
1Bxlly = llx*ll — | Bx — x*[, = 1 -8 = 3/4,
which together with the fact that 1/2 < |8| < 3/2 implies
lxl;>1/2  and  flxll <2
and
| (Bx —x*)"x| < [ Bx = x*], w2 < 26.

Taking the previous estimates collectively yields

1
8h,x(05)21|05—5|2—45|01—,3|~

It is self-evident that once | — 8] > 186, one gets gp x (@) > 282, and hence, «
cannot be the minimizer as g x (o) > gpn.x (B) according to (290). This concludes
the proof. O

The next lemma reveals the local strong convexity of gp » (o) when « is close to
one.

Lemma 53 Assume that max { ||h —h* ||2 ,lx — x*||2} < 8 for some sufficiently small
constant § > 0. Then, for any « satisfying |a — 1| < 188 and any u, v € C, one has

[ 0" Ve @) m > 2 (P + ).

where V2gh7x (+) stands for the Wirtinger Hessian of gp x (-).

Proof For simplicity of presentation, we use gy x (o, @) and gp,_ (o) interchangeably.
By (289), for any u, v € C, one has

[ ] V20 @) [j‘,] = (113 + ter ™ 113 (1l + 10P2)

=P
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{2Re [uHu (2a—1 @ R - 2@ 3 hHh)] .

=h2

We would like to demonstrate that this is at least on the order of |u |2 + v |2. We first
develop alower bound on $1 . Given the assumption that max { || h—h* \ 5o lle —x* ||2}
< §, one necessarily has

1—8<|xll, <1468 and 1—-8<|h|,<1+6.
Thus, for any o obeying |« — 1| < 188, one has
Bi > (1 n |a|*4) (1—6)2> (1 Fa+ 185)*4) (1—6)2>1

as long as 6§ > 0 is sufficiently small. Regarding the second term S, we utilize the
conditions | — 1| < 186, [|x|l» < 1+ and ||k]> < 1+ § to get

1821 = 2 ful ol el o™ 113 — B
=2ullol o] | (™" = 1) 1AI3 = (" — )" h|

< 2ul ol el (Je" = 1| 113 + [ = B*, I1411,)

< 2ulfv] (1~ 188)° (1 5

A+8)>+5(1 +5))
< 8(ul* + [vl?),

where the last relation holds since 2 |u| |[v| < |u|2 + |v|2 and § > 0 is sufficiently
small. Combining the previous bounds on 8 and $,, we arrive at

[, 0"] Ve @) m = (1= 006) (1uP + ) = 5 (1 + 1vP)

as long as § is sufficiently small. This completes the proof. O

Additionally, in a local region surrounding the optimizer, the alignment parameter
is Lipschitz continuous; namely, the difference of the alignment parameters associated
with two distinct vector pairs is at most proportional to the £, distance between the
two vector pairs involved, as demonstrated below.

Lemma 54 Suppose that the vectors x1,x2, h1, hy € Cck satisfy

max {1 — x| o =B

xy—x*|,. [h—R*|,} <5 <1/4 (29D

for some sufficiently small constant 5 > 0. Denote by o1 and oy the minimizers of
8hy.x, (@) and gp, x, (@), respectively. Then we have
ley — 2| < ller —x20l2 + 1h1 — 2> .

FolCT
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Proof Since oy minimizes gj, x, («), the mean value form of Taylor’s theorem (see
Appendix D.3.1) gives

8hy,x, (Olz) = 8hy,x, (O(])

H| ¥ — &2
= gny,x; (@2) +Vgp, x, (02) [M]

1, 2 ~ | O] — a2
+ E (011 — 02, 0] _OlZ) Voghy x (@) [m ’

where @ is some complex number lying between a1 and a2, and Vgp, , and V2gp, x,
are the Wirtinger gradient and Hessian of gp, x, (-), respectively. Rearrange the pre-
vious inequality to obtain

”Vghlaxl (0‘2)”2
Amin (V28h1,x1 (a))

lop — el S (292)

as long as Amin (V2 8hy .xi (EZ)) > (. This calls for evaluation of the Wirtinger gradient
and Hessian of gj, x, (-).

Regarding the Wirtinger Hessian, by assumption (291), we can invoke Lemma 52
with 8 = 1 to reach max {|a; — 1|, |ap — 1|} < 186. This together with Lemma 53
implies

Min (V20 @) = 172,

since o lies between o7 and o).
For the Wirtinger gradient, since a is the minimizer of g, , (@), the first-order
optimality condition [69, equation (38)] requires Vg, , (o2) = 0, which gives

1V, x @), = |V x1 (@) = Vgn,.x, (@) ], -
Plug in the gradient expression (288) to reach
”Vghlaxl (@2) = Vgh, x, (0‘2)H2
= V2| [a2 Ix113 = ¥lix* — oyt @ 2 10113 + @2 0 |
—[e2 1w21 = ¥blx* = o5 @) 2 Ihal3 + @2 h s |

H

< loal 113 = D2 3] + [l — xblxe Hhy — 1M,

+— 1113 = ka1 + —
o2 a2

1 1
< loal 113 = 12 13| + vy = xalla + —— [18113 = 1213| + — 11 = Bl
loa|” loz|
where the last line follows from the triangle inequality. It is straightforward to see that
1/2 < || <2 3 —lx203| S My = hil3 = Iholl3| S Ik —h
/2 <leal <2, |llx1l; = Ix2ll3| S e —x2llas [0l = 23| S Ik — Rall;
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under condition (291) and assumption ||x*|2 = ||h*||2 = 1, where the first inequality
follows from Lemma 52. Taking these estimates together reveals that

[V ghyx1 (@) = Vaiyx, @), S llx1 — x2llo + 1By — k2l .

The proof is accomplished by substituting the two bounds on the gradient and the
Hessian into (292). O

Further, if two vector pairs are both close to the optimizer, then their distance after
alignment (w.r.t. the optimizer) cannot be much larger than their distance without
alignment, as revealed by the following lemma.

Lemma 55 Suppose that the vectors x1,x2, h1, hy € ck satisfy

max {[lx1 —x*,. [ =B,

xy—x*|,. by —R*|,} <5 <1/4  (293)
for some sufficiently small constant 5 > 0. Denote by o and o the minimizers of
8hy.x, (@) and gp, x, (@), respectively. Then we have

2
2 2
Sl —x203 + 1Ay — hall5.
2

1
2
lorpxr — a2xall5 + H:h1 ——=h
o o)

Proof To start with, we control the magnitudes of «; and . Lemma 52 together with
assumption (293) guarantees that

1/2<]ai| <2 and 1/2 < || <2.
Now we can prove the lemma. The triangle inequality gives

lorxr — azxally = llag (x1 — x2) + (a1 — a2) X201,
< lail| lx1 — x2lls + lar — az| [|x21l2
(1)
<2x1 —x2l2 + 2 ]a; — az]
(i)
S llxr —x20l, + 1k — B2y,

where (i) holds since || < 2 and ||x32|]2 < 146 < 2, and (ii) arises from Lemma 54
that la — | < llx1 — x2lly + Iy — hall,. Similarly,

1 1 1 1 1
—h — =hy|| = H:(hl —hy) + <: - :) h»
o] o) 2 o] o] a2 2
1 1 1
< :‘ lhy — B2l + | = — :‘ k2112
o] (241 2%
lorp — oz
<2|ky = h2lls + 22—+
lerron|

S llxr = x2lly + 1oy — h2lly
FolCT
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where the last inequality comes from Lemma 54 as well as the facts that |oy| > 1/2
and |az| > 1/2 as shown above. Combining all of the above bounds and recognizing

that 1 — xally + 1 — hally < /21 — %2113 + 2y — B3, we conclude the
proof. O

Finally, there is a useful identity associated with the minimizer of g(«) as defined
below.

Lemma 56 Forany hy, hy,x1,x, € CK, denote

2

2
+ llax; —x2ll5.
2

~ ~ 1
al = argmin g(«), where g (a):= ”:hl —hy
o o
Let ¥ = ax| and ﬁl = %hl, then we have
o

%1 2+ @1 —x2) = [l — b3 + (I — 1) "o

Proof We can rewrite the function g («) as

- 1?
g (@) = lal %113 + 1x203 — (@x ) xo — x5 (@xp) + ‘5 1113 + 1h2 113
1\ 1
— (:hl) h —hE (:hl)
o o
=aa ||lx 13 + lIx2)3 — @xtxs — axtix +— ||h1||2 + |12 3

——hHh ——hHh.
o ! 2 @ !

The first-order optimality condition [69, equation (38)] requires

g 1 1 1
Sl = -+ (=5 I - (- = ) B =0,
O |y o ol ol

which further simplifies to
~ 2 _~H 72 HY
I%115 — XV'x2 = |[hy]; — ARy

since ¥ = afx;, h1 = —h1, and o? # 0 (otherwise (") = oo and cannot be the
minimizer). Furthermore thrs condition is equivalent to

~H o~ ~ He
.7('1-| (X1 —X2) = (h1 — hz) h].
Recognizing that
FE —x) =i F —x) + (71 —x) @ —x) = x5 @ —x0) + 17 - x2ll3,
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~H ~ ~ ~ ~ ~ ~

Ry Ry = ho) = B (Ry — ko) + (b1 — ko)™ (1 — ha) = BY () — o) + |71 — ha 3,
we arrive at the desired identity. O
D.3.4 Matrix Concentration Inequalities

The proof for blind deconvolution is largely built upon the concentration of random
matrices that are functions of {a ja; } In this subsection, we collect the measure

concentration results for various forms of random matrices that we encounter in the
analysis.

i.i.d.
Lemma 57 Suppose a; g N(O, %IK) + i/\/(O, %IK) for every 1 < j < m,

and {cj}1<j<m are a set of fixed numbers. Then there exist some universal constants
C1, Cy > O such that forallt > 0

2
~ ~ t t
<2exp|C1K — Cymin R .
max; |cj|" 3T ¢

Proof This is a simple variant of [116, Theorem 5.39], which uses the Bernstein
inequality and the standard covering argument. Hence, we omit its proof. O

}:qw, —1Ix)

i.i.d.
Lemma 58 Suppose a; g N (0, %IK) + iN (0, %IK) for every 1 < j <
m. Then ihere _exist some absolute constants C1,Cp, C3 > 0 such that for all
max{1,3C1K/Cy}/m < & < 1, one has

sup
|J|<em

Zaa

~ C>C
> 4C3em log ¢ < 2exp <— 23 em log E) ,
it £ 3 £

where J C [m] and |J| denotes its cardinality.

Proof The proof relies on Lemma 57 and the union bound. First, invoke Lemma 57
to see that for any fixed J C [m] and for all # > 0, we have

> (ajat —Ix)

jedJ

> J11 | <2exp (511( — C,|J| min {t, r2}) . (294)

for some constants C, C, > 0, and as a result,

sup Z“/ > [em](1+1)
|J|<em
)
<P sup Za iaj| = [em](1+1)
[J1=[em]

JjeJ
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<P sup Z(a] —Ig)|| > [em]t
J1=Tem1 1| 57
(i) ~ ~
; m '2exp<C1K—C2|'8m'|min{l,l2}>,
[em]

where [c] denotes the smallest integer that is no smaller than c. Here, (i) holds since
we take the supremum over a larger set and (ii) results from (294) and the union bound.
Apply the elementary inequality () < (en/k)* for any 0 < k < n to obtain

sup > [em](1 4+ 1)

Z“J
|J|<em

em [em] - - . 5
<2 exp <C1K—C2|'8m'| mln{t,t })

[em]
<2 (S)zm exp (611( — 528m min {t, tz})
— 2exp [51 K —em (52 min [z, tz} — 210g(e/8)>] , (295)

where the second inequality uses em < [em] < 2em whenever 1/m <& < 1.

The proof is then completed by taking 53 > max{l, 6/52} and t = 53 log(e/e).
To see th1s it is easy to check that min{z, t2} =1 since t > 1. In addition, one has
CiK < Czam/3 < Czsmt/3 and 2log(e/e) < Czt/3 Combine the estimates above
with (295) to arrive at

> 4538m log(e/¢)

> _ajd}

jeJ

sup
|J|<em

Op > Tem](1 + 1)

Zaa

<2exp [511( —&m (52 min {l‘, l‘z} - 210g(6/8))]

sup
|J|<em

(i ~
2 Zexp( smCQt/S) = 2exp (—

G em 10g(e/8)>

as~claimed. Here, (i) holds due to the facts that [em] < 2em and 1 4+t < 2t <
2C3log(e/¢). Inequality (ii) arises from the estimates listed above. O

Lemma 59 Suppose m > K log® m. With probability exceeding 1 — O (m’lo), we

have
K
<,/ —logm.
m

J j_IK
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@ Springer u.. :‘0 E|



Foundations of Computational Mathematics

Proof The identity Z?’zl b; b']'-' = I g allows us to rewrite the quantity on the left-hand
side as

)

2
bib" — I

2
- 1) b;b"!

=Z;

m m
E H_.* § : H..*

‘ajx (‘ajx
j=1 j=1

where the Z;’s are independent zero-mean random matrices. To control the above
spectral norm, we resort to the matrix Bernstein inequality [66, Theorem 2.7]. To this
end, we first need to upper bound the sub-exponential norm || - ||y, (see definition in
[116]) of each summand Z}, i.e.,

2 2 K
2 H 2 H
izl = 1o 3 |t = 1|| <103 |ate] <
Y1 Y1
where we make use of the facts that
2 H *2 <
||bj||2=K/m and ‘ajx S L
Y1
We further need to bound the variance parameter, that is,
m m 2 2
2. 7H _ H pHzp zH
of = E| Y 228 || = E[Z(‘ajx* —1) bjbjb/b]}
j=1 j=1

< = :5’
~ m

K
m

> b;bb;b"
j=1

> b}
=1

where the second line arises since E[(|a'}'x*|2 — 1)2] = 1, |b;13 = K/m, and
Z?’: 1 bjb]"-1 = I k. A direct application of the matrix Bernstein inequality [66, Theo-
rem 2.7] leads us to conclude that with probability exceeding 1 — O (m_lo),

K K K
”Zm ZjHSmaX{‘/—logm,—logzm}x1/—logm,
Jj=1 m m m

where the last relation holds under the assumption that m > K log3 m. O

D.3.5 Matrix Perturbation Bounds

We also need the following perturbation bound on the top singular vectors of a given
matrix. The following lemma is parallel to Lemma 34.
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Lemma 60 Let 01(A), u, and v be the leading singular value, left and right singular
vectors of A, respectively, and let 01(A), U, and v be the leading singular value,
left and right singular vectors of A, respectively. Suppose o1(A) and o1(A) are not
identically zero, and then one has

l01(A) — 01(A)| < (A = A)v|, + (lu = @lly + v —Fllo) |A]:

‘\/01(14 u—Jor(A) | + |Vor(A)v—+or(A)T
2 2

N - ZMM%m@H
< A) (lu =@l + llv —Vlp) +
Vo1 (A) (lu =l + v —3l) e 1%

Proof The first claim follows since

|01(A) — 01(A)] ‘uHAv — ii“Z’ﬁ(

IA

‘uH(A - Z)v‘ + ‘uHZv — EHZU‘ + ‘EHZv — iiHZ?‘
(4 = ol s - A1 + ] 1o 1.

IA

With regard to the second claim, we see that
H\/m W u— o) = |V u—or@i, + H\/m (A i — o1 (A) &
2 2
=o1(A) |u -l + ‘m (4) — /o (Z>‘

~ lo1(A) — 01(A)]
= Vo1 (A) |lu —illy + ———— 12
o 2 e o

Similarly, one can obtain

H,/al(A) v—/o1(A) T

lo1(A) — o1 (A)
Vo1 (A) + oy (A

Add these two inequalities to complete the proof. O

<Voi(A) v -7, +
2
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