
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-019-09429-9

Implicit Regularization in Nonconvex Statistical Estimation:
Gradient Descent Converges Linearly for Phase Retrieval,
Matrix Completion, and Blind Deconvolution

Cong Ma1 · Kaizheng Wang1 · Yuejie Chi2 · Yuxin Chen3

Received: 14 December 2017 / Revised: 8 May 2019 / Accepted: 18 June 2019
© The Author(s) 2019

Abstract
Recent years have seen a flurry of activities in designing provably efficient nonconvex
procedures for solving statistical estimation problems. Due to the highly nonconvex
nature of the empirical loss, state-of-the-art procedures often require proper reg-
ularization (e.g., trimming, regularized cost, projection) in order to guarantee fast
convergence. For vanilla procedures such as gradient descent, however, prior theory
either recommends highly conservative learning rates to avoid overshooting, or com-
pletely lacks performance guarantees. This paper uncovers a striking phenomenon
in nonconvex optimization: even in the absence of explicit regularization, gradient
descent enforces proper regularization implicitly under various statistical models. In
fact, gradient descent follows a trajectory stayingwithin a basin that enjoys nice geom-
etry, consisting of points incoherent with the sampling mechanism. This “implicit
regularization” feature allows gradient descent to proceed in a far more aggres-
sive fashion without overshooting, which in turn results in substantial computational
savings. Focusing on three fundamental statistical estimation problems, i.e., phase
retrieval, low-rank matrix completion, and blind deconvolution, we establish that gra-
dient descent achieves near-optimal statistical and computational guarantees without
explicit regularization. In particular, by marrying statistical modeling with generic
optimization theory, we develop a general recipe for analyzing the trajectories of iter-
ative algorithms via a leave-one-out perturbation argument. As a by-product, for noisy
matrix completion, we demonstrate that gradient descent achieves near-optimal error
control—measured entrywise and by the spectral norm—which might be of indepen-
dent interest.

Keywords Nonconvex optimization · Gradient descent · Leave-one-out analysis ·
Phase retrieval · Matrix completion · Blind deconvolution

Communicated by Emmanuel J. Candès.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-019-09429-9&domain=pdf

Foundations of Computational Mathematics

Mathematics Subject Classification 90C26

1 Introduction

1.1 Nonlinear Systems and Empirical Loss Minimization

A wide spectrum of science and engineering applications calls for solutions to a
nonlinear system of equations. Imagine we have collected a set of data points y =
{y j }1≤ j≤m , generated by a nonlinear sensing system,

y j ≈ A j
(
x�
)
, 1 ≤ j ≤ m,

where x� is the unknown object of interest and the A j ’s are certain nonlinear maps
known a priori. Can we reconstruct the underlying object x� in a faithful yet efficient
manner?Problemsof this kind abound in information and statistical science, prominent
examples including low-rank matrix recovery [19,64], robust principal component
analysis [17,21], phase retrieval [20,59], neural networks [103,132], to name just a
few.

In principle, it is possible to attempt reconstruction by searching for a solution that
minimizes the empirical loss, namely

minimizex f (x) =
m∑

j=1

∣∣y j − A j (x)
∣∣2. (1)

Unfortunately, this empirical loss minimization problem is, in many cases, nonconvex,
making it NP-hard in general. This issue of nonconvexity comes up in, for example,
several representative problems that epitomize the structures of nonlinear systems
encountered in practice.1

• Phase retrieval/solving quadratic systems of equations Imagine we are asked to
recover an unknown object x� ∈ R

n , but are only given the square modulus
of certain linear measurements about the object, with all sign/phase information
of the measurements missing. This arises, for example, in X-ray crystallography
[15], and in latent-variable models where the hidden variables are captured by the
missing signs [33]. To fix ideas, assume we would like to solve for x� ∈ R

n in the
following quadratic system of m equations

y j = (
a�
j x

�
)2

, 1 ≤ j ≤ m,

1 Here, we choose different pre-constants in front of the empirical loss in order to be consistent with the
literature of the respective problems. In addition, we only introduce the problem in the noiseless case for
simplicity of presentation.

123

Foundations of Computational Mathematics

where {a j }1≤ j≤m are the known design vectors. One strategy is thus to solve the
following problem

minimizex∈Rn f (x) = 1

4m

m∑

j=1

[
y j − (

a�
j x
)2]2

. (2)

• Low-rank matrix completion In many scenarios such as collaborative filtering, we
wish to make predictions about all entries of an (approximately) low-rank matrix
M� ∈ R

n×n (e.g., a matrix consisting of users’ ratings about many movies), yet
only a highly incomplete subset of the entries are revealed to us [19]. For clarity
of presentation, assume M� to be rank-r (r � n) and positive semidefinite (PSD),
i.e., M� = X�X�� with X� ∈ R

n×r , and suppose we have only seen the entries

Y j,k = M�
j,k = (X�X��) j,k, (j, k) ∈ �

within some index subset � of cardinality m. These entries can be viewed as
nonlinear measurements about the low-rank factor X�. The task of completing the
true matrix M� can then be cast as solving

minimizeX∈Rn×r f (X) = n2

4m

∑

(j,k)∈�

(
Y j,k − e�

j XX�ek
)2

, (3)

where the e j ’s stand for the canonical basis vectors in R
n .

• Blind deconvolution/solving bilinear systems of equations Imagine we are inter-
ested in estimating two signals of interest h�, x� ∈ C

K , but only get to collect a
few bilinear measurements about them. This problem arises from mathematical
modeling of blind deconvolution [3,76], which frequently arises in astronomy,
imaging, communications, etc. The goal is to recover two signals from their con-
volution. Put more formally, suppose we have acquired m bilinear measurements
taking the following form

y j = bHj h
�x�Ha j , 1 ≤ j ≤ m,

where a j , b j ∈ C
K are distinct design vectors (e.g., Fourier and/or random design

vectors) known a priori and bHj denotes the conjugate transpose of b j . In order to
reconstruct the underlying signals, one asks for solutions to the following problem

minimizeh,x∈CK f (h, x) =
m∑

j=1

∣
∣y j − bHj hx

Ha j
∣
∣2.

1.2 Nonconvex Optimization via Regularized Gradient Descent

First-order methods have been a popular heuristic in practice for solving nonconvex
problems including (1). For instance, a widely adopted procedure is gradient descent,
which follows the update rule

123

Foundations of Computational Mathematics

xt+1 = xt − ηt∇ f
(
xt
)
, t ≥ 0, (4)

where ηt is the learning rate (or step size) and x0 is some proper initial guess. Given
that it only performs a single gradient calculation ∇ f (·) per iteration (which typically
can be completed within near-linear time), this paradigm emerges as a candidate for
solving large-scale problems. The concern is: whether xt converges to the global
solution and, if so, how long it takes for convergence, especially since (1) is highly
nonconvex.

Fortunately, despite theworst-case hardness, appealing convergence properties have
been discovered in various statistical estimation problems, the blessing being that
the statistical models help rule out ill-behaved instances. For the average case, the
empirical loss often enjoys benign geometry, in a local region (or at least along certain
directions) surrounding the global optimum. In light of this, an effective nonconvex
iterative method typically consists of two stages:

1. a carefully designed initialization scheme (e.g., spectral method);
2. an iterative refinement procedure (e.g., gradient descent).

This strategy has recently spurred a great deal of interest, owing to its promise of
achieving computational efficiency and statistical accuracy at once for a growing list
of problems (e.g., [18,25,32,61,64,76,78,107]). However, rather than directly applying
gradient descent (4), existing theory often suggests enforcing proper regularization.
Such explicit regularization enables improved computational convergence by prop-
erly “stabilizing” the search directions. The following regularization schemes, among
others, have been suggested to obtain or improve computational guarantees. We refer
to these algorithms collectively as Regularized Gradient Descent.

• Trimming/truncation, which discards/truncates a subset of the gradient compo-
nents when forming the descent direction. For instance, when solving quadratic
systems of equations, one can modify the gradient descent update rule as

xt+1 = xt − ηtT
(∇ f

(
xt
))

, (5)

where T is an operator that effectively drops samples bearing too much influence
on the search direction. This strategy [25,118,126] has been shown to enable
exact recovery with linear-time computational complexity and optimal sample
complexity.

• Regularized loss, which attempts to optimize a regularized empirical risk

xt+1 = xt − ηt
(∇ f

(
xt
)+ ∇R

(
xt
))

, (6)

where R(x) stands for an additional penalty term in the empirical loss. For example,
in low-rank matrix completion R(·) imposes penalty based on the �2 row norm
[64,107] as well as the Frobenius norm [107] of the decision matrix, while in
blind deconvolution, it penalizes the �2 norm as well as certain component-wise
incoherence measure of the decision vectors [58,76,82].

123

Foundations of Computational Mathematics

Table 1 Prior theory for gradient descent (with spectral initialization)

Vanilla gradient descent Regularized gradient descent

Sample
complexity

Iteration
complexity

Step size Sample
complexity

Iteration
complexity

Type of
regularization

Phase retrieval n log n n log 1
ε

1
n n log 1

ε Trimming
[25,126]

Matrix completion n/a n/a n/a nr7 n
r log 1

ε Regularized loss
[107]

nr2 r2 log 1
ε Projection

[32,131]

Blind deconvolution n/a n/a n/a Kpoly logm m log 1
ε Regularized loss

and projection
[76]

• Projection, which projects the iterates onto certain sets based on prior knowledge,
that is,

xt+1 = P
(
xt − ηt∇ f

(
xt
))

, (7)

whereP is a certain projection operator used to enforce, for example, incoherence
properties. This strategy has been employed in both low-rank matrix completion
[32,131] and blind deconvolution [76].

Equipped with such regularization procedures, existing works uncover appealing
computational and statistical properties under various statistical models. Table 1 sum-
marizes the performance guarantees derived in the prior literature; for simplicity, only
orderwise results are provided.

Remark 1 There is another role of regularization commonly studied in the literature,
which exploits prior knowledge about the structure of the unknown object, such as
sparsity to prevent over-fitting and improve statistical generalization ability. This is,
however, not the focal point of this paper, since we are primarily pursuing solutions
to (1) without imposing additional structures.

1.3 Regularization-Free Procedures?

The regularized gradient descent algorithms, while exhibiting appealing performance,
usually introduce more algorithmic parameters that need to be carefully tuned based
on the assumed statistical models. In contrast, vanilla gradient descent (cf. (4))—
which is perhaps the very first method that comes into mind and requires minimal
tuning parameters—is far less understood (cf. Table 1). Take matrix completion and
blind deconvolution as examples: to the best of our knowledge, there is currently no
theoretical guarantee derived for vanilla gradient descent.

The situation is better for phase retrieval: the local convergence of vanilla gradi-
ent descent, also known as Wirtinger flow (WF), has been investigated in [18,96].
Under i.i.d. Gaussian design and with near-optimal sample complexity, WF (com-
bined with spectral initialization) provably achieves ε-accuracy (in a relative sense)

123

Foundations of Computational Mathematics

0 100 200 300 400 500
10-15

10-10

10-5

100

50 100 150 200 250 300 350 400 450 500
10-15

10-10

10-5

100

20 40 60 80 100 120 140 160 180 200
10-15

10-10

10-5

100

(a) phase retrieval (b) matrix completion (c) blind deconvolution

Fig. 1 a Relative �2 error of xt (modulo the global phase) versus iteration count for phase retrieval
under i.i.d. Gaussian design, where m = 10n and ηt = 0.1. b Relative error of X t X t� (measured by
‖·‖F , ‖·‖ , ‖·‖∞) versus iteration count for matrix completion, where n = 1000, r = 10, p = 0.1, and
ηt = 0.2. c Relative error of ht xt H (measured by ‖·‖F) versus iteration count for blind deconvolution,
where m = 10K and ηt = 0.5

within O
(
n log (1/ε)

)
iterations. Nevertheless, the computational guarantee is sig-

nificantly outperformed by the regularized version (called truncated Wirtinger flow
[25]), which only requires O

(
log (1/ε)

)
iterations to converge with similar per-

iteration cost. On closer inspection, the high computational cost of WF is largely
due to the vanishingly small step size ηt = O

(
1/(n‖x�‖22)

)
—and hence slow

movement—suggested by the theory [18]. While this is already the largest possible
step size allowed in the theory published in [18], it is considerably more conservative
than the choice ηt = O

(
1/‖x�‖22

)
theoretically justified for the regularized version

[25,126].
The lack of understanding and suboptimal results about vanilla gradient descent

raise a very natural question: Are regularization-free iterative algorithms inherently
suboptimal when solving nonconvex statistical estimation problems of this kind?

1.4 Numerical Surprise of Unregularized Gradient Descent

To answer the preceding question, it is perhaps best to first collect some numerical
evidence. Inwhat follows,we test the performance of vanilla gradient descent for phase
retrieval, matrix completion, and blind deconvolution, using a constant step size. For
all of these experiments, the initial guess is obtained by means of the standard spectral
method. Our numerical findings are as follows:

• Phase retrieval For each n, setm = 10n, take x� ∈ R
n to be a random vector with

unit norm, and generate the design vectors a j
i.i.d.∼ N (0, In), 1 ≤ j ≤ m. Figure 1a

illustrates the relative �2 error min{‖xt − x�‖2, ‖xt + x�‖2}/‖x�‖2 (modulo the
unrecoverable global phase) versus the iteration count. The results are shown for
n = 20, 100, 200, 1000, with the step size taken to be ηt = 0.1 in all settings.

• Matrix completion Generate a random PSD matrix M� ∈ R
n×n with dimension

n = 1000, rank r = 10, and all nonzero eigenvalues equal to one. Each entry
of M� is observed independently with probability p = 0.1. Figure 1b plots the
relative error

∣
∣
∣
∣
∣
∣X tX t� − M�

∣
∣
∣
∣
∣
∣/
∣
∣
∣
∣
∣
∣M�

∣
∣
∣
∣
∣
∣ versus the iteration count, where |||·||| can

either be the Frobenius norm ‖·‖F, the spectral norm ‖ · ‖, or the entrywise �∞
norm ‖ · ‖∞. Here, we pick the step size as ηt = 0.2.

123

Foundations of Computational Mathematics

• Blind deconvolution For each K ∈ {20, 100, 200, 1000} and m = 10K , generate

the design vectors a j
i.i.d.∼ N (0, 1

2 IK) + iN (0, 1
2 IK) for 1 ≤ j ≤ m indepen-

dently,2 and the b j ’s are drawn from a partial discrete Fourier transform (DFT)
matrix (to be described in Sect. 3.3). The underlying signals h�, x� ∈ C

K are
produced as random vectors with unit norm. Figure 1c plots the relative error
‖ht xtH − h�x�H‖F/‖h�x�H‖F versus the iteration count, with the step size taken
to be ηt = 0.5 in all settings.

In all of these numerical experiments, vanilla gradient descent enjoys remarkable
linear convergence, always yielding an accuracy of 10−5 (in a relative sense) within
around 200 iterations. In particular, for the phase retrieval problem, the step size is
taken to be ηt = 0.1 although we vary the problem size from n = 20 to n = 1000. The
consequence is that the convergence rates experience little changes when the problem
sizes vary. In comparison, the theory published in [18] seems overly pessimistic, as it
suggests a diminishing step size inversely proportional to n and, as a result, an iteration
complexity that worsens as the problem size grows.

In addition, it has been empirically observed in prior literature [25,76,127] that
vanilla gradient descent performs comparably with the regularized counterpart for
phase retrieval and blind deconvolution. To complete the picture, we further conduct
experiments on matrix completion. In particular, we follow the experimental setup for
matrix completion used above. We vary p from 0.01 to 0.1 with 51 logarithmically
spacedpoints. For each p,we apply vanilla gradient descent, projected gradient descent
[32] and gradient descent with additional regularization terms [107] with step size η =
0.2 to 50 randomly generated instances. Successful recovery is declared if ‖X tX t� −
M�‖F/‖M�‖F ≤ 10−5 in 104 iterations. Figure 2 reports the success rate versus the
sampling rate. As can be seen, the phase transition of vanilla GD and that of GD with
regularized cost are almost identical, whereas projected GD performs slightly better
than the other two.

In short, the above empirical results are surprisingly positive yet puzzling.Whywas
the computational efficiency of vanilla gradient descent unexplained or substantially
underestimated in prior theory?

1.5 This Paper

The main contribution of this paper is toward demystifying the “unreasonable” effec-
tiveness of regularization-free nonconvex iterative methods. As asserted in previous
work, regularized gradient descent succeeds by properly enforcing/promoting certain
incoherence conditions throughout the execution of the algorithm. In contrast, we
discover that

Vanilla gradient descent automatically forces the iterates to stay incoherent with
the measurement mechanism, thus implicitly regularizing the search directions.

This “implicit regularization” phenomenon is of fundamental importance, suggest-
ing that vanilla gradient descent proceeds as if it were properly regularized. This

2 Here and throughout, i represents the imaginary unit.

123

Foundations of Computational Mathematics

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vanilla GD

projected GD

regularized GD

Fig. 2 Success rate versus sampling rate p over 50 Monte Carlo trials for matrix completion with n = 1000
and r = 10

explains the remarkably favorable performance of unregularized gradient descent in
practice. Focusing on the three representative problems mentioned in Sect. 1.1, our
theory guarantees both statistical and computational efficiency of vanilla gradient
descent under random designs and spectral initialization. With near-optimal sample
complexity, to attain ε-accuracy,

• Phase retrieval (informal) vanilla gradient descent converges in O
(
log n log 1

ε

)

iterations;
• Matrix completion (informal) vanilla gradient descent converges in O

(
log 1

ε

)
iter-

ations;
• Blind deconvolution (informal) vanilla gradient descent converges in O

(
log 1

ε

)

iterations.

In other words, gradient descent provably achieves (nearly) linear convergence in
all of these examples. Throughout this paper, an algorithm is said to converge (nearly)
linearly to x� in the noiseless case if the iterates {xt } obey

dist(xt+1, x�) ≤ (1 − c) dist(xt , x�), ∀t ≥ 0

for some 0 < c ≤ 1 that is (almost) independent of the problem size. Here, dist(·, ·)
can be any appropriate discrepancy measure.

As a by-product of our theory, gradient descent also provably controls the entrywise
empirical risk uniformly across all iterations; for instance, this implies that vanilla
gradient descent controls entrywise estimation error for the matrix completion task.
Precise statements of these results are deferred to Sect. 3 and are briefly summarized
in Table 2.

123

Foundations of Computational Mathematics

Table 2 Prior theory versus our theory for vanilla gradient descent (with spectral initialization)

Prior theory Our theory

Sample
complexity

Iteration
complexity

Step size Sample
complexity

Iteration
complexity

Step size

Phase retrieval n log n n log (1/ε) 1/n n log n log n log (1/ε) 1/ log n

Matrix completion n/a n/a n/a nr3 poly log n log (1/ε) 1

Blind deconvolution n/a n/a n/a K poly logm log (1/ε) 1

Notably, our study of implicit regularization suggests that the behavior of nonconvex
optimization algorithms for statistical estimation needs to be examined in the context
of statistical models, which induces an objective function as a finite sum. Our proof is
accomplished via a leave-one-out perturbation argument, which is inherently tied to
statistical models and leverages homogeneity across samples. Altogether, this allows
us to localize benign landscapes for optimization and characterize finer dynamics not
accounted for in generic gradient descent theory.

1.6 Notations

Before continuing, we introduce several notations used throughout the paper. First of
all, boldfaced symbols are reserved for vectors and matrices. For any vector v, we use
‖v‖2 to denote its Euclidean norm. For any matrix A, we use σ j (A) and λ j (A) to
denote its j th largest singular value and eigenvalue, respectively, and let A j,· and A·, j
denote its j th row and j th column, respectively. In addition, ‖A‖, ‖A‖F, ‖A‖2,∞,
and ‖A‖∞ stand for the spectral norm (i.e., the largest singular value), the Frobenius
norm, the �2/�∞ norm (i.e., the largest �2 norm of the rows), and the entrywise �∞
norm (the largest magnitude of all entries) of a matrix A. Also, A�, AH, and A denote
the transpose, the conjugate transpose, and the entrywise conjugate of A, respectively.
In denotes the identity matrix with dimension n × n. The notation On×r represents
the set of all n × r orthonormal matrices. The notation [n] refers to the set {1, · · · , n}.
Also, we use Re(x) to denote the real part of a complex number x . Throughout the
paper, we use the terms “samples” and “measurements” interchangeably.

Additionally, the standard notation f (n) = O (g(n)) or f (n) � g(n) means that
there exists a constant c > 0 such that | f (n)| ≤ c|g(n)|, f (n) � g(n) means that
there exists a constant c > 0 such that | f (n)| ≥ c |g(n)|, and f (n)
 g(n) means
that there exist constants c1, c2 > 0 such that c1|g(n)| ≤ | f (n)| ≤ c2|g(n)|. Also,
f (n) � g(n) means that there exists some large enough constant c > 0 such that
| f (n)| ≥ c |g(n)|. Similarly, f (n) � g(n) means that there exists some sufficiently
small constant c > 0 such that | f (n)| ≤ c |g(n)|.

2 Implicit Regularization: A Case Study

To reveal reasons behind the effectiveness of vanilla gradient descent, we first examine
existing theory of gradient descent and identify the geometric properties that enable

123

Foundations of Computational Mathematics

linear convergence. We then develop an understanding as to why prior theory is con-
servative, and describe the phenomenon of implicit regularization that helps explain
the effectiveness of vanilla gradient descent. To facilitate discussion, we will use the
problem of solving random quadratic systems (phase retrieval) and Wirtinger flow
as a case study, but our diagnosis applies more generally, as will be seen in later
sections.

2.1 Gradient Descent Theory Revisited

In the convex optimization literature, there are two standard conditions about the objec-
tive function—strong convexity and smoothness—that allow for linear convergence
of gradient descent.

Definition 1 (Strong convexity) A twice continuously differentiable function f :
R
n �→ R is said to be α-strongly convex for α > 0 if

∇2 f (x) � α In, ∀x ∈ R
n .

Definition 2 (Smoothness) A twice continuously differentiable function f : Rn �→ R

is said to be β-smooth for β > 0 if

∥∥∥∇2 f (x)

∥∥∥ ≤ β, ∀x ∈ R
n .

It is well known that for an unconstrained optimization problem, if the objective
function f is both α-strongly convex and β-smooth, then vanilla gradient descent (4)
enjoys �2 error contraction [9, Theorem 3.12], namely

∥
∥xt+1 − x�‖2 ≤

(
1 − 2

β/α + 1

)∥
∥xt − x�

∥
∥
2, and

∥
∥xt − x�‖2

≤
(
1 − 2

β/α + 1

)t ∥∥x0 − x�
∥∥
2, t ≥ 0, (8)

as long as the step size is chosen as ηt = 2/(α + β). Here, x� denotes the global
minimum. This immediately reveals the iteration complexity for gradient descent: the
number of iterations taken to attain ε-accuracy (in a relative sense) is bounded by

O

(
β

α
log

1

ε

)
.

In other words, the iteration complexity is dictated by and scales linearly with the
condition number—the ratio β/α of smoothness to strong convexity parameters.

Moving beyond convex optimization, one can easily extend the above theory to
nonconvex problems with local strong convexity and smoothness. More precisely,
suppose the objective function f satisfies

∇2 f (x) � α I and
∥∥∇2 f (x)

∥∥ ≤ β

123

Foundations of Computational Mathematics

over a local �2 ball surrounding the global minimum x�:

Bδ(x) := {
x | ‖x − x�‖2 ≤ δ‖x�‖2

}
. (9)

Then the contraction result (8) continues to hold, as long as the algorithm is seeded
with an initial point that falls inside Bδ(x).

2.2 Local Geometry for Solving RandomQuadratic Systems

To invoke generic gradient descent theory, it is critical to characterize the local strong
convexity and smoothness properties of the loss function. Take the problem of solving
random quadratic systems (phase retrieval) as an example. Consider the i.i.d. Gaussian

design in which a j
i.i.d.∼ N (0, In), 1 ≤ j ≤ m, and suppose without loss of generality

that the underlying signal obeys ‖x�‖2 = 1. It is well known that x� is the unique
minimizer—up to global phase—of (2) under this statistical model, provided that the
ratio m/n of equations to unknowns is sufficiently large. The Hessian of the loss
function f (x) is given by

∇2 f (x) = 1

m

m∑

j=1

[
3
(
a�
j x
)2 − y j

]
a j a�

j . (10)

• Population-level analysis Consider the case with an infinite number of equations
or samples, i.e., m → ∞, where ∇2 f (x) converges to its expectation. Simple
calculation yields that

E
[∇2 f (x)

] = 3
(

‖x‖22 In + 2xx�)−
(
In + 2x�x��) .

It is straightforward to verify that for any sufficiently small constant δ > 0, one
has the crude bound

In � E
[∇2 f (x)

] � 10In, ∀x ∈ Bδ(x) : ∥∥x − x�
∥∥
2 ≤ δ

∥∥x�
∥∥
2,

meaning that f is 1-strongly convex and 10-smooth within a local ball around x�.
As a consequence, when we have infinite samples and an initial guess x0 such that
‖x0−x�‖2 ≤ δ

∥
∥x�

∥
∥
2, vanilla gradient descent with a constant step size converges

to the global minimum within logarithmic iterations.
• Finite-sample regime with m
 n log n Now that f exhibits favorable landscape in
the population level, one thus hopes that the fluctuation can be well controlled so
that the nice geometry carries over to the finite-sample regime. In the regimewhere
m
 n log n (which is the regime considered in [18]), the local strong convexity
is still preserved, in the sense that

∇2 f (x) � (1/2) · In, ∀x : ∥∥x − x�
∥∥
2 ≤ δ

∥∥x�
∥∥
2

123

Foundations of Computational Mathematics

occurs with high probability, provided that δ > 0 is sufficiently small (see [96,101]
and Lemma 1). The smoothness parameter, however, is not well controlled. In fact,
it can be as large as (up to logarithmic factors)3

∥
∥∇2 f (x)

∥
∥ � n

even when we restrict attention to the local �2 ball (9) with δ > 0 being a fixed
small constant. This means that the condition number β/α (defined in Sect. 2.1)
may scale as O(n), leading to the step size recommendation

ηt
 1/n,

and, as a consequence, a high iteration complexity O
(
n log(1/ε)

)
. This underpins

the analysis in [18].

In summary, the geometric properties of the loss function—even in the local �2
ball centering around the global minimum—are not as favorable as one anticipates, in
particular in view of its population counterpart. A direct application of generic gradient
descent theory leads to an overly conservative step size and a pessimistic convergence
rate, unless the number of samples is enormously larger than the number of unknowns.

Remark 2 Notably, due to Gaussian designs, the phase retrieval problem enjoys more
favorable geometry compared to other nonconvex problems. In matrix completion and
blind deconvolution, the Hessian matrices are rank-deficient even at the population
level. In such cases, the above discussions need to be adjusted, e.g., strong convexity
is only possible when we restrict attention to certain directions.

2.3 Which Region Enjoys Nicer Geometry?

Interestingly, our theory identifies a local region surrounding x� with a large diameter
that enjoys much nicer geometry. This region does not mimic an �2 ball, but rather,
the intersection of an �2 ball and a polytope. We term it the region of incoherence and
contraction (RIC). For phase retrieval, the RIC includes all points x ∈ R

n obeying

∥∥x − x�
∥∥
2 ≤ δ

∥∥x�
∥∥
2 and (11a)

max
1≤ j≤m

∣∣a�
j

(
x − x�

)∣∣ �
√
log n

∥∥x�
∥∥
2, (11b)

where δ > 0 is some small numerical constant. As will be formalized in Lemma 1,
with high probability the Hessian matrix satisfies

(1/2) · In � ∇2 f (x) � O(log n) · In
3 To demonstrate this, taking x = x� + (δ/‖a1‖2) · a1 in (10), one can easily verify that, with high

probability,
∥∥∇2 f (x)

∥∥ ≥
∣
∣∣3(a�

1 x)2 − y1
∣
∣∣
∥∥a1a�

1

∥∥/m − O(1) � δ2n2/m
 δ2n/log n.

123

Foundations of Computational Mathematics

a1
a2

x

a1 (x− x) log na2 (x− x) log n

x0

x1 x2

x3
x

x0

x1

x2

x3

x

(c)(b)(a)

Fig. 3 a The shaded region is an illustration of the incoherence region, which satisfies
∣∣a�

j (x − x�)
∣∣ �√

log n for all points x in the region. b When x0 resides in the desired region, we know that x1 remains
within the �2 ball but might fall out of the incoherence region (the shaded region). Once x1 leaves the
incoherence region, we lose control and may overshoot. c Our theory reveals that with high probability, all
iterates will stay within the incoherence region, enabling fast convergence

simultaneously for x in theRIC. Inwords, theHessianmatrix is nearlywell conditioned
(with the condition number bounded by O(log n)), as long as (i) the iterate is not very
far from the global minimizer (cf. (11a)) and (ii) the iterate remains incoherent4 with
respect to the sensing vectors (cf. (11b)). Another way to interpret the incoherence
condition (11b) is that the empirical risk needs to be well controlled uniformly across
all samples. See Fig. 3a for an illustration of the above region.

The following observation is thus immediate: one can safely adopt a far more
aggressive step size (as large as ηt = O(1/ log n)) to achieve acceleration, as long
as the iterates stay within the RIC. This, however, fails to be guaranteed by generic
gradient descent theory. To be more precise, if the current iterate xt falls within the
desired region, then in viewof (8),we can ensure �2 error contraction after one iteration,
namely

‖xt+1 − x�‖2 ≤ ‖xt − x�‖2,

and hence xt+1 stays within the local �2 ball and hence satisfies (11a). However, it
is not immediately obvious that xt+1 would still stay incoherent with the sensing
vectors and satisfy (11b). If xt+1 leaves the RIC, it no longer enjoys the benign local
geometry of the loss function, and the algorithm has to slow down in order to avoid
overshooting. See Fig. 3b for a visual illustration. In fact, in almost all regularized
gradient descent algorithms mentioned in Sect. 1.2, one of the main purposes of the
proposed regularization procedures is to enforce such incoherence constraints.

2.4 Implicit Regularization

However, is regularization really necessary for the iterates to stay within the RIC?
To answer this question, we plot in Fig. 4a (resp. Fig. 4b) the incoherence measure
max j

∣∣
∣a�

j x
t
∣∣
∣√

log n‖x�‖2 (resp.
max j

∣∣
∣a�

j (xt−x�)

∣∣
∣√

log n‖x�‖2) versus the iteration count in a typical Monte Carlo

4 If x is aligned with (and hence very coherent with) one vector a j , then with high probability one has∣
∣a�

j

(
x − x�

)| �
∣
∣a�

j x|
 √
n‖x‖2, which is significantly larger than

√
log n‖x‖2.

123

Foundations of Computational Mathematics

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

(b)(a)

Fig. 4 The incoherence measure
max1≤ j≤m

∣
∣∣a�

j x
t
∣
∣∣√

log n‖x�‖2 (in a) and
max1≤ j≤m

∣
∣∣a�

j (xt−x�)

∣
∣∣√

log n‖x�‖2 (in b) of the gra-

dient iterates versus iteration count for the phase retrieval problem. The results are shown for n ∈
{20, 100, 200, 1000} and m = 10n, with the step size taken to be ηt = 0.1. The problem instances
are generated in the same way as in Fig. 1a

trial, generated in the same way as for Fig. 1a. Interestingly, the incoherence measure
remains bounded by 2 for all iterations t > 1. This important observation suggests
that one may adopt a substantially more aggressive step size throughout the whole
algorithm.

The main objective of this paper is thus to provide a theoretical validation of the
above empirical observation. As we will demonstrate shortly, with high probability all
iterates along the execution of the algorithm (as well as the spectral initialization) are
provably constrained within the RIC, implying fast convergence of vanilla gradient
descent (cf. Fig. 3c). The fact that the iterates stay incoherent with the measurement
mechanism automatically, without explicit enforcement, is termed “implicit regular-
ization.”

2.5 A Glimpse of the Analysis: A Leave-One-Out Trick

In order to rigorously establish (11b) for all iterates, the current paper develops a
powerful mechanism based on the leave-one-out perturbation argument, a trick rooted
and widely used in probability and random matrix theory. Note that the iterate xt is
statistically dependent with the design vectors {a j }. Under such circumstances, one
often resorts to generic bounds like the Cauchy–Schwarz inequality, which would not
yield a desirable estimate. To address this issue, we introduce a sequence of auxiliary
iterates {xt,(l)} for each 1 ≤ l ≤ m (for analytical purposes only), obtained by running
vanilla gradient descent using all but the lth sample. As one can expect, such auxiliary
trajectories serve as extremely good surrogates of {xt } in the sense that

xt ≈ xt,(l), 1 ≤ l ≤ m, t ≥ 0, (12)

123

Foundations of Computational Mathematics

1

-3

2

-1

4

-2

-1

3

4

1

9

4

1

16

4

1

9

16

A(l)x y(l) = |A(l)x |2x

incoherence region

{xt}

{xt,(l)}
al

w.r.t. al

(b)(a)

A(l)

Fig. 5 Illustration of the leave-one-out sequence w.r.t. al . a The sequence {xt,(l)}t≥0 is constructed without
using the lth sample. b Since the auxiliary sequence {xt,(l)} is constructed without using al , the leave-one-
out iterates stay within the incoherence region w.r.t. al with high probability. Meanwhile, {xt } and {xt,(l)}
are expected to remain close as their construction differ only in a single sample

since their constructions only differ by a single sample. Most importantly, since xt,(l)

is independent with the lth design vector, it is much easier to control its incoherence
w.r.t. al to the desired level:

∣∣a�
l

(
xt,(l) − x�

)∣∣ �
√
log n

∥∥x�
∥∥
2. (13)

Combining (12) and (13) then leads to (11b). See Fig. 5 for a graphical illustration of
this argument. Notably, this technique is very general and applicable to many other
problems. We invite the readers to Sect. 5 for more details.

3 Main Results

This section formalizes the implicit regularization phenomenon underlying unregular-
ized gradient descent and presents its consequences, namely near-optimal statistical
and computational guarantees for phase retrieval, matrix completion, and blind decon-
volution. Note that the discrepancy measure dist (·, ·) may vary from problem to
problem.

3.1 Phase Retrieval

Suppose the m quadratic equations

y j = (
a�
j x

�
)2

, j = 1, 2, . . . ,m (14)

are collected using random design vectors, namely a j
i.i.d.∼ N (0, In), and the noncon-

vex problem to solve is

minimizex∈Rn f (x) := 1

4m

m∑

j=1

[(
a�
j x
)2 − y j

]2
. (15)

123

Foundations of Computational Mathematics

The Wirtinger flow (WF) algorithm, first introduced in [18], is a combination of spec-
tral initialization and vanilla gradient descent; see Algorithm 1.

Algorithm 1Wirtinger flow/gradient descent for phase retrieval
Input: {a j }1≤ j≤m and {y j }1≤ j≤m .

Spectral initialization: Let λ1 (Y) and x̃0 be the leading eigenvalue and eigenvector of

Y = 1

m

m∑

j=1

y j a j a
�
j , (16)

respectively, and set x0 = √
λ1 (Y) /3 x̃0.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1 = xt − ηt∇ f
(
xt
)
. (17)

Recognizing that the global phase/sign is unrecoverable from quadratic measure-
ments, we introduce the �2 distance modulo the global phase as follows

dist(x, x�) := min
{‖x − x�‖2, ‖x + x�‖2

}
. (18)

Our finding is summarized in the following theorem.

Theorem 1 Let x� ∈ R
n be a fixed vector. Suppose a j

i.i.d.∼ N (0, In) for each 1 ≤ j ≤
m and m ≥ c0n log n for some sufficiently large constant c0 > 0. Assume the step size
obeys ηt ≡ η = c1/

(
log n · ‖x0‖22

)
for any sufficiently small constant c1 > 0. Then

there exist some absolute constants 0 < ε < 1 and c2 > 0 such that with probability
at least 1 − O

(
mn−5

)
, Algorithm 1 satisfies that for all t ≥ 0,

dist(xt , x�) ≤ ε(1 − η‖x�‖22/2)t‖x�‖2, (19a)

max
1≤ j≤m

∣∣a�
j

(
xt − x�

)∣∣ ≤ c2
√
log n‖x�‖2. (19b)

Theorem 1 reveals a few intriguing properties of Algorithm 1.

• Implicit regularization Theorem 1 asserts that the incoherence properties are satis-
fied throughout the execution of the algorithm (see (19b)), which formally justifies
the implicit regularization feature we hypothesized.

• Near-constant step sizeConsider the casewhere ‖x�‖2 = 1. Theorem1 establishes
near-linear convergence of WF with a substantially more aggressive step size
η
 1/ log n. Compared with the choice η � 1/n admissible in [18, Theorem
3.3], Theorem 1 allows WF/GD to attain ε-accuracy within O(log n log(1/ε))
iterations. The resulting computational complexity of the algorithm is

O

(
mn log n log

1

ε

)
,

123

Foundations of Computational Mathematics

which significantly improves upon the result O
(
mn2 log (1/ε)

)
derived in [18].

As a side note, if the sample size further increases tom
 n log2 n, then a constant
step size η
 1 is also feasible, resulting in an iteration complexity log(1/ε). This
follows since with high probability, the entire trajectory resides within a more
refined incoherence region max j

∣∣a�
j

(
xt − x�

)∣∣ � ‖x�‖2. We omit the details
here.

• Incoherence of spectral initialization We have also demonstrated in Theorem 1
that the initial guess x0 falls within the RIC and is hence nearly orthogonal to all
design vectors. This provides a finer characterization of spectral initialization, in
comparison with prior theory that focuses primarily on the �2 accuracy [18,90].
We expect our leave-one-out analysis to accommodate other variants of spectral
initialization studied in the literature [12,25,83,88,118].

Remark 3 As it turns out, a carefully designed initialization is not pivotal in enabling
fast convergence. In fact, randomly initialized gradient descent provably attains ε-
accuracy in O(log n + log 1

ε
) iterations; see [27] for details.

3.2 Low-RankMatrix Completion

Let M� ∈ R
n×n be a positive semidefinite matrix5 with rank r , and suppose its

eigendecomposition is
M� = U���U��, (20)

whereU� ∈ R
n×r consists of orthonormal columns and�� is an r ×r diagonal matrix

with eigenvalues in a descending order, i.e., σmax = σ1 ≥ · · · ≥ σr = σmin > 0.
Throughout this paper, we assume the condition number κ := σmax/σmin is bounded
by a fixed constant, independent of the problem size (i.e., n and r). Denoting X� =
U�(��)1/2 allows us to factorize M� as

M� = X�X��. (21)

Consider a random sampling model such that each entry of M� is observed indepen-
dently with probability 0 < p ≤ 1, i.e., for 1 ≤ j ≤ k ≤ n,

Y j,k =
{
M�

j,k + E j,k, with probability p,

0, else,
(22)

where the entries of E = [E j,k]1≤ j≤k≤n are independent sub-Gaussian noise with
sub-Gaussian norm σ (see [116, Definition 5.7]). We denote by � the set of locations
being sampled, and P�(Y) represents the projection of Y onto the set of matrices
supported in �. We note here that the sampling rate p, if not known, can be faithfully
estimated by the sample proportion |�|/n2.
5 Here, we assume M� to be positive semidefinite to simplify the presentation, but note that our analysis
easily extends to asymmetric low-rank matrices.

123

Foundations of Computational Mathematics

To fix ideas, we consider the following nonconvex optimization problem

minimizeX∈Rn×r f (X) := 1

4p

∑

(j,k)∈�

(
e�
j XX�ek − Y j,k

)2
. (23)

The vanilla gradient descent algorithm (with spectral initialization) is summarized in
Algorithm 2.

Algorithm 2 Vanilla gradient descent for matrix completion (with spectral initializa-
tion)
Input: Y = [

Y j,k
]
1≤ j ,k≤n , r , p.

Spectral initialization: Let U0�0U0� be the rank-r eigendecomposition of

M0 := 1

p
P�(Y) = 1

p
P�

(
M� + E

)
,

and set X0 = U0
(
�0
)1/2

.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

X t+1 = X t − ηt∇ f
(
X t) . (24)

Before proceeding to the main theorem, we first introduce a standard incoherence
parameter required for matrix completion [19].

Definition 3 (Incoherence for matrix completion) A rank-r matrix M� with eigende-
composition M� = U���U�� is said to be μ-incoherent if

∥∥U�
∥∥
2,∞ ≤

√
μ

n

∥∥U�
∥∥
F =

√
μr

n
. (25)

In addition, recognizing that X� is identifiable only up to orthogonal transformation,
we define the optimal transform from the t th iterate X t to X� as

Ĥ
t := argmin

R∈Or×r

∥∥X t R − X�
∥∥
F , (26)

where Or×r is the set of r × r orthonormal matrices. With these definitions in place,
we have the following theorem.

Theorem 2 Let M� be a rank-r , μ-incoherent PSD matrix, and its condition number
κ is a fixed constant. Suppose the sample size satisfies n2 p ≥ Cμ3r3n log3 n for some
sufficiently large constant C > 0, and the noise satisfies

σ

√
n

p
� σmin√

κ3μr log3 n
. (27)

123

Foundations of Computational Mathematics

With probability at least 1 − O
(
n−3

)
, the iterates of Algorithm 2 satisfy

∥∥X t Ĥ t − X�
∥∥
F ≤

(
C4ρ

tμr
1√
np

+ C1
σ

σmin

√
n

p

)∥∥X�
∥∥
F, (28a)

∥∥X t Ĥ t − X�
∥∥
2,∞ ≤

(

C5ρ
tμr

√
log n

np
+ C8

σ

σmin

√
n log n

p

)
∥∥X�

∥∥
2,∞, (28b)

∥∥X t Ĥ t − X�
∥∥ ≤

(
C9ρ

tμr
1√
np

+ C10
σ

σmin

√
n

p

)∥∥X�
∥∥ (28c)

for all 0 ≤ t ≤ T = O(n5), where C1, C4, C5, C8, C9, and C10 are some absolute
positive constants and 1 − (σmin/5) · η ≤ ρ < 1, provided that 0 < ηt ≡ η ≤
2/ (25κσmax).

Theorem 2 provides the first theoretical guarantee of unregularized gradient descent
for matrix completion, demonstrating near-optimal statistical accuracy and computa-
tional complexity.

• Implicit regularization In Theorem 2, we bound the �2/�∞ error of the iterates in
a uniform manner via (28b). Note that

∥∥X − X�
∥∥
2,∞ = max j

∥∥e�
j

(
X − X�

)∥∥
2,

which implies the iterates remain incoherent with the sensing vectors through-
out and have small incoherence parameters (cf. (25)). In comparison, prior works
either include a penalty term on {‖e�

j X‖2}1≤ j≤n [64,107] and/or ‖X‖F [107] to
encourage an incoherent and/or low-norm solution, or add an extra projection oper-
ation to enforce incoherence [32,131]. Our results demonstrate that such explicit
regularization is unnecessary.

• Constant step sizeWithout loss of generality, wemay assume thatσmax = ‖M�‖ =
O(1), which can be done by choosing proper scaling of M�. Hence, we have a
constant step size ηt
 1. Actually, it is more convenient to consider the scale-
invariant parameter ρ: Theorem 2 guarantees linear convergence of the vanilla
gradient descent at a constant rate ρ. Remarkably, the convergence occurs with
respect to three different unitarily invariant norms: the Frobenius norm ‖ · ‖F, the
�2/�∞ norm ‖ · ‖2,∞, and the spectral norm ‖ · ‖. As far as we know, the latter two
are established for the first time. Note that our result even improves upon that for
regularized gradient descent; see Table 1.

• Near-optimal sample complexityWhen the rank r = O(1), vanilla gradient descent
succeeds under a near-optimal sample complexity n2 p � npoly log n, which is
statistically optimal up to some logarithmic factor.

• Near-minimal Euclidean error In view of (28a), as t increases, the Euclidean error
of vanilla GD converges to

∥∥X t Ĥ
t − X�

∥∥
F � σ

σmin

√
n

p

∥∥X�
∥∥
F, (29)

which coincides with the theoretical guarantee in [32, Corollary 1] and matches
the minimax lower bound established in [67,89].

123

Foundations of Computational Mathematics

• Near-optimal entrywise error The �2/�∞ error bound (28b) immediately yields
entrywise control of the empirical risk. Specifically, as soon as t is sufficiently
large (so that the first term in (28b) is negligible), we have

∥∥X tX t� − M�
∥∥∞ ≤ ∥∥X t Ĥ

t(
X t Ĥ

t − X�
)�∥∥∞ + ∥∥(X t Ĥ

t − X�
)
X��∥∥∞

≤ ∥
∥X t Ĥ

t ∥∥
2,∞

∥
∥X t Ĥ

t−X�
∥
∥
2,∞+∥∥X t Ĥ

t−X�
∥
∥
2,∞

∥
∥X�

∥
∥
2,∞

� σ

σmin

√
n log n

p

∥∥M�
∥∥∞ ,

where the last line follows from (28b) as well as the facts that ‖X t Ĥ
t −X�‖2,∞ ≤

‖X�‖2,∞ and ‖M�‖∞ = ‖X�‖22,∞. Compared with the Euclidean loss (29), this

implies that when r = O(1), the entrywise error of X tX t� is uniformly spread out
across all entries. As far as we know, this is the first result that reveals near-optimal
entrywise error control for noisymatrix completion using nonconvex optimization,
without resorting to sample splitting.

Remark 4 Theorem 2 remains valid if the total number T of iterations obeys T =
nO(1). In the noiseless case where σ = 0, the theory allows arbitrarily large T .

Finally, we report the empirical statistical accuracy of vanilla gradient descent in
the presence of noise. Figure 6 displays the squared relative error of vanilla gradient
descent as a function of the signal-to-noise ratio (SNR), where the SNR is defined to
be

SNR :=
∑

(j,k)∈�

(
M�

j,k

)2
∑

(j,k)∈� Var
(
E j,k

) ≈ ‖M�‖2F
n2σ 2 , (30)

and the relative error is measured in terms of the square of the metrics as in (28) as
well as the squared entrywise prediction error. Both the relative error and the SNR
are shown on a dB scale (i.e., 10 log10(SNR) and 10 log10(squared relative error) are
plotted). The results are averaged over 20 independent trials. As one can see from
the plot, the squared relative error scales inversely proportional to the SNR, which is
consistent with our theory.6

3.3 Blind Deconvolution

Suppose we have collected m bilinear measurements

y j = bHj h
�x�Ha j , 1 ≤ j ≤ m, (31)

where a j follows a complex Gaussian distribution, i.e., a j
i.i.d.∼ N

(
0, 1

2 IK
) +

iN
(
0, 1

2 IK
)
for 1 ≤ j ≤ m, and B := [b1, · · · , bm]H ∈ C

m×K is formed by the first

6 Note that when M� is well conditioned and when r = O(1), one can easily check that SNR ≈(
‖M�‖2F

)
/
(
n2σ 2

)

 σ 2

min/(n
2σ 2), and our theory says that the squared relative error bound is pro-

portional to σ 2/σ 2
min.

123

Foundations of Computational Mathematics

Fig. 6 Squared relative error of
the estimate X̂ (measured by
‖·‖F , ‖·‖ , ‖·‖2,∞ modulo
global transformation) and

M̂ = X̂ X̂� (measured by ‖·‖∞)
versus SNR for noisy matrix
completion, where n = 500,
r = 10, p = 0.1, and ηt = 0.2.
Here X̂ denotes the estimate
returned by Algorithm 2 after
convergence. The results are
averaged over 20 independent
Monte Carlo trials

10 20 30 40 50 60 70 80
-90

-80

-70

-60

-50

-40

-30

-20

-10

K columns of a unitary discrete Fourier transform (DFT) matrix F ∈ C
m×m obeying

FFH = Im (see Appendix D.3.2 for a brief introduction to DFTmatrices). This setup
models blind deconvolution, where the two signals under convolution belong to known
low-dimensional subspaces of dimension K [3].7 In particular, the partial DFT matrix
B plays an important role in image blind deblurring. In this subsection, we consider
solving the following nonconvex optimization problem

minimizeh,x∈CK f (h, x) =
m∑

j=1

∣∣∣bHj hx
Ha j − y j

∣∣∣
2
. (32)

The (Wirtinger) gradient descent algorithm (with spectral initialization) is summarized
in Algorithm 3; here, ∇h f (h, x) and ∇x f (h, x) stand for the Wirtinger gradient and
are given in (77) and (78), respectively; see [18, Section 6] for a brief introduction to
Wirtinger calculus.

It is self-evident that h� and x� are only identifiable up to global scaling, that is,
for any nonzero α ∈ C,

h�x�H = 1

α
h�
(
αx�

)H
.

In light of this, we will measure the discrepancy between

z :=
[
h
x

]
∈ C

2K and z� :=
[
h�

x�

]
∈ C

2K (33)

via the following function

dist
(
z, z�

) := min
α∈C

√∥
∥∥∥
1

α
h − h�

∥
∥∥∥

2

2
+ ‖αx − x�‖22. (34)

7 For simplicity, we have set the dimensions of the two subspaces equal, and it is straightforward to extend
our results to the case of unequal subspace dimensions.

123

Foundations of Computational Mathematics

Algorithm 3 Vanilla gradient descent for blind deconvolution (with spectral initial-
ization)
Input:

{
a j
}
1≤ j≤m ,

{
b j
}
1≤ j≤m and

{
y j
}
1≤ j≤m .

Spectral initialization: Let σ1(M), ȟ
0
and x̌0 be the leading singular value, left and right singular vectors

of

M :=
m∑

j=1

y j b j a
H
j ,

respectively. Set h0 = √
σ1(M) ȟ

0
and x0 = √

σ1(M) x̌0.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

[
ht+1

xt+1

]
=
[
ht

xt

]
− η

⎡

⎣
1

‖xt ‖22
∇h f

(
ht , xt

)

1
‖ht ‖22

∇x f
(
ht , xt

)

⎤

⎦ . (35)

Before proceeding, we need to introduce the incoherence parameter [3,76], which
is crucial for blind deconvolution, whose role is similar to the incoherence parameter
(cf. Definition 3) in matrix completion.

Definition 4 (Incoherence for blind deconvolution) Let the incoherence parameter μ

of h� be the smallest number such that

max
1≤ j≤m

∣∣∣bHj h
�
∣∣∣ ≤ μ√

m

∥∥h�
∥∥
2 . (36)

The incoherence parameter describes the spectral flatness of the signal h�. With this
definition in place, we have the following theorem, where for identifiability we assume
that

∥∥h�
∥∥
2 = ‖x�‖2.

Theorem 3 Suppose the number of measurements obeys m ≥ Cμ2K log9 m for some
sufficiently large constant C > 0, and suppose the step size η > 0 is taken to be some
sufficiently small constant. Then there exist constants c1, c2,C1,C3,C4 > 0 such that
with probability exceeding 1− c1m−5 − c1me−c2K , the iterates in Algorithm 3 satisfy

dist
(
zt , z�

) ≤ C1

(
1 − η

16

)t 1

log2 m

∥
∥z�
∥
∥
2 , (37a)

max
1≤l≤m

∣∣∣aHl
(
αt xt − x�

)∣∣∣ ≤ C3
1

log1.5 m

∥∥x�
∥∥
2 , (37b)

max
1≤l≤m

∣∣∣∣b
H
l
1

αt
ht
∣∣∣∣ ≤ C4

μ√
m

log2 m
∥∥h�

∥∥
2 (37c)

for all t ≥ 0. Here, we denote αt as the alignment parameter,

αt := argmin
α∈C

∥∥
∥∥
1

α
ht − h�

∥∥
∥∥

2

2
+ ∥
∥αxt − x�

∥
∥2
2 . (38)

123

Foundations of Computational Mathematics

Theorem 3 provides the first theoretical guarantee of unregularized gradient descent
for blind deconvolution at a near-optimal statistical and computational complexity. A
few remarks are in order.

• Implicit regularization Theorem 3 reveals that the unregularized gradient descent
iterates remain incoherent with the sampling mechanism (see (37b) and (37c)).
Recall that prior works operate upon a regularized cost function with an additional
penalty term that regularizes the global scaling {‖h‖2, ‖x‖2} and the incoherence
{|bHj h|}1≤ j≤m [58,76,82]. In comparison, our theorem implies that it is unnecessary
to regularize either the incoherence or the scaling ambiguity, which is somewhat
surprising. This justifies the use of regularization-free (Wirtinger) gradient descent
for blind deconvolution.

• Constant step size Compared to the step size ηt � 1/m suggested in [76] for
regularized gradient descent, our theory admits a substantially more aggressive
step size (i.e., ηt
 1) even without regularization. Similar to phase retrieval, the
computational efficiency is boosted by a factor of m, attaining ε-accuracy within
O (log(1/ε)) iterations (vs. O (m log(1/ε)) iterations in prior theory).

• Near-optimal sample complexity It is demonstrated that vanilla gradient descent
succeeds at a near-optimal sample complexity up to logarithmic factors, although
our requirement is slightly worse than [76] which uses explicit regularization.
Notably, even under the sample complexity herein, the iteration complexity given
in [76] is still O (m/poly log(m)).

• Incoherence of spectral initialization As in phase retrieval, Theorem 3 demon-
strates that the estimates returned by the spectral method are incoherent with
respect to both {a j } and {b j }. In contrast, [76] recommends a projection operation
(via a linear program) to enforce incoherence of the initial estimates, which is
dispensable according to our theory.

• Contraction in ‖·‖F It is easy to check that the Frobenius norm error satisfies∥∥ht xtH − h�x�H
∥∥
F � dist

(
zt , z�

)
, and therefore, Theorem 3 corroborates the

empirical results shown in Fig. 1c.

4 RelatedWork

Solving nonlinear systems of equations has receivedmuch attention in the past decade.
Rather than directly attacking the nonconvex formulation, convex relaxation lifts the
object of interest into a higher-dimensional space and then attempts recovery via
semidefinite programming (e.g., [3,19,20,94]). This has enjoyed great success in both
theory and practice. Despite appealing statistical guarantees, semidefinite program-
ming is in general prohibitively expensive when processing large-scale datasets.

Nonconvex approaches, on the other end, have been under extensive study in the
last few years, due to their computational advantages. There is a growing list of
statistical estimation problems for which nonconvex approaches are guaranteed to
find global optimal solutions, including but not limited to phase retrieval [18,25,90],
low-rank matrix sensing and completion [7,32,48,115,130], blind deconvolution and
self-calibration [72,76,78,82], dictionary learning [106], tensor decomposition [49],

123

Foundations of Computational Mathematics

joint alignment [24], learning shallow neural networks [103,132], robust subspace
learning [34,74,86,91]. In several problems [40,48,49,75,77,86,87,105,106], it is fur-
ther suggested that the optimization landscape is benign under sufficiently large sample
complexity, in the sense that all local minima are globally optimal, and hence non-
convex iterative algorithms become promising in solving such problems. See [37] for
a recent overview. Below we review the three problems studied in this paper in more
detail. Some state-of-the-art results are summarized in Table 1.

• Phase retrieval Candès et al. proposed PhaseLift [20] to solve the quadratic sys-
tems of equations based on convex programming. Specifically, it lifts the decision
variable x� into a rank-one matrix X� = x�x�� and translates the quadratic
constraints of x� in (14) into linear constraints of X�. By dropping the rank con-
straint, the problem becomes convex [11,16,20,29,113]. Another convex program
PhaseMax [5,41,50,53] operates in the natural parameter space via linear program-
ming, provided that an anchor vector is available. On the other hand, alternating
minimization [90] with sample splitting has been shown to enjoy much better
computational guarantee. In contrast, Wirtinger flow [18] provides the first global
convergence result for nonconvex methods without sample splitting, whose sta-
tistical and computational guarantees are later improved by [25] via an adaptive
truncation strategy. Several other variants of WF are also proposed [12,68,102],
among which an amplitude-based loss function has been investigated [117–
119,127]. In particular, [127] demonstrates that the amplitude-based loss function
has a better curvature, and vanilla gradient descent can indeed convergewith a con-
stant step size at the orderwise optimal sample complexity. A small sample of other
nonconvexphase retrievalmethods include [6,10,22,36,43,47,92,98,100,109,122],
which are beyond the scope of this paper.

• Matrix completion Nuclear norm minimization was studied in [19] as a con-
vex relaxation paradigm to solve the matrix completion problem. Under certain
incoherence conditions imposed upon the ground truth matrix, exact recovery
is guaranteed under near-optimal sample complexity [14,23,38,51,93]. Concur-
rently, several works [54,55,60,61,63–65,71,110,123,129,129] tackled the matrix
completion problem via nonconvex approaches. In particular, the seminal work by
Keshavan et al. [64,65] pioneered the two-stage approach that is widely adopted by
later works. Sun and Luo [107] demonstrated the convergence of gradient descent
type methods for noiseless matrix completion with a regularized nonconvex loss
function. Instead of penalizing the loss function, [32,131] employed projection to
enforce the incoherence condition throughout the execution of the algorithm. To
the best of our knowledge, no rigorous guarantees have been established for matrix
completionwithout explicit regularization. A notable exception is [63], which uses
unregularized stochastic gradient descent for matrix completion in the online set-
ting. However, the analysis is performed with fresh samples in each iteration. Our
work closes the gap andmakes the first contribution toward understanding implicit
regularization in gradient descent without sample splitting. In addition, entrywise
eigenvector perturbation has been studied by [1,26,60] in order to analyze the
spectral algorithms for matrix completion, which helps us establish theoretical
guarantees for the spectral initialization step. Finally, it has recently been shown

123

Foundations of Computational Mathematics

that the analysis of nonconvex gradient descent in turn yields near-optimal statis-
tical guarantees for convex relaxation in the context of noisy matrix completion;
see [28,31].

• Blind deconvolution In [3], Ahmed et al. first proposed to invoke similar lifting
ideas for blind deconvolution, which translates the bilinearmeasurements (31) into
a system of linear measurements of a rank-one matrix X� = h�x�H. Near-optimal
performance guarantees have been established for convex relaxation [3]. Under
the same model, Li et al. [76] proposed a regularized gradient descent algorithm
that directly optimizes the nonconvex loss function (32) with a few regularization
terms that account for scaling ambiguity and incoherence. In [58], a Riemannian
steepest descent method is developed that removes the regularization for scaling
ambiguity, although they still need to regularize for incoherence. In [2], a linear
program is proposed but requires exact knowledge of the signs of the signals.
Blind deconvolution has also been studied for other models—interested readers
are referred to [35,72,73,81,82,120,128].

On the other hand, our analysis framework is based on a leave-one-out perturbation
argument. This technique has been widely used to analyze high-dimensional problems
with random designs, including but not limited to robust M-estimation [44,45], sta-
tistical inference for sparse regression [62], likelihood ratio test in logistic regression
[108], phase synchronization [1,133], ranking from pairwise comparisons [30], com-
munity recovery [1], and covariance sketching [79]. In particular, this technique results
in tight performance guarantees for the generalized power method [133], the spectral
method [1,30], and convex programming approaches [30,44,108,133]; however, it has
not been applied to analyze nonconvex optimization algorithms.

Finally, we note that the notion of implicit regularization—broadly defined—arises
in settings far beyond the models and algorithms considered herein. For instance,
it has been conjectured that in matrix factorization, over-parameterized stochastic
gradient descent effectively enforces certain norm constraints, allowing it to converge
to a minimal-norm solution as long as it starts from the origin [52]. The stochastic
gradient methods have also been shown to implicitly enforce Tikhonov regularization
in several statistical learning settings [80]. More broadly, this phenomenon seems
crucial in enabling efficient training of deep neural networks [104,125].

5 A General Recipe for Trajectory Analysis

In this section, we sketch a general recipe for establishing performance guarantees
of gradient descent, which conveys the key idea for proving the main results of this
paper. The main challenge is to demonstrate that appropriate incoherence conditions
are preserved throughout the trajectory of the algorithm. This requires exploiting
statistical independence of the samples in a carefulmanner, in conjunctionwith generic
optimization theory. Central to our approach is a leave-one-out perturbation argument,
which allows to decouple the statistical dependency while controlling the component-
wise incoherence measures.

123

Foundations of Computational Mathematics

General Recipe (a leave-one-out analysis)
Step 1: characterize restricted strong convexity and smoothness of f , and

identify the region of incoherence and contraction (RIC).
Step 2: introduce leave-one-out sequences {X t,(l)} and {H t,(l)} for each l,

where {X t,(l)} (resp. {H t,(l)}) is independent of any sample involving
φl (resp. ψ l);

Step 3: establish the incoherence condition for {X t } and {H t } via induction.
Suppose the iterates satisfy the claimed conditions in the t th iteration:

(a) show, via restricted strong convexity, that the true iterates
(X t+1, H t+1) and the leave-one-out version (X t+1,(l), H t+1,(l))

are exceedingly close;
(b) use statistical independence to show that X t+1,(l) − X�

(resp. H t+1,(l) − H�) is incoherent w.r.t. φl (resp. ψ l); namely,
‖φH

l (X t+1,(l) − X�)‖2 and ‖ψH
l (H t+1,(l) − H�)‖2 are both well

controlled;
(c) combine the bounds to establish the desired incoherence condition

concerningmax
l

‖φH
l (X t+1−X�)‖2 andmax

l
‖ψH

l (H t+1−H�)‖2.

5.1 General Model

Consider the following problemwhere the samples are collected in a bilinear/quadratic
form as

y j = ψH
j H

�X�Hφ j , 1 ≤ j ≤ m, (39)

where the objects of interest H�, X� ∈ C
n×r orRn×r might be vectors or tall matrices

taking either real or complex values. The design vectors
{
ψ j

}
and {φ j } are in either

C
n or Rn , and can be either random or deterministic. This model is quite general and

entails all three examples in this paper as special cases:

• Phase retrieval: H� = X� = x� ∈ R
n , and ψ j = φ j = a j ;

• Matrix completion: H� = X� ∈ R
n×r and ψ j ,φ j ∈ {e1, · · · , en};

• Blind deconvolution: H� = h� ∈ C
K , X� = x� ∈ C

K , φ j = a j , and ψ j = b j .

For this setting, the empirical loss function is given by

f (Z) := f (H, X) = 1

m

m∑

j=1

∣∣∣ψH
j HXHφ j − y j

∣∣∣
2
,

where we denote Z = (H, X). To minimize f (Z), we proceed with vanilla gradient
descent

Zt+1 = Zt − η∇ f
(
Zt), ∀t ≥ 0

123

Foundations of Computational Mathematics

following a standard spectral initialization, where η is the step size. As a remark, for
complex-valued problems, the gradient (resp. Hessian) should be understood as the
Wirtinger gradient (resp. Hessian).

It is clear from (39) that Z� = (H�, X�) can only be recovered up to certain global
ambiguity. For clarity of presentation, we assume in this section that such ambiguity
has already been taken care of via proper global transformation.

5.2 Outline of the Recipe

We are now positioned to outline the general recipe, which entails the following steps.

• Step 1: characterizing local geometry in the RIC Our first step is to characterize a
region R—which we term as the region of incoherence and contraction (RIC)—
such that the Hessian matrix ∇2 f (Z) obeys strong convexity and smoothness,

0 ≺ α I � ∇2 f (Z) � β I, ∀Z ∈ R, (40)

or at least along certain directions (i.e., restricted strong convexity and smooth-
ness), where β/α scales slowly (or even remains bounded) with the problem size.
As revealed by optimization theory, this geometric property (40) immediately
implies linear convergence with the contraction rate 1 − O(α/β) for a properly
chosen step size η, as long as all iterates stay within the RIC.
A natural question then arises: What does the RIC R look like? As it turns out,
the RIC typically contains all points such that the �2 error ‖Z − Z�‖F is not too
large and

(incoherence) max
j

∥∥φH
j (X − X�)

∥∥
2 and max

j

∥∥ψH
j (H − H�)

∥∥
2

are well controlled. (41)

In the three examples, the above incoherence condition translates to:

– Phase retrieval: max j
∣
∣a�

j (x − x�)
∣
∣ is well controlled;

– Matrix completion:
∥∥X − X�

∥∥
2,∞ is well controlled;

– Blind deconvolution:max j
∣∣a�

j (x − x�)
∣∣ andmax j

∣∣b�
j (h − h�)

∣∣ arewell con-
trolled.

• Step 2: introducing the leave-one-out sequences To justify that no iterates leave
the RIC, we rely on the construction of auxiliary sequences. Specifically, for
each l, produce an auxiliary sequence {Zt,(l) = (X t,(l), H t,(l))} such that X t,(l)

(resp. H t,(l)) is independent of any sample involving φl (resp. ψ l). As an exam-
ple, suppose that the φl ’s and the ψ l ’s are independently and randomly generated.
Then for each l, one can consider a leave-one-out loss function

f (l)(Z) := 1

m

∑

j : j �=l

∣
∣∣ψH

j HXHφ j − y j
∣
∣∣
2

123

Foundations of Computational Mathematics

that discards the lth sample. One further generates {Zt,(l)} by running vanilla
gradient descent w.r.t. this auxiliary loss function, with a spectral initialization
that similarly discards the lth sample. Note that this procedure is only introduced
to facilitate analysis and is never implemented in practice.

• Step 3: establishing the incoherence condition We are now ready to establish the
incoherence condition with the assistance of the auxiliary sequences. Usually, the
proof proceeds by induction, where our goal is to show that the next iterate remains
within the RIC, given that the current one does.

– Step 3(a): proximity between the original and the leave-one-out iterates As
one can anticipate, {Zt } and {Zt,(l)} remain “glued” to each other along the
whole trajectory, since their constructions differ by only a single sample. In
fact, as long as the initial estimates stay sufficiently close, their gaps will never
explode. To intuitively see why, use the fact ∇ f (Zt) ≈ ∇ f (l)(Zt) to discover
that

Zt+1 − Zt+1,(l) = Zt − η∇ f (Zt) − (
Zt,(l) − η∇ f (l)(Zt,(l)))

≈ Zt − Zt,(l) − η∇2 f (Zt)
(
Zt − Zt,(l)),

which together with the strong convexity condition implies �2 contraction

∥
∥Zt+1 − Zt+1,(l)

∥
∥
F ≈

∥
∥∥
(
I − η∇2 f (Zt)

)(
Zt − Zt,(l))

∥
∥∥
F

≤ ∥
∥Zt − Zt,(l)

∥
∥
2.

Indeed, (restricted) strong convexity is crucial in controlling the size of leave-
one-out perturbations.

– Step 3(b): incoherence condition of the leave-one-out iterates The fact that
Zt+1 and Zt+1,(l) are exceedingly close motivates us to control the incoher-
ence of Zt+1,(l) − Z� instead, for 1 ≤ l ≤ m. By construction, X t+1,(l)

(resp. H t+1,(l)) is statistically independent of any sample involving the design
vector φl (resp. ψ l), a fact that typically leads to a more friendly analysis for
controlling

∥
∥φH

l

(
X t+1,(l) − X�

)∥∥
2 and

∥
∥ψH

l

(
H t+1,(l) − H�

)∥∥
2.

– Step 3(c): combining the boundsWith these results in place, apply the triangle
inequality to obtain

∥∥φH
l

(
X t+1 − X�

)∥∥
2 ≤ ∥∥φl‖2

∥∥X t+1 − X t+1,(l)
∥∥
F + ∥∥φH

l

(
X t+1,(l) − X�

)∥∥
2,

where the first term is controlled in Step 3(a) and the second term is controlled
in Step 3(b). The term

∥∥ψH
l

(
H t+1 − H�

)∥∥
2 can be bounded similarly. By

choosing the bounds properly, this establishes the incoherence condition for
all 1 ≤ l ≤ m as desired.

6 Analysis for Phase Retrieval

In this section, we instantiate the general recipe presented in Sect. 5 to phase retrieval
and prove Theorem 1. Similar to the section 7.1 in [18], we are going to use ηt =

123

Foundations of Computational Mathematics

c1/(log n · ‖x�‖22) instead of c1/(log n · ‖x0‖22) as the step size for analysis. This is
because with high probability, ‖x0‖2 and ‖x�‖2 are rather close in the relative sense.
Without loss of generality, we assume throughout this section that

∥∥x�
∥∥
2 = 1 and

dist(x0, x�) = ‖x0 − x�‖2 ≤ ‖x0 + x�‖2. (42)

In addition, the gradient and the Hessian of f (·) for this problem (see (15)) are given,
respectively, by

∇ f (x) = 1

m

m∑

j=1

[(
a�
j x
)2 − y j

] (
a�
j x
)
a j , (43)

∇2 f (x) = 1

m

m∑

j=1

[
3
(
a�
j x
)2 − y j

]
a j a�

j , (44)

which are useful throughout the proof.

6.1 Step 1: Characterizing Local Geometry in the RIC

6.1.1 Local Geometry

We start by characterizing the region that enjoys both strong convexity and the desired
level of smoothness. This is supplied in the following lemma, which plays a crucial
role in the subsequent analysis.

Lemma 1 (Restricted strong convexity and smoothness for phase retrieval) Fix any
sufficiently small constant C1 > 0 and any sufficiently large constant C2 > 0, and
suppose the sample complexity obeys m ≥ c0n log n for some sufficiently large con-
stant c0 > 0. With probability at least 1 − O(mn−10),

∇2 f (x) � (1/2) · In

holds simultaneously for all x ∈ R
n satisfying ‖x − x�‖2 ≤ 2C1, and

∇2 f (x) � (5C2 (10 + C2) log n) · In

holds simultaneously for all x ∈ R
n obeying

∥
∥x − x�

∥
∥
2 ≤ 2C1, (45a)

max
1≤ j≤m

∣∣∣a�
j

(
x − x�

)∣∣∣ ≤ C2
√
log n. (45b)

Proof See Appendix A.1. ��

123

Foundations of Computational Mathematics

In words, Lemma 1 reveals that the Hessian matrix is positive definite and (almost)
well conditioned, if one restricts attention to the set of points that are (i) not far away
from the truth (cf. (45a)) and (ii) incoherent with respect to the measurement vectors{
a j
}
1≤ j≤m (cf. (45b)).

6.1.2 Error Contraction

As we point out before, the nice local geometry enables �2 contraction, which we
formalize below.

Lemma 2 There exists an event that does not depend on t and has probability 1 −
O(mn−10), such that when it happens and xt obeys conditions (45), one has

∥∥∥xt+1 − x�
∥∥∥
2

≤ (1 − η/2)
∥∥xt − x�

∥∥
2 (46)

provided that the step size satisfies 0 < η ≤ 1/
[
5C2 (10 + C2) log n

]
.

Proof This proof applies the standard argumentwhen establishing the �2 error contrac-
tion of gradient descent for strongly convex and smooth functions. See Appendix A.2.

��
With the help of Lemma 2, we can turn the proof of Theorem 1 into ensuring that

the trajectory
{
xt
}
0≤t≤n lies in the RIC specified by (47).8 This is formally stated in

the next lemma.

Lemma 3 Suppose for all 0 ≤ t ≤ T0 := n, the trajectory
{
xt
}
falls within the region

of incoherence and contraction (termed the RIC), namely

∥∥xt − x�
∥∥
2 ≤ C1, (47a)

max
1≤l≤m

∣∣∣a�
l

(
xt − x�

)∣∣∣ ≤ C2
√
log n, (47b)

then the claims in Theorem 1 hold true. Here and throughout this section, C1,C2 > 0
are two absolute constants as specified in Lemma 1.

Proof See Appendix A.3. ��

6.2 Step 2: Introducing the Leave-One-Out Sequences

In comparison with the �2 error bound (47a) that captures the overall loss, the incoher-
ence hypothesis (47b)—which concerns sample-wise control of the empirical risk—is
more complicated to establish. This is partly due to the statistical dependence between
xt and the sampling vectors {al}. As described in the general recipe, the key idea is

8 Here, we deliberately change 2C1 in (45a) toC1 in the definition of the RIC (47a) to ensure the correctness
of the analysis.

123

Foundations of Computational Mathematics

the introduction of a leave-one-out version of theWF iterates, which removes a single
measurement from consideration.

To be precise, for each 1 ≤ l ≤ m, we define the leave-one-out empirical loss
function as

f (l)(x) := 1

4m

∑

j : j �=l

[(
a�
j x
)2 − y j

]2
, (48)

and the auxiliary trajectory
{
xt,(l)

}
t≥0 is constructed by running WF w.r.t. f (l)(x). In

addition, the spectral initialization x0,(l) is computed based on the rescaled leading
eigenvector of the leave-one-out data matrix

Y (l) := 1

m

∑

j : j �=l

y j a j a�
j . (49)

Clearly, the entire sequence
{
xt,(l)

}
t≥0 is independent of the lth sampling vector al .

This auxiliary procedure is formally described in Algorithm 4.

Algorithm 4 The lth leave-one-out sequence for phase retrieval
Input: {a j }1≤ j≤m, j �=l and {y j }1≤ j≤m, j �=l .

Spectral initialization: let λ1
(
Y (l)) and x̃0,(l) be the leading eigenvalue and eigenvector of

Y (l) = 1

m

∑

j : j �=l

y j a j a
�
j ,

respectively, and set

x0,(l) =

⎧
⎪⎪⎨

⎪⎪⎩

√
λ1

(
Y (l)

)
/3 x̃0,(l), if

∥∥x̃0,(l) − x�
∥∥
2 ≤ ∥∥x̃0,(l) + x�

∥∥
2,

−
√

λ1

(
Y (l)

)
/3 x̃0,(l), else.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1,(l) = xt,(l) − ηt∇ f (l)(xt,(l)
)
. (50)

6.3 Step 3: Establishing the Incoherence Condition by Induction

As revealed by Lemma 3, it suffices to prove that the iterates {xt }0≤t≤T0 satisfies (47)
with high probability. Our proof will be inductive in nature. For the sake of clarity, we
list all the induction hypotheses:

∥∥xt − x�
∥∥
2 ≤ C1, (51a)

123

Foundations of Computational Mathematics

max
1≤l≤m

∥∥xt − xt,(l)
∥∥
2 ≤ C3

√
log n

n
(51b)

max
1≤ j≤m

∣∣∣a�
j

(
xt − x�

)∣∣∣ ≤ C2
√
log n. (51c)

HereC3 > 0 is some universal constant. For any t ≥ 0, define Et to be the event where
the conditions in (51) hold for the t th iteration. According to Lemma 2, there exists
some event E with probability 1 − O(mn−10) such that on Et ∩ E one has

∥∥∥xt+1 − x�
∥∥∥
2

≤ C1. (52)

This subsection is devoted to establishing (51b) and (51c) for the (t+1)th iteration,
assuming that (51) holds true up to the t th iteration. We defer the justification of the
base case (i.e., initialization at t = 0) to Sect. 6.4.

• Step 3(a): proximity between the original and the leave-one-out iterates The leave-
one-out sequence {xt,(l)} behaves similarly to the true WF iterates {xt } while
maintaining statistical independence with al , a key fact that allows us to control
the incoherence of lth leave-one-out sequence w.r.t. al . We will formally quantify
the gap between xt+1 and xt+1,(l) in the following lemma, which establishes the
induction in (51b).

Lemma 4 Suppose that the sample size obeys m ≥ Cn log n for some sufficiently large
constant C > 0 and that the step size obeys 0 < η < 1/[5C2(10 + C2) log n]. Then
on some event Et+1,1 ⊆ Et obeying P(Et ∩ Ec

t+1,1) = O(mn−10), one has

max
1≤l≤m

∥∥
∥xt+1 − xt+1,(l)

∥∥
∥
2

≤ C3

√
log n

n
. (53)

Proof The proof relies heavily on the restricted strong convexity (see Lemma 1) and
is deferred to Appendix A.4. ��
• Step 3(b): incoherence of the leave-one-out iterates By construction, xt+1,(l) is
statistically independent of the sampling vector al . One can thus invoke the stan-
dard Gaussian concentration results and the union bound to derive that on an event
Et+1,2 ⊆ Et obeying P(Et ∩ Ec

t+1,2) = O(mn−10),

max
1≤l≤m

∣∣∣a�
l

(
xt+1,(l) − x�

)∣∣∣ ≤ 5
√
log n

∥∥xt+1,(l) − x�
∥∥
2

(i)≤ 5
√
log n

(∥∥xt+1,(l) − xt+1
∥∥
2 +

∥∥∥xt+1 − x�
∥∥∥
2

)

(ii)≤ 5
√
log n

(

C3

√
log n

n
+ C1

)

≤ C4
√
log n (54)

123

Foundations of Computational Mathematics

holds for some constant C4 ≥ 6C1 > 0 and n sufficiently large. Here, (i) comes
from the triangle inequality and (ii) arises from the proximity bound (53) and the
condition (52).

• Step 3(c): combining the bounds We are now prepared to establish (51c) for the
(t + 1)th iteration. Specifically,

max
1≤l≤m

∣
∣
∣a�

l

(
xt+1 − x�

)∣∣
∣ ≤ max

1≤l≤m

∣
∣
∣a�

l
(
xt+1 − xt+1,(l))

∣
∣
∣+ max

1≤l≤m

∣
∣
∣a�

l
(
xt+1,(l) − x�

)∣∣
∣

(i)≤ max
1≤l≤m

‖al‖2
∥∥xt+1 − xt+1,(l)∥∥

2 + C4
√
log n

(ii)≤ √
6n · C3

√
log n

n
+ C4

√
log n ≤ C2

√
log n, (55)

where (i) follows from the Cauchy–Schwarz inequality and (54), the inequality
(ii) is a consequence of (53) and (98), and the last inequality holds as long as
C2/(C3 +C4) is sufficiently large. From the deduction above we easily get P(Et ∩
Ec
t+1) = O(mn−10).

Using mathematical induction and the union bound, we establish (51) for all t ≤
T0 = n with high probability. This in turn concludes the proof of Theorem 1, as long
as the hypotheses are valid for the base case.

6.4 The Base Case: Spectral Initialization

In the end, we return to verify the induction hypotheses for the base case (t = 0),
i.e., the spectral initialization obeys (51). The following lemma justifies (51a) by
choosing δ sufficiently small.

Lemma 5 Fix any small constant δ > 0, and suppose m > c0n log n for some large
constant c0 > 0. Consider the two vectors x0 and x̃0 as defined in Algorithm 1, and
suppose without loss of generality that (42) holds. Then with probability exceeding
1 − O(n−10), one has

‖Y − E [Y]‖ ≤ δ, (56)

‖x0 − x�‖2 ≤ 2δ and
∥
∥x̃0 − x�

∥
∥
2 ≤ √

2δ. (57)

Proof This result follows directly from the Davis–Kahan sin� theorem. See
Appendix A.5. ��

We then move on to justifying (51b), the proximity between the original and leave-
one-out iterates for t = 0.

Lemma 6 Suppose m > c0n log n for some large constant c0 > 0. Then with proba-
bility at least 1 − O(mn−10), one has

max
1≤l≤m

∥∥x0 − x0,(l)
∥∥
2 ≤ C3

√
log n

n
. (58)

123

Foundations of Computational Mathematics

Proof This is also a consequenceof theDavis–Kahan sin� theorem.SeeAppendixA.6.
��

The final claim (51c) can be proved using the same argument as in deriving (55)
and hence is omitted.

7 Analysis for Matrix Completion

In this section, we instantiate the general recipe presented in Sect. 5 to matrix com-
pletion and prove Theorem 2. Before continuing, we first gather a few useful facts
regarding the loss function in (23). The gradient of it is given by

∇ f (X) = 1

p
P�

[
XX� − (

M� + E
)]

X . (59)

We define the expected gradient (with respect to the sampling set �) to be

∇F (X) =
[
XX� − (

M� + E
)]

X

and also the (expected) gradient without noise to be

∇ fclean (X) = 1

p
P�

(
XX� − M�

)
X and ∇Fclean (X) =

(
XX� − M�

)
X .

(60)

In addition, we need the Hessian ∇2 fclean(X), which is represented by an nr × nr
matrix. Simple calculations reveal that for any V ∈ R

n×r ,

vec (V)� ∇2 fclean (X) vec (V) = 1

2p

∥∥∥P�

(
VX� + XV�)

∥∥∥
2

F

+ 1

p

〈
P�

(
XX� − M�

)
, VV�〉 , (61)

where vec(V) ∈ R
nr denotes the vectorization of V .

7.1 Step 1: Characterizing Local Geometry in the RIC

7.1.1 Local Geometry

The first step is to characterize the region where the empirical loss function enjoys
restricted strong convexity and smoothness in an appropriate sense. This is formally
stated in the following lemma.

Lemma 7 (Restricted strong convexity and smoothness for matrix completion) Sup-
pose that the sample size obeys n2 p ≥ Cκ2μrn log n for some sufficiently large

123

Foundations of Computational Mathematics

constant C > 0. Then with probability at least 1−O
(
n−10

)
, the Hessian∇2 fclean(X)

as defined in (61) obeys

vec (V)� ∇2 fclean (X) vec (V) ≥ σmin

2
‖V‖2F and

∥
∥∥∇2 fclean (X)

∥
∥∥ ≤ 5

2
σmax

(62)

for all X and V = YHY − Z, with HY := argminR∈Or×r ‖Y R − Z‖F, satisfying:
∥∥X − X�

∥∥
2,∞ ≤ ε

∥∥X�
∥∥
2,∞ , (63a)

‖Z − X�‖ ≤ δ‖X�‖, (63b)

where ε � 1/
√

κ3μr log2 n and δ � 1/κ .

Proof See Appendix B.1. ��
Lemma 7 reveals that the Hessian matrix is well conditioned in a neighborhood

close to X� that remains incoherent measured in the �2/�∞ norm (cf. (63a)), and
along directions that point toward points which are not far away from the truth in the
spectral norm (cf. (63b)).

Remark 5 The second condition (63b) is characterized using the spectral norm ‖ · ‖,
while in previous works this is typically presented in the Frobenius norm ‖ · ‖F. It is
also worth noting that the Hessian matrix—even in the infinite-sample and noiseless
case—is rank-deficient and cannot be positive definite.As a result,we resort to the form
of strong convexity by restricting attention to certain directions (see the conditions on
V).

7.1.2 Error Contraction

Our goal is to demonstrate the error bounds (28) measured in three different norms.
Notably, as long as the iterates satisfy (28) at the t th iteration, then ‖X t Ĥ

t − X�‖2,∞
is sufficiently small. Under our sample complexity assumption, X t Ĥ

t
satisfies the

�2/�∞ condition (63a) required in Lemma 7. Consequently, we can invoke Lemma 7
to arrive at the following error contraction result.

Lemma 8 (Contractionw.r.t. theFrobenius norm)Suppose that n2 p ≥ Cκ3μ3r3n log3

n for some sufficiently large constant C > 0, and the noise satisfies (27). There exists
an event that does not depend on t and has probability 1 − O(n−10), such that when
it happens and (28a), (28b) hold for the tth iteration, one has

∥∥X t+1 Ĥ
t+1 − X�

∥∥
F ≤ C4ρ

t+1μr
1√
np

∥∥X�
∥∥
F + C1

σ

σmin

√
n

p

∥∥X�
∥∥
F

provided that 0 < η ≤ 2/(25κσmax), 1 − (σmin/4) · η ≤ ρ < 1, and C1 is sufficiently
large.

123

Foundations of Computational Mathematics

Proof The proof is built upon Lemma 7. See Appendix B.2. ��
Further, if the current iterate satisfies all three conditions in (28), then we can derive

a stronger sense of error contraction, namely contraction in terms of the spectral norm.

Lemma 9 (Contraction w.r.t. the spectral norm) Suppose n2 p ≥ Cκ3μ3r3n log3 n for
some sufficiently large constant C > 0, and the noise satisfies (27). There exists an
event that does not depend on t and has probability 1 − O(n−10), such that when it
happens and (28) holds for the tth iteration, one has

∥∥X t+1 Ĥ
t+1 − X�

∥∥ ≤ C9ρ
t+1μr

1√
np

∥∥X�
∥∥+ C10

σ

σmin

√
n

p

∥∥X�
∥∥ (64)

provided that 0 < η ≤ 1/ (2σmax) and 1 − (σmin/3) · η ≤ ρ < 1.

Proof The key observation is this: the iterate that proceeds according to the population-
level gradient reduces the error w.r.t. ‖ · ‖, namely

∥∥X t Ĥ
t − η∇Fclean

(
X t Ĥ

t)− X�
∥∥ <

∥∥X t Ĥ
t − X�

∥∥,

as long as X t Ĥ
t
is sufficiently close to the truth. Notably, the orthonormal matrix Ĥ

t

is still chosen to be the one that minimizes the ‖·‖F distance (as opposed to ‖·‖), which
yields a symmetry property X��X t Ĥ

t = (
X t Ĥ

t)�X�, crucial for our analysis. See
Appendix B.3 for details. ��

7.2 Step 2: Introducing the Leave-One-Out Sequences

In order to establish the incoherence properties (28b) for the entire trajectory, which
is difficult to deal with directly due to the complicated statistical dependence, we
introduce a collection of leave-one-out versions of

{
X t
}
t≥0, denoted by

{
X t,(l)

}
t≥0

for each1 ≤ l ≤ n. Specifically,
{
X t,(l)

}
t≥0 is the iterates of gradient descent operating

on the auxiliary loss function

f (l) (X) := 1

4p

∥
∥∥P�−l

[
XX� − (

M� + E
)]∥∥∥

2

F
+ 1

4

∥
∥∥Pl

(
XX� − M�

)∥∥∥
2

F
. (65)

Here, P�l (resp. P�−l and Pl) represents the orthogonal projection onto the subspace
of matrices which vanish outside of the index set �l := {(i, j) ∈ � | i = l or j = l}
(resp. �−l := {(i, j) ∈ � | i �= l, j �= l} and {(i, j) | i = l or j = l}); that is, for any
matrix M,

[
P�l (M)

]
i, j =

{
Mi, j , if (i = l or j = l) and (i, j) ∈ �,

0, else,
(66)

[
P�−l (M)

]
i, j =

{
Mi, j , if i �= l and j �= l and (i, j) ∈ �

0, else
and

123

Foundations of Computational Mathematics

[Pl (M)]i, j =
{
0, if i �= l and j �= l,

Mi, j , if i = l or j = l.
(67)

The gradient of the leave-one-out loss function (65) is given by

∇ f (l) (X) = 1

p
P�−l

[
XX� − (

M� + E
)]

X + Pl

(
XX� − M�

)
X . (68)

The full algorithm to obtain the leave-one-out sequence {X t,(l)}t≥0 (including spectral
initialization) is summarized in Algorithm 5.

Algorithm 5 The lth leave-one-out sequence for matrix completion
Input: Y = [

Yi, j
]
1≤i, j≤n , M�·,l , M�

l,·, r , p.
Spectral initialization: Let U0,(l)�(l)U0,(l)� be the top-r eigendecomposition of

M(l) := 1

p
P�−l (Y) + Pl

(
M�
) = 1

p
P�−l

(
M� + E

)+ Pl
(
M�
)

with P
�−l and Pl defined in (67), and set X0,(l) = U0,(l)(�(l))1/2.

Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

X t+1,(l) = X t,(l) − ηt∇ f (l)(X t,(l)). (69)

Remark 6 Rather than simply dropping all samples in the lth row/column, we replace
the lth row/column with their respective population means. In other words, the leave-
one-out gradient forms an unbiased surrogate for the true gradient,which is particularly
important in ensuring high estimation accuracy.

7.3 Step 3: Establishing the Incoherence Condition by Induction

Wewill continue the proof of Theorem 2 in an inductivemanner. As seen in Sect. 7.1.2,
the induction hypotheses (28a) and (28c) hold for the (t + 1)th iteration as long as
(28) holds at the t th iteration. Therefore, we are left with proving the incoherence
hypothesis (28b) for all 0 ≤ t ≤ T = O(n5). For clarity of analysis, it is crucial to
maintain a list of induction hypotheses, which includes a few more hypotheses that
complement (28), and is given below.

∥∥X t Ĥ
t − X�

∥∥
F ≤

(
C4ρ

tμr
1√
np

+ C1
σ

σmin

√
n

p

)∥∥X�
∥∥
F , (70a)

∥∥X t Ĥ
t − X�

∥∥
2,∞ ≤

(

C5ρ
tμr

√
log n

np
+ C8

σ

σmin

√
n log n

p

)
∥∥X�

∥∥
2,∞ ,

(70b)

123

Foundations of Computational Mathematics

∥
∥X t Ĥ

t − X�
∥
∥ ≤

(
C9ρ

tμr
1√
np

+ C10
σ

σmin

√
n

p

)∥
∥X�

∥
∥ , (70c)

max
1≤l≤n

∥
∥X t Ĥ

t − X t,(l)Rt,(l)
∥
∥
F ≤

(

C3ρ
tμr

√
log n

np
+ C7

σ

σmin

√
n log n

p

)
∥
∥X�

∥
∥
2,∞ ,

(70d)

max
1≤l≤n

∥
∥(X t,(l) Ĥ

t,(l) − X�
)
l,·
∥
∥
2 ≤

(

C2ρ
tμr

1√
np

+ C6
σ

σmin

√
n log n

p

)
∥
∥X�

∥
∥
2,∞ (70e)

hold for some absolute constants 0 < ρ < 1 and C1, · · · ,C10 > 0. Here, Ĥ
t,(l)

and
Rt,(l) are orthonormal matrices defined by

Ĥ
t,(l) := arg min

R∈Or×r

∥∥
∥X t,(l)R − X�

∥∥
∥
F
, (71)

Rt,(l) := arg min
R∈Or×r

∥∥X t,(l)R − X t Ĥ
t∥∥

F. (72)

Clearly, the first three hypotheses (70a)–(70c) constitute the conclusion of Theorem 2,
i.e., (28). The last two hypotheses (70d) and (70e) are auxiliary properties connecting
the true iterates and the auxiliary leave-one-out sequences. Moreover, we summarize
below several immediate consequences of (70), which will be useful throughout.

Lemma 10 Suppose n2 p ≥ Cκ3μ2r2n log n for some sufficiently large constant C >
0, and the noise satisfies (27). Under hypotheses (70), one has
∥∥
∥X t Ĥ t − X t,(l) Ĥ t,(l)

∥∥
∥
F

≤ 5κ
∥∥
∥X t Ĥ t − X t,(l)Rt,(l)

∥∥
∥
F

, (73a)

∥∥X t,(l) Ĥ t,(l) − X�
∥∥
F ≤

∥∥
∥X t,(l)Rt,(l) − X�

∥∥
∥
F

≤
{
2C4ρ

tμr
1√
np

+ 2C1
σ

σmin

√
n

p

}∥∥X�
∥∥
F ,

(73b)

∥∥X t,(l)Rt,(l) − X�
∥∥
2,∞ ≤

{

(C3 + C5) ρtμr

√
log n

np
+ (C8 + C7)

σ

σmin

√
n log n

p

}
∥∥X�

∥∥
2,∞ ,

(73c)
∥
∥X t,(l) Ĥ t,(l) − X�

∥
∥ ≤

{
2C9ρ

tμr
1√
np

+ 2C10
σ

σmin

√
n

p

}∥
∥X�

∥
∥ . (73d)

In particular, (73a) follows from hypotheses (70c) and (70d).

Proof See Appendix B.4. ��
In the sequel, we follow the general recipe outlined in Sect. 5 to establish the

induction hypotheses.We only need to establish (70b), (70d), and (70e) for the (t+1)th
iteration, since (70a) and (70c) are established in Sect. 7.1.2. Specifically, we resort
to the leave-one-out iterates by showing that: first, the true and the auxiliary iterates
remain exceedingly close throughout; second, the lth leave-one-out sequence stays
incoherent with el due to statistical independence.

• Step3(a): proximity between theoriginal and the leave-one-out iteratesWedemon-
strate that X t+1 is well approximated by X t+1,(l), up to proper orthonormal

123

Foundations of Computational Mathematics

transforms. This is precisely the induction hypothesis (70d) for the (t + 1)th iter-
ation.

Lemma 11 Suppose the sample complexity satisfies n2 p ≥ Cκ4μ3r3n log3 n for some
sufficiently large constant C > 0, and the noise satisfies (27). Let Et be the event where
the hypotheses in (70) hold for the tth iteration. Then on some event Et+1,1 ⊆ Et
obeying P(Et ∩ Ec

t+1,1) = O(n−10), we have

∥
∥
∥X t+1 Ĥ

t+1 − X t+1,(l)Rt+1,(l)
∥
∥
∥
F

≤ C3ρ
t+1μr

√
log n

np

∥
∥X�

∥
∥
2,∞

+C7
σ

σmin

√
n log n

p

∥
∥X�

∥
∥
2,∞ (74)

provided that 0 < η ≤ 2/(25κσmax), 1 − (σmin/5) · η ≤ ρ < 1, and C7 > 0 is
sufficiently large.

Proof The fact that this difference is well controlled relies heavily on the benign
geometric property of the Hessian revealed by Lemma 7. Two important remarks
are in order: (1) both points X t Ĥ

t
and X t,(l)Rt,(l) satisfy (63a); (2) the difference

X t Ĥ
t − X t,(l)Rt,(l) forms a valid direction for restricted strong convexity. These two

properties together allow us to invoke Lemma 7. See Appendix B.5. ��
• Step 3(b): incoherence of the leave-one-out iterates Given that X t+1,(l) is suffi-
ciently close to X t+1, we turn our attention to establishing the incoherence of this
surrogate X t+1,(l) w.r.t. el . This amounts to proving the induction hypothesis (70e)
for the (t + 1)th iteration.

Lemma 12 Suppose the sample complexity meets n2 p ≥ Cκ3μ3r3n log3 n for some
sufficiently large constant C > 0, and the noise satisfies (27). Let Et be the event
where the hypotheses in (70) hold for the tth iteration. Then on some event Et+1,2 ⊆ Et
obeying P(Et ∩ Ec

t+1,2) = O(n−10), we have

∥
∥∥
(
X t+1,(l) Ĥ

t+1,(l) − X�
)
l,·
∥
∥∥
2

≤ C2ρ
t+1μr

1√
np

∥∥X�
∥∥
2,∞ + C6

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞
(75)

so long as 0 < η ≤ 1/σmax, 1 − (σmin/3) · η ≤ ρ < 1, C2 � κC9, and C6 �
κC10/

√
log n.

Proof The key observation is that X t+1,(l) is statistically independent from any sample
in the lth row/column of the matrix. Since there are an order of np samples in each
row/column,weobtain enough information that helps establish the desired incoherence
property. See Appendix B.6. ��
• Step 3(c): combining the bounds Inequalities (70d) and (70e) taken collectively
allow us to establish the induction hypothesis (70b). Specifically, for every 1 ≤
l ≤ n, write

123

Foundations of Computational Mathematics

(
X t+1 Ĥ

t+1 − X�
)
l,· = (X t+1 Ĥ

t+1 − X t+1,(l) Ĥ
t+1,(l))

l,·
+ (

X t+1,(l) Ĥ
t+1,(l) − X�

)
l,·,

and the triangle inequality gives

∥
∥(X t+1 Ĥ

t+1 − X�
)
l,·
∥
∥
2 ≤ ∥

∥X t+1 Ĥ
t+1 − X t+1,(l) Ĥ

t+1,(l)∥∥
F

+ ∥∥(X t+1,(l) Ĥ
t+1,(l) − X�

)
l,·
∥∥
2. (76)

The second term has already been bounded by (75). Since we have established the
induction hypotheses (70c) and (70d) for the (t + 1)th iteration, the first term can
be bounded by (73a) for the (t + 1)th iteration, i.e.,

∥∥∥X t+1 Ĥ
t+1 − X t+1,(l) Ĥ

t+1,(l)
∥∥∥
F

≤ 5κ
∥∥∥X t+1 Ĥ

t+1 − X t+1,(l)Rt+1,(l)
∥∥∥
F
.

Plugging the above inequality, (74), and (75) into (76), we have

∥∥
∥X t+1 Ĥ

t+1 − X�
∥∥
∥
2,∞

≤ 5κ

(

C3ρ
t+1μr

√
log n

np

∥∥X�
∥∥
2,∞ + C7

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞

)

+ C2ρ
t+1μr

1√
np

∥∥X�
∥∥
2,∞ + C6

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞

≤ C5ρ
t+1μr

√
log n

np

∥∥X�
∥∥
2,∞ + C8

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞

as long asC5/(κC3+C2) andC8/(κC7+C6) are sufficiently large. This establishes
the induction hypothesis (70b). From the deduction above, we see Et ∩ Ec

t+1 =
O(n−10) and thus finish the proof.

7.4 The Base Case: Spectral Initialization

Finally, we return to check the base case; namely, we aim to show that the spectral
initialization satisfies the induction hypotheses (70a)–(70e) for t = 0. This is accom-
plished via the following lemma.

Lemma 13 Suppose the sample size obeys n2 p ≥ Cμ2r2n log n for some sufficiently
large constant C > 0, the noise satisfies (27), and κ = σmax/σmin
 1. Then with
probability at least 1 − O

(
n−10

)
, the claims in (70a)–(70e) hold simultaneously for

t = 0.

Proof This follows by invoking the Davis–Kahan sin� theorem [39] as well as the
entrywise eigenvector perturbation analysis in [1].We defer the proof toAppendixB.7.

��

123

Foundations of Computational Mathematics

8 Analysis for Blind Deconvolution

In this section, we instantiate the general recipe presented in Sect. 5 to blind decon-
volution and prove Theorem 3. Without loss of generality, we assume throughout that∥∥h�

∥∥
2 = ‖x�‖2 = 1.

Before presenting the analysis, we first gather some simple facts about the empirical
loss function in (32). Recall the definition of z in (33), and for notational simplicity,
we write f (z) = f (h, x). Since z is complex-valued, we need to resort to Wirtinger
calculus; see [18, Section 6] for a brief introduction. The Wirtinger gradient of (32)
with respect to h and x are given, respectively, by

∇h f (z) = ∇h f (h, x) =
m∑

j=1

(
bHj hx

Ha j − y j
)
b j aHj x; (77)

∇x f (z) = ∇x f (h, x) =
m∑

j=1

(bHj hx
Ha j − y j)a j bHj h. (78)

It is worth noting that the formal Wirtinger gradient contains ∇h f (h, x) and
∇x f (h, x) as well. Nevertheless, since f (h, x) is a real-valued function, the fol-
lowing identities always hold

∇h f (h, x) = ∇h f (h, x) and ∇x f (h, x) = ∇x f (h, x).

In light of these observations, one often omits the gradient with respect to the conju-
gates; correspondingly, the gradient update rule (35) can be written as

ht+1 = ht − η

‖xt‖22

m∑

j=1

(
bHj h

t xtHa j − y j
)
b j aHj x

t , (79a)

xt+1 = xt − η
∥
∥ht

∥
∥2
2

m∑

j=1

(bHj h
t xtHa j − y j)a j bHj h

t . (79b)

We can also compute the Wirtinger Hessian of f (z) as follows,

∇2 f (z) =
[

A B
BH A

]
, (80)

where

A =
⎡

⎢
⎣

∑m
j=1

∣∣
∣aHj x

∣∣
∣
2
b j bHj

∑m
j=1

(
bHj hx

Ha j −y j
)
b j aHj

∑m
j=1

[(
bHj hx

Ha j −y j
)
b j aHj

]H ∑m
j=1

∣∣∣bHj h
∣∣∣
2
a j aHj

⎤

⎥
⎦ ∈ C

2K×2K ;

B =
⎡

⎢
⎣

0
∑m

j=1 b j bHj h
(
a j aHj x

)�

∑m
j=1 a j aHj x

(
b j bHj h

)�
0

⎤

⎥
⎦ ∈ C

2K×2K .

123

Foundations of Computational Mathematics

Last but not least, we say (h1, x1) is aligned with (h2, x2), if the following holds,

‖h1 − h2‖22 + ‖x1 − x2‖22 = min
α∈C

{∥∥∥
∥
1

α
h1 − h2

∥∥∥
∥

2

2
+ ‖αx1 − x2‖22

}

.

To simplify notations, define z̃t as

z̃t =
[
h̃
t

x̃t

]
:=
[1

αt h
t

αt xt

]
(81)

with the alignment parameter αt given in (38). Then we can see that z̃t is aligned with
z� and

dist
(
zt , z�

) = dist
(
z̃t , z�

) = ∥∥̃zt − z�
∥∥
2 .

8.1 Step 1: Characterizing Local Geometry in the RIC

8.1.1 Local Geometry

The first step is to characterize the region of incoherence and contraction (RIC),
where the empirical loss function enjoys restricted strong convexity and smoothness
properties. To this end, we have the following lemma.

Lemma 14 (Restricted strong convexity and smoothness for blind deconvolution) Let
c > 0 be a sufficiently small constant and

δ = c/ log2 m.

Suppose the sample size satisfies m ≥ c0μ2K log9m for some sufficiently large con-
stant c0 > 0. Then with probability 1−O

(
m−10 + e−K logm

)
, theWirtinger Hessian

∇2 f (z) obeys

uH
[
D∇2 f (z) + ∇2 f (z) D

]
u ≥ (1/4) · ‖u‖22 and

∥
∥∥∇2 f (z)

∥
∥∥ ≤ 3

simultaneously for all

z =
[
h
x

]
and u =

⎡

⎢⎢
⎣

h1 − h2
x1 − x2
h1 − h2
x1 − x2

⎤

⎥⎥
⎦ and D =

⎡

⎢⎢
⎣

γ1 IK
γ2 IK

γ1 IK
γ2 IK

⎤

⎥⎥
⎦ ,

where z satisfies

max
{∥∥h − h�

∥∥
2 ,
∥∥x − x�

∥∥
2

} ≤ δ; (82a)

123

Foundations of Computational Mathematics

max
1≤ j≤m

∣∣∣aHj
(
x − x�

)∣∣∣ ≤ 2C3
1

log3/2 m
; (82b)

max
1≤ j≤m

∣
∣∣bHj h

∣
∣∣ ≤ 2C4

μ√
m

log2 m; (82c)

(h1, x1) is aligned with (h2, x2), and they satisfy

max
{∥∥h1 − h�

∥∥
2 ,
∥∥h2 − h�

∥∥
2 ,
∥∥x1 − x�

∥∥
2 ,
∥∥x2 − x�

∥∥
2

} ≤ δ; (83)

and finally, D satisfies for γ1, γ2 ∈ R,

max {|γ1 − 1| , |γ2 − 1|} ≤ δ. (84)

Here, C3,C4 > 0 are numerical constants.

Proof See Appendix C.1. ��
Lemma 14 characterizes the restricted strong convexity and smoothness of the loss

function used in blind deconvolution. To the best of our knowledge, this provides the
first characterization regarding geometric properties of the Hessian matrix for blind
deconvolution. A few interpretations are in order.

• Conditions (82) specify the region of incoherence and contraction (RIC). In par-
ticular, (82a) specifies a neighborhood that is close to the ground truth in �2 norm,
and (82b) and (82c) specify the incoherence region with respect to the sensing
vectors {a j } and {b j }, respectively.

• Similar to matrix completion, the Hessian matrix is rank-deficient even at the
population level. Consequently, we resort to a restricted form of strong convexity
by focusing on certain directions.More specifically, these directions can be viewed
as the difference between two pre-aligned points that are not far from the truth,
which is characterized by (83).

• Finally, the diagonal matrix D accounts for scaling factors that are not too far from
1 (see (84)), which allows us to account for different step sizes employed for h
and x.

8.1.2 Error Contraction

The restricted strong convexity and smoothness allow us to establish the contraction
of the error measured in terms of dist(·, z�) as defined in (34) as long as the iterates
stay in the RIC.

Lemma 15 Suppose the number of measurements satisfies m ≥ Cμ2K log9m for
some sufficiently large constant C > 0, and the step size η > 0 is some sufficiently
small constant. There exists an event that does not depend on t and has probability
1 − O

(
m−10 + e−K logm

)
, such that when it happens and

dist
(
zt , z�

) ≤ ξ, (85a)

123

Foundations of Computational Mathematics

max
1≤ j≤m

∣∣∣aHj
(
x̃t − x�

)∣∣∣ ≤ C3
1

log1.5 m
, (85b)

max
1≤ j≤m

∣∣∣bHj h̃
t
∣∣∣ ≤ C4

μ√
m

log2 m (85c)

hold for some constants C3,C4 > 0, one has

dist
(
zt+1, z�

)
≤ (1 − η/16) dist

(
zt , z�

)
.

Here, h̃
t
and x̃t are defined in (81), and ξ � 1/ log2 m.

Proof See Appendix C.2. ��
As a result, if zt satisfies condition (85) for all 0 ≤ t ≤ T , then

dist
(
zt , z�

) ≤ ρ dist
(
zt−1, z�

)
≤ ρtdist

(
z0, z�

)
≤ ρt c1, 0 < t ≤ T ,

where ρ := 1 − η/16. Furthermore, similar to the case of phase retrieval
(i.e., Lemma 3), as soon as we demonstrate that conditions (85) hold for all 0 ≤ t ≤ m,
then Theorem 3 holds true. The proof of this claim is exactly the same as for Lemma 3
and is thus omitted for conciseness. In what follows, we focus on establishing (85) for
all 0 ≤ t ≤ m.

Before concluding this subsection, we make note of another important result that
concerns the alignment parameter αt , which will be useful in the subsequent analysis.
Specifically, the alignment parameter sequence {αt } converges linearly to a constant
whose magnitude is fairly close to 1, as long as the two initial vectors h0 and x0 have
similar �2 norms and are close to the truth. Given that αt determines the global scaling
of the iterates, this reveals rapid convergence of both ‖ht‖2 and ‖xt‖2, which explains
why there is no need to impose extra terms to regularize the �2 norm as employed in
[58,76].

Lemma 16 When m > 1 is sufficiently large, the following two claims hold true.

• If
∣∣|αt | − 1

∣∣ ≤ 1/2 and dist(zt , z�) ≤ C1/ log2 m, then

∣∣∣∣
αt+1

αt
− 1

∣∣∣∣ ≤ c dist(zt , z�) ≤ cC1

log2 m

for some absolute constant c > 0;
• If

∣∣|α0| − 1
∣∣ ≤ 1/4 and dist(zs, z�) ≤ C1(1 − η/16)s/ log2 m for all 0 ≤ s ≤ t ,

then one has

∣∣|αs+1| − 1
∣∣ ≤ 1/2, 0 ≤ s ≤ t .

Proof See Appendix C.2. ��
The initial condition

∣∣|α0| − 1
∣∣ < 1/4 will be guaranteed to hold with high proba-

bility by Lemma 19.

123

Foundations of Computational Mathematics

8.2 Step 2: Introducing the Leave-One-Out Sequences

As demonstrated by the assumptions in Lemma 15, the key is to show that the whole
trajectory lies in the region specified by (85a)–(85c). Once again, the difficulty lies in
the statistical dependency between the iterates

{
zt
}
and themeasurement vectors

{
a j
}
.

We follow the general recipe and introduce the leave-one-out sequences, denoted by{
ht,(l), xt,(l)

}

t≥0
for each 1 ≤ l ≤ m. Specifically,

{
ht,(l), xt,(l)

}

t≥0
is the gradient

sequence operating on the loss function

f (l) (h, x) :=
∑

j : j �=l

∣∣∣bHj
(
hxH − h�x�H

)
a j

∣∣∣
2
. (86)

Thewhole sequence is constructed by running gradient descent with spectral initializa-
tion on the leave-one-out loss (86). The precise description is supplied in Algorithm 6.

For notational simplicity, we denote zt,(l) =
[
ht,(l)

xt,(l)

]
and use f (zt,(l)) =

f (ht,(l), xt,(l)) interchangeably. Define similarly the alignment parameters

αt,(l) := argmin
α∈C

∥∥
∥∥
1

α
ht,(l) − h�

∥∥
∥∥

2

2
+ ∥
∥αxt,(l) − x�

∥
∥2
2, (87)

and denote z̃t,(l) =
[
h̃
t,(l)

x̃t,(l)

]

where

h̃
t,(l) = 1

αt,(l)
ht,(l) and x̃t,(l) = αt,(l)xt,(l). (88)

Algorithm 6 The lth leave-one-out sequence for blind deconvolution
Input:

{
a j
}
1≤ j≤m, j �=l ,

{
b j
}
1≤ j≤m, j �=l and

{
y j
}
1≤ j≤m, j �=l .

Spectral initialization: Letσ1(M(l)), ȟ
0,(l)

and x̌0,(l) be the leading singular value, left and right singular
vectors of

M(l) :=
∑

j : j �=l

y j b j a
H
j ,

respectively. Set h0,(l) =
√

σ1(M(l)) ȟ
0,(l)

and x0,(l) =
√

σ1(M(l)) x̌0,(l).
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

[
ht+1,(l)

xt+1,(l)

]
=
[
ht,(l)

xt,(l)

]
− η

⎡

⎣
1

‖xt,(l)‖22
∇h f (l)(ht,(l), xt,(l)

)

1
‖ht,(l)‖22

∇x f (l)(ht,(l), xt,(l)
)

⎤

⎦ . (89)

123

Foundations of Computational Mathematics

8.3 Step 3: Establishing the Incoherence Condition by Induction

As usual, we continue the proof in an inductive manner. For clarity of presentation,
we list below the set of induction hypotheses underlying our analysis:

dist
(
zt , z�

) ≤ C1
1

log2 m
, (90a)

max
1≤l≤m

dist
(
zt,(l), z̃t

) ≤ C2
μ√
m

√
μ2K log9 m

m
, (90b)

max
1≤l≤m

∣∣aHl
(
x̃t − x�

)∣∣ ≤ C3
1

log1.5 m
, (90c)

max
1≤l≤m

∣
∣bHl h̃

t ∣∣ ≤ C4
μ√
m

log2 m, (90d)

where h̃
t
, x̃t , and z̃t are defined in (81). Here, C1,C3 > 0 are some sufficiently small

constants, while C2,C4 > 0 are some sufficiently large constants. We aim to show
that if these hypotheses (90) hold up to the t th iteration, then the same would hold
for the (t + 1)th iteration with exceedingly high probability (e.g., 1− O(m−10)). The
first hypothesis (90a) has already been established in Lemma 15, and hence, the rest
of this section focuses on establishing the remaining three. To justify the incoherence
hypotheses (90c) and (90d) for the (t + 1)th iteration, we need to leverage the nice
properties of the leave-one-out sequences and establish (90b) first. In the sequel, we
follow the steps suggested in the general recipe.

• Step 3(a): proximity between the original and the leave-one-out iterates We first
justify hypothesis (90b) for the (t + 1)th iteration via the following lemma.

Lemma 17 Suppose the sample complexity obeys m ≥ Cμ2K log9m for some suf-
ficiently large constant C > 0. Let Et be the event where hypotheses (90a)–(90d)
hold for the tth iteration. Then on an event Et+1,1 ⊆ Et obeying P(Et ∩ Ec

t+1,1) =
O(m−10 + me−cK) for some constant c > 0, one has

max
1≤l≤m

dist
(
zt+1,(l), z̃t+1) ≤ C2

μ√
m

√
μ2K log9 m

m

and max
1≤l≤m

∥∥̃zt+1,(l) − z̃t+1
∥∥
2 � C2

μ√
m

√
μ2K log9m

m
,

provided that the step size η > 0 is some sufficiently small constant.

Proof As usual, this result follows from the restricted strong convexity, which
forces the distance between the two sequences of interest to be contractive. See
Appendix C.3. ��
• Step 3(b): incoherence of the leave-one-out iterate xt+1,(l) w.r.t. al Next, we show
that the leave-one-out iterate x̃t+1,(l)—which is independent of al—is incoherent
w.r.t. al in the sense that

123

Foundations of Computational Mathematics

∣∣∣aHl
(
x̃t+1,(l) − x�

)∣∣∣ ≤ 10C1
1

log3/2 m
(91)

with probability exceeding 1 − O
(
m−10 + e−K logm

)
. To see why, use the sta-

tistical independence and the standard Gaussian concentration inequality to show
that

max
1≤l≤m

∣∣∣aHl
(
x̃t+1,(l) − x�

)∣∣∣ ≤ 5
√
logm max

1≤l≤m

∥∥x̃t+1,(l) − x�
∥∥
2

with probability exceeding 1−O(m−10). It then follows from the triangle inequal-
ity that

∥∥x̃t+1,(l) − x�
∥∥
2 ≤ ∥∥x̃t+1,(l) − x̃t+1

∥∥
2 +

∥∥∥x̃t+1 − x�
∥∥∥
2

(i)≤ CC2
μ√
m

√
μ2K log9 m

m
+ C1

1

log2 m
(ii)≤ 2C1

1

log2 m
,

where (i) follows from Lemmas 15 and 17 and (ii) holds as soon as m/(μ2
√
K

log13/2 m) is sufficiently large. Combining the preceding two bounds establishes
(91).

• Step 3(c): combining the bounds to show incoherence of xt+1 w.r.t. {al}The above
bounds immediately allow us to conclude that

max
1≤l≤m

∣∣∣aHl
(
x̃t+1 − x�

)∣∣∣ ≤ C3
1

log3/2 m

with probability at least 1 − O
(
m−10 + e−K logm

)
, which is exactly hypothesis

(90c) for the (t + 1)th iteration. Specifically, for each 1 ≤ l ≤ m, the triangle
inequality yields

∣∣∣aHl
(
x̃t+1 − x�

)∣∣∣ ≤
∣∣∣aHl
(
x̃t+1 − x̃t+1,(l))

∣∣∣+
∣∣∣aHl
(
x̃t+1,(l) − x�

)∣∣∣

(i)≤ ‖al‖2
∥∥∥x̃t+1 − x̃t+1,(l)

∥∥∥
2

+
∣∣∣aHl
(
x̃t+1,(l) − x�

)∣∣∣

(ii)≤ 3
√
K · CC2

μ√
m

√
μ2K log9m

m
+ 10C1

1

log3/2 m
(iii)≤ C3

1

log3/2 m
.

Here (i) follows fromCauchy–Schwarz; (ii) is a consequence of (190), Lemma 17,
and bound (91); and the last inequality holds as long as m/(μ2K log6m) is suffi-
ciently large and C3 ≥ 11C1.

123

Foundations of Computational Mathematics

• Step 3(d): incoherence of ht+1 w.r.t. {bl} It remains to justify that ht+1 is also
incoherent w.r.t. its associated design vectors {bl}. This proof of this step, however,
is much more involved and challenging, due to the deterministic nature of the bl ’s.
As a result, we would need to “propagate” the randomness brought about by {al}
to ht+1 in order to facilitate the analysis. The result is summarized as follows.

Lemma 18 Suppose that the sample complexity obeys m ≥ Cμ2K log9 m for some
sufficiently large constant C > 0. Let Et be the event where hypotheses (90a)–(90d)
hold for the tth iteration. Then on an event Et+1,2 ⊆ Et obeying P(Et ∩ Ec

t+1,2) =
O(m−10), one has

max
1≤l≤m

∣∣∣bHl h̃
t+1
∣∣∣ ≤ C4

μ√
m

log2 m

as long as C4 is sufficiently large and η > 0 is taken to be some sufficiently small
constant.

Proof The key idea is to divide {1, · · · ,m} into consecutive bins each of size
poly log(m), and to exploit the randomness (namely, the randomness from al) within
each bin. This binning idea is crucial in ensuring that the incoherence measure of
interest does not blow up as t increases. See Appendix C.4. ��

With these steps in place, we conclude the proof of Theorem 3 via induction and
the union bound.

8.4 The Base Case: Spectral Initialization

In order to finish the induction steps, we still need to justify the induction hypotheses
for the base cases; namely, we need to show that the spectral initializations z0 and{
z0,(l)

}
1≤l≤m satisfy the induction hypotheses (90) at t = 0.

To start with, the initializations are sufficiently close to the truth when measured
by the �2 norm, as summarized by the following lemma.

Lemma 19 Fix any small constant ξ > 0. Suppose the sample size obeys m ≥
Cμ2K log2 m/ξ2 for some sufficiently large constant C > 0. Then with probabil-
ity at least 1 − O(m−10), we have

min
α∈C,|α|=1

{∥∥αh0 − h�
∥∥
2 + ∥∥αx0 − x�

∥∥
2

}
≤ ξ and (92)

min
α∈C,|α|=1

{∥∥αh0,(l) − h�
∥∥
2 + ∥∥αx0,(l) − x�

∥∥
2

}
≤ ξ, 1 ≤ l ≤ m, (93)

and ||α0| − 1| ≤ 1/4.

Proof This follows from Wedin’s sin� theorem [121] and [76, Lemma 5.20]. See
Appendix C.5. ��

123

Foundations of Computational Mathematics

From the definition of dist(·, ·) (cf. (34)), we immediately have

dist
(
z0, z�

) = min
α∈C

√∥∥
∥∥
1

α
h − h�

∥∥
∥∥

2

2
+ ‖αx − x�‖22

(i)≤ min
α∈C

{∥∥∥∥
1

α
h − h�

∥∥∥∥
2

+ ∥∥αx − x�
∥∥
2

}

(ii)≤ min
α∈C,|α|=1

{∥∥αh0 − h�
∥∥
2 + ∥∥αx0 − x�

∥∥
2

} (iii)≤ C1
1

log2 m
, (94)

as long as m ≥ Cμ2K log6 m for some sufficiently large constant C > 0. Here (i)
follows from the elementary inequality that a2 + b2 ≤ (a + b)2 for positive a and
b, (ii) holds since the feasible set of the latter one is strictly smaller, and (iii) follows
directly from Lemma 19. This finishes the proof of (90a) for t = 0. Similarly, with
high probability we have

dist
(
z0,(l), z�

) ≤ min
α∈C,|α|=1

{∥∥αh0,(l) − h�
∥∥
2 + ∥∥αx0,(l) − x�

∥∥
2

}
� 1

log2 m
,

1 ≤ l ≤ m. (95)

Next, when properly aligned, the true initial estimate z0 and the leave-one-out
estimate z0,(l) are expected to be sufficiently close, as claimed by the following lemma.
Along the way, we show that h0 is incoherent w.r.t. the sampling vectors {bl}. This
establishes (90b) and (90d) for t = 0.

Lemma 20 Suppose that m ≥ Cμ2K log3 m for some sufficiently large constant C >

0. Then with probability at least 1 − O(m−10), one has

max
1≤l≤m

dist
(
z0,(l), z̃0

) ≤ C2
μ√
m

√
μ2K log5m

m
(96)

and

max
1≤l≤m

∣∣bHl h̃
0∣∣ ≤ C4

μ log2 m√
m

. (97)

Proof The key is to establish that dist
(
z0,(l), z̃0

)
can be upper bounded by some linear

scaling of
∣∣bHl h̃

0∣∣, and vice versa. This allows us to derive bounds simultaneously for
both quantities. See Appendix C.6. ��

Finally, we establish (90c) regarding the incoherence of x0 with respect to the
design vectors {al}.
Lemma 21 Suppose that m ≥ Cμ2K log6 m for some sufficiently large constant C >

0. Then with probability exceeding 1 − O(m−10), we have

123

Foundations of Computational Mathematics

max
1≤l≤m

∣∣∣aHl
(
x̃0 − x�

)∣∣∣ ≤ C3
1

log1.5 m
.

Proof See Appendix C.7. ��

9 Discussion

This paper showcases an important phenomenon in nonconvex optimization: even
without explicit enforcement of regularization, the vanilla form of gradient descent
effectively achieves implicit regularization for a large family of statistical estimation
problems. We believe this phenomenon arises in problems far beyond the three cases
studied herein, and our results are initial steps toward understanding this fundamental
phenomenon. There are numerous avenues open for future investigation, and we point
out a few of them.

• Improving sample complexity In the current paper, the required sample complex-
ity O

(
μ3r3n log3 n

)
for matrix completion is suboptimal when the rank r of

the underlying matrix is large. While this allows us to achieve a dimension-free
iteration complexity, it is slightly higher than the sample complexity derived for
regularized gradient descent in [32]. We expect our results continue to hold under
lower sample complexity O

(
μ2r2n log n

)
, but it calls for a more refined analysis

(e.g., a generic chaining argument).
• Leave-one-out tricks for more general designs So far, our focus is on indepen-
dent designs, including the i.i.d. Gaussian design adopted in phase retrieval and
partially in blind deconvolution, as well as the independent sampling mechanism
in matrix completion. Such independence property creates some sort of “statis-
tical homogeneity,” for which the leave-one-out argument works beautifully. It
remains unclear how to generalize such leave-one-out tricks for more general
designs (e.g., more general sampling patterns in matrix completion and more
structured Fourier designs in phase retrieval and blind deconvolution). In fact,
the readers can already get a flavor of this issue in the analysis of blind deconvolu-
tion, where the Fourier design vectors require much more delicate treatments than
purely Gaussian designs.

• Uniform stability The leave-one-out perturbation argument is established upon a
basic fact: when we exclude one sample from consideration, the resulting esti-
mates/predictions do not deviate much from the original ones. This leave-one-out
stability bears similarity to the notion of uniform stability studied in statistical
learning theory [8]. We expect our analysis framework to be helpful for analyzing
other learning algorithms that are uniformly stable.

• Other iterative methods and other loss functions The focus of the current paper
has been the analysis of vanilla GD tailored to the natural squared loss. This is by
no means to advocate GD as the top-performing algorithm in practice; rather, we
are using this simple algorithm to isolate some seemingly pervasive phenomena
(i.e., implicit regularization) that generic optimization theory fails to account for.
The simplicity of vanilla GD makes it an ideal object to initiate such discussions.
That being said, practitioners should definitely explore as many algorithmic alter-

123

Foundations of Computational Mathematics

natives as possible before settling on a particular algorithm. Take phase retrieval for
example: iterative methods other than GD and/or algorithms tailored to other loss
functions have been proposed in the nonconvex optimization literature, including
but not limited to alternating minimization, block coordinate descent, and sub-
gradient methods and prox-linear methods tailed to nonsmooth losses. It would be
interesting to develop a full theoretical understanding of a broader class of iterative
algorithms, and to conduct a careful comparison regarding which loss functions
lead to the most desirable practical performance.

• Connections to deep learning? We have focused on nonlinear systems that are
bilinear or quadratic in this paper. Deep learning formulations/architectures, highly
nonlinear, are notorious for their daunting nonconvex geometry. However, iterative
methods including stochastic gradient descent have enjoyed enormous practical
success in learningneural networks (e.g., [46,103,132]), evenwhen the architecture
is significantly over-parameterized without explicit regularization. We hope the
message conveyed in this paper for several simple statistical models can shed light
on why simple forms of gradient descent and variants work so well in learning
complicated neural networks.

Finally, while the present paper provides a general recipe for problem-specific anal-
yses of nonconvex algorithms, we acknowledge that a unified theory of this kind has
yet to be developed. As a consequence, each problem requires delicate and somewhat
lengthy analyses of its own. It would certainly be helpful if one could single out a few
stylized structural properties/elements (like sparsity and incoherence in compressed
sensing [13]) that enable near-optimal performance guarantees through an overarching
method of analysis; with this in place, one would not need to start each problem from
scratch. Having said that, we believe that our current theory elucidates a few ingredi-
ents (e.g., the region of incoherence and leave-one-out stability) that might serve as
crucial building blocks for such a general theory. We invite the interested readers to
contribute toward this path forward.

Acknowledgements Y. Chen is supported in part by the AFOSR YIP Award FA9550-19-1-0030, ONR
Grant N00014-19-1-2120, ARO Grant W911NF-18-1-0303, NSF Grant CCF-1907661, and the Prince-
ton SEAS innovation award. Y. Chi is supported in part by the Grants AFOSR FA9550-15-1-0205,
ONR N00014-18-1-2142 and N00014-19-1-2404, AROW911NF-18-1-0303, NSF CCF-1826519, ECCS-
1818571, CCF-1806154. Y. Chen thanks Yudong Chen for inspiring discussions about matrix completion.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Proofs for Phase Retrieval

Before proceeding,we gather a few simple facts. The standard concentration inequality
forχ2 randomvariables togetherwith theunionbound reveals that the samplingvectors
{a j } obey

max
1≤ j≤m

∥∥a j
∥∥
2 ≤ √

6n (98)

123

http://creativecommons.org/licenses/by/4.0/

Foundations of Computational Mathematics

with probability at least 1−O(me−1.5n). In addition, standard Gaussian concentration
inequalities give

max
1≤ j≤m

∣
∣∣a�

j x
�
∣
∣∣ ≤ 5

√
log n (99)

with probability exceeding 1 − O(mn−10).

A.1 Proof of Lemma 1

We start with the smoothness bound, namely ∇2 f (x) � O(log n) · In . It suffices
to prove the upper bound

∥∥∇2 f (x)
∥∥ � log n. To this end, we first decompose the

Hessian (cf. (44)) into three components as follows:

∇2 f (x) = 3

m

m∑

j=1

[(
a�
j x
)2 −

(
a�
j x

�
)2]

a j a�
j

︸ ︷︷ ︸
:=�1

+ 2

m

m∑

j=1

(
a�
j x

�
)2

a j a�
j − 2

(
In + 2x�x��)

︸ ︷︷ ︸
:=�2

+ 2
(
In + 2x�x��)

︸ ︷︷ ︸
:=�3

,

where we have used y j = (a�
j x

�)2. In the sequel, we control the three terms �1, �2,
and �3 in reverse order.

• The third term �3 can be easily bounded by

‖�3‖ ≤ 2
(

‖In‖ + 2
∥∥
∥x�x��

∥∥
∥
)

= 6.

• The second term �2 can be controlled by means of Lemma 32:

‖�2‖ ≤ 2δ

for an arbitrarily small constant δ > 0, as long asm ≥ c0n log n for c0 sufficiently
large.

• It thus remains to control �1. Toward this, we discover that

‖�1‖ ≤
∥∥∥
∥∥∥

3

m

m∑

j=1

∣∣
∣a�

j

(
x − x�

)∣∣
∣
∣∣
∣a�

j

(
x + x�

)∣∣
∣ a j a�

j

∥∥∥
∥∥∥

. (100)

Under the assumption max1≤ j≤m

∣∣
∣a�

j (x − x�)

∣∣
∣ ≤ C2

√
log n and fact (99), we

can also obtain

max
1≤ j≤m

∣∣
∣a�

j

(
x + x�

)∣∣
∣ ≤ 2max1≤ j≤m

∣∣
∣a�

j x
�
∣∣
∣+ max1≤ j≤m

∣∣
∣a�

j (x − x�)

∣∣
∣

≤ (10 + C2)
√
log n.

123

Foundations of Computational Mathematics

Substitution into (100) leads to

‖�1‖ ≤ 3C2 (10 + C2) log n ·
∥∥∥∥
1

m

m∑

j=1

a j a�
j

∥∥∥∥ ≤ 4C2 (10 + C2) log n,

where the last inequality is a direct consequence of Lemma 31.

Combining the above bounds on �1, �2, and �3 yields

∥∥∥∇2 f (x)

∥∥∥ ≤ ‖�1‖ + ‖�2‖ + ‖�3‖ ≤ 4C2 (10 + C2) log n + 2δ + 6

≤ 5C2 (10 + C2) log n,

as long as n is sufficiently large. This establishes the claimed smoothness property.
Next, we move on to the strong convexity lower bound. Picking a constant C > 0

and enforcing proper truncation, we get

∇2 f (x) = 1

m

m∑

j=1

[
3
(
a�
j x
)2 − y j

]
a j a�

j

� 3

m

m∑

j=1

(
a�
j x
)2

1{∣∣∣a�
j x
∣
∣∣≤C

} a j a�
j

︸ ︷︷ ︸
:=�4

− 1

m

m∑

j=1

(
a�
j x

�
)2

a j a�
j

︸ ︷︷ ︸
:=�5

.

We begin with the simpler term �5. Lemma 32 implies that with probability at least
1 − O(n−10),

∥∥∥�5 −
(
In + 2x�x��)

∥∥∥ ≤ δ

holds for any small constant δ > 0, as long as m/(n log n) is sufficiently large. This
reveals that

�5 � (1 + δ) · In + 2x�x��.

To bound �4, invoke Lemma 33 to conclude that with probability at least 1− c3e−c2m

(for some constants c2, c3 > 0),

∥
∥∥�4 − 3

(
β1xx� + β2‖x‖22 In

)∥∥∥ ≤ δ‖x‖22
for any small constant δ > 0, provided that m/n is sufficiently large. Here,

β1 := E

[
ξ4 1{|ξ |≤C}

]
− E

[
ξ2 1|ξ |≤C

]
and β2 := E

[
ξ2 1|ξ |≤C

]
,

where the expectation is taken with respect to ξ ∼ N (0, 1). By the assumption
‖x − x�‖2 ≤ 2C1, one has

123

Foundations of Computational Mathematics

‖x‖2 ≤ 1 + 2C1,

∣∣
∣‖x‖22 − ‖x�‖22

∣∣
∣ ≤ 2C1 (4C1 + 1) ,

∥∥
∥x�x�� − xx�

∥∥
∥

≤ 6C1 (4C1 + 1) ,

which leads to
∥∥∥�4 − 3

(
β1x�x�� + β2 In

)∥∥∥

≤
∥∥
∥�4 − 3

(
β1xx� + β2‖x‖22 In

)∥∥
∥

+ 3
∥∥∥
(
β1x�x�� + β2 In

)
−
(
β1xx� + β2‖x‖22 In

)∥∥∥

≤ δ‖x‖22 + 3β1

∥∥∥x�x�� − xx�
∥∥∥+ 3β2

∥∥∥In − ‖x‖22 In
∥∥∥

≤ δ (1 + 2C1)
2 + 18β1C1 (4C1 + 1) + 6β2C1 (4C1 + 1) .

This further implies

�4 � 3
(
β1x�x�� + β2 In

)

−
[
δ (1 + 2C1)

2 + 18β1C1 (4C1 + 1) + 6β2C1 (4C1 + 1)
]
In .

Recognizing that β1 (resp. β2) approaches 2 (resp. 1) as C grows, we can thus take
C1 small enough and C large enough to guarantee that

�4 � 5x�x�� + 2In .

Putting the preceding two bounds on �4 and �5 together yields

∇2 f (x) � 5x�x�� + 2In −
[
(1 + δ) · In + 2x�x��] � (1/2) · In

as claimed.

A.2 Proof of Lemma 2

Using the update rule (cf. (17)) as well as the fundamental theorem of calculus [70,
Chapter XIII, Theorem 4.2], we get

xt+1 − x� = xt − η∇ f
(
xt
)− [

x� − η∇ f
(
x�
)]

=
[
In − η

∫ 1

0
∇2 f (x (τ)) dτ

] (
xt − x�

)
,

where we denote x (τ) = x� + τ(xt − x�), 0 ≤ τ ≤ 1. Here, the first equality makes
use of the fact that ∇ f (x�) = 0. Under condition (45), it is self-evident that for all
0 ≤ τ ≤ 1,

123

Foundations of Computational Mathematics

∥∥x (τ) − x�
∥∥
2 = ‖τ(xt − x�)‖2 ≤ 2C1 and

max
1≤l≤m

∣
∣∣a�

l

(
x(τ) − x�

)∣∣∣ ≤ max
1≤l≤m

∣
∣∣a�

l τ
(
xt − x�

)∣∣∣ ≤ C2
√
log n.

This means that for all 0 ≤ τ ≤ 1,

(1/2) · In � ∇2 f (x(τ)) � [
5C2 (10 + C2) log n

] · In

in view of Lemma1. Picking η ≤ 1/
[
5C2 (10 + C2) log n

]
(and hence ‖η∇2 f (x(τ))‖

≤ 1), one sees that

0 � In − η

∫ 1

0
∇2 f (x (τ)) dτ � (1 − η/2) · In,

which immediately yields

∥
∥∥xt+1 − x�

∥
∥∥
2

≤
∥∥
∥∥In − η

∫ 1

0
∇2 f (x (τ)) dτ

∥∥
∥∥ · ∥∥xt−x�

∥
∥
2 ≤ (1−η/2)

∥
∥xt − x�

∥
∥
2 .

A.3 Proof of Lemma 3

We start with proving (19a). For all 0 ≤ t ≤ T0, invoke Lemma 2 recursively with
conditions (47) to reach

∥∥xt − x�
∥∥
2 ≤ (1 − η/2)t

∥∥x0 − x�
∥∥
2 ≤ C1(1 − η/2)t

∥∥x�
∥∥
2 . (101)

This finishes the proof of (19a) for 0 ≤ t ≤ T0 and also reveals that

∥∥∥xT0 − x�
∥∥∥
2

≤ C1(1 − η/2)T0
∥∥x�

∥∥
2 � 1

n

∥∥x�
∥∥
2 , (102)

provided that η
 1/ log n. Applying the Cauchy–Schwarz inequality and fact (98)
indicate that

max
1≤l≤m

∣∣
∣a�

l

(
xT0 − x�

)∣∣
∣ ≤ max

1≤l≤m
‖al‖2‖xT0 − x�‖2 ≤ √

6n · 1
n

‖x�‖2 � C2
√
log n,

leading to the satisfaction of (45). Therefore, invoking Lemma 2 yields

∥∥∥xT0+1 − x�
∥∥∥
2

≤ (1 − η/2)
∥∥∥xT0 − x�

∥∥∥
2

� 1

n
‖x�‖2.

One can then repeat this argument to arrive at for all t > T0

∥∥xt − x�
∥∥
2 ≤ (1 − η/2)t

∥∥x0 − x�
∥∥
2 ≤ C1 (1 − η/2)t

∥∥x�
∥∥
2 � 1

n
‖x�‖2. (103)

123

Foundations of Computational Mathematics

We are left with (19b). It is self-evident that the iterates from 0 ≤ t ≤ T0 satisfy
(19b) by assumptions. For t > T0, we can use the Cauchy–Schwarz inequality to
obtain

max
1≤ j≤m

∣∣a�
j

(
xt − x�

)∣∣ ≤ max
1≤ j≤m

∥∥a j
∥∥
2

∥∥xt − x�
∥∥
2 � √

n · 1
n

≤ C2
√
log n,

where the penultimate relation uses conditions (98) and (103).

A.4 Proof of Lemma 4

First, going through the same derivation as in (54) and (55) will result in

max
1≤l≤m

∣∣
∣a�

l

(
xt,(l) − x�

)∣∣
∣ ≤ C4

√
log n (104)

for some C4 < C2, which will be helpful for our analysis.
We use the gradient update rules once again to decompose

xt+1 − xt+1,(l) = xt − η∇ f
(
xt
)−

[
xt,(l) − η∇ f (l)(xt,(l)

)]

= xt − η∇ f
(
xt
)−

[
xt,(l) − η∇ f

(
xt,(l)

)]

−η
[
∇ f

(
xt,(l)

)− ∇ f (l)(xt,(l)
)]

= xt − xt,(l) − η
[
∇ f

(
xt
)− ∇ f

(
xt,(l)

)]

︸ ︷︷ ︸
:=ν

(l)
1

− η
1

m

[(
a�
l x

t,(l))2 − (
a�
l x

�
)2] (a�

l x
t,(l))al

︸ ︷︷ ︸
,

:=ν
(l)
2

where the last line comes from the definition of ∇ f (·) and ∇ f (l) (·).
1. We first control the term ν

(l)
2 , which is easier to deal with. Specifically,

‖ν
(l)
2 ‖2 ≤ η

‖al‖2
m

∣∣∣
(
a�
l x

t,(l))2 − (
a�
l x

�
)2∣∣∣
∣∣∣a�

l x
t,(l)
∣∣∣

(i)
� C4(C4 + 5)(C4 + 10)η

n log n

m

√
log n

n

(ii)≤ cη

√
log n

n
,

for any small constant c > 0. Here (i) follows since (98) and, in view of (99) and
(104),
∣
∣∣
(
a�
l x

t,(l))2 − (
a�
l x

�
)2∣∣∣ ≤

∣
∣∣a�

l

(
xt,(l) − x�

)∣∣∣
(∣∣∣a�

l

(
xt,(l) − x�

)∣∣∣+ 2
∣
∣∣a�

l x
�
∣
∣∣
)

≤ C4(C4 + 10) log n,

123

Foundations of Computational Mathematics

and
∣∣
∣a�

l x
t,(l)
∣∣
∣ ≤

∣∣
∣a�

l

(
xt,(l) − x�

)∣∣
∣+

∣∣
∣a�

l x
�
∣∣
∣

≤ (C4 + 5)
√
log n.

And (ii) holds as long as m � n log n.
2. For the term ν

(l)
1 , the fundamental theorem of calculus [70, Chapter XIII, Theorem

4.2] tells us that

ν
(l)
1 =

[
In − η

∫ 1

0
∇2 f (x (τ)) dτ

] (
xt − xt,(l)

)
,

where we abuse the notation and denote x (τ) = xt,(l) + τ(xt − xt,(l)). By the
induction hypotheses (51) and condition (104), one can verify that

∥∥x (τ) − x�
∥∥
2 ≤ τ

∥∥xt − x�
∥∥
2 + (1 − τ)

∥∥xt,(l) − x�
∥∥
2 ≤ 2C1 and

max1≤l≤m
∣∣a�

l

(
x (τ) − x�

)∣∣ ≤ τ max1≤l≤m
∣∣a�

l

(
xt − x�

)∣∣+ (1 − τ)

max1≤l≤m
∣∣a�

l

(
xt,(l) − x�

)∣∣ ≤ C2
√
log n (105)

for all 0 ≤ τ ≤ 1, as long as C4 ≤ C2. The second line follows directly from
(104). To see why (105) holds, we note that

∥∥xt,(l) − x�
∥∥
2 ≤ ∥∥xt,(l) − xt

∥∥
2 + ∥∥xt − x�

∥∥
2 ≤ C3

√
log n

n
+ C1,

where the second inequality follows from the induction hypotheses (51b) and
(51a). This combined with (51a) gives

∥
∥x (τ) − x�

∥
∥
2 ≤ τC1 + (1 − τ)

(

C3

√
log n

n
+ C1

)

≤ 2C1

as long as n is large enough, thus justifying (105). Hence, by Lemma 1,
∇2 f (x (τ)) is positive definite and almost well conditioned. By choosing 0 <

η ≤ 1/
[
5C2 (10 + C2) log n

]
, we get

∥∥ν(l)
1

∥∥
2 ≤ (1 − η/2)

∥∥xt − xt,(l)
∥∥
2.

3. Combine the preceding bounds on ν
(l)
1 and ν

(l)
2 as well as the induction bound

(51b) to arrive at

∥
∥xt+1 − xt+1,(l)

∥
∥
2 ≤ (1 − η/2)

∥
∥xt − xt,(l)

∥
∥
2 + cη

√
log n

n
≤ C3

√
log n

n
.

(106)

This establishes (53) for the (t + 1)th iteration.

123

Foundations of Computational Mathematics

A.5 Proof of Lemma 5

In view of the assumption (42) that
∥∥x0 − x�

∥∥
2 ≤ ∥∥x0 + x�

∥∥
2 and the fact that x

0 =√
λ1 (Y) /3 x̃0 for some λ1 (Y) > 0 (which wewill verify below), it is straightforward

to see that

∥∥x̃0 − x�
∥∥
2 ≤ ∥∥x̃0 + x�

∥∥
2.

One can then invoke the Davis–Kahan sin� theorem [124, Corollary 1] to obtain

∥∥x̃0 − x�
∥∥
2 ≤ 2

√
2

‖Y − E [Y]‖
λ1 (E [Y]) − λ2 (E [Y])

.

Note that (56)—‖Y − E[Y]‖ ≤ δ—is a direct consequence of Lemma 32. Addi-
tionally, the fact that E [Y] = I + 2x�x�� gives λ1 (E [Y]) = 3, λ2 (E [Y]) = 1,
and λ1 (E [Y]) − λ2 (E [Y]) = 2. Combining this spectral gap and the inequality
‖Y − E[Y]‖ ≤ δ, we arrive at

∥∥x̃0 − x�
∥∥
2 ≤ √

2δ.

To connect this bound with x0, we need to take into account the scaling factor√
λ1 (Y) /3. To this end, it follows from Weyl’s inequality and (56) that

|λ1 (Y) − 3| = |λ1 (Y) − λ1 (E [Y])| ≤ ‖Y − E [Y]‖ ≤ δ

and, as a consequence, λ1 (Y) ≥ 3 − δ > 0 when δ ≤ 1. This further implies that

∣
∣∣∣∣

√
λ1 (Y)

3
− 1

∣
∣∣∣∣

=
∣
∣∣∣∣∣

λ1(Y)
3 − 1

√
λ1(Y)
3 + 1

∣
∣∣∣∣∣

≤
∣∣∣∣
λ1 (Y)

3
− 1

∣∣∣∣ ≤ 1

3
δ, (107)

where we have used the elementary identity
√
a − √

b = (a − b) /(
√
a + √

b). With
these bounds in place, we can use the triangle inequality to get

∥∥∥x0 − x�
∥∥∥
2

=
∥∥∥∥
∥

√
λ1 (Y)

3
x̃0 − x�

∥∥∥∥
∥
2

=
∥∥∥∥
∥

√
λ1 (Y)

3
x̃0 − x̃0 + x̃0 − x�

∥∥∥∥
∥
2

≤
∣∣∣∣∣

√
λ1 (Y)

3
− 1

∣∣∣∣∣
+
∥∥∥x̃0 − x�

∥∥∥
2

≤ 1

3
δ + √

2δ ≤ 2δ.

123

Foundations of Computational Mathematics

A.6 Proof of Lemma 6

To begin with, repeating the same argument as in Lemma 5 (which we omit here for
conciseness), we see that for any fixed constant δ > 0,

∥∥∥Y (l) − E

[
Y (l)

]∥∥∥ ≤ δ, ‖x0,(l)−x�‖2 ≤ 2δ,
∥∥x̃0,(l)−x�

∥∥
2 ≤ √

2δ, 1 ≤ l ≤ m

(108)
holds with probability at least 1 − O(mn−10) as long as m � n log n. The �2 bound
on ‖x0 − x0,(l)‖2 is derived as follows.

1. We start by controlling
∥∥x̃0 − x̃0,(l)

∥∥
2. Combining (57) and (108) yields

∥
∥x̃0 − x̃0,(l)

∥
∥
2 ≤ ∥

∥x̃0 − x�
∥
∥
2 + ∥

∥x̃0,(l) − x�
∥
∥
2 ≤ 2

√
2δ.

For δ sufficiently small, this implies that
∥∥x̃0 − x̃0,(l)

∥∥
2 ≤ ∥∥x̃0 + x̃0,(l)

∥∥
2, and

hence, the Davis–Kahan sin� theorem [39] gives

∥∥x̃0 − x̃0,(l)
∥∥
2 ≤

∥
∥(Y − Y (l)

)
x̃0,(l)

∥
∥
2

λ1 (Y) − λ2
(
Y (l)

) ≤ ∥∥(Y − Y (l))x̃0,(l)
∥∥
2. (109)

Here, the second inequality uses Weyl’s inequality:

λ1
(
Y
)− λ2

(
Y (l)) ≥ λ1(E[Y]) − ∥∥Y − E[Y]∥∥− λ2(E[Y (l)]) − ∥∥Y (l) − E[Y (l)]∥∥

≥ 3 − δ − 1 − δ ≥ 1,

with the proviso that δ ≤ 1/2.
2. We now connect ‖x0−x0,(l)‖2 with ‖x̃0− x̃0,(l)‖2. Applying theWeyl’s inequality

and (56) yields

|λ1 (Y) − 3| ≤ ‖Y − E[Y]‖ ≤ δ �⇒ λ1(Y) ∈ [3 − δ, 3 + δ] ⊆ [2, 4]
(110)

and, similarly, λ1(Y (l)), ‖Y‖, ‖Y (l)‖ ∈ [2, 4]. Invoke Lemma 34 to arrive at

1√
3

∥∥x0 − x0,(l)
∥∥
2 ≤

∥∥(Y − Y (l)
)
x̃0,(l)

∥∥
2

2
√
2

+
(
2 + 4√

2

)∥∥x̃0 − x̃0,(l)
∥∥
2

≤ 6
∥∥(Y − Y (l))x̃0,(l)

∥∥
2, (111)

where the last inequality comes from (109).
3. Everything then boils down to controlling

∥∥(Y − Y (l)
)
x̃0,(l)

∥∥
2. Toward this, we

observe that

max
1≤l≤m

∥∥(Y − Y (l))x̃0,(l)
∥∥
2 = max

1≤l≤m

1

m

∥∥∥∥
(
a�
l x

�
)2

ala�
l x̃

0,(l)
∥∥∥∥
2

≤ max
1≤l≤m

(
a�
l x

�
)2 ∣∣a�

l x̃
0,(l)

∣∣∥∥al
∥∥
2

m

123

Foundations of Computational Mathematics

(i)
� log n · √

log n · √
n

m

√
log n

n
· n log n

m
. (112)

Inequality (i) makes use of the fact maxl
∣∣a�

l x
�
∣∣ ≤ 5

√
log n (cf. (99)), the bound

maxl ‖al‖2 ≤ 6
√
n (cf. (98)), and maxl

∣∣a�
l x̃

0,(l)
∣∣ ≤ 5

√
log n (due to statistical

independence and standard Gaussian concentration). As long as m/(n log n) is
sufficiently large, substituting the abovebound (112) into (111) leads us to conclude
that

max
1≤l≤m

∥∥x0 − x0,(l)
∥∥
2 ≤ C3

√
log n

n
(113)

for any constant C3 > 0.

B Proofs for Matrix Completion

Before proceeding to the proofs, let us record an immediate consequence of the inco-
herence property (25):

∥∥X�
∥∥
2,∞ ≤

√
κμ

n

∥∥X�
∥∥
F ≤

√
κμr

n

∥∥X�
∥∥ . (114)

where κ = σmax/σmin is the condition number of M�. This follows since

∥∥X�
∥∥
2,∞ =

∥∥∥U�
(
��
)1/2∥∥∥

2,∞ ≤ ∥∥U�
∥∥
2,∞

∥∥(��
)1/2∥∥

≤
√

μ

n

∥∥U�
∥∥
F

∥∥(��
)1/2∥∥ ≤

√
μ

n

∥∥U�
∥∥
F

√
κσmin

≤
√

κμ

n

∥∥X�
∥∥
F ≤

√
κμr

n

∥∥X�
∥∥ .

Unless otherwise specified, we use the indicator variable δ j,k to denote whether
the entry in the location (j, k) is included in �. Under our model, δ j,k is a Bernoulli
random variable with mean p.

B.1 Proof of Lemma 7

By the expression of the Hessian in (61), one can decompose

vec (V)� ∇2 fclean (X) vec (V) = 1

2p

∥∥∥P�

(
VX� + XV�)

∥∥∥
2

F

+ 1

p

〈
P�

(
XX� − M�

)
, VV�〉

123

Foundations of Computational Mathematics

= 1

2p

∥∥∥P�

(
VX� + XV�)

∥∥∥
2

F
− 1

2p

∥∥∥P�

(
VX�� + X�V�)

∥∥∥
2

F
︸ ︷︷ ︸

:=α1

+ 1

p

〈
P�

(
XX� − M�

)
, VV�〉

︸ ︷︷ ︸
:=α2

+ 1

2p

∥∥∥P�

(
VX�� + X�V�)

∥∥∥
2

F
− 1

2

∥∥∥VX�� + X�V�
∥∥∥
2

F
︸ ︷︷ ︸

:=α3

+ 1

2

∥
∥∥VX�� + X�V�

∥
∥∥
2

F︸ ︷︷ ︸
:=α4

.

The basic idea is to demonstrate that: (1) α4 is bounded both from above and from
below, and (2) the first three terms are sufficiently small in size compared to α4.

1. We start by controlling α4. It is immediate to derive the following upper bound

α4 ≤
∥∥∥VX��

∥∥∥
2

F
+
∥∥∥X�V�

∥∥∥
2

F
≤ 2‖X�‖2 ‖V‖2F = 2σmax ‖V‖2F .

When it comes to the lower bound, one discovers that

α4 = 1

2

{∥∥∥VX��
∥∥∥
2

F
+
∥∥∥X�V�

∥∥∥
2

F
+ 2Tr

(
X��VX��V

)}

≥ σmin ‖V‖2F + Tr
[(
Z + X� − Z

)� V
(
Z + X� − Z

)� V
]

≥ σmin ‖V‖2F + Tr
(
Z�V Z�V

)
−2
∥
∥Z−X�

∥
∥ ‖Z‖ ‖V‖2F − ∥

∥Z−X�
∥
∥2 ‖V‖2F

≥ (σmin − 5δσmax) ‖V‖2F + Tr
(
Z�V Z�V

)
, (115)

where the last line comes from the assumptions that

∥∥Z − X�
∥∥ ≤ δ

∥∥X�
∥∥ ≤ ∥∥X�

∥∥ and ‖Z‖ ≤ ∥∥Z − X�
∥∥+ ∥∥X�

∥∥ ≤ 2
∥∥X�

∥∥ .

With our assumption V = YHY − Z in mind, it comes down to controlling

Tr
(
Z�V Z�V

)
= Tr

[
Z� (YHY − Z) Z� (YHY − Z)

]
.

From the definition of HY , we see from Lemma 35 that Z�YHY (and hence
Z� (YHY − Z)) is a symmetric matrix, which implies that

Tr
[
Z� (YHY − Z) Z� (YHY − Z)

]
≥ 0.

123

Foundations of Computational Mathematics

Substitution into (115) gives

α4 ≥ (σmin − 5δσmax) ‖V‖2F ≥ 9

10
σmin ‖V‖2F ,

provided that κδ ≤ 1/50.
2. For α1, we consider the following quantity

∥∥P�

(
VX� + XV�) ∥∥2

F

=
〈
P�

(
VX�) ,P�

(
VX�)〉+

〈
P�

(
VX�) ,P�

(
XV�)〉

+
〈
P�

(
XV�) ,P�

(
VX�)〉+

〈
P�

(
XV�) ,P�

(
XV�)〉

= 2
〈
P�

(
VX�) ,P�

(
VX�)〉+ 2

〈
P�

(
VX�) ,P�

(
XV�)〉 .

Similar decomposition can be performed on
∥∥P�

(
VX�� + X�V�) ∥∥2

F as well.
These identities yield

α1 = 1

p

[〈
P�

(
VX�),P�

(
VX�)〉−

〈
P�

(
VX��) ,P�

(
VX��)〉]

︸ ︷︷ ︸
:=β1

+ 1

p

[〈
P�

(
VX�),P�

(
XV�)〉−

〈
P�

(
VX��) ,P�

(
X�V�)〉]

︸ ︷︷ ︸
:=β2

.

For β2, one has

β2 = 1

p

〈
P�

(
V
(
X − X�

)�)
,P�

((
X − X�

)
V�)〉

+ 1

p

〈
P�

(
V
(
X − X�

)�)
,P�

(
X�V�)〉

+ 1

p

〈
P�

(
VX��) ,P�

((
X − X�

)
V�)〉

which together with the inequality |〈A, B〉| ≤ ‖A‖F‖B‖F gives

|β2| ≤ 1

p

∥∥
∥P�

(
V
(
X − X�

)�)∥∥
∥
2

F
+ 2

p

∥∥
∥P�

(
V
(
X − X�

)�)∥∥
∥
F

∥∥
∥P�

(
X�V�)

∥∥
∥
F
.

(116)
This then calls for upper bounds on the following two terms

1√
p

∥∥∥P�

(
V
(
X − X�

)�)∥∥∥
F

and
1√
p

∥∥∥P�

(
X�V�)

∥∥∥
F
.

123

Foundations of Computational Mathematics

The injectivity of P� (cf. [19, Section 4.2] or Lemma 38)—when restricted to the
tangent space of M�—gives: for any fixed constant γ > 0,

1√
p

∥∥
∥P�

(
X�V�)

∥∥
∥
F

≤ (1 + γ)

∥∥
∥X�V�

∥∥
∥
F

≤ (1 + γ)
∥∥X�

∥∥ ‖V‖F

with probability at least 1−O
(
n−10

)
, provided that n2 p/(μnr log n) is sufficiently

large. In addition,

1

p

∥∥
∥P�

(
V
(
X − X�

)�)∥∥
∥
2

F

= 1

p

∑

1≤ j,k≤n

δ j,k

[
V j,·

(
Xk,· − X�

k,·
)�]2

=
∑

1≤ j≤n

V j,·

⎡

⎣ 1

p

∑

1≤k≤n

δ j,k
(
Xk,· − X�

k,·
)� (Xk,· − X�

k,·
)
⎤

⎦ V�
j,·

≤ max
1≤ j≤n

∥∥∥
∥∥∥

1

p

∑

1≤k≤n

δ j,k
(
Xk,· − X�

k,·
)� (Xk,· − X�

k,·
)
∥∥∥
∥∥∥

‖V‖2F

≤
⎧
⎨

⎩
1

p
max
1≤ j≤n

∑

1≤k≤n

δ j,k

⎫
⎬

⎭

{
max
1≤k≤n

∥∥Xk,· − X�
k,·
∥∥2
2

}
‖V‖2F

≤ (1 + γ) n
∥∥X − X�

∥∥2
2,∞ ‖V‖2F ,

with probability exceeding 1 − O
(
n−10

)
, which holds as long as np/ log n is

sufficiently large. Taken collectively, the above bounds yield that for any small
constant γ > 0,

|β2| ≤ (1 + γ) n
∥∥X − X�

∥∥2
2,∞ ‖V‖2F

+ 2
√

(1 + γ) n
∥∥X − X�

∥∥2
2,∞ ‖V‖2F · (1 + γ)2

∥∥X�
∥∥2 ‖V‖2F

�
(
ε2n

∥∥X�
∥∥2
2,∞ + ε

√
n
∥∥X�

∥∥
2,∞

∥∥X�
∥∥
)

‖V‖2F ,

where the last inequality makes use of the assumption ‖X−X�‖2,∞ ≤ ε‖X�‖2,∞.
The same analysis can be repeated to control β1. Altogether, we obtain

|α1| ≤ |β1| + |β2| �
(
nε2

∥
∥X�

∥
∥2
2,∞ + √

nε
∥
∥X�

∥
∥
2,∞

∥
∥X�

∥
∥
)

‖V‖2F
(i)≤
(
nε2

κμr

n
+ √

nε

√
κμr

n

)
σmax ‖V‖2F

(ii)≤ 1

10
σmin ‖V‖2F ,

where (i) utilizes the incoherence condition (114) and (ii) holds with the proviso
that ε

√
κ3μr � 1.

123

Foundations of Computational Mathematics

3. To bound α2, apply the Cauchy–Schwarz inequality to get

|α2| =
∣∣∣∣

〈
V ,

1

p
P�

(
XX� − M�

)
V
〉∣∣∣∣ ≤

∥∥∥∥
1

p
P�

(
XX� − M�

)∥∥∥∥ ‖V‖2F .

In view of Lemma 43, with probability at least 1 − O
(
n−10

)
,

∥
∥∥∥
1

p
P�

(
XX� − M�

)∥∥∥∥ ≤ 2nε2
∥∥X�

∥∥2
2,∞ + 4ε

√
n log n

∥∥X�
∥∥
2,∞

∥∥X�
∥∥

≤
(
2nε2

κμr

n
+ 4ε

√
n log n

√
κμr

n

)
σmax ≤ 1

10
σmin

as soon as ε
√

κ3μr log n � 1, where we utilize the incoherence condition (114).
This in turn implies that

|α2| ≤ 1

10
σmin ‖V‖2F .

Notably, this bound holds uniformly over all X satisfying the condition in
Lemma 7, regardless of the statistical dependence between X and the sampling
set �.

4. The last term α3 can also be controlled using the injectivity of P� when restricted
to the tangent space of M�. Specifically, it follows from the bounds in [19, Section
4.2] or Lemma 38 that

|α3| ≤ γ

∥∥∥VX�� + X�V�
∥∥∥
2

F
≤ 4γ σmax ‖V‖2F ≤ 1

10
σmin ‖V‖2F

for any γ > 0 such that κγ is a small constant, as soon as n2 p � κ2μrn log n.
5. Taking all the preceding bounds collectively yields

vec (V)� ∇2 fclean (X) vec (V) ≥ α4 − |α1| − |α2| − |α3|
≥
(

9

10
− 3

10

)
σmin ‖V‖2F ≥ 1

2
σmin ‖V‖2F

for all V satisfying our assumptions, and

∣
∣∣vec (V)� ∇2 fclean (X) vec (V)

∣
∣∣ ≤ α4 + |α1| + |α2| + |α3|

≤
(
2σmax + 3

10
σmin

)
‖V‖2F ≤ 5

2
σmax ‖V‖2F

for all V . Since this upper bound holds uniformly over all V , we conclude that

∥∥∥∇2 fclean (X)

∥∥∥ ≤ 5

2
σmax

as claimed.

123

Foundations of Computational Mathematics

B.2 Proof of Lemma 8

Given that Ĥ
t+1

is chosen to minimize the error in terms of the Frobenius norm
(cf. (26)), we have

∥
∥∥X t+1 Ĥ

t+1 − X�
∥
∥∥
F

≤
∥
∥∥X t+1 Ĥ

t − X�
∥
∥∥
F

=
∥
∥∥
[
X t − η∇ f

(
X t)] Ĥ t − X�

∥
∥∥
F

(i)=
∥
∥∥X t Ĥ

t − η∇ f
(
X t Ĥ

t)− X�
∥
∥∥
F

(ii)=
∥∥
∥∥X

t Ĥ
t − η

[
∇ fclean

(
X t Ĥ

t)− 1

p
P� (E) X t Ĥ

t
]

− X�

∥∥
∥∥
F

≤
∥∥∥X t Ĥ

t − η∇ fclean
(
X t Ĥ

t)− (
X� − η∇ fclean

(
X�
))∥∥∥

F︸ ︷︷ ︸
:=α1

+ η

∥
∥∥
∥
1

p
P� (E) X t Ĥ

t
∥
∥∥
∥
F︸ ︷︷ ︸

:=α2

,

(117)

where (i) follows from the identity ∇ f (X t R) = ∇ f
(
X t
)
R for any orthonormal

matrix R ∈ Or×r , (ii) arises from the definitions of ∇ f (X) and ∇ fclean (X) (see (59)
and (60), respectively), and the last inequality (117) utilizes the triangle inequality and
the fact that ∇ fclean(X�) = 0. It thus suffices to control α1 and α2.

1. For the second term α2 in (117), it is easy to see that with probability at least
1 − O

(
n−10

)
,

α2 ≤ η

∥∥
∥∥
1

p
P� (E)

∥∥
∥∥

∥
∥∥X t Ĥ

t
∥
∥∥
F

≤ 2η

∥∥
∥∥
1

p
P� (E)

∥∥
∥∥
∥
∥X�

∥
∥
F ≤ 2ηCσ

√
n

p
‖X�‖F

for some absolute constant C > 0. Here, the second inequality holds because∥∥X t Ĥ
t∥∥

F ≤ ∥∥X t Ĥ
t − X�

∥∥
F + ∥∥X�

∥∥
F ≤ 2

∥∥X�
∥∥
F, following hypothesis (28a)

together with our assumptions on the noise and the sample complexity. The last
inequality makes use of Lemma 40.

2. For the first term α1 in (117), the fundamental theorem of calculus [70, Chapter
XIII, Theorem 4.2] reveals

vec
[
X t Ĥ

t − η∇ fclean
(
X t Ĥ

t)− (
X� − η∇ fclean

(
X�
))]

= vec
[
X t Ĥ

t − X�
]

− η · vec
[
∇ fclean

(
X t Ĥ

t)− ∇ fclean
(
X�
)]

=
(
Inr − η

∫ 1

0
∇2 fclean (X(τ)) dτ

︸ ︷︷ ︸
:=A

)
vec

(
X t Ĥ

t − X�
)

, (118)

where we denote X(τ) := X� + τ(X t Ĥ
t − X�). Taking the squared Euclidean

norm of both sides of equality (118) leads to

(α1)
2 = vec

(
X t Ĥ

t − X�
)�

(Inr − ηA)2 vec
(
X t Ĥ

t − X�
)

= vec
(
X t Ĥ

t − X�
)� (Inr − 2ηA + η2A2

)
vec
(
X t Ĥ

t − X�
)

123

Foundations of Computational Mathematics

≤
∥
∥∥X t Ĥ

t − X�
∥
∥∥
2

F
+ η2 ‖A‖2

∥
∥∥X t Ĥ

t − X�
∥
∥∥
2

F

− 2η vec
(
X t Ĥ

t − X�
)�A vec

(
X t Ĥ

t − X�
)
, (119)

where in (119) we have used the fact that

vec
(
X t Ĥ

t − X�
)�A2vec

(
X t Ĥ

t − X�
) ≤ ‖A‖2

∥∥
∥vec

(
X t Ĥ

t − X�
)∥∥
∥
2

2

= ‖A‖2
∥∥∥X t Ĥ

t − X�
∥∥∥
2

F
.

Based on condition (28b), it is easily seen that ∀τ ∈ [0, 1],

∥∥X (τ) − X�
∥∥
2,∞ ≤

(

C5μr

√
log n

np
+ C8

σmin
σ

√
n log n

p

)
∥∥X�

∥∥
2,∞ .

Taking X = X (τ) ,Y = X t , and Z = X� in Lemma 7, one can easily verify the
assumptions therein given our sample size condition n2 p � κ3μ3r3n log3 n and
the noise condition (27). As a result,

vec
(
X t Ĥ

t − X�
)�A vec

(
X t Ĥ

t − X�
) ≥ σmin

2

∥∥X t Ĥ
t − X�

∥∥2
F

and ‖A‖ ≤ 5

2
σmax.

Substituting these two inequalities into (119) yields

(α1)
2 ≤

(
1 + 25

4
η2σ 2

max − σminη

)∥∥X t Ĥ
t − X�

∥∥2
F

≤
(
1 − σmin

2
η
) ∥∥X t Ĥ

t − X�
∥∥2
F

as long as 0 < η ≤ (2σmin)/(25σ 2
max), which further implies that

α1 ≤
(
1 − σmin

4
η
) ∥∥X t Ĥ

t − X�
∥∥
F.

3. Combining the preceding bounds on both α1 and α2 and making use of hypothesis
(28a), we have

∥
∥∥X t+1 Ĥ t+1 − X�

∥
∥∥
F

≤
(
1 − σmin

4
η
) ∥∥∥X t Ĥ t − X�

∥
∥∥
F

+ 2ηCσ

√
n

p

∥∥X�
∥∥
F

≤
(
1 − σmin

4
η
)(

C4ρ
tμr

1√
np

∥∥X�
∥∥
F + C1

σ

σmin

√
n

p

∥∥X�
∥∥
F

)
+ 2ηCσ

√
n

p

∥∥X�
∥∥
F

≤
(
1 − σmin

4
η
)
C4ρ

tμr
1√
np

∥∥X�
∥∥
F +

[(
1 − σmin

4
η
) C1

σmin
+ 2ηC

]
σ

√
n

p

∥∥X�
∥∥
F

≤ C4ρ
t+1μr

1√
np

∥∥X�
∥∥
F + C1

σ

σmin

√
n

p

∥∥X�
∥∥
F

123

Foundations of Computational Mathematics

as long as 0 < η ≤ (2σmin)/(25σ 2
max), 1 − (σmin/4) · η ≤ ρ < 1, and C1 is

sufficiently large. This completes the proof of the contraction with respect to the
Frobenius norm.

B.3 Proof of Lemma 9

To facilitate analysis, we construct an auxiliary matrix defined as follows

X̃
t+1 := X t Ĥ

t − η
1

p
P�

[
X tX t� − (

M� + E
)]

X�. (120)

With this auxiliary matrix in place, we invoke the triangle inequality to bound

∥∥X t+1 Ĥ
t+1 − X�

∥∥ ≤ ∥∥X t+1 Ĥ
t+1 − X̃

t+1∥∥
︸ ︷︷ ︸

:=α1

+ ∥∥X̃ t+1 − X�
∥∥

︸ ︷︷ ︸
:=α2

. (121)

1. We start with the second term α2 and show that the auxiliary matrix X̃
t+1

is also
not far from the truth. The definition of X̃

t+1
allows one to express

α2 =
∥∥∥∥X

t Ĥ
t − η

1

p
P�

[
X tX t� − (

M� + E
)]

X� − X�

∥∥∥∥

≤ η

∥∥
∥∥
1

p
P� (E)

∥∥
∥∥
∥
∥X�

∥
∥+

∥∥
∥∥X

t Ĥ
t − η

1

p
P�

(
X tX t� − X�X��) X� − X�

∥∥
∥∥

(122)

≤ η

∥∥∥∥
1

p
P� (E)

∥∥∥∥
∥∥X�

∥∥+
∥∥∥X t Ĥ

t − η
(
X tX t� − X�X��) X� − X�

∥∥∥
︸ ︷︷ ︸

:=β1

+ η

∥∥∥∥
1

p
P�

(
X tX t� − X�X��) X� −

(
X tX t� − X�X��) X�

∥∥∥∥
︸ ︷︷ ︸

:=β2

, (123)

where we have used the triangle inequality to separate the population-level compo-
nent (i.e., β1), the perturbation (i.e., β2), and the noise component. In what follows,
we will denote

�t := X t Ĥ
t − X�

which, by Lemma 35, satisfies the following symmetry property

Ĥ
t�
X t�X� = X��X t Ĥ

t �⇒ �t�X� = X���t . (124)

123

Foundations of Computational Mathematics

(a) The population-level component β1 is easier to control. Specifically, we first
simplify its expression as

β1 =
∥∥∥�t − η

(
�t�t� + �tX�� + X��t�) X�

∥∥∥

≤
∥∥∥�t − η

(
�tX�� + X��t�) X�

∥∥∥
︸ ︷︷ ︸

:=γ1

+ η

∥∥∥�t�t�X�
∥∥∥

︸ ︷︷ ︸
:=γ2

.

The leading term γ1 can be upper bounded by

γ1 =
∥∥
∥�t − η�t�� − ηX��t�X�

∥∥
∥ =

∥∥
∥�t − η�t�� − ηX�X���t

∥∥
∥

=
∥∥∥∥
1

2
�t (Ir − 2η��

)+ 1

2

(
In − 2ηM�

)
�t
∥∥∥∥

≤ 1

2

(∥∥Ir − 2η��
∥∥+ ∥∥In − 2ηM�

∥∥) ∥∥�t
∥∥

where the second identity follows from the symmetry property (124). By
choosing η ≤ 1/(2σmax), one has 0 � Ir − 2η�� � (1 − 2ησmin) Ir and
0 � In − 2ηM� � In , and further one can ensure

γ1 ≤ 1

2
[(1 − 2ησmin) + 1]

∥∥�t
∥∥ = (1 − ησmin)

∥∥�t
∥∥ . (125)

Next, regarding the higher-order term γ2, we can easily obtain

γ2 ≤ η
∥∥�t

∥∥2 ∥∥X�
∥∥ . (126)

Bounds (125) and (126) taken collectively give

β1 ≤ (1 − ησmin)
∥
∥�t

∥
∥+ η

∥
∥�t

∥
∥2
∥
∥X�

∥
∥ . (127)

(b) We now turn to the perturbation part β2 by showing that

1

η
β2 =

∥∥
∥∥
1

p
P�

(
�t�t� + �tX�� + X��t�) X�

−
[
�t�t� + �tX�� + X��t�] X�

∥∥∥

≤
∥∥∥
∥
1

p
P�

(
�tX��) X� −

(
�tX��) X�

∥∥∥
∥
F︸ ︷︷ ︸

:=θ1

123

Foundations of Computational Mathematics

+
∥∥
∥∥
1

p
P�

(
X��t�) X� −

(
X��t�) X�

∥∥
∥∥
F︸ ︷︷ ︸

:=θ2

+
∥∥∥∥
1

p
P�

(
�t�t�) X� −

(
�t�t�) X�

∥∥∥∥
F︸ ︷︷ ︸

:=θ3

, (128)

where the last inequality holds due to the triangle inequality as well as the fact
that ‖A‖ ≤ ‖A‖F. In the sequel, we shall bound the three terms separately.

• For the first term θ1 in (128), the lth row of 1
pP�

(
�tX��) X� −

(
�tX��) X� is given by

1

p

n∑

j=1

(
δl, j − p

)
�t

l,·X
��
j,· X�

j,· = �t
l,·

⎡

⎣ 1

p

n∑

j=1

(
δl, j − p

)
X��

j,· X�
j,·

⎤

⎦

where, as usual, δl, j = 1{(l, j)∈�}. Lemma 41 together with the union
bound reveals that

∥
∥∥∥∥∥

1

p

n∑

j=1

(
δl, j − p

)
X��

j,· X�
j,·

∥
∥∥∥∥∥

� 1

p

(√
p
∥
∥X�

∥
∥2
2,∞

∥
∥X�

∥
∥2 log n + ∥

∥X�
∥
∥2
2,∞ log n

)

√

‖X�‖22,∞σmax log n

p
+ ‖X�‖22,∞ log n

p

for all 1 ≤ l ≤ n with high probability. This gives

∥
∥∥∥∥∥
�t

l,·

⎡

⎣ 1

p

n∑

j=1

(
δl, j − p

)
X��

j,· X�
j,·

⎤

⎦

∥
∥∥∥∥∥
2

≤ ∥∥�t
l,·
∥∥
2

∥∥
∥∥∥∥

1

p

∑

j

(
δl, j − p

)
X��

j,· X�
j,·

∥∥
∥∥∥∥

�
∥
∥�t

l,·
∥
∥
2

⎧
⎨

⎩

√
‖X�‖22,∞σmax log n

p
+ ‖X�‖22,∞ log n

p

⎫
⎬

⎭
,

123

Foundations of Computational Mathematics

which further reveals that

θ1 =

√√√√√
n∑

l=1

∥∥∥
∥∥∥

1

p

∑

j

(
δl, j − p

)
�t

l,·X��
j,· X�

j,·

∥∥∥
∥∥∥

2

2

�
∥∥�t

∥∥
F

⎧
⎨

⎩

√
‖X�‖22,∞σmax log n

p
+ ‖X�‖22,∞ log n

p

⎫
⎬

⎭

(i)
�
∥∥�t

∥∥

⎧
⎨

⎩

√
‖X�‖22,∞rσmax log n

p
+

√
r‖X�‖22,∞ log n

p

⎫
⎬

⎭

(ii)
�
∥∥�t

∥∥

⎧
⎨

⎩

√
κμr2 log n

np
+ κμr3/2 log n

np

⎫
⎬

⎭
σmax

(iii)≤ γ σmin
∥∥�t

∥∥ ,

for arbitrarily small γ > 0. Here, (i) follows from
∥∥�t

∥∥
F ≤ √

r
∥∥�t

∥∥,
(ii) holds owing to the incoherence condition (114), and (iii) follows as
long as n2 p � κ3μr2n log n.

• For the second term θ2 in (128), denote

A = P�

(
X��t�) X� − p

(
X��t�) X�,

whose lth row is given by

Al,· = X�
l,·

n∑

j=1

(
δl, j − p

)
�t�

j,·X
�
j,·. (129)

Recalling the induction hypotheses (28b) and (28c), we define

∥∥�t
∥∥
2,∞ ≤ C5ρ

tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C8

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞ := ξ

(130)
∥∥�t

∥∥ ≤ C9ρ
tμr

1√
np

∥∥X�
∥∥+ C10

σ

σmin

√
n

p

∥∥X�
∥∥ := ψ. (131)

With these two definitions in place, we now introduce a “truncation level”

ω := 2pξσmax (132)

123

Foundations of Computational Mathematics

that allows us to bound θ2 in terms of the following two terms

θ2 = 1

p

√√√
√

n∑

l=1

∥∥Al,·
∥∥2
2 ≤ 1

p

√√√
√

n∑

l=1

∥∥Al,·
∥∥2
2 1{‖Al,·‖2≤ω}

︸ ︷︷ ︸
:=φ1

+ 1

p

√√√√
n∑

l=1

∥∥Al,·
∥∥2
2 1{‖Al,·‖2≥ω}

︸ ︷︷ ︸
:=φ2

.

We will apply different strategies when upper bounding the terms φ1
and φ2, with their bounds given in the following two lemmas under the
induction hypotheses (28b) and (28c).

Lemma 22 Under the conditions in Lemma 9, there exist some constants c,C > 0
such that with probability exceeding 1 − c exp(−Cnr log n),

φ1 � ξ

√
pσmax‖X�‖22,∞nr log2 n (133)

holds simultaneously for all �t obeying (130) and (131). Here, ξ is defined in (130).

Lemma 23 Under the conditions in Lemma 9, with probability at least 1− O
(
n−10

)
,

φ2 � ξ

√
κμr2 p log2 n

∥
∥X�

∥
∥2 (134)

holds simultaneously for all �t obeying (130) and (131). Here, ξ is defined in (130).

Bounds (133) and (134) together with the incoherence condition (114) yield

θ2 � 1

p
ξ

√
pσmax‖X�‖22,∞nr log2 n + 1

p
ξ

√
κμr2 p log2 n

∥
∥X�

∥
∥2

�

√
κμr2 log2 n

p
ξσmax.

• Next, we assert that the third term θ3 in (128) has the same upper bound as θ2. The
proof follows by repeating the same argument used in bounding θ2 and is hence
omitted.

Take the previous three bounds on θ1, θ2, and θ3 together to arrive at

β2 ≤ η (|θ1| + |θ2| + |θ3|) ≤ ηγ σmin
∥∥�t

∥∥+ C̃η

√
κμr2 log2 n

p
ξσmax

for some constant C̃ > 0.

123

Foundations of Computational Mathematics

(c) Substituting the preceding bounds on β1 and β2 into (123), we reach

α2
(i)≤ (

1 − ησmin + ηγ σmin + η
∥∥�t∥∥ ∥∥X�

∥∥) ∥∥�t∥∥+ η

∥∥∥
∥
1

p
P� (E)

∥∥∥
∥
∥∥X�

∥∥

+ C̃η

√
κμr2 log2 n

p
σmax

(

C5ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C8

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

)

(ii)≤
(
1 − σmin

2
η
) ∥∥�t∥∥+ η

∥∥∥
∥
1

p
P� (E)

∥∥∥
∥
∥∥X�

∥∥

+ C̃η

√
κμr2 log2 n

p
σmax

(

C5ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C8

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

)

(iii)≤
(
1 − σmin

2
η
) ∥∥�t∥∥+ Cησ

√
n

p

∥∥X�
∥∥

+ C̃η

√
κ2μ2r3 log3 n

np
σmax

(

C5ρ
tμr

√
1

np
+ C8

σ

σmin

√
n

p

)
∥∥X�

∥∥ (135)

for some constant C > 0. Here, (i) uses the definition of ξ (cf. (130)), (ii) holds
if γ is small enough and

∥
∥�t

∥
∥
∥
∥X�

∥
∥ � σmin, and (iii) follows from Lemma 40

as well as the incoherence condition (114). An immediate consequence of (135)
is that under the sample size condition and the noise condition of this lemma, one
has ∥∥X̃ t+1 − X�

∥∥ ∥∥X�
∥∥ ≤ σmin/2 (136)

if 0 < η ≤ 1/σmax.

2. We then move on to the first term α1 in (121), which can be rewritten as

α1 = ∥
∥X t+1 Ĥ

t
R1 − X̃

t+1∥∥,

with

R1 = (
Ĥ

t)−1 Ĥ
t+1 := arg min

R∈Or×r

∥∥X t+1 Ĥ
t
R − X�

∥∥
F. (137)

(a) First, we claim that X̃
t+1

satisfies

Ir = arg min
R∈Or×r

∥∥X̃ t+1
R − X�

∥∥
F, (138)

meaning that X̃
t+1

is already rotated to the direction that ismost “aligned”with
X�. This important property eases the analysis. In fact, in view of Lemma 35,
(138) follows if one can show that X�� X̃

t+1
is symmetric and positive semidef-

inite. First of all, it follows from Lemma 35 that X��X t Ĥ
t
is symmetric and,

hence, by definition,

X�� X̃
t+1 = X��X t Ĥ

t − η

p
X��P�

[
X tX t� − (

M� + E
)]

X�

123

Foundations of Computational Mathematics

is also symmetric. Additionally,

∥∥X�� X̃
t+1 − M�

∥∥ ≤ ∥∥X̃ t+1 − X�
∥∥ ∥∥X�

∥∥ ≤ σmin/2,

where the second inequality holds according to (136). Weyl’s inequality guar-
antees that

X�� X̃
t+1 � 1

2
σmin Ir ,

thus justifying (138) via Lemma 35.
(b) With (137) and (138) in place, we resort to Lemma 37 to establish the bound.

Specifically, take X1 = X̃
t+1

and X2 = X t+1 Ĥ
t
, and it comes from (136)

that

∥∥X1 − X�
∥∥ ∥∥X�

∥∥ ≤ σmin/2.

Moreover, we have

‖X1 − X2‖ ∥∥X�
∥∥ = ∥∥X t+1 Ĥ

t − X̃
t+1∥∥∥∥X�

∥∥,

in which

X t+1 Ĥ
t − X̃

t+1 =
(
X t − η

1

p
P�

[
X tX t� − (

M� + E
)]

X t
)
Ĥ

t

−
[
X t Ĥ

t − η
1

p
P�

[
X tX t� − (

M� + E
)]

X�

]

= −η
1

p
P�

[
X tX t� − (

M� + E
)] (

X t Ĥ
t − X�

)
.

This allows one to derive

∥∥X t+1 Ĥ
t − X̃

t+1∥∥

≤ η

∥
∥∥∥
1

p
P�

[
X tX t� − M�

] (
X t Ĥ

t − X�
)∥∥∥∥

+ η

∥∥∥∥
1

p
P�(E)

(
X t Ĥ

t − X�
)∥∥∥∥

≤ η

(
2n
∥
∥�t

∥
∥2
2,∞ + 4

√
n log n

∥
∥�t

∥
∥
2,∞

∥
∥X�

∥
∥+ Cσ

√
n

p

)∥
∥�t

∥
∥ (139)

for some absolute constant C > 0. Here the last inequality follows from
Lemmas 40 and 43. As a consequence,

123

Foundations of Computational Mathematics

‖X1 − X2‖ ∥∥X�
∥∥

≤ η

(
2n
∥
∥�t

∥
∥2
2,∞ + 4

√
n log n

∥
∥�t

∥
∥
2,∞

∥
∥X�

∥
∥+ Cσ

√
n

p

)∥
∥�t

∥
∥
∥
∥X�

∥
∥ .

Under our sample size condition and the noise condition (27) and the induction
hypotheses (28), one can show

‖X1 − X2‖ ∥∥X�
∥∥ ≤ σmin/4.

Apply Lemma 37 and (139) to reach

α1 ≤ 5κ
∥∥X t+1 Ĥ

t − X̃
t+1∥∥

≤ 5κη

(
2n
∥∥�t

∥∥2
2,∞ + 2

√
n log n

∥∥�t
∥∥
2,∞

∥∥X�
∥∥+ Cσ

√
n

p

)∥∥�t
∥∥ .

3. Combining the above bounds on α1 and α2, we arrive at

∥
∥X t+1 Ĥ

t+1 − X�
∥
∥

≤
(
1 − σmin

2
η
) ∥∥�t

∥∥+ ηCσ

√
n

p

∥∥X�
∥∥

+ C̃η

√
κ2μ2r3 log3 n

np
σmax

(

C5ρ
tμr

√
1

np
+ C8

σmin
σ

√
n

p

)
∥∥X�

∥∥

+ 5ηκ

(
2n
∥∥�t

∥∥2
2,∞ + 2

√
n log n

∥∥�t
∥∥
2,∞

∥∥X�
∥∥+ Cσ

√
n

p

)∥∥�t
∥∥

≤ C9ρ
t+1μr

1√
np

∥∥X�
∥∥+ C10

σ

σmin

√
n

p

∥∥X�
∥∥ ,

with the proviso that ρ ≥ 1−(σmin/3)·η, κ is a constant, and n2 p � μ3r3n log3 n.

B.3.1 Proof of Lemma 22

In what follows, we first assume that the δ j,k’s are independent and then use the
standard decoupling trick to extend the result to symmetric sampling case (i.e., δ j,k =
δk, j).

To begin with, we justify the concentration bound for any �t independent of �,
followed by the standard covering argument that extends the bound to all �t . For any
�t independent of �, one has

B := max
1≤ j≤n

∥∥
∥X�

l,·
(
δl, j − p

)
�t�

j,·X
�
j,·
∥∥
∥
2

≤ ∥
∥X�

∥
∥2
2,∞ ξ

and V :=
∥
∥∥∥∥∥
E

⎡

⎣
n∑

j=1

(
δl, j − p

)2 X�
l,·�t�

j,·X�
j,·
(
X�
l,·�t�

j,·X�
j,·
)�
⎤

⎦

∥
∥∥∥∥∥

123

Foundations of Computational Mathematics

≤ p
∥∥X�

l,·
∥∥2
2

∥∥X�
∥∥2
2,∞

∥∥
∥∥∥∥

n∑

j=1

�t�
j,·�

t
j,·

∥∥
∥∥∥∥

≤ p
∥∥X�

l,·
∥∥2
2

∥∥X�
∥∥2
2,∞ ψ2

≤ 2p
∥∥X�

∥∥2
2,∞ ξ2σmax,

where ξ and ψ are defined, respectively, in (130) and (131). Here, the last line makes
use of the fact that ∥∥X�

∥∥
2,∞ ψ � ξ

∥∥X�
∥∥ = ξ

√
σmax, (140)

as long as n is sufficiently large. Apply the matrix Bernstein inequality [114, Theorem
6.1.1] to get

P
{∥∥Al,·

∥∥
2 ≥ t

} ≤ 2r exp

⎛

⎝− ct2

2pξ2σmax
∥∥X�

∥∥2
2,∞ + t · ∥∥X�

∥∥2
2,∞ ξ

⎞

⎠

≤ 2r exp

⎛

⎝− ct2

4pξ2σmax
∥∥X�

∥∥2
2,∞

⎞

⎠

for some constant c > 0, provided that

t ≤ 2pσmaxξ.

This upper bound on t is exactly the truncation level ω we introduce in (132). With
this in mind, we can easily verify that

∥∥Al,·
∥∥
2 1{‖Al,·‖2≤ω}

is a sub-Gaussian random variable with variance proxy not exceeding

O
(
pξ2σmax

∥∥X�
∥∥2
2,∞ log r

)
. Therefore, invoking the concentration bounds for

quadratic functions [57, Theorem 2.1] yields that for some constants C0,C > 0,
with probability at least 1 − C0e−Cnr log n ,

φ2
1 =

n∑

l=1

∥∥Al,·
∥∥2
2 1{‖Al,·‖2≤ω} � pξ2σmax‖X�‖22,∞nr log2 n.

Now that we have established an upper bound on any fixed matrix �t (which holds
with exponentially high probability), we can proceed to invoke the standard epsilon-
net argument to establish a uniform bound over all feasible�t . This argument is fairly
standard and is thus omitted; see [111, Section 2.3.1] or the proof of Lemma 42. In

conclusion, we have that with probability exceeding 1 − C0e− 1
2Cnr log n ,

123

Foundations of Computational Mathematics

φ1 =
√√√√

n∑

l=1

∥∥Al,·
∥∥2
2 1{‖Al,·‖2≤ω} �

√
pξ2σmax‖X�‖22,∞nr log2 n (141)

holds simultaneously for all �t ∈ R
n×r obeying the conditions of the lemma.

In the end, we comment on how to extend the bound to the symmetric sampling pat-
tern where δ j,k = δk, j . Recall from (129) that the diagonal element δl,l cannot change

the �2 norm of Al,· by more than
∥∥X�

∥∥2
2,∞ ξ . As a result, changing all the diagonals

{δl,l} cannot change the quantity of interest (i.e., φ1) by more than
√
n
∥∥X�

∥∥2
2,∞ ξ .

This is smaller than the right-hand side of (141) under our incoherence and sample
size conditions. Hence, from now on, we ignore the effect of {δl,l} and focus on off-
diagonal terms. The proof then follows from the same argument as in [48, Theorem
D.2]. More specifically, we can employ the construction of Bernoulli random vari-
ables introduced therein to demonstrate that the upper bound in (141) still holds if the
indicator δi, j is replaced by (τi, j + τ ′

i, j)/2, where τi, j and τ ′
i, j are independent copies

of the symmetric Bernoulli random variables. Recognizing that sup�t φ1 is a norm of
the Bernoulli random variables τi, j , one can repeat the decoupling argument in [48,
Claim D.3] to finish the proof. We omit the details here for brevity.

B.3.2 Proof of Lemma 23

Observe from (129) that

∥∥Al,·
∥∥
2 ≤ ∥∥X�

∥∥
2,∞

∥
∥∥∥∥∥

n∑

j=1

(
δl, j − p

)
�t�

j,·X
�
j,·

∥
∥∥∥∥∥

(142)

≤ ∥∥X�
∥∥
2,∞

⎛

⎝

∥∥
∥∥∥∥

n∑

j=1

δl, j�
t�
j,·X

�
j,·

∥∥
∥∥∥∥

+ p
∥∥�t

∥∥ ∥∥X�
∥∥

⎞

⎠

≤ ∥∥X�
∥∥
2,∞

⎛

⎜
⎝
∥∥∥
[
δl,1�

t�
1,·, · · · , δl,n�

t�
n,·
]∥∥∥

∥∥
∥∥∥∥∥

⎡

⎢
⎣

δl,1X�
1,·

...

δl,nX�
n,·

⎤

⎥
⎦

∥∥
∥∥∥∥∥

+ pψ
∥∥X�

∥∥

⎞

⎟
⎠

≤ ∥∥X�
∥
∥
2,∞

(∥∥Gl
(
�t)∥∥ · 1.2√

p
∥
∥X�

∥
∥+ pψ

∥
∥X�

∥
∥) , (143)

where ψ is as defined in (131) and Gl (·) is as defined in Lemma 41. Here, the last
inequality follows from Lemma 41; namely, for some constant C > 0, the following
holds with probability at least 1 − O(n−10)

∥∥∥
∥∥∥∥

⎡

⎢
⎣

δl,1X�
1,·

...

δl,nX�
n,·

⎤

⎥
⎦

∥∥∥
∥∥∥∥

≤
(
p
∥∥X�

∥∥2 + C
√
p‖X�‖22,∞

∥∥X�
∥∥2 log n + C‖X�‖22,∞ log n

) 1
2

123

Foundations of Computational Mathematics

≤
(
p + C

√
p
κμr

n
log n + C

κμr log n

n

) 1
2 ∥∥X�

∥∥ ≤ 1.2
√
p
∥∥X�

∥∥ ,

(144)

where we also use the incoherence condition (114) and the sample complexity condi-
tion n2 p � κμrn log n. Hence, the event

∥
∥Al,·

∥
∥
2 ≥ ω = 2pσmaxξ

together with (142) and (143) necessarily implies that

∥∥∥∥∥
∥

n∑

j=1

(
δl, j − p

)
�t�

j,·X
�
j,·

∥∥∥∥∥
∥

≥ 2pσmax
ξ

∥∥X�
∥∥
2,∞

and

∥∥Gl
(
�t)∥∥ ≥

2pσmaxξ‖X�‖‖X�‖2,∞
− pψ

1.2
√
p

≥
2
√
p‖X�‖ξ

‖X�‖2,∞
− √

pψ

1.2
≥ 1.5

√
p

ξ
∥∥X�

∥∥
2,∞

∥∥X�
∥∥ ,

where the last inequality follows from bound (140). As a result, with probability at
least 1 − O(n−10) (i.e., when (144) holds for all l’s) we can upper bound φ2 by

φ2 =
√√
√√

n∑

l=1

∥
∥Al,·

∥
∥2
2 1{‖Al,·‖2≥ω} ≤

√√√√
n∑

l=1

∥
∥Al,·

∥
∥2
2 1

{
‖Gl(�t)‖≥ 1.5

√
pξ

√
σmax

‖X�‖2,∞
},

where the indicator functions are now specified with respect to
∥
∥Gl

(
�t)∥∥.

Next, we divide into multiple cases based on the size of
∥∥Gl

(
�t)∥∥. By Lemma 42,

for some constants c1, c2 > 0, with probability at least 1 − c1 exp (−c2nr log n),

n∑

l=1

1{‖Gl(�t)‖≥4
√
pψ+√

2krξ
} ≤ αn

2k−3 (145)

for any k ≥ 0 and any α � log n. We claim that it suffices to consider the set of
sufficiently large k obeying

√
2krξ ≥ 4

√
pψ or equivalently k ≥ log

16pψ2

rξ2
; (146)

otherwise, we can use (140) to obtain

4
√
pψ +

√
2krξ ≤ 8

√
pψ � 1.5

√
p

ξ
∥∥X�

∥∥
2,∞

∥∥X�
∥∥ ,

123

Foundations of Computational Mathematics

which contradicts the event
∥∥Al,·

∥∥
2 ≥ ω. Consequently, we divide all indices into the

following sets

Sk =
{
1 ≤ l ≤ n : ∥∥Gl

(
�t)∥∥ ∈ (

√
2krξ,

√
2k+1rξ

]}
(147)

defined for each integer k obeying (146). Under condition (146), it follows from (145)
that

n∑

l=1

1{‖Gl(�t)‖≥√
2k+2rξ

} ≤
n∑

l=1

1{‖Gl(�t)‖≥4
√
pψ+√

2krξ
} ≤ αn

2k−3 ,

meaning that the cardinality of Sk satisfies

|Sk+2| ≤ αn

2k−3 or |Sk | ≤ αn

2k−5

which decays exponentially fast as k increases. Therefore, when restricting attention
to the set of indices within Sk , we can obtain

√∑

l∈Sk

∥∥Al,·
∥∥2
2

(i)≤
√

|Sk | · ∥∥X�
∥∥2
2,∞

(
1.2
√
2k+1rξ

√
p
∥∥X�

∥∥+ pψ
∥∥X�

∥∥
)2

≤
√

αn

2k−5

∥∥X�
∥∥
2,∞

(
2
√
2k+1rξ

√
p
∥∥X�

∥∥+ pψ
∥∥X�

∥∥
)

(ii)≤ 4

√
αn

2k−5

∥∥X�
∥∥
2,∞

√
2k+1rξ

√
p
∥∥X�

∥∥

(iii)≤ 32
√

ακμr2 pξ
∥∥X�

∥∥2 ,

where (i) follows from bound (143) and constraint (147) in Sk , (ii) is a consequence
of (146), and (iii) uses the incoherence condition (114).

Now that we have developed an upper bound with respect to each Sk , we can add
them up to yield the final upper bound. Note that there are in total no more than
O (log n) different sets, i.e., Sk = ∅ if k ≥ c1 log n for c1 sufficiently large. This arises
since

‖Gl(�
t)‖ ≤ ‖�t‖F ≤ √

n‖�t‖2,∞ ≤ √
nξ ≤ √

n
√
rξ

and hence

1{‖Gl(�t)‖≥4
√
pψ+√

2krξ
} = 0 and Sk = ∅

123

Foundations of Computational Mathematics

if k/ log n is sufficiently large. One can thus conclude that

φ2
2 ≤

c1 log n∑

k=log 16pψ2

rξ2

∑

l∈Sk

∥∥Al,·
∥∥2
2 �

(√
ακμr2 pξ

∥∥X�
∥∥2
)2

· log n,

leading to φ2 � ξ
√

ακμr2 p log n
∥∥X�

∥∥2. The proof is finished by taking α = c log n
for some sufficiently large constant c > 0.

B.4 Proof of Lemma 10

1. To obtain (73a), we invoke Lemma 37. Setting X1 = X t Ĥ
t
and X2 = X t,(l)Rt,(l),

we get

∥
∥X1 − X�

∥
∥
∥
∥X�

∥
∥ (i)≤ C9ρ

tμr
1√
np

σmax + C10

σmin
σ

√
n log n

p
σmax

(ii)≤ 1

2
σmin,

where (i) follows from (70c) and (ii) holds as long as n2 p � κ2μ2r2n and the
noise satisfies (27). In addition,

‖X1 − X2‖ ∥∥X�
∥∥ ≤ ‖X1 − X2‖F

∥∥X�
∥∥

(i)≤
(

C3ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C7

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞

)
∥∥X�

∥∥

(ii)≤ C3ρ
tμr

√
log n

np
σmax + C7

σmin
σ

√
n log n

p
σmax

(iii)≤ 1

2
σmin,

where (i) utilizes (70d), (ii) follows since
∥∥X�

∥∥
2,∞ ≤ ∥∥X�

∥∥, and (iii) holds if

n2 p � κ2μ2r2n log n and the noise satisfies (27). With these in place, Lemma 37
immediately yields (73a).

2. The first inequality in (73b) follows directly from the definition of Ĥ
t,(l)

. The
second inequality is concernedwith the estimation error of X t,(l)Rt,(l) with respect
to the Frobenius norm. Combining (70a), (70d), and the triangle inequality yields

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
F

≤
∥∥∥X t Ĥ

t − X�
∥∥∥
F

+
∥∥∥X t Ĥ

t − X t,(l)Rt,(l)
∥∥∥
F

≤ C4ρ
tμr

1√
np

∥
∥X�

∥
∥
F + C1σ

σmin

√
n

p

∥
∥X�

∥
∥
F + C3ρ

tμr

√
log n

np

∥
∥X�

∥
∥
2,∞

+ C7σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

123

Foundations of Computational Mathematics

≤ C4ρ
tμr

1√
np

∥∥X�
∥∥
F + C1σ

σmin

√
n

p

∥∥X�
∥∥
F + C3ρ

tμr

√
log n

np

√
κμ

n

∥∥X�
∥∥
F

+ C7σ

σmin

√
n log n

p

√
κμ

n

∥∥X�
∥∥
F

≤ 2C4ρ
tμr

1√
np

∥∥X�
∥∥
F + 2C1σ

σmin

√
n

p

∥∥X�
∥∥
F , (148)

where the last step holds true as long as n � κμ log n.
3. To obtain (73c), we use (70d) and (70b) to get

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞ ≤

∥∥∥X t Ĥ
t − X�

∥∥∥
2,∞ +

∥∥∥X t Ĥ
t − X t,(l)Rt,(l)

∥∥∥
F

≤ C5ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C8σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

+ C3ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C7σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

≤ (C3 + C5) ρtμr

√
log n

np

∥∥X�
∥∥
2,∞ + C8 + C7

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞ .

4. Finally, to obtain (73d), one can take the triangle inequality

∥∥∥X t,(l) Ĥ
t,(l) − X�

∥∥∥ ≤
∥∥∥X t,(l) Ĥ

t,(l) − X t Ĥ
t
∥∥∥
F

+
∥∥∥X t Ĥ

t − X�
∥∥∥

≤ 5κ
∥
∥∥X t Ĥ

t − X t,(l)Rt,(l)
∥
∥∥
F

+
∥
∥∥X t Ĥ

t − X�
∥
∥∥ ,

where the second line follows from (73a). Combine (70d) and (70c) to yield

∥∥∥X t,(l) Ĥ
t,(l) − X�

∥∥∥

≤ 5κ

(

C3ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C7

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞

)

+ C9ρ
tμr

1√
np

∥∥X�
∥∥+ C10

σmin
σ

√
n

p

∥∥X�
∥∥

≤ 5κ

√
κμr

n

∥∥X�
∥∥
(

C3ρ
tμr

√
log n

np
+ C7

σmin
σ

√
n log n

p

)

+ C9ρ
tμr

1√
np

∥∥X�
∥∥+ C10σ

σmin

√
n

p

∥∥X�
∥∥

≤ 2C9ρ
tμr

1√
np

∥∥X�
∥∥+ 2C10σ

σmin

√
n

p

∥∥X�
∥∥ ,

123

Foundations of Computational Mathematics

where the second inequality uses the incoherence of X� (cf. (114)) and the last
inequality holds as long as n � κ3μr log n.

B.5 Proof of Lemma 11

From the definition of Rt+1,(l) (see (72)), we must have

∥
∥∥X t+1 Ĥ

t+1 − X t+1,(l)Rt+1,(l)
∥
∥∥
F

≤
∥
∥∥X t+1 Ĥ

t − X t+1,(l)Rt,(l)
∥
∥∥
F
.

The gradient update rules in (24) and (69) allow one to express

X t+1 Ĥ
t − X t+1,(l)Rt,(l)

= [
X t − η∇ f

(
X t)] Ĥ t −

[
X t,(l) − η∇ f (l)(X t,(l))

]
Rt,(l)

= X t Ĥ
t − η∇ f

(
X t Ĥ

t)−
[
X t,(l)Rt,(l) − η∇ f (l)(X t,(l)Rt,(l))

]

= (
X t Ĥ

t − X t,(l)Rt,(l))− η
[
∇ f (X t Ĥ

t
) − ∇ f

(
X t,(l)Rt,(l))

]

− η
[
∇ f

(
X t,(l)Rt,(l))− ∇ f (l)(X t,(l)Rt,(l))

]
,

where we have again used the fact that ∇ f
(
X t
)
R = ∇ f (X t R) for any orthonormal

matrix R ∈ Or×r (similarly for ∇ f (l)
(
X t,(l)

)
). Relate the right-hand side of the above

equation with ∇ fclean (X) to reach

X t+1 Ĥ
t − X t+1,(l)Rt,(l)

= (
X t Ĥ

t − X t,(l)Rt,(l))− η
[
∇ fclean

(
X t Ĥ

t)− ∇ fclean
(
X t,(l)Rt,(l))

]

︸ ︷︷ ︸
:=B(l)

1

− η

[
1

p
P�l

(
X t,(l)X t,(l)� − M�

)
− Pl

(
X t,(l)X t,(l)� − M�

)]
X t,(l)Rt,(l)

︸ ︷︷ ︸
:=B(l)

2

+ η
1

p
P� (E)

(
X t Ĥ

t − X t,(l)Rt,(l)
)

︸ ︷︷ ︸
:=B(l)

3

+ η
1

p
P�l (E) X t,(l)Rt,(l)

︸ ︷︷ ︸
:=B(l)

4

, (149)

where we have used the following relationship between ∇ f (l) (X) and ∇ f (X):

∇ f (l) (X) = ∇ f (X) − 1

p
P�l

[
XX� − (

M� + E
)]

X + Pl

(
XX� − M�

)
X

(150)
for all X ∈ R

n×r withP�l andPl defined, respectively, in (66) and (67). In the sequel,
we control the four terms in reverse order.

123

Foundations of Computational Mathematics

1. The last term B(l)
4 is controlled via the following lemma.

Lemma 24 Suppose that the sample size obeys n2 p > Cμ2r2n log2 n for some suffi-
ciently large constant C > 0. Then with probability at least 1− O

(
n−10

)
, the matrix

B(l)
4 as defined in (149) satisfies

∥∥∥B(l)
4

∥∥∥
F

� ησ

√
n log n

p

∥∥X�
∥∥
2,∞ .

2. The third term B(l)
3 can be bounded as follows

∥
∥∥B(l)

3

∥
∥∥
F

≤ η

∥
∥∥
∥
1

p
P� (E)

∥
∥∥
∥

∥
∥∥X t Ĥ

t − X t,(l)Rt,(l)
∥
∥∥
F

� ησ

√
n

p

∥
∥∥X t Ĥ

t − X t,(l)Rt,(l)
∥
∥∥
F
,

where the second inequality comes from Lemma 40.
3. For the second term B(l)

2 , we have the following lemma.

Lemma 25 Suppose that the sample size obeys n2 p � μ2r2n log n. Then with prob-
ability exceeding 1 − O

(
n−10

)
, the matrix B(l)

2 as defined in (149) satisfies

∥∥∥B(l)
2

∥∥∥
F

� η

√
κ2μ2r2 log n

np

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞ σmax. (151)

4. Regarding the first term B(l)
1 , apply the fundamental theorem of calculus [70,

Chapter XIII, Theorem 4.2] to get

vec
(
B(l)
1

) =
(
Inr − η

∫ 1

0
∇2 fclean (X(τ)) dτ

)
vec

(
X t Ĥ

t − X t,(l)Rt,(l)
)

,

(152)
where we abuse the notation and denote X(τ) := X t,(l)Rt,(l) +
τ
(
X t Ĥ

t − X t,(l)Rt,(l)
)
. Going through the same derivations as in the proof of

Lemma 8 (see Appendix B.2), we get

∥∥B(l)
1

∥∥
F ≤

(
1 − σmin

4
η
) ∥∥∥X t Ĥ

t − X t,(l)Rt,(l)
∥∥∥
F

(153)

with the proviso that 0 < η ≤ (2σmin)/(25σ 2
max).

Applying the triangle inequality to (149) and invoking the preceding four bounds, we
arrive at

∥∥
∥X t+1 Ĥ

t+1 − X t+1,(l)Rt+1,(l)
∥∥
∥
F

≤
(
1 − σmin

4
η
) ∥∥∥X t Ĥ

t − X t,(l)Rt,(l)
∥∥∥
F

123

Foundations of Computational Mathematics

+ C̃η

√
κ2μ2r2 log n

np

∥∥
∥X t,(l)Rt,(l) − X�

∥∥
∥
2,∞ σmax

+ C̃ησ

√
n

p

∥∥∥X t Ĥ
t − X t,(l)Rt,(l)

∥∥∥
F

+ C̃ησ

√
n log n

p

∥∥X�
∥∥
2,∞

=
(
1 − σmin

4
η + C̃ησ

√
n

p

)∥∥∥X t Ĥ
t − X t,(l)Rt,(l)

∥∥∥
F

+ C̃η

√
κ2μ2r2 log n

np

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞ σmax

+ C̃ησ

√
n log n

p

∥∥X�
∥∥
2,∞

≤
(
1 − 2σmin

9
η

)∥∥∥X t Ĥ
t − X t,(l)Rt,(l)

∥∥∥
F

+ C̃η

√
κ2μ2r2 log n

np

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞ σmax

+ C̃ησ

√
n log n

p

∥∥X�
∥∥
2,∞

for some absolute constant C̃ > 0. Here the last inequality holds as long as σ
√
n/p �

σmin, which is satisfied under our noise condition (27). This taken collectively with
hypotheses (70d) and (73c) leads to

∥∥
∥X t+1 Ĥ t+1 − X t+1,(l)Rt+1,(l)

∥∥
∥
F

≤
(
1 − 2σmin

9
η

)(

C3ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C7

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

)

+ C̃η

√
κ2μ2r2 log n

np

[

(C3 + C5) ρtμr

√
log n

np
+ (C8 + C7)

σ

σmin

√
n log n

p

]
∥
∥X�

∥
∥
2,∞ σmax

+ C̃ησ

√
n log n

p

∥
∥X�

∥
∥
2,∞

≤
(
1 − σmin

5
η
)
C3ρ

tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C7

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞

as long as C7 > 0 is sufficiently large, where we have used the sample complexity
assumption n2 p � κ4μ2r2n log n and the step size 0 < η ≤ 1/(2σmax) ≤ 1/(2σmin).
This finishes the proof.

B.5.1 Proof of Lemma 24

By the unitary invariance of the Frobenius norm, one has

123

Foundations of Computational Mathematics

∥∥
∥B(l)

4

∥∥
∥
F

= η

p

∥∥
∥P�l (E) X t,(l)

∥∥
∥
F
,

where all nonzero entries of thematrixP�l (E) reside in the lth row/column.Decouple
the effects of the lth row and the lth column of P�l (E) to reach

p

η

∥∥∥B(l)
4

∥∥∥
F

≤
∥∥∥∥

n∑

j=1

δl, j El, jX
t,(l)
j,·︸ ︷︷ ︸

:=u j

∥∥∥∥
2

+
∥∥∥∥
∑

j : j �=l

δl, j El, jX
t,(l)
l,·

∥∥∥∥
2

︸ ︷︷ ︸
:=α

, (154)

where δl, j := 1{(l, j)∈�} indicates whether the (l, j)th entry is observed. Since X t,(l)

is independent of {δl, j }1≤ j≤n and {El, j }1≤ j≤n , we can treat the first term as a sum of
independent vectors {u j }. It is easy to verify that

∥∥∥‖u j‖2
∥∥∥

ψ1
≤
∥∥∥X t,(l)

∥∥∥
2,∞

∥∥δl, j El, j
∥∥

ψ1
� σ

∥∥∥X t,(l)
∥∥∥
2,∞ ,

where ‖ · ‖ψ1 denotes the sub-exponential norm [66, Section A.1]. Further, one can
calculate

V :=
∥∥∥∥∥
∥
E

⎡

⎣
n∑

j=1

(
δl, j El, j

)2 X t,(l)
j,· X t,(l)�

j,·

⎤

⎦

∥∥∥∥∥
∥

� pσ 2

∥∥∥∥∥
∥
E

⎡

⎣
n∑

j=1

X t,(l)
j,· X t,(l)�

j,·

⎤

⎦

∥∥∥∥∥
∥

= pσ 2
∥∥∥X t,(l)

∥∥∥
2

F
.

Invoke the matrix Bernstein inequality [66, Theorem 2.7] to discover that with prob-
ability at least 1 − O

(
n−10

)
,

∥∥∥
∑n

j=1
u j

∥∥∥
2

�
√
V log n +

∥∥∥‖u j‖2
∥∥∥

ψ1
log2 n

�
√
pσ 2

∥∥X t,(l)
∥∥2
F log n + σ

∥∥X t,(l)
∥∥
2,∞ log2 n

� σ
√
np log n

∥∥X t,(l)
∥∥
2,∞ + σ

∥∥X t,(l)
∥∥
2,∞ log2 n

� σ
√
np log n

∥∥X t,(l)
∥∥
2,∞,

where the third inequality follows from
∥∥X t,(l)

∥∥2
F ≤ n

∥∥X t,(l)
∥∥2
2,∞ and the last inequal-

ity holds as long as np � log2 n.
Additionally, the remaining term α in (154) can be controlled using the same argu-

ment, giving rise to

α � σ
√
np log n

∥∥X t,(l)
∥∥
2,∞.

123

Foundations of Computational Mathematics

We then complete the proof by observing that

∥∥X t,(l)
∥∥
2,∞ = ∥∥X t,(l)Rt,(l)

∥∥
2,∞ ≤ ∥∥X t,(l)Rt,(l)−X�

∥∥
2,∞+∥∥X�

∥∥
2,∞ ≤ 2

∥∥X�
∥∥
2,∞,

(155)
where the last inequality follows by combining (73c), the sample complexity condition
n2 p � μ2r2n log n, and the noise condition (27).

B.5.2 Proof of Lemma 25

For notational simplicity, we denote

C := X t,(l)X t,(l)� − M� = X t,(l)X t,(l)� − X�X��. (156)

Since the Frobenius norm is unitarily invariant, we have

∥∥∥B(l)
2

∥∥∥
F

= η

∥∥∥∥

[
1

p
P�l (C) − Pl (C)

]

︸ ︷︷ ︸
:=W

X t,(l)
∥∥∥∥
F

.

Again, all nonzero entries of the matrix W reside in its lth row/column. We can deal
with the lth row and the lth column of W separately as follows

p

η

∥∥∥B(l)
2

∥∥∥
F

≤
∥∥∥∥

n∑

j=1

(
δl, j − p

)
Cl, jX

t,(l)
j,·

∥∥∥∥
2

+
√∑

j : j �=l

(
δl, j − p

)2 ‖C‖∞
∥∥X t,(l)

l,·
∥∥
2

�
∥∥∥∥

n∑

j=1

(
δl, j − p

)
Cl, jX

t,(l)
j,·

∥∥∥∥
2

+ √
np ‖C‖∞

∥∥X t,(l)
l,·
∥∥
2,

where δl, j := 1{(l, j)∈�} and the second line relies on the fact that
∑

j : j �=l

(
δl, j − p

)2

np. It follows that

L := max
1≤ j≤n

∥
∥∥
(
δl, j − p

)
Cl, jX

t,(l)
j,·
∥
∥∥
2

≤ ‖C‖∞
∥
∥∥X t,(l)

∥
∥∥
2,∞

(i)≤ 2 ‖C‖∞
∥∥X�

∥∥
2,∞ ,

V :=
∥
∥∥∥

n∑

j=1

E
[(

δl, j − p
)2]

C2
l, jX

t,(l)
j,· X t,(l)�

j,·

∥
∥∥∥ ≤ p‖C‖2∞

∥
∥∥∥

n∑

j=1

X t,(l)
j,· X t,(l)�

j,·

∥
∥∥∥

= p ‖C‖2∞
∥∥
∥X t,(l)

∥∥
∥
2

F

(ii)≤ 4p ‖C‖2∞
∥∥X�

∥∥2
F .

Here, (i) is a consequence of (155). In addition, (ii) follows from

∥∥X t,(l)
∥∥
F =

∥∥∥X t,(l)Rt,(l)
∥∥∥
F

≤
∥∥∥X t,(l)Rt,(l) − X�

∥∥∥
F

+ ∥∥X�
∥∥
F ≤ 2

∥∥X�
∥∥
F ,

123

Foundations of Computational Mathematics

where the last inequality comes from (73b), the sample complexity condition n2 p �
μ2r2n log n, and the noise condition (27). The matrix Bernstein inequality [114, The-
orem 6.1.1] reveals that

∥∥∥
∥

n∑

j=1

(
δl, j − p

)
Cl, jX

t,(l)
j,·

∥∥∥
∥
2

�
√
V log n + L log n

�
√
p ‖C‖2∞

∥∥X�
∥∥2
F log n + ‖C‖∞

∥∥X�
∥∥
2,∞ log n

with probability exceeding 1 − O
(
n−10

)
, and as a result,

p

η

∥∥B(l)
2

∥∥
F �

√
p log n ‖C‖∞

∥∥X�
∥∥
F + √

np ‖C‖∞
∥∥X�

∥∥
2,∞ (157)

as soon as np � log n.
To finish up, we make the observation that

‖C‖∞ =
∥∥∥X t,(l)Rt,(l)(X t,(l)Rt,(l))� − X�X��∥∥∥∞

≤
∥∥
∥
(
X t,(l)Rt,(l) − X�

)(
X t,(l)Rt,(l))�∥∥∥∞ +

∥∥
∥X�

(
X t,(l)Rt,(l) − X�

)� − X�X��∥∥∥∞
≤
∥
∥∥X t,(l)Rt,(l) − X�

∥
∥∥
2,∞

∥
∥∥X t,(l)Rt,(l)

∥
∥∥
2,∞ + ∥∥X�

∥∥
2,∞

∥
∥∥X t,(l)Rt,(l) − X�

∥
∥∥
2,∞

≤ 3
∥∥∥X t,(l)Rt,(l) − X�

∥∥∥
2,∞

∥
∥X�

∥
∥
2,∞ , (158)

where the last line arises from (155). This combined with (157) gives

∥∥∥B(l)
2

∥∥∥
F

� η

√
log n

p
‖C‖∞

∥∥X�
∥∥
F + η

√
n

p
‖C‖∞

∥∥X�
∥∥
2,∞

(i)
� η

√
log n

p

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞

∥∥X�
∥∥
2,∞

∥∥X�
∥∥
F

+ η

√
n

p

∥
∥∥X t,(l)Rt,(l) − X�

∥
∥∥
2,∞

∥∥X�
∥∥2
2,∞

(ii)
� η

√
log n

p

∥
∥∥X t,(l)Rt,(l) − X�

∥
∥∥
2,∞

√
κμr2

n
σmax

+ η

√
n

p

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞

κμr

n
σmax

� η

√
κ2μ2r2 log n

np

∥
∥∥X t,(l)Rt,(l) − X�

∥
∥∥
2,∞ σmax,

where (i) comes from (158) and (ii) makes use of the incoherence condition (114).

123

Foundations of Computational Mathematics

B.6 Proof of Lemma 12

We first introduce an auxiliary matrix

X̃
t+1,(l) := X t,(l) Ĥ

t,(l) − η

[
1

p
P�−l

[
X t,(l)X t,(l)� − (

M� + E
)]

+Pl

(
X t,(l)X t,(l)� − M�

)]
X�. (159)

With this in place, we can use the triangle inequality to obtain

∥∥∥
(
X t+1,(l) Ĥ

t+1,(l) − X�
)
l,·
∥∥∥
2

≤
∥∥∥
(
X t+1,(l) Ĥ

t+1,(l) − X̃
t+1,(l))

l,·
∥∥∥
2︸ ︷︷ ︸

:=α1

+
∥∥∥
(
X̃
t+1,(l) − X�

)
l,·
∥∥∥
2︸ ︷︷ ︸

:=α2

. (160)

In what follows, we bound the two terms α1 and α2 separately.

1. Regarding the second term α2 of (160), we see from the definition of X̃
t+1,(l)

(see (159)) that

(
X̃
t+1,(l) − X�

)
l,· =

[
X t,(l) Ĥ

t,(l) − η
(
X t,(l)X t,(l)� − X�X��)X� − X�

]

l,· ,
(161)

where we also utilize the definitions of P�−l and Pl in (67). For notational conve-
nience, we denote

�t,(l) := X t,(l) Ĥ
t,(l) − X�. (162)

This allows us to rewrite (161) as

(
X̃
t+1,(l) − X�

)

l,· = �
t,(l)
l,· − η

[(
�t,(l)X�� + X��t,(l)�) X�

]

l,·
− η

[
�t,(l)�t,(l)�X�

]

l,·
= �

t,(l)
l,· − η�

t,(l)
l,· �� − ηX�

l,·�t,(l)�X� − η�
t,(l)
l,· �t,(l)�X�,

which further implies that

α2 ≤
∥
∥∥�t,(l)

l,· − η�
t,(l)
l,· ��

∥
∥∥
2

+ η

∥
∥∥X�

l,·�t,(l)�X�
∥
∥∥
2

+ η

∥
∥∥�t,(l)

l,· �t,(l)�X�
∥
∥∥
2

≤
∥
∥
∥�t,(l)

l,·
∥
∥
∥
2

∥∥Ir − η��
∥∥+ η

∥∥X�
∥∥
2,∞

∥
∥
∥�t,(l)

∥
∥
∥
∥∥X�

∥∥+ η

∥
∥
∥�t,(l)

l,·
∥
∥
∥
2

∥
∥
∥�t,(l)

∥
∥
∥
∥∥X�

∥∥

≤
∥∥
∥�t,(l)

l,·
∥∥
∥
2

∥∥Ir − η��
∥∥+ 2η

∥∥X�
∥∥
2,∞

∥∥
∥�t,(l)

∥∥
∥
∥∥X�

∥∥ .

123

Foundations of Computational Mathematics

Here, the last line follows from the fact that
∥∥
∥�t,(l)

l,·
∥∥
∥
2

≤ ∥∥X�
∥∥
2,∞. To see this,

one can use the induction hypothesis (70e) to get

∥∥∥�t,(l)
l,·
∥∥∥
2

≤ C2ρ
tμr

1√
np

∥∥X�
∥∥
2,∞ + C6

σ

σmin

√
n log n

p

∥∥X�
∥∥
2,∞ � ∥∥X�

∥∥
2,∞
(163)

as long as np � μ2r2 and σ
√

(n log n) /p � σmin. By taking 0 < η ≤ 1/σmax,
we have 0 � Ir − η�� � (1 − ησmin) Ir and hence can obtain

α2 ≤ (1 − ησmin)

∥
∥∥�t,(l)

l,·
∥
∥∥
2

+ 2η
∥
∥X�

∥
∥
2,∞

∥
∥∥�t,(l)

∥
∥∥
∥
∥X�

∥
∥ . (164)

An immediate consequence of the above two inequalities and (73d) is

α2 ≤ ‖X�‖2,∞. (165)

2. The first term α1 of (160) can be equivalently written as

α1 =
∥
∥∥
(
X t+1,(l) Ĥ

t,(l)R1 − X̃
t+1,(l))

l,·
∥
∥∥
2
,

where

R1 = (
Ĥ

t,(l))−1 Ĥ
t+1,(l) := arg min

R∈Or×r

∥∥∥X t+1,(l) Ĥ
t,(l)

R − X�
∥∥∥
F
.

Simple algebra yields

α1 ≤
∥∥∥∥
(
X t+1,(l) Ĥ

t,(l) − X̃
t+1,(l)

)

l,· R1

∥∥∥∥
2

+
∥∥∥X̃

t+1,(l)
l,·

∥∥∥
2

‖R1 − Ir‖

≤
∥∥
∥∥
(
X t+1,(l) Ĥ

t,(l) − X̃
t+1,(l)

)

l,·

∥∥
∥∥
2︸ ︷︷ ︸

:=β1

+2
∥
∥X�

∥
∥
2,∞ ‖R1 − Ir‖︸ ︷︷ ︸

:=β2

.

Here, to bound the second term, we have used

∥
∥∥X̃

t+1,(l)
l,·

∥
∥∥
2

≤
∥
∥∥X̃

t+1,(l)
l,· − X�

l,·
∥
∥∥
2

+ ∥∥X�
l,·
∥∥
2

= α2 + ∥∥X�
l,·
∥∥
2

≤ 2
∥∥X�

∥∥
2,∞ ,

where the last inequality follows from (165). It remains to upper bound β1 and

β2. For both β1 and β2, a central quantity to control is X t+1,(l) Ĥ
t,(l) − X̃

t+1,(l)
.

By the definition of X̃
t+1,(l)

in (159) and the gradient update rule for X t+1,(l) (see
(69)), one has

X t+1,(l) Ĥ t,(l) − X̃ t+1,(l)

=
{
X t,(l) Ĥ t,(l) − η

[
1

p
P

�−l

[
X t,(l)X t,(l)� − (

M� + E
)]

123

Foundations of Computational Mathematics

+Pl

(
X t,(l)X t,(l)� − M�

)]
X t,(l) Ĥ t,(l)

}

−
{
X t,(l) Ĥ t,(l) − η

[
1

p
P�−l

[
X t,(l)X t,(l)� − (

M� + E
)]+ Pl

(
X t,(l)X t,(l)� − M�

)]
X�

}

= −η

[
1

p
P�−l

(
X t,(l)X t,(l)� − X�X��)+ Pl

(
X t,(l)X t,(l)� − X�X��)

]
�t,(l)

+ η

p
P

�−l (E) �t,(l). (166)

It is easy to verify that

1

p

∥∥P�−l (E)
∥∥ (i)≤ 1

p
‖P� (E)‖

(ii)
� σ

√
n

p

(iii)≤ δ

2
σmin

for δ > 0 sufficiently small. Here, (i) uses the elementary fact that the spectral
norm of a submatrix is no more than that of the matrix itself, (ii) arises from
Lemma 40, and (iii) is a consequence of the noise condition (27). Therefore, in
order to control (166), we need to upper bound the following quantity

γ :=
∥∥∥∥
1

p
P�−l

(
X t,(l)X t,(l)� − X�X��)+ Pl

(
X t,(l)X t,(l)� − X�X��)

∥∥∥∥ .

(167)
To this end, we make the observation that

γ ≤
∥
∥∥∥
1

p
P�

(
X t,(l)X t,(l)� − X�X��)

∥
∥∥∥

︸ ︷︷ ︸
:=γ1

+
∥
∥∥∥
1

p
P�l

(
X t,(l)X t,(l)� − X�X��)− Pl

(
X t,(l)X t,(l)� − X�X��)

∥
∥∥∥

︸ ︷︷ ︸
:=γ2

,

(168)

where P�l is defined in (66). An application of Lemma 43 reveals that

γ1 ≤ 2n
∥∥∥X t,(l)Rt,(l) − X�

∥∥∥
2

2,∞ + 4
√
n log n

∥∥∥X t,(l)Rt,(l) − X�
∥∥∥
2,∞

∥∥X�
∥∥ ,

where Rt,(l) ∈ Or×r is defined in (72). Let C = X t,(l)X t,(l)� − X�X�� as in
(156), and one can bound the other term γ2 by taking advantage of the triangle
inequality and the symmetry property:

γ2 ≤ 2

p

√√√
√

n∑

j=1

(
δl, j − p

)2
C2
l, j

(i)
�
√

n

p
‖C‖∞

(ii)
�
√

n

p

∥
∥∥X t,(l)Rt,(l) − X�

∥
∥∥
2,∞

∥
∥X�

∥
∥
2,∞ ,

123

Foundations of Computational Mathematics

where (i) comes from the standard Chernoff bound
∑n

j=1

(
δl, j − p

)2
 np, and
in (ii) we utilize the bound established in (158). The previous two bounds taken
collectively give

γ ≤ 2n
∥
∥
∥X t,(l)Rt,(l) − X�

∥
∥
∥
2

2,∞ + 4
√
n log n

∥
∥
∥X t,(l)Rt,(l) − X�

∥
∥
∥
2,∞

∥
∥X�

∥
∥

+ C̃

√
n

p

∥
∥
∥X t,(l)Rt,(l) − X�

∥
∥
∥
2,∞

∥
∥X�

∥
∥
2,∞ ≤ δ

2
σmin (169)

for some constant C̃ > 0 and δ > 0 sufficiently small. The last inequality follows
from (73c), the incoherence condition (114), and our sample size condition. In
summary, we obtain

∥
∥
∥X t+1,(l) Ĥ

t,(l) − X̃
t+1,(l)

∥
∥
∥ ≤ η

(
γ +

∥
∥
∥
∥
1

p
P�−l (E)

∥
∥
∥
∥

)∥
∥
∥�t,(l)

∥
∥
∥ ≤ ηδσmin

∥
∥
∥�t,(l)

∥
∥
∥ ,

(170)

for δ > 0 sufficiently small. With the estimate (170) in place, we can continue our
derivation on β1 and β2.

(a) With regard to β1, in view of (166) we can obtain

β1
(i)= η

∥∥∥∥
(
X t,(l)X t,(l)� − X�X��)

l,· �
t,(l)
∥∥∥∥
2

≤ η

∥
∥∥∥
(
X t,(l)X t,(l)� − X�X��)

l,·

∥
∥∥∥
2

∥
∥∥�t,(l)

∥
∥∥

(ii)= η

∥∥∥∥
∥

[
�t,(l)

(
X t,(l) Ĥ

t,(l)
)� + X��t,(l)�

]

l,·

∥∥∥∥
∥
2

∥∥∥�t,(l)
∥∥∥

≤ η
(∥∥∥�t,(l)

l,·
∥∥∥
2

∥∥∥X t,(l)
∥∥∥+ ∥∥X�

l,·
∥∥
2

∥∥∥�t,(l)
∥∥∥
) ∥∥∥�t,(l)

∥∥∥

≤ η

∥∥
∥�t,(l)

l,·
∥∥
∥
2

∥∥
∥X t,(l)

∥∥
∥
∥∥
∥�t,(l)

∥∥
∥+ η

∥
∥X�

l,·
∥
∥
2

∥∥
∥�t,(l)

∥∥
∥
2
, (171)

where (i) follows from the definitions of P�−l and Pl (see (67) and note that
all entries in the lth row of P�−l (·) are identically zero) and identity (ii) is due
to the definition of �t,(l) in (162).

(b) For β2, we first claim that

Ir := arg min
R∈Or×r

∥∥∥X̃
t+1,(l)

R − X�
∥∥∥
F
, (172)

whose justification follows similar reasonings as that of (138) and is therefore

omitted. In particular, it gives rise to the facts that X�� X̃
t+1,(l)

is symmetric
and

(
X̃
t+1,(l))�X� � 1

2
σmin Ir . (173)

123

Foundations of Computational Mathematics

We are now ready to invoke Lemma 36 to bound β2. We abuse the notation

and denote C := (
X̃
t+1,(l))�X� and E := (

X t+1,(l) Ĥ
t,(l) − X̃

t+1,(l))�X�.
We have

‖E‖ ≤ 1

2
σmin ≤ σr (C) .

The first inequality arises from (170), namely

‖E‖ ≤
∥∥∥X t+1,(l) Ĥ

t,(l) − X̃
t+1,(l)

∥∥∥
∥∥X�

∥∥ ≤ ηδσmin

∥∥∥�t,(l)
∥∥∥
∥∥X�

∥∥

(i)≤ ηδσmin
∥∥X�

∥∥2 (ii)≤ 1

2
σmin,

where (i) holds since
∥∥�t,(l)

∥∥ ≤ ∥∥X�
∥∥ and (ii) holds true for δ sufficiently

small and η ≤ 1/σmax. Invoke Lemma 36 to obtain

β2 = ‖R1 − Ir‖ ≤ 2

σr−1 (C) + σr (C)
‖E‖

≤ 2

σmin

∥∥∥X t+1,(l) Ĥ
t,(l) − X̃

t+1,(l)
∥∥∥
∥∥X�

∥∥ (174)

≤ 2δη
∥
∥∥�t,(l)

∥
∥∥
∥
∥X�

∥
∥ , (175)

where (174) follows since σr−1 (C) ≥ σr (C) ≥ σmin/2 from (173), and the
last line comes from (170).

(c) Putting the previous bounds (171) and (175) together yields

α1 ≤ η

∥∥
∥�t,(l)

l,·
∥∥
∥
2

∥∥
∥X t,(l)

∥∥
∥
∥∥
∥�t,(l)

∥∥
∥+ η

∥∥X�
l,·
∥∥
2

∥∥
∥�t,(l)

∥∥
∥
2

+ 4δη
∥∥X�

∥∥
2,∞

∥∥∥�t,(l)
∥∥∥
∥∥X�

∥∥ . (176)

3. Combine (160), (164), and (176) to reach
∥∥
∥∥
(
X t+1,(l) Ĥ t+1,(l) − X�

)

l,·

∥∥
∥∥
2

≤ (1 − ησmin)
∥∥∥�t,(l)

l,·
∥∥∥
2

+ 2η
∥
∥X�

∥
∥
2,∞

∥∥∥�t,(l)
∥∥∥
∥
∥X�

∥
∥

+ η

∥∥∥�t,(l)
l,·

∥∥∥
2

∥∥∥X t,(l)
∥∥∥
∥∥∥�t,(l)

∥∥∥+ η

∥∥∥X�
l,·
∥∥∥
2

∥∥∥�t,(l)
∥∥∥
2 + 4δη

∥
∥X�

∥
∥
2,∞

∥∥∥�t,(l)
∥∥∥
∥
∥X�

∥
∥

(i)≤
(
1 − ησmin + η

∥∥
∥X t,(l)

∥∥
∥
∥∥
∥�t,(l)

∥∥
∥
) ∥∥
∥�t,(l)

l,·
∥∥
∥
2

+ 4η
∥∥X�

∥∥
2,∞

∥∥
∥�t,(l)

∥∥
∥
∥∥X�

∥∥

(ii)≤
(
1 − σmin

2
η
)(

C2ρ
tμr

1√
np

+ C6

σmin
σ

√
n log n

p

)
∥∥X�

∥∥
2,∞

+ 4η
∥∥X�

∥∥ ∥∥X�
∥∥
2,∞

(
2C9ρ

tμr
1√
np

∥∥X�
∥∥+ 2C10

σmin
σ

√
n

p

∥∥X�
∥∥
)

(iii)≤ C2ρ
t+1μr

1√
np

∥∥X�
∥∥
2,∞ + C6

σmin
σ

√
n log n

p

∥∥X�
∥∥
2,∞ .

123

Foundations of Computational Mathematics

Here, (i) follows since
∥∥�t,(l)

∥∥ ≤ ∥∥X�
∥∥ and δ is sufficiently small, (ii) invokes

hypotheses (70e) and (73d) and recognizes that

∥
∥∥X t,(l)

∥
∥∥
∥
∥∥�t,(l)

∥
∥∥ ≤ 2

∥
∥X�

∥
∥
(

2C9μr
1√
np

∥
∥X�

∥
∥+ 2C10

σmin
σ

√
n log n

np

∥
∥X�

∥
∥
)

≤ σmin

2

holds under the sample size and noise condition, while (iii) is valid as long as
1 − (σmin/3) · η ≤ ρ < 1, C2 � κC9, and C6 � κC10/

√
log n.

B.7 Proof of Lemma 13

For notational convenience, we define the following two orthonormal matrices

Q := arg min
R∈Or×r

∥∥
∥U0R − U�

∥∥
∥
F

and Q(l) := arg min
R∈Or×r

∥∥U0,(l)R − U�
∥∥
F.

The problem of finding Ĥ
t
(see (26)) is called the orthogonal Procrustes problem

[112]. It is well known that the minimizer Ĥ
t
always exists and is given by

Ĥ
t = sgn

(
X t�X�

)
.

Here, the sign matrix sgn(B) is defined as

sgn(B) := UV� (177)

for any matrix B with singular value decomposition B = U�V�, where the columns
of U and V are left and right singular vectors, respectively.

Before proceeding, we make note of the following perturbation bounds on M0 and
M(l) (as defined in Algorithms 2 and 5, respectively):

∥
∥∥M0 − M�

∥
∥∥

(i)≤
∥
∥∥∥
1

p
P�

(
M�
)− M�

∥
∥∥∥+

∥
∥∥∥
1

p
P� (E)

∥
∥∥∥

(ii)≤ C

√
n

p

∥∥M�
∥∥∞ + Cσ

√
n

p
= C

√
n

p

∥∥X�
∥∥2
2,∞ + C

σ√
σmin

√
n

p

√
σmin

(iii)≤ C

{

μr

√
1

np

√
σmax + σ√

σmin

√
n

p

}
∥∥X�

∥∥ (iv)� σmin, (178)

for some universal constant C > 0. Here, (i) arises from the triangle inequality, (ii)
utilizes Lemmas 39 and 40, (iii) follows from the incoherence condition (114), and
(iv) holds under our sample complexity assumption that n2 p � μ2r2n and the noise

123

Foundations of Computational Mathematics

condition (27). Similarly, we have

∥∥∥M(l) − M�
∥∥∥ �

{

μr

√
1

np

√
σmax + σ√

σmin

√
n

p

}
∥∥X�

∥∥ � σmin. (179)

Combine Weyl’s inequality, (178), and (179) to obtain

∥∥∥�0 − ��
∥∥∥ ≤

∥∥∥M0 − M�
∥∥∥ � σmin and

∥∥∥�(l) − ��
∥∥∥ ≤

∥∥∥M(l) − M�
∥∥∥ � σmin,

(180)

which further implies

1

2
σmin ≤ σr

(
�0) ≤ σ1

(
�0) ≤ 2σmax and

1

2
σmin ≤ σr

(
�(l)

)
≤ σ1

(
�(l)

)
≤ 2σmax.

(181)

We start by proving (70a), (70b), and (70c). The key decomposition we need is the
following

X0 Ĥ
0 − X� = U0

(
�0
)1/2 (

Ĥ
0 − Q

)+ U0
[(

�0
)1/2

Q − Q
(
��
)1/2

]

+
(
U0Q − U�

) (
��
)1/2

. (182)

1. For the spectral norm error bound in (70c), the triangle inequality together with
(182) yields

∥∥∥X0 Ĥ
0 − X�

∥∥∥ ≤
∥∥∥∥
(
�0
)1/2∥∥∥∥

∥∥∥Ĥ
0 − Q

∥∥∥+
∥∥∥∥
(
�0
)1/2

Q − Q
(
��
)1/2

∥∥∥∥

+√
σmax

∥∥
∥U0Q − U�

∥∥
∥ ,

wherewe have also used the fact that ‖U0‖ = 1. Recognizing that
∥∥M0 − M�

∥∥ �
σmin (see (178)) and the assumption σmax/σmin � 1, we can apply Lemmas 47,
46, and 45 to obtain

∥∥Ĥ0 − Q
∥∥ � 1

σmin

∥∥∥M0 − M�
∥∥∥ , (183a)

∥∥∥∥
(
�0
)1/2

Q − Q
(
��
)1/2

∥∥∥∥ � 1√
σmin

∥∥∥M0 − M�
∥∥∥ , (183b)

∥∥∥U0Q − U�
∥∥∥ � 1

σmin

∥∥∥M0 − M�
∥∥∥ . (183c)

123

Foundations of Computational Mathematics

These taken collectively imply the advertised upper bound

∥∥X0 Ĥ
0 − X�

∥∥ � √
σmax

1

σmin

∥∥∥M0 − M�
∥∥∥+ 1√

σmin

∥∥∥M0 − M�
∥∥∥

� 1√
σmin

∥∥∥M0 − M�
∥∥∥

�
{

μr

√
1

np

√
σmax

σmin
+ σ

σmin

√
n

p

}
∥
∥X�

∥
∥ ,

where we also utilize the fact that
∥
∥ (�0

)1/2 ∥∥ ≤ √
2σmax (see (181)) and the

bounded condition number assumption, i.e., σmax/σmin � 1. This finishes the
proof of (70c).

2. With regard to the Frobenius norm bound in (70a), one has

∥∥
∥X0 Ĥ

0 − X�
∥∥
∥
F

≤ √
r
∥
∥X0 Ĥ

0 − X�
∥
∥

(i)
�
{

μr

√
1

np
+ σ

σmin

√
n

p

}√
r
∥∥X�

∥∥

=
{

μr

√
1

np
+ σ

σmin

√
n

p

}√
r

√
σmax√
σmin

√
σmin

(ii)
�
{

μr

√
1

np
+ σ

σmin

√
n

p

}√
r
∥∥X�

∥∥
F .

Here (i) arises from (70c) and (ii) holds true since σmax/σmin
 1 and
√
r
√

σmin ≤∥∥X�
∥∥
F, thus completing the proof of (70a).

3. The proof of (70b) follows from similar arguments as used in proving (70c).
Combine (182) and the triangle inequality to reach

∥∥∥X0 Ĥ
0 − X�

∥∥∥
2,∞

≤
∥∥∥U0

∥∥∥
2,∞

{∥∥∥
∥
(
�0
)1/2∥∥∥

∥

∥∥∥Ĥ
0 − Q

∥∥∥+
∥∥∥
∥
(
�0
)1/2

Q − Q
(
��
)1/2

∥∥∥
∥

}

+ √
σmax

∥
∥∥U0Q − U�

∥
∥∥
2,∞ .

Plugging in the estimates (178), (181), (183a), and (183b) results in

∥∥∥X0 Ĥ
0 − X�

∥∥∥
2,∞ �

{

μr

√
1

np
+ σ

σmin

√
n

p

}
∥∥X�

∥∥
∥∥∥U0

∥∥∥
2,∞

+√
σmax

∥
∥∥U0Q − U�

∥
∥∥
2,∞ .

123

Foundations of Computational Mathematics

It remains to study the component-wise error of U0. To this end, it has already
been shown in [1, Lemma 14] that

∥∥U0Q − U�
∥∥
2,∞ �

(

μr

√
1

np
+ σ

σmin

√
n

p

)
∥∥U�

∥∥
2,∞ and

∥∥U0
∥∥
2,∞ �

∥∥U�
∥∥
2,∞

(184)
under our assumptions. These combined with the previous inequality give

∥∥∥X0 Ĥ
0 − X�

∥∥∥
2,∞ �

{

μr

√
1

np
+ σ

σmin

√
n

p

}
√

σmax
∥∥U�

∥∥
2,∞

�
{

μr

√
1

np
+ σ

σmin

√
n

p

}
∥∥X�

∥∥
2,∞ ,

where the last relation is due to the observation that

√
σmax

∥
∥U�

∥
∥
2,∞ � √

σmin
∥
∥U�

∥
∥
2,∞ ≤ ∥

∥X�
∥
∥
2,∞ .

4. We now move on to proving (70e). Recall that Q(l) = argminR∈Or×r∥∥U0,(l)R − U�
∥∥
F. By the triangle inequality,

∥∥
∥
(
X0,(l) Ĥ

0,(l) − X�
)
l,·
∥∥
∥
2

≤
∥∥
∥X0,(l)

l,·
(
Ĥ

0,(l)−Q(l))
∥∥
∥
2

+
∥∥
∥
(
X0,(l) Q(l)−X�

)
l,·
∥∥
∥
2

≤
∥∥∥X0,(l)

l,·
∥∥∥
2

∥∥Ĥ0,(l)− Q(l)
∥∥+
∥∥∥
(
X0,(l) Q(l)−X�

)
l,·
∥∥∥
2
.

(185)

Note that X�
l,· = M�

l,·U�
(
��
)−1/2 and, by construction of M(l),

X0,(l)
l,· = M(l)

l,·U
0,(l)(�(l))−1/2 = M�

l,·U0,(l)(�(l))−1/2
.

We can thus decompose

(
X0,(l) Q(l) − X�

)

l,· = M�
l,·
{
U0,(l)

[(
�(l))−1/2Q(l) − Q(l) (��

)−1/2
]

+
(
U0,(l) Q(l) − U�

) (
��
)−1/2

}
,

which further implies that

∥∥∥
(
X0,(l) Q(l) − X�

)
l,·
∥∥∥
2

≤ ∥∥M�
∥∥
2,∞

{∥∥∥
(
�(l))−1/2Q(l) − Q(l) (��

)−1/2
∥∥∥

+ 1√
σmin

∥
∥∥U0,(l) Q(l) − U�

∥
∥∥
}

. (186)

123

Foundations of Computational Mathematics

In order to control this, we first see that

∥
∥∥
(
�(l))−1/2Q(l) − Q(l) (��

)−1/2
∥
∥∥

=
∥∥∥
(
�(l))−1/2

[
Q(l) (��

)1/2 − (
�(l))1/2Q(l)

] (
��
)−1/2

∥∥∥

� 1

σmin

∥∥∥Q(l) (��
)1/2 − (

�(l))−1/2Q(l)
∥∥∥

� 1

σ
3/2
min

∥∥
∥M(l) − M�

∥∥
∥ ,

where the penultimate inequality uses (181) and the last inequality arises from
Lemma 46. Additionally, Lemma 45 gives

∥∥∥U0,(l) Q(l) − U�
∥∥∥ � 1

σmin

∥∥∥M(l) − M�
∥∥∥ .

Plugging the previous two bounds into (186), we reach

∥∥∥
(
X0,(l) Q(l) − X�

)
l,·
∥∥∥
2

� 1

σ
3/2
min

∥∥∥M(l) − M�
∥∥∥
∥∥M�

∥∥
2,∞

�
{

μr

√
1

np
+ σ

σmin

√
n

p

}
∥
∥X�

∥
∥
2,∞ .

where the last relation follows from
∥∥M�

∥∥
2,∞ = ∥∥X�X��∥∥

2,∞ ≤√
σmax

∥∥X�
∥∥
2,∞

and estimate (179). Note that this also implies that
∥
∥∥X0,(l)

l,·
∥
∥∥
2

≤ 2
∥
∥X�

∥
∥
2,∞. To

see this, one has by the unitary invariance of
∥∥(·)l,·

∥∥
2,

∥∥∥X0,(l)
l,·

∥∥∥
2

=
∥∥∥X0,(l)

l,· Q(l)
∥∥∥
2

≤
∥∥∥
(
X0,(l) Q(l) − X�

)
l,·
∥∥∥
2

+ ∥∥X�
l,·
∥∥
2

≤ 2
∥∥X�

∥∥
2,∞ .

Substituting the above bounds back to (185) yields in

∥∥
∥
(
X0,(l) Ĥ

0,(l) − X�
)
l,·
∥∥
∥
2

�
∥∥X�

∥∥
2,∞

∥∥
∥Ĥ

0,(l) − Q(l)
∥∥
∥

+
{

μr

√
1

np
+ σ

σmin

√
n

p

}
∥∥X�

∥∥
2,∞

�
{

μr

√
1

np
+ σ

σmin

√
n

p

}
∥∥X�

∥∥
2,∞ ,

where the second line relies on Lemma 47, bound (179), and condition
σmax/σmin
 1. This establishes (70e).

123

Foundations of Computational Mathematics

5. Our final step is to justify (70d). Define B := argminR∈Or×r

∥∥U0,(l)R − U0
∥∥
F.

From the definition of R0,(l) (cf. (72)), one has
∥∥
∥X0 Ĥ

0 − X0,(l)R0,(l)
∥∥
∥
F

≤
∥∥
∥X0,(l)B − X0

∥∥
∥
F
.

Recognizing that

X0,(l)B−X0 = U0,(l)
[(

�(l))1/2B−B
(
�0
)1/2]+

(
U0,(l)B−U0

) (
�0
)1/2

,

we can use the triangle inequality to bound

∥∥∥X0,(l)B−X0
∥∥∥
F

≤
∥∥∥∥
(
�(l))1/2B−B

(
�0
)1/2∥∥∥∥

F
+
∥∥∥U0,(l)B−U0

∥∥∥
F

∥∥∥∥
(
�0
)1/2∥∥∥∥ .

In view of Lemma 46 and bounds (178) and (179), one has

∥∥∥
(
�(l))−1/2B − B�1/2

∥∥∥
F

� 1√
σmin

∥∥∥
(
M0 − M(l))U0,(l)

∥∥∥
F
.

From Davis–Kahan’s sin� theorem [39] we see that

∥∥
∥U0,(l)B − U0

∥∥
∥
F

� 1

σmin

∥∥
∥
(
M0 − M(l))U0,(l)

∥∥
∥
F
.

These estimates taken together with (181) give

∥∥∥X0,(l)B − X0
∥∥∥
F

� 1√
σmin

∥∥∥
(
M0 − M(l))U0,(l)

∥∥∥
F
.

It then boils down to controlling
∥∥(M0 − M(l)

)
U0,(l)

∥∥
F. Quantities of this type

have shown up multiple times already, and hence, we omit the proof details for
conciseness (see Appendix B.5). With probability at least 1 − O

(
n−10

)
,

∥∥∥
(
M0 − M(l))U0,(l)

∥∥∥
F

�
{

μr

√
log n

np
σmax + σ

√
n log n

p

}∥∥∥U0,(l)
∥∥∥
2,∞ .

If one further has

∥∥
∥U0,(l)

∥∥
∥
2,∞ �

∥
∥U�

∥
∥
2,∞ � 1√

σmin

∥
∥X�

∥
∥
2,∞ , (187)

then taking the previous bounds collectively establishes the desired bound

∥∥
∥X0 Ĥ

0 − X0,(l)R0,(l)
∥∥
∥
F

�
{

μr

√
log n

np
+ σ

σmin

√
n log n

p

}
∥
∥X�

∥
∥
2,∞ .

123

Foundations of Computational Mathematics

Proof of Claim (187) Denote by M(l),zero the matrix derived by zeroing out the lth
row/column of M(l), and U (l),zero ∈ R

n×r containing the leading r eigenvectors of
M(l),zero. On the one hand, [1, Lemma 4 and Lemma 14] demonstrate that

max
1≤l≤n

‖U (l),zero‖2,∞ � ‖U�‖2,∞.

On the other hand, by the Davis–Kahan sin� theorem [39] we obtain

∥∥
∥U0,(l)sgn

(
U0,(l)�U (l),zero

)
− U (l),zero

∥∥
∥
F

� 1

σmin

∥∥
∥
(
M(l) − M(l),zero

)
U (l),zero

∥∥
∥
F
,

(188)

where sgn(A) denotes the sign matrix of A. For any j �= l, one has

(
M(l) − M(l),zero

)

j,· U
(l),zero =

(
M(l) − M(l),zero

)

j,l
U (l),zero

l,· = 01×r ,

since the lth row of U (l),zero
l,· is identically zero by construction. In addition,

∥
∥∥∥
(
M(l) − M(l),zero

)

l,· U
(l),zero

∥
∥∥∥
2

=
∥∥∥M�

l,·U (l),zero
∥∥∥
2

≤ ∥∥M�
∥∥
2,∞ ≤ σmax

∥∥U�
∥∥
2,∞ .

As a consequence, one has

∥∥∥
(
M(l)−M(l),zero

)
U (l),zero

∥∥∥
F

=
∥∥∥∥
(
M(l)−M(l),zero

)

l,· U
(l),zero

∥∥∥∥
2

≤ σmax
∥∥U�

∥∥
2,∞ ,

which combined with (188) and the assumption σmax/σmin
 1 yields

∥∥∥U0,(l)sgn
(
U0,(l)�U (l),zero

)
− U (l),zero

∥∥∥
F

�
∥∥U�

∥∥
2,∞

Claim (187) then follows by combining the above estimates:

∥∥∥U0,(l)
∥∥∥
2,∞ =

∥∥∥U0,(l)sgn
(
U0,(l)�U (l),zero

)∥∥∥
2,∞

≤ ‖U (l),zero‖2,∞ +
∥∥∥U0,(l)sgn

(
U0,(l)�U (l),zero

)
− U (l),zero

∥∥∥
F

� ‖U�‖2,∞,

where we have utilized the unitary invariance of ‖·‖2,∞. ��

123

Foundations of Computational Mathematics

C Proofs for Blind Deconvolution

Before proceeding to the proofs, we make note of the following concentration results.
The standard Gaussian concentration inequality and the union bound give

max
1≤l≤m

∣∣∣aHl x
�
∣∣∣ ≤ 5

√
logm (189)

with probability at least 1 − O(m−10). In addition, with probability exceeding 1 −
Cm exp(−cK) for some constants c,C > 0,

max
1≤l≤m

‖al‖2 ≤ 3
√
K . (190)

In addition, the population/expected Wirtinger Hessian at the truth z� is given by

∇2F
(
z�
) =

⎡

⎢⎢⎢
⎣

IK 0 0 h�x��
0 IK x�h�� 0

0
(
x�h��)H IK 0

(
h�x��)H 0 0 IK

⎤

⎥⎥⎥
⎦

. (191)

C.1 Proof of Lemma 14

First, we find it convenient to decompose the Wirtinger Hessian (cf. (80)) into the
expectedWirtinger Hessian at the truth (cf. (191)) and the perturbation part as follows:

∇2 f (z) = ∇2F
(
z�
)+

(
∇2 f (z) − ∇2F

(
z�
))

. (192)

The proof then proceeds by showing that (i) the population Hessian ∇2F
(
z�
)
satisfies

the restricted strong convexity and smoothness properties as advertised and (ii) the
perturbation ∇2 f (z) − ∇2F

(
z�
)
is well controlled under our assumptions. We start

by controlling the population Hessian in the following lemma.

Lemma 26 Instate the notation and the conditions of Lemma 14. We have

∥∥∥∇2F
(
z�
)∥∥∥ = 2 and uH

[
D∇2F

(
z�
)+ ∇2F

(
z�
)
D
]
u ≥ ‖u‖22 .

The next step is to bound the perturbation. To this end, we define the set

S := {z : z satisfies (82)} ,

and derive the following lemma.

123

Foundations of Computational Mathematics

Lemma 27 Suppose the sample complexity satisfies m � μ2K log9 m, c > 0 is a
sufficiently small constant, and δ = c/ log2 m. Then with probability at least 1 −
O
(
m−10 + e−K logm

)
, one has

sup
z∈S

∥∥
∥∇2 f (z) − ∇2F

(
z�
)∥∥
∥ ≤ 1/4.

Combining the two lemmas, we can easily see that for z ∈ S,

∥∥∥∇2 f (z)
∥∥∥ ≤

∥∥∥∇2F
(
z�
)∥∥∥+

∥∥∥∇2 f (z) − ∇2F
(
z�
)∥∥∥ ≤ 2 + 1/4 ≤ 3,

which verifies the smoothness upper bound. In addition,

uH
[
D∇2 f (z) + ∇2 f (z) D

]
u

= uH
[
D∇2F

(
z�
)+ ∇2F

(
z�
)
D
]
u + uHD

[
∇2 f (z) − ∇2F

(
z�
)]

u

+ uH
[
∇2 f (z) − ∇2F

(
z�
)]

Du

(i)≥ uH
[
D∇2F

(
z�
)+ ∇2F

(
z�
)
D
]
u − 2 ‖D‖

∥∥∥∇2 f (z) − ∇2F
(
z�
)∥∥∥ ‖u‖22

(ii)≥ ‖u‖22 − 2 (1 + δ) · 1
4

‖u‖22
(iii)≥ 1

4
‖u‖22 ,

where (i) uses the triangle inequality, (ii) holds because of Lemma 27 and the fact that
‖D‖ ≤ 1+ δ, and (iii) follows if δ ≤ 1/2. This establishes the claim on the restricted
strong convexity.

C.1.1 Proof of Lemma 26

We start by proving the identity
∥∥∇2F (z�)

∥∥ = 2. Let

u1 = 1√
2

⎡

⎢⎢
⎣

h�

0
0
x�

⎤

⎥⎥
⎦ , u2 = 1√

2

⎡

⎢⎢
⎣

0
x�

h�

0

⎤

⎥⎥
⎦ , u3 = 1√

2

⎡

⎢⎢
⎣

h�

0
0

−x�

⎤

⎥⎥
⎦ ,

u4 = 1√
2

⎡

⎢⎢
⎣

0
x�

−h�

0

⎤

⎥⎥
⎦ .

123

Foundations of Computational Mathematics

Recalling that ‖h�‖2 = ‖x�‖2 = 1, we can easily check that these four vectors form
an orthonormal set. A little algebra reveals that

∇2F
(
z�
) = I4K + u1uH1 + u2uH2 − u3uH3 − u4uH4 ,

which immediately implies
∥∥∥∇2F

(
z�
)∥∥∥ = 2.

We now turn attention to the restricted strong convexity. Since uHD∇2F (z�) u is
the complex conjugate of uH∇2F (z�) Du as both ∇2F(z�) and D are Hermitian, we
will focus on the first term uHD∇2F (z�) u. This term can be rewritten as

uHD∇2F
(
z�
)
u

(i)=
[
(h1 − h2)H , (x1 − x2)H ,

(
h1 − h2

)H
,
(
x1 − x2

)H
]
D

⎡

⎢⎢⎢
⎣

IK 0 0 h�x��
0 IK x�h�� 0

0
(
x�h��)H IK 0

(
h�x��)H 0 0 IK

⎤

⎥⎥⎥
⎦

⎡

⎢⎢
⎣

h1 − h2
x1 − x2
h1 − h2
x1 − x2

⎤

⎥⎥
⎦

(ii)=
[
γ1 (h1 − h2)H , γ2 (x1 − x2)H , γ1

(
h1 − h2

)H
, γ2

(
x1 − x2

)H
]

⎡

⎢
⎢⎢
⎣

h1 − h2 + h�x��(x1 − x2)
x1 − x2 + x�h��(h1 − h2)(

x�h��)H (x1 − x2) + (h1 − h2)(
h�x��)H (h1 − h2) + (x1 − x2)

⎤

⎥
⎥⎥
⎦

=
[
γ1 (h1 − h2)H , γ2 (x1 − x2)H , γ1

(
h1 − h2

)H
, γ2

(
x1 − x2

)H
]

⎡

⎢
⎢⎢
⎣

h1 − h2 + h� (x1 − x2)H x�

x1 − x2 + x� (h1 − h2)H h�

h1 − h2 + h� (x1 − x2)H x�

x1 − x2 + x� (h1 − h2)H h�

⎤

⎥
⎥⎥
⎦

= 2γ1 ‖h1 − h2‖22 + 2γ2 ‖x1 − x2‖22
+ (γ1 + γ2) (h1 − h2)H h� (x1 − x2)H x�

︸ ︷︷ ︸
:=β

+ (γ1 + γ2) (h1 − h2)H h� (x1 − x2)H x�

︸ ︷︷ ︸
=β

,

(193)

where (i) uses the definitions of u and ∇2F (z�), and (ii) follows from the definition
of D. In view of the assumption (84), we can obtain

2γ1 ‖h1 − h2‖22 + 2γ2 ‖x1 − x2‖22 ≥ 2min {γ1, γ2}
(

‖h1 − h2‖22 + ‖x1 − x2‖22
)

≥ (1 − δ) ‖u‖22 ,

123

Foundations of Computational Mathematics

where the last inequality utilizes the identity

2 ‖h1 − h2‖22 + 2 ‖x1 − x2‖22 = ‖u‖22 . (194)

It then boils down to controlling β. Toward this goal, we decompose β into the
following four terms

β = (h1 − h2)H h2 (x1 − x2)H x2︸ ︷︷ ︸
:=β1

+ (h1 − h2)H
(
h� − h2

)
(x1 − x2)H

(
x� − x2

)

︸ ︷︷ ︸
:=β2

+ (h1 − h2)H
(
h� − h2

)
(x1 − x2)H x2

︸ ︷︷ ︸
:=β3

+ (h1 − h2)H h2 (x1 − x2)H
(
x� − x2

)

︸ ︷︷ ︸
:=β4

.

Since
∥∥h2 − h�

∥∥
2 and ‖x2 − x�‖2 are both small by (83), β2, β3, and β4 are well

bounded. Specifically, regarding β2, we discover that

|β2| ≤ ∥∥h� − h2
∥∥
2

∥∥x� − x2
∥∥
2 ‖h1 − h2‖2 ‖x1 − x2‖2

≤ δ2 ‖h1 − h2‖2 ‖x1 − x2‖2 ≤ δ ‖h1 − h2‖2 ‖x1 − x2‖2 ,

where the second inequality is due to (83) and the last one holds since δ < 1. Similarly,
we can obtain

|β3| ≤ δ ‖x2‖2 ‖h1 − h2‖2 ‖x1 − x2‖2 ≤ 2δ ‖h1 − h2‖2 ‖x1 − x2‖2 , and

|β4| ≤ δ ‖h2‖2 ‖h1 − h2‖2 ‖x1 − x2‖2 ≤ 2δ ‖h1 − h2‖2 ‖x1 − x2‖2 ,

where both lines make use of the facts that

‖x2‖2 ≤ ∥∥x2 − x�
∥∥
2 + ∥∥x�

∥∥
2 ≤ 1 + δ ≤ 2 and

‖h2‖2 ≤ ∥
∥h2 − h�

∥
∥
2 + ∥

∥h�
∥
∥
2 ≤ 1 + δ ≤ 2. (195)

Combine the previous three bounds to reach

|β2| + |β3| + |β4| ≤ 5δ ‖h1 − h2‖2 ‖x1 − x2‖2
≤ 5δ

‖h1 − h2‖22 + ‖x1 − x2‖22
2

= 5

4
δ ‖u‖22 ,

where we utilize the elementary inequality ab ≤ (a2 + b2)/2 and identity (194).
The only remaining term is thus β1. Recalling that (h1, x1) and (h2, x2) are aligned

by our assumption, we can invoke Lemma 56 to obtain

(h1 − h2)H h2 = ‖x1 − x2‖22 + xH2 (x1 − x2) − ‖h1 − h2‖22 ,

which allows one to rewrite β1 as

β1 =
{

‖x1 − x2‖22 + xH2 (x1 − x2) − ‖h1 − h2‖22
}

· (x1 − x2)H x2

= (x1 − x2)H x2
(

‖x1 − x2‖22 − ‖h1 − h2‖22
)

+
∣
∣∣(x1 − x2)H x2

∣
∣∣
2
.

123

Foundations of Computational Mathematics

Consequently,

β1 + β1 = 2
∣
∣∣(x1 − x2)H x2

∣
∣∣
2

2
+ 2Re

[
(x1 − x2)H x2

] (
‖x1 − x2‖22 − ‖h1 − h2‖22

)

≥ 2Re
[
(x1 − x2)H x2

] (
‖x1 − x2‖22 − ‖h1 − h2‖22

)

(i)≥ −
∣∣∣(x1 − x2)H x2

∣∣∣ ‖u‖22
(ii)≥ −4δ ‖u‖22 .

Here, (i) arises from the triangle inequality that

∣∣
∣‖x1 − x2‖22 − ‖h1 − h2‖22

∣∣
∣ ≤ ‖x1 − x2‖22 + ‖h1 − h2‖22 = 1

2
‖u‖22 ,

and (ii) occurs since ‖x1 − x2‖2 ≤ ‖x1 − x�‖2 + ‖x2 − x�‖2 ≤ 2δ and ‖x2‖2 ≤ 2
(see (195)).

To finish up, note that γ1 +γ2 ≤ 2(1+ δ) ≤ 3 for δ < 1/2. Substitute these bounds
into (193) to obtain

uHD∇2F
(
z�
)
u ≥ (1 − δ) ‖u‖22 + (γ1 + γ2)

(
β + β

)

≥ (1−δ) ‖u‖22 + (γ1+γ2)
(
β1+β1

)− 2 (γ1+γ2) (|β2| + |β3| + |β4|)
≥ (1 − δ) ‖u‖22 − 12δ ‖u‖22 − 6 · 5

4
δ ‖u‖22

≥ (1 − 20.5δ) ‖u‖22
≥ 1

2
‖u‖22

as long as δ is small enough.

C.1.2 Proof of Lemma 27

In view of the expressions of ∇2 f (z) and ∇2F (z�) (cf. (80) and (191)) and the
triangle inequality, we get

∥
∥∥∇2 f (z) − ∇2F

(
z�
)∥∥∥ ≤ 2α1 + 2α2 + 4α3 + 4α4, (196)

where the four terms on the right-hand side are defined as follows

α1 =
∥∥∥∥∥∥

m∑

j=1

∣∣∣aHj x
∣∣∣
2
b j bHj − IK

∥∥∥∥∥∥
, α2 =

∥∥∥∥∥∥

m∑

j=1

∣∣∣bHj h
∣∣∣
2
a j aHj − IK

∥∥∥∥∥∥
,

α3 =
∥
∥∥∥∥∥

m∑

j=1

(
bHj hx

Ha j − y j
)
b j aHj

∥
∥∥∥∥∥

, α4 =
∥
∥∥∥∥∥

m∑

j=1

b j bHj h
(
a j aHj x

)� − h�x��
∥
∥∥∥∥∥

.

123

Foundations of Computational Mathematics

In what follows, we shall control supz∈S α j for j = 1, 2, 3, 4 separately.

1. Regarding the first term α1, the triangle inequality gives

α1 ≤
∥∥
∥∥∥∥

m∑

j=1

∣∣∣aHj x
∣∣∣
2
b j bHj −

m∑

j=1

∣∣∣aHj x
�
∣∣∣
2
b j bHj

∥∥
∥∥∥∥

︸ ︷︷ ︸
:=β1

+
∥∥
∥∥∥∥

m∑

j=1

∣∣∣aHj x
�
∣∣∣
2
b j bHj − IK

∥∥
∥∥∥∥

︸ ︷︷ ︸
:=β2

.

• To control β1, the key observation is that aHj x and aHj x
� are extremely close.

We can rewrite β1 as

β1 =
∥∥∥
∥∥∥

m∑

j=1

(∣∣∣aHj x
∣∣∣
2 −

∣∣∣aHj x
�
∣∣∣
2
)
b j b

H
j

∥∥∥
∥∥∥

≤
∥∥∥
∥∥∥

m∑

j=1

∣∣
∣∣
∣∣∣aHj x

∣∣∣
2 −

∣∣∣aHj x
�
∣∣∣
2
∣∣
∣∣ b j b

H
j

∥∥∥
∥∥∥

, (197)

where

∣
∣∣
∣

∣
∣
∣aHj x

∣
∣
∣
2 −

∣
∣
∣aHj x

�
∣
∣
∣
2
∣
∣∣
∣

(i)=
∣
∣∣
∣
[
aHj
(
x − x�

)]H
aHj
(
x − x�

)+
[
aHj
(
x − x�

)]H
aHj x

� +
(
aHj x

�
)H

aHj
(
x − x�

)
∣
∣∣
∣

(ii)≤
∣
∣∣aHj

(
x − x�

)∣∣∣
2 + 2

∣
∣∣aHj

(
x − x�

)∣∣∣
∣
∣∣aHj x

�
∣
∣∣

(iii)≤ 4C2
3

1

log3 m
+ 4C3

1

log3/2 m
· 5√logm

� C3
1

logm
.

Here, the first line (i) uses the identity for u, v ∈ C,

|u|2 − |v|2 = uHu − vHv = (u − v)H(u − v) + (u − v)Hv + vH(u − v),

the second relation (ii) comes from the triangle inequality, and the third line
(iii) follows from (189) and assumption (82b). Substitution into (197) gives

β1 ≤ max
1≤ j≤m

∣∣∣∣
∣∣∣aHj x

∣∣∣
2 −

∣∣∣aHj x
�
∣∣∣
2
∣∣∣∣

∥∥∥∥∥
∥

m∑

j=1

b j bHj

∥∥∥∥∥
∥

� C3
1

logm
,

where the last inequality comes from the fact that
∑m

j=1 b j bHj = IK .
• The other term β2 can be bounded through Lemma 59, which reveals that with
probability 1 − O

(
m−10

)
,

β2 �
√

K

m
logm.

123

Foundations of Computational Mathematics

Taken collectively, the preceding two bounds give

sup
z∈S

α1 �
√

K

m
logm + C3

1

logm
.

Hence, P(supz∈S α1 ≤ 1/32) = 1 − O(m−10).
2. We are going to prove that P(supz∈S α2 ≤ 1/32) = 1 − O(m−10). The triangle

inequality allows us to bound α2 as

α2 ≤
∥
∥∥∥∥∥

m∑

j=1

∣∣∣bHj h
∣∣∣
2
a j aHj − ‖h‖22 IK

∥
∥∥∥∥∥

︸ ︷︷ ︸
:=θ1(h)

+
∥∥∥‖h‖22 IK − IK

∥∥∥

︸ ︷︷ ︸
:=θ2(h)

.

The second term θ2(h) is easy to control. To see this, we have

θ2(h) =
∣∣∣‖h‖22 − 1

∣∣∣ = ∣∣ ‖h‖2 − 1
∣∣ (‖h‖2 + 1) ≤ 3δ < 1/64,

where the penultimate relation uses the assumption that
∥
∥h − h�

∥
∥
2 ≤ δ and hence

∣∣ ‖h‖2 − 1
∣∣ ≤ δ, ‖h‖2 ≤ 1 + δ ≤ 2.

For the first term θ1(h), we define a new set

H :=
{
h ∈ C

K : ‖h − h�‖2 ≤ δ and max
1≤ j≤m

∣∣∣bHj h
∣∣∣ ≤ 2C4μ log2 m√

m

}
.

It is easily seen that supz∈S θ1 ≤ suph∈H θ1. We plan to use the standard covering
argument to show that

P

(
sup
h∈H

θ1(h) ≤ 1/64

)
= 1 − O(m−10). (198)

To this end, we define c j (h) = |bHj h|2 for every 1 ≤ j ≤ m. It is straightforward
to check that

θ1(h) =
∥∥
∥∥∥∥

m∑

j=1

c j (h)
(
a j aHj − IK

)
∥∥
∥∥∥∥

, max
1≤ j≤m

|c j | ≤
(
2C4μ log2 m√

m

)2

,

(199)

123

Foundations of Computational Mathematics

m∑

j=1

c2j =
m∑

j=1

|bHj h|4 ≤
{

max
1≤ j≤m

|bHj h|2
} m∑

j=1

|bHj h|2 =
{

max
1≤ j≤m

|bHj h|2
}

‖h‖22

≤ 4

(
2C4μ log2 m√

m

)2

(200)

for h ∈ H. In the above argument, we have used the facts that
∑m

j=1 b j bHj = IK
and

m∑

j=1

|bHj h|2 = hH

⎛

⎝
m∑

j=1

b j bHj

⎞

⎠ h = ‖h‖22 ≤ (1 + δ)2 ≤ 4,

together with the definition of H. Lemma 57 combined with (199) and (200)
readily yields that for any fixed h ∈ H and any t ≥ 0,

P(θ1(h) ≥ t) ≤ 2 exp

(

C̃1K − C̃2 min

{
t

max1≤ j≤m |c j | ,
t2

∑m
j=1 c

2
j

})

≤ 2 exp

(

C̃1K − C̃2
mt min {1, t/4}
4C2

4μ
2 log4 m

)

, (201)

where C̃1, C̃2 > 0 are some universal constants.
Now we are in a position to strengthen this bound to obtain uniform control of θ1
over H. Note that for any h1, h2 ∈ H,

|θ1(h1) − θ1(h2)| ≤
∥∥
∥∥∥∥

m∑

j=1

(
|bHj h1|2 − |bHj h2|2

)
a j aHj

∥∥
∥∥∥∥

+
∣
∣∣‖h1‖22 − ‖h2‖22

∣
∣∣

= max
1≤ j≤m

∣
∣∣|bHj h1|2 − |bHj h2|2

∣
∣∣

∥∥∥
∥∥∥

m∑

j=1

a j aHj

∥∥∥
∥∥∥

+
∣
∣∣‖h1‖22 − ‖h2‖22

∣
∣∣ ,

where
∣∣∣|bHj h2|2 − |bHj h1|2

∣∣∣ =
∣∣∣(h2 − h1)Hb j bHj h2 + hH1 b j bHj (h2 − h1)

∣∣∣

≤ 2max{‖h1‖2, ‖h2‖2}‖h2 − h1‖2‖b j‖22
≤ 4‖h2 − h1‖2‖b j‖22 ≤ 4K

m
‖h2 − h1‖2

and
∣∣∣‖h1‖22 − ‖h2‖22

∣∣∣ =
∣∣∣hH1 (h1 − h2) − (h1 − h2)Hh2

∣∣∣

≤ 2max{‖h1‖2, ‖h2‖2}‖h2 − h1‖2 ≤ 4‖h1 − h2‖2.

123

Foundations of Computational Mathematics

Define an event E0 =
{∥∥
∥
∑m

j=1 a j aHj

∥∥
∥ ≤ 2m

}
. When E0 happens, the previous

estimates give

|θ1(h1) − θ1(h2)| ≤ (8K + 4)‖h1 − h2‖2 ≤ 10K‖h1 − h2‖2, ∀h1, h2 ∈ H.

Let ε = 1/(1280K), and H̃ be an ε-net covering H (see [116, Definition 5.1]).
We have

({

sup
h∈H̃

θ1(h) ≤ 1

128

}

∩ E0

)

⊆
{
sup
h∈H

θ1 ≤ 1

64

}

and, as a result,

P

(
sup
h∈H

θ1(h) ≥ 1

64

)
≤ P

(

sup
h∈H̃

θ1(h) ≥ 1

128

)

+ P(Ec
0)

≤ |H̃| · max
h∈H̃

P

(
θ1(h) ≥ 1

128

)
+ P(Ec

0).

Lemma 57 forces that P(Ec
0) = O(m−10). Additionally, we have log |H̃| ≤

C̃3K log K for some absolute constant C̃3 > 0 according to [116, Lemma 5.2].
Hence, (201) leads to

|H̃| · max
h∈H̃

P

(
θ1(h) ≥ 1

128

)

≤ 2 exp

(

C̃3K log K + C̃1K − C̃2
m(1/128)min {1, (1/128)/4}

4C2
4μ

2 log4 m

)

≤ 2 exp

(
2C̃3K logm − C̃4m

μ2 log4 m

)

for some constant C̃4 > 0. Under the sample complexity m � μ2K log5m, the
right-hand side of the above display is at most O

(
m−10

)
. Combine the estimates

above to establish the desired high-probability bound for supz∈S α2.
3. Next, we will demonstrate that

P(sup
z ∈S

α3 ≤ 1/96) = 1 − O
(
m−10 + e−K logm

)
.

To this end, we let

A =
⎡

⎢
⎣

aH1
...

aHm

⎤

⎥
⎦ ∈ C

m×K , B =
⎡

⎢
⎣

bH1
...

bHm

⎤

⎥
⎦ ∈ C

m×K ,

123

Foundations of Computational Mathematics

C =

⎡

⎢⎢
⎣

c1 (z)
c2 (z)

· · ·
cm (z)

⎤

⎥⎥
⎦ ∈ C

m×m,

where for each 1 ≤ j ≤ m,

c j (z) := bHj hx
Ha j − y j = bHj (hx

H − h�x�H)a j .

As a consequence, we can write α3 = ‖BHCA‖.
The key observation is that both the �∞ norm and the Frobenius norm of C are
well controlled. Specifically, we claim for themoment that with probability at least
1 − O

(
m−10

)
,

‖C‖∞ = max
1≤ j≤m

∣∣c j
∣∣ ≤ C

μ log5/2 m√
m

; (202a)

‖C‖2F =
m∑

j=1

∣∣c j
∣∣2 ≤ 12δ2, (202b)

where C > 0 is some absolute constant. This motivates us to divide the entries in
C into multiple groups based on their magnitudes.
To be precise, introduce R := 1 + "log2(Cμ log7/2 m)# sets {Ir }1≤r≤R , where

Ir =
{

j ∈ [m] : Cμ log5/2 m

2r
√
m

< |c j | ≤ Cμ log5/2 m

2r−1
√
m

}

, 1 ≤ r ≤ R − 1

and IR = {1, · · · ,m} \ (⋃R−1
r=1 Ir

)
. An immediate consequence of the definition

of Ir and the norm constraints in (202) is the following cardinality bound

|Ir | ≤ ‖C‖2F
min j∈Ir

∣∣c j
∣∣2

≤ 12δ2
(
Cμ log5/2 m

2r
√
m

)2 = 12δ24r

C2μ2 log5 m
︸ ︷︷ ︸

δr

m (203)

for 1 ≤ r ≤ R − 1. Since {Ir }1≤r≤R form a partition of the index set {1, · · · ,m},
it is easy to see that

BHCA =
R∑

r=1

(BIr ,·)
HCIr ,Ir AIr ,·,

where DI,J denotes the submatrix of D induced by the rows and columns of
D having indices from I and J , respectively, and DI,· refers to the submatrix

123

Foundations of Computational Mathematics

formed by the rows from the index set I. As a result, one can invoke the triangle
inequality to derive

α3 ≤
R−1∑

r=1

∥∥BIr ,·
∥∥ · ∥∥CIr ,Ir

∥∥ · ∥∥AIr ,·
∥∥+ ∥∥BIR ,·

∥∥ · ∥∥CIR ,IR

∥∥ · ∥∥AIR ,·
∥∥ .

(204)

Recognizing that BHB = IK , we obtain

∥∥BIr ,·
∥∥ ≤ ‖B‖ = 1

for every 1 ≤ r ≤ R. In addition, by construction of Ir , we have

∥∥CIr ,Ir
∥∥ = max

j∈Ir
|c j | ≤ Cμ log5/2 m

2r−1
√
m

for 1 ≤ r ≤ R, and specifically for R, one has

∥∥CIR ,IR

∥∥ = max
j∈IR

|c j | ≤ Cμ log5/2 m

2R−1
√
m

≤ 1√
m logm

,

which follows from the definition of R, i.e., R = 1+"log2(Cμ log7/2 m)#. Regard-
ing

∥
∥AIr ,·

∥
∥, we discover that

∥
∥AIR ,·

∥
∥ ≤ ‖A‖ and, in view of (203),

∥
∥AIr ,·

∥
∥ ≤ sup

I:|I|≤δrm

∥
∥AI,·

∥
∥ , 1 ≤ r ≤ R − 1.

Substitute the above estimates into (204) to get

α3 ≤
R−1∑

r=1

Cμ log5/2 m

2r−1
√
m

sup
I:|I|≤δrm

∥∥AI,·
∥∥+ ‖A‖√

m logm
. (205)

It remains to upper bound ‖A‖ and supI:|I|≤δrm

∥∥AI,·
∥∥. Lemma 57 tells us that

‖A‖ ≤ 2
√
m with probability at least 1− O

(
m−10

)
. Furthermore, we can invoke

Lemma 58 to bound supI:|I|≤δrm

∥∥AI,·
∥∥ for each 1 ≤ r ≤ R − 1. It is easily seen

from our assumptions m � μ2K log9m and δ = c/ log2 m that δr � K/m. In
addition,

δr ≤ 12δ24R−1

C2μ2 log5 m
≤ 12δ241+log2(Cμ log7/2 m)

C2μ2 log5m
= 48δ2 log2 m = 48c

log2 m
� 1.

123

Foundations of Computational Mathematics

By Lemma 58, we obtain that for some constants C̃2, C̃3 > 0

P

(

sup
I:|I|≤δrm

∥∥AI,·
∥∥ ≥

√
4C̃3δrm log(e/δr)

)

≤ 2 exp

(
− C̃2C̃3

3
δrm log(e/δr)

)

≤ 2 exp

(
− C̃2C̃3

3
δrm

)
≤ 2e−K .

Taking the union bound and substituting the estimates above into (205), we see
that with probability at least 1 − O

(
m−10

)− O
(
(R − 1)e−K

)
,

α3 ≤
R−1∑

r=1

Cμ log5/2 m

2r−1
√
m

·
√
4C̃3δrm log(e/δr) + 2

√
m√

m logm

≤
R−1∑

r=1

4δ
√
12C̃3 log(e/δr) + 2

logm

� (R − 1)δ
√
log(e/δ1) + 1

logm
.

Note that μ ≤ √
m, R − 1 = "log2(Cμ log7/2 m)# � logm, and

√
log

e

δ1
=
√√√√log

(
eC2μ2 log5 m

48δ2

)

� logm.

Therefore, with probability exceeding 1 − O
(
m−10

)− O
(
e−K logm

)
,

sup
z∈S

α3 � δ log2 m + 1

logm
.

By taking c to be small enough in δ = c/ log2 m, we get

P

(

sup
z∈S

α3 ≥ 1/96

)

≤ O
(
m−10

)
+ O

(
e−K logm

)

as claimed.
Finally, it remains to justify (202). For all z ∈ S, the triangle inequality tells us
that

|c j | ≤
∣∣
∣bHj h(x − x�)Ha j

∣∣
∣+

∣∣
∣bHj (h − h�)x�Ha j

∣∣
∣

≤
∣∣∣bHj h

∣∣∣ ·
∣∣∣aHj (x − x�)

∣∣∣+
(∣∣∣bHj h

∣∣∣+
∣∣∣bHj h

�
∣∣∣
)

·
∣∣∣aHj x

�
∣∣∣

≤ 2C4μ log2 m√
m

· 2C3

log3/2 m
+
(
2C4μ log2 m√

m
+ μ√

m

)
5
√
logm

123

Foundations of Computational Mathematics

≤ C
μ log5/2 m√

m
,

for some large constant C > 0, where we have used the definition of S and fact
(189). Claim (202b) follows directly from [76, Lemma 5.14]. To avoid confusion,
we use μ1 to refer to the parameter μ therein. Let L = m, N = K , d0 = 1,
μ1 = C4μ log2 m/2, and ε = 1/15. Then

S ⊆ Nd0 ∩ Nμ1 ∩ Nε,

and the sample complexity condition L � μ2
1(K + N) log2 L is satisfied because

we have assumed m � μ2K log6m. Therefore, with probability exceeding 1 −
O
(
m−10 + e−K

)
, we obtain that for all z ∈ S,

‖C‖2F ≤ 5

4

∥
∥∥hxH − h�x�H

∥
∥∥
2

F
.

Claim (202b) can then be justified by observing that

∥∥∥hxH − h�x�H
∥∥∥
F

=
∥∥∥h
(
x − x�

)H + (
h − h�

)
x�H

∥∥∥
F

≤ ‖h‖2
∥∥x − x�

∥∥
2 + ∥∥h − h�

∥∥
2

∥∥x�
∥∥
2 ≤ 3δ.

4. It remains to control α4, for which we make note of the following inequality

α4 ≤
∥∥∥∥
∥∥

m∑

j=1

b j bHj (hx
� − h�x��)a j a j

H

∥∥∥∥
∥∥

︸ ︷︷ ︸
θ3

+
∥∥∥∥
∥∥

m∑

j=1

b j bHj h
�x��(a j a j

H − IK)

∥∥∥∥
∥∥

︸ ︷︷ ︸
θ4

with a j denoting the entrywise conjugate of a j . Since {a j } has the same joint
distribution as {a j }, by the same argument used for bounding α3 we obtain control
of the first term, namely

P

(

sup
z∈S

θ3 ≥ 1/96

)

= O(m−10 + e−K logm).

Note that m � μ2K logm/δ2 and δ � 1. According to [76, Lemma 5.20],

P

(

sup
z∈S

θ4 ≥ 1/96

)

≤ P

(

sup
z∈S

θ4 ≥ δ

)

= O(m−10).

Putting together the above bounds, we reach P(supz∈S α4 ≤ 1/48) = 1 −
O(m−10 + e−K logm).

123

Foundations of Computational Mathematics

5. Combining all the previous bounds for supz∈S α j and (196), we deduce that with
probability 1 − O(m−10 + e−K logm),

∥
∥∥∇2 f (z) − ∇2F

(
z�
)∥∥∥ ≤ 2 · 1

32
+ 2 · 1

32
+ 4 · 1

96
+ 4 · 1

48
= 1

4
.

C.2 Proofs of Lemmas 15 and 16

Proof of Lemma 15 In view of the definition of αt+1 (see (38)), one has

dist
(
zt+1, z�

)2 =
∥∥
∥∥

1

αt+1
ht+1 − h�

∥∥
∥∥

2

2
+
∥
∥∥αt+1xt+1 − x�

∥
∥∥
2

2

≤
∥∥∥
∥
1

αt
ht+1 − h�

∥∥∥
∥

2

2
+
∥∥∥αt xt+1 − x�

∥∥∥
2

2
.

The gradient update rules (79) imply that

1

αt
ht+1 = 1

αt

(

ht − η

‖xt‖22
∇h f

(
zt
)
)

= h̃
t − η

∥
∥x̃t

∥
∥2
2

∇h f
(
z̃t
)
,

αt xt+1 = αt

(

xt − η

‖ht‖22
∇x f

(
zt
)
)

= x̃t − η

‖h̃t‖22
∇x f

(
z̃t
)
,

where we denote h̃
t = 1

αt h
t and x̃t = αt xt as in (81). Let ĥ

t+1 = 1
αt h

t+1 and

x̂t+1 = αt xt+1. We further get

⎡

⎢⎢
⎢
⎣

ĥ
t+1 − h�

x̂t+1 − x�

ĥ
t+1 − h�

x̂t+1 − x�

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

h̃
t − h�

x̃t − x�

h̃
t − h�

x̃t − x�

⎤

⎥⎥
⎥
⎦

− η

⎡

⎢⎢
⎢
⎣

∥∥x̃t
∥∥−2
2 IK ∥∥h̃

t∥∥−2
2 IK ∥∥x̃t

∥∥−2
2 IK ∥

∥h̃
t∥∥−2

2 IK

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
:=D⎡

⎢
⎢⎢
⎣

∇h f
(
z̃t
)

∇x f
(
z̃t
)

∇h f
(
z̃t
)

∇x f
(
z̃t
)

⎤

⎥
⎥⎥
⎦

. (206)

123

Foundations of Computational Mathematics

The fundamental theorem of calculus (see Appendix D.3.1) together with the fact that
∇ f (z�) = 0 tells us

⎡

⎢⎢
⎢
⎣

∇h f
(
z̃t
)

∇x f
(
z̃t
)

∇h f
(
z̃t
)

∇x f
(
z̃t
)

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

∇h f
(
z̃t
)− ∇h f (z�)

∇x f
(
z̃t
)− ∇x f (z�)

∇h f
(
z̃t
)− ∇h f (z�)

∇x f
(
z̃t
)− ∇x f (z�)

⎤

⎥⎥
⎥
⎦

=
∫ 1

0
∇2 f (z (τ)) dτ

︸ ︷︷ ︸
:=A

⎡

⎢⎢
⎢
⎣

h̃
t − h�

x̃t − x�

h̃
t − h�

x̃t − x�

⎤

⎥⎥
⎥
⎦

,

(207)
where we denote z (τ) := z� + τ

(
z̃t − z�

)
and ∇2 f is the Wirtinger Hessian. To

further simplify notation, denote ẑt+1 =
[
ĥ
t+1

x̂t+1

]

. Identity (207) allows us to rewrite

(206) as [
ẑt+1 − z�

ẑt+1 − z�

]

= (I − ηDA)

[
z̃t − z�

z̃t − z�

]
. (208)

Take the squared Euclidean norm of both sides of (208) to reach

∥∥
∥̂zt+1 − z�

∥∥
∥
2

2
= 1

2

[
z̃t − z�

z̃t − z�

]H
(I − ηDA)H (I − ηDA)

[
z̃t − z�

z̃t − z�

]

= 1

2

[
z̃t − z�

z̃t − z�

]H (
I + η2AD2A − η (DA + AD)

) [z̃t − z�

z̃t − z�

]

≤ (1 + η2‖A‖2‖D‖2) ∥∥̃zt − z�
∥∥2
2 − η

2

[
z̃t − z�

z̃t − z�

]H
(DA + AD)

[
z̃t − z�

z̃t − z�

]
.

(209)

Since z (τ) lies between z̃t and z�, we conclude from assumptions (85) that for all
0 ≤ τ ≤ 1,

max
{∥∥h (τ) − h�

∥∥
2 ,
∥∥x (τ) − x�

∥∥
2

} ≤ dist
(
zt , z�

) ≤ ξ ≤ δ;
max

1≤ j≤m

∣∣∣aHj
(
x (τ) − x�

)∣∣∣ ≤ C3
1

log3/2 m
;

max
1≤ j≤m

∣∣
∣bHj h (τ)

∣∣
∣ ≤ C4

μ√
m

log2 m

for ξ > 0 sufficiently small. Moreover, it is straightforward to see that

γ1 := ∥∥x̃t
∥∥−2
2 and γ2 := ∥∥h̃

t∥∥−2
2

satisfy

max {|γ1 − 1| , |γ2 − 1|} � max
{∥∥h̃

t − h�
∥∥
2,
∥∥x̃t − x�

∥∥
2

}
≤ δ

123

Foundations of Computational Mathematics

as long as ξ > 0 is sufficiently small. We can now readily invoke Lemma 14 to arrive
at

‖A‖ ‖D‖ ≤ 3(1 + δ) ≤ 4 and
[
z̃t − z�

z̃t − z�

]H
(DA + AD)

[
z̃t − z�

z̃t − z�

]
≥ 1

4

∥∥∥
∥

[
z̃t − z�

z̃t − z�

]∥∥∥
∥

2

2

= 1

2

∥∥̃zt − z�
∥∥2
2 .

Substitution into (209) indicates that

∥∥
∥̂zt+1 − z�

∥∥
∥
2

2
≤
(
1 + 16η2 − η/4

) ∥∥̃zt − z�
∥∥2
2 .

When 0 < η ≤ 1/128, this implies that

∥∥̂zt − z�
∥∥2
2 ≤ (1 − η/8)

∥∥̃zt − z�
∥∥2
2 ,

and hence

∥
∥∥̃zt+1 − z�

∥
∥∥
2

≤
∥
∥∥̂zt+1 − z�

∥
∥∥
2

≤ (1 − η/8)1/2
∥∥̃zt − z�

∥∥
2 ≤ (1 − η/16) dist(zt , z�).

(210)
This completes the proof of Lemma 15. ��

Proof of Lemma 16 Reuse the notation in this subsection, namely ẑt+1 =
[
ĥ
t+1

x̂t+1

]

with ĥ
t+1 = 1

αt h
t+1 and x̂t+1 = αt xt+1. From (210), one can tell that

∥∥∥̃zt+1 − z�
∥∥∥
2

≤
∥∥∥̂zt+1 − z�

∥∥∥
2

≤ dist(zt , z�).

Invoke Lemma 52 with β = αt to get

∣
∣∣αt+1 − αt

∣
∣∣ �

∥
∥∥̂zt+1 − z�

∥
∥∥
2

≤ dist(zt , z�).

This combined with the assumption ||αt | − 1| ≤ 1/2 implies that

∣∣αt
∣∣ ≥ 1

2
and

∣∣∣∣
αt+1

αt
− 1

∣∣∣∣ =
∣∣∣∣
αt+1 − αt

αt

∣∣∣∣ � dist(zt , z�) � C1
1

log2 m
.

This finishes the proof of the first claim.
The second claim can be proved by induction. Suppose that

∣∣|αs | − 1
∣∣ ≤ 1/2 and

dist(zs, z�) ≤ C1(1 − η/16)s/ log2 m hold for all 0 ≤ s ≤ τ ≤ t , then using our
result in the first part gives

123

Foundations of Computational Mathematics

∣
∣|ατ+1| − 1

∣
∣ ≤ ∣

∣|α0| − 1
∣
∣+

τ∑

s=0

∣
∣αs+1 − αs

∣
∣ ≤ 1

4
+ c

τ∑

s=0

dist(zs, z�)

≤ 1

4
+ cC1

η
16 log

2 m
≤ 1

2

for m sufficiently large. The proof is then complete by induction. ��

C.3 Proof of Lemma 17

Define the alignment parameter between zt,(l) and z̃t as

α
t,(l)
mutual := argmin

α∈C

∥∥∥
∥
1

α
ht,(l) − 1

αt
ht
∥∥∥
∥

2

2
+
∥∥∥αxt,(l) − αt xt

∥∥∥
2

2
.

Further denote, for simplicity of presentation, ẑt,(l) =
[
ĥ
t,(l)

x̂t,(l)

]

with

ĥ
t,(l) := 1

α
t,(l)
mutual

ht,(l) and x̂t,(l) := α
t,(l)
mutualx

t,(l).

Clearly, ẑt,(l) is aligned with z̃t .
Armed with the above notation, we have

dist
(
zt+1,(l), z̃t+1) = min

α

√∥∥∥∥
1

α
ht+1,(l) − 1

αt+1
ht+1

∥∥∥∥

2

2
+ ∥∥αxt+1,(l) − αt+1xt+1

∥∥2
2

= min
α

√√√√
∥∥∥∥∥

(
αt

αt+1

)(
1

α

αt+1

αt
ht+1,(l) − 1

αt
ht+1

)∥∥∥∥∥

2

2

+
∥∥∥∥

(
αt+1

αt

)(
α

αt

αt+1 x
t+1,(l) − αt xt+1

)∥∥∥∥

2

2

≤

√√√√√

∥∥∥∥∥∥

(
αt

αt+1

)⎛

⎝ 1

α
t,(l)
mutual

ht+1,(l) − 1

αt
ht+1

⎞

⎠

∥∥∥∥∥∥

2

2

+
∥∥∥∥

(
αt+1

αt

)(
α
t,(l)
mutualx

t+1,(l) − αt xt+1
)∥∥∥∥

2

2
(211)

≤ max

{∣∣∣∣
αt+1

αt

∣∣∣∣ ,
∣∣∣∣

αt

αt+1

∣∣∣∣

}
∥∥∥∥∥∥

⎡

⎣
1

α
t,(l)
mutual

ht+1,(l) − 1
αt h

t+1

α
t,(l)
mutualx

t+1,(l) − αt xt+1

⎤

⎦

∥∥∥∥∥∥
2

, (212)

where (211) follows by taking α = αt+1

αt α
t,(l)
mutual. The latter bound is more convenient

to work with when controlling the gap between zt,(l) and zt .
We can then apply the gradient update rules (79) and (89) to get

⎡

⎣
1

α
t,(l)
mutual

ht+1,(l) − 1
αt h

t+1

α
t,(l)
mutualx

t+1,(l) − αt xt+1

⎤

⎦

123

Foundations of Computational Mathematics

=

⎡

⎢⎢
⎢
⎣

1

α
t,(l)
mutual

(
ht,(l) − η

‖xt,(l)‖2
2

∇h f (l)
(
ht,(l), xt,(l)

))
− 1

αt

(
ht − η

‖xt‖2
2

∇h f
(
ht , xt

))

α
t,(l)
mutual

(

xt,(l) − η∥∥
∥ht,(l)

∥∥
∥
2

2

∇x f (l)
(
ht,(l), xt,(l)

))

− αt
(
xt − η

‖ht‖22
∇x f

(
ht , xt

)
)

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎣

ĥ
t,(l) − η

∥
∥x̂t,(l)

∥
∥2
2

∇h f (l)
(̂
h
t,(l)

, x̂t,(l)
)−

(
h̃
t − η

‖x̃t‖2
2

∇h f
(̃
h
t
, x̃t
)
)

x̂t,(l) − η

‖ĥt,(l)‖22
∇x f (l)

(̂
h
t,(l)

, x̂t,(l)
)−

(
x̃t − η

‖h̃t‖22
∇x f

(̃
h
t
, x̃t
))

⎤

⎥⎥
⎦ .

By construction, we can write the leave-one-out gradients as

∇h f
(l) (h, x) = ∇h f (h, x) −

(
bHl hx

Hal − yl
)
blaHl x and

∇x f
(l) (h, x) = ∇h f (h, x) − (bHl hx

Hal − yl)albHl h,

which allow us to continue the derivation and obtain
⎡

⎣
1

α
t,(l)
mutual

ht+1,(l) − 1
αt h

t+1

α
t,(l)
mutualx

t+1,(l) − αt xt+1

⎤

⎦

=

⎡

⎢⎢
⎣

ĥ
t,(l) − η

∥
∥x̂t,(l)

∥
∥2
2

∇h f
(̂
h
t,(l)

, x̂t,(l)
)−

(
h̃
t − η

‖x̃t‖2
2

∇h f
(̃
h
t
, x̃t
))

x̂t,(l) − η

‖ĥt,(l)‖22
∇x f

(̂
h
t,(l)

, x̂t,(l)
)−

(
x̃t − η

‖h̃t‖22
∇x f

(̃
h
t
, x̃t
))

⎤

⎥⎥
⎦

− η

⎡

⎢
⎣

1∥
∥x̂t,(l)

∥
∥2
2

(
bHl ĥ

t,(l)
x̂t,(l)Hal − yl

)
blaHl x̂

t,(l)

1

‖ĥt,(l)‖22

(
bHl ĥ

t,(l)
x̂t,(l)Hal − yl

)
albHl ĥ

t,(l)

⎤

⎥
⎦

︸ ︷︷ ︸
:=J3

.

This further gives

⎡

⎣
1

α
t,(l)
mutual

ht+1,(l) − 1
αt h

t+1

α
t,(l)
mutualx

t+1,(l) − αt xt+1

⎤

⎦

=

⎡

⎢⎢⎢
⎣

ĥ
t,(l) − η

∥∥x̂t,(l)
∥∥2
2

∇h f
(
ĥ
t,(l)

, x̂t,(l)
)

−
(
h̃
t − η

∥∥x̂t,(l)
∥∥2
2

∇h f
(
h̃
t
, x̃t
))

x̂t,(l) − η∥∥
∥ĥ

t,(l)
∥∥
∥
2

2

∇x f
(
ĥ
t,(l)

, x̂t,(l)
)

−
(

x̃t − η∥∥
∥ĥ

t,(l)
∥∥
∥
2

2

∇x f
(
h̃
t
, x̃t
)
)

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
:=ν1

123

Foundations of Computational Mathematics

+ η

⎡

⎢⎢
⎢
⎣

(
1

‖x̃t‖2
2

− 1∥
∥x̂t,(l)

∥
∥2
2

)
∇h f

(
h̃
t
, x̃t
)

(
1∥

∥
∥h̃

t
∥
∥
∥
2

2

− 1∥
∥
∥ĥ

t,(l)
∥
∥
∥
2

2

)

∇x f
(
h̃
t
, x̃t
)

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
:=ν2

−ην3. (213)

In what follows, we bound the three terms ν1, ν2, and ν3 separately.

1. Regarding the first term ν1, one can adopt the same strategy as in Appendix C.2.
Specifically, write

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

ĥ
t,(l) − η

∥
∥x̂t,(l)

∥
∥2
2

∇h f
(
ẑt,(l)

)−
(
h̃
t − η

∥
∥x̂t,(l)

∥
∥2
2

∇h f
(
z̃t
))

x̂t,(l) − η∥
∥∥ĥ

t,(l)
∥
∥∥
2

2

∇x f
(
ẑt,(l)

)−
(
x̃t − η∥

∥∥ĥ
t,(l)

∥
∥∥
2

2

∇x f
(
z̃t
))

ĥ
t,(l) − η

‖x̂t,(l)‖22
∇h f

(
ẑt,(l)

)−
(
h̃
t − η

‖x̂t,(l)‖22
∇h f

(
z̃t
))

x̂t,(l) − η

‖ĥt,(l)‖22
∇x f

(
ẑt,(l)

)−
(
x̃t − η

‖ĥt,(l)‖22
∇x f

(
z̃t
))

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

ĥ
t,(l) − h̃

t

x̂t,(l) − x̃t

ĥ
t,(l) − h̃

t

x̂t,(l) − x̃t

⎤

⎥⎥⎥⎥
⎦

− η

⎡

⎢⎢⎢⎢⎢
⎣

∥∥x̂t,(l)
∥∥−2
2 IK ∥∥∥ĥ

t,(l)
∥∥∥

−2

2
IK

∥
∥x̂t,(l)

∥
∥−2
2 IK ∥∥∥ĥ

t,(l)
∥∥∥

−2

2
IK

⎤

⎥⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
:=D⎡

⎢⎢⎢
⎣

∇h f
(
ẑt,(l)

)− ∇h f
(
z̃t
)

∇x f
(
ẑt,(l)

)− ∇x f
(
z̃t
)

∇h f
(
ẑt,(l)

)− ∇h f
(
z̃t
)

∇x f
(
ẑt,(l)

)− ∇x f
(
z̃t
)

⎤

⎥⎥⎥
⎦

.

The fundamental theorem of calculus (see Appendix D.3.1) reveals that

⎡

⎢⎢⎢
⎣

∇h f
(
ẑt,(l)

)− ∇h f
(
z̃t
)

∇x f
(
ẑt,(l)

)− ∇x f
(
z̃t
)

∇h f
(
ẑt,(l)

)− ∇h f
(
z̃t
)

∇x f
(
ẑt,(l)

)− ∇x f
(
z̃t
)

⎤

⎥⎥⎥
⎦

=
∫ 1

0
∇2 f (z (τ)) dτ

︸ ︷︷ ︸
:=A

⎡

⎢⎢⎢⎢
⎣

ĥ
t,(l) − h̃

t

x̂t,(l) − x̃t

ĥ
t,(l) − h̃

t

x̂t,(l) − x̃t

⎤

⎥⎥⎥⎥
⎦

,

where we abuse the notation and denote z (τ) = z̃t + τ
(
ẑt,(l) − z̃t

)
. In order to

invoke Lemma 14, we need to verify the conditions required therein. Recall the
induction hypothesis (90b) that

dist
(
zt,(l), z̃t

) = ∥
∥̂zt,(l) − z̃t

∥
∥
2 ≤ C2

μ√
m

√
μ2K log9 m

m
,

123

Foundations of Computational Mathematics

and the fact that z (τ) lies between ẑt,(l) and z̃t . For all 0 ≤ τ ≤ 1:

(a) If m � μ2
√
K log13/2 m, then

∥
∥z (τ) − z�

∥
∥
2 ≤ max

{∥
∥̂zt,(l) − z�

∥
∥
2,
∥
∥̃zt − z�

∥
∥
2

}
≤ ∥
∥̃zt − z�

∥
∥
2 + ∥

∥̂zt,(l) − z̃t
∥
∥
2

≤ C1
1

log2 m
+ C2

μ√
m

√
μ2K log9 m

m
≤ 2C1

1

log2 m
,

where we have used the induction hypotheses (90a) and (90b);
(b) If m � μ2K log6m, then

max
1≤ j≤m

∣∣
∣aHj

(
x (τ) − x�

)∣∣
∣

= max
1≤ j≤m

∣
∣∣τ aHj

(
x̂t,(l) − x̃t

)+ aHj
(
x̃t − x�

)∣∣∣

≤ max
1≤ j≤m

∣∣∣aHj
(
x̂t,(l) − x̃t

)∣∣∣+ max
1≤ j≤m

∣∣∣aHj
(
x̃t − x�

)∣∣∣

≤ max
1≤ j≤m

∥∥a j
∥∥
2

∥∥̂zt,(l) − z̃t
∥∥
2 + C3

1

log3/2 m

≤ 3
√
K · C2

μ√
m

√
μ2K log9m

m
+ C3

1

log3/2 m
≤ 2C3

1

log3/2 m
, (214)

which follows from bound (190) and the induction hypotheses (90b) and (90c);
(c) If m � μK log5/2 m, then

max
1≤ j≤m

∣∣
∣bHj h (τ)

∣∣
∣ = max

1≤ j≤m

∣∣τ bHj
(̂
h
t,(l) − h̃

t)+ bHj h̃
t ∣∣

≤ max
1≤ j≤m

∣∣
∣bHj
(̂
h
t,(l) − h̃

t)∣∣
∣+ max

1≤ j≤m

∣∣bHj h̃
t ∣∣

≤ max
1≤ j≤m

‖b j‖2
∥
∥ĥ

t,(l) − h̃
t∥∥

2 + max
1≤ j≤m

∣
∣bHj h̃

t ∣∣

≤
√

K

m
· C2

μ√
m

√
μ2K log9 m

m
+ C4

μ√
m

log2 m ≤ 2C4
μ√
m

log2 m,

(215)

which makes use of the fact ‖b j‖2 = √
K/m as well as the induction hypothe-

ses (90b) and (90d).

These properties satisfy condition (82) required in Lemma 14. The other two
conditions (83) and (84) are also straightforward to check, and hence, we omit it.
Thus, we can repeat the argument used in Appendix C.2 to obtain

‖ν1‖2 ≤ (1 − η/16) · ∥∥̂zt,(l) − z̃t
∥∥
2.

123

Foundations of Computational Mathematics

2. In terms of the second term ν2, it is easily seen that

‖ν2‖2 ≤ max

⎧
⎨

⎩

∣∣∣∣∣
1

∥
∥x̃t

∥
∥2
2

− 1
∥
∥x̂t,(l)

∥
∥2
2

∣∣∣∣∣
,

∣
∣∣∣∣∣

1
∥
∥h̃

t∥∥2
2

− 1
∥∥ĥ

t,(l)∥∥2
2

∣
∣∣∣∣∣

⎫
⎬

⎭

∥∥∥∥

[∇h f
(
z̃t
)

∇x f
(
z̃t
)
]∥∥∥∥

2
.

We first note that the upper bound on ‖∇2 f (·) ‖ (which essentially provides a
Lipschitz constant on the gradient) in Lemma 14 forces

∥∥∥∥

[∇h f
(
z̃t
)

∇x f
(
z̃t
)
]∥∥∥∥

2
=
∥∥∥∥

[∇h f
(
z̃t
)− ∇h f (z�)

∇x f
(
z̃t
)− ∇x f (z�)

]∥∥∥∥
2

�
∥∥̃zt − z�

∥∥
2 � C1

1

log2 m
,

where the first identity follows since ∇h f (z�) = 0, and the last inequal-
ity comes from the induction hypothesis (90a). Additionally, recognizing that∥∥x̃t

∥∥
2
 ∥∥x̂t,(l)

∥∥
2
 1, one can easily verify that

∣
∣∣∣
∣

1
∥∥x̃t

∥∥2
2

− 1
∥
∥x̂t,(l)

∥
∥2
2

∣
∣∣∣
∣

=
∣
∣∣∣
∣

∥∥x̂t,(l)
∥∥2
2 − ∥∥x̃t

∥∥2
2∥

∥x̃t
∥
∥2
2 · ∥∥x̂t,(l)∥∥22

∣
∣∣∣
∣
�
∣∣∣
∥∥x̂t,(l)

∥∥
2 − ∥∥x̃t

∥∥
2

∣∣∣ �
∥∥x̂t,(l) − x̃t

∥∥
2.

A similar bound holds for the other term involving h. Combining the estimates
above thus yields

‖ν2‖2 � C1
1

log2 m

∥∥̂zt,(l) − z̃t
∥∥
2.

3. When it comes to the last term ν3, one first sees that

∥∥∥
(
bHl ĥ

t,(l)
x̂t,(l)Hal − yl

)
blaHl x̂

t,(l)
∥∥∥
2

≤
∣∣∣bHl ĥ

t,(l)
x̂t,(l)Hal − yl

∣∣∣ ‖bl‖2
∣∣aHl x̂

t,(l)
∣∣.

(216)
Bounds (189) and (214) taken collectively yield

∣∣∣aHl x̂
t,(l)
∣∣∣ ≤

∣∣∣aHl x
�
∣∣∣+

∣∣∣aHl
(
x̂t,(l) − x�

)∣∣∣ �
√
logm + C3

1

log3/2 m

 √

logm.

In addition, the same argument as in obtaining (215) tells us that

∣∣bHl (̂h
t,(l) − h�)

∣∣ � C4
μ√
m

log2 m.

Combine the previous two bounds to obtain

∣∣
∣bHl ĥ

t,(l)
x̂t,(l)Hal − yl

∣∣
∣ ≤ ∣∣bHl ĥ

t,(l)
(̂xt,(l) − x�)Hal

∣∣+ ∣∣bHl (̂h
t,(l) − h�)x�Hal

∣∣

≤ ∣∣bHl ĥ
t,(l)∣∣ · ∣∣aHl (̂xt,(l) − x�)

∣∣+ ∣∣bHl (̂h
t,(l) − h�)

∣∣ · ∣∣aHl x�
∣∣

123

Foundations of Computational Mathematics

≤
(∣∣bHl (̂h

t,(l) − h�)
∣∣+ ∣∣bHl h

�
∣∣
)

· ∣∣aHl (̂xt,(l) − x�)
∣∣+ ∣∣bHl (̂h

t,(l) − h�)
∣∣ · ∣∣aHl x�

∣∣

�
(
C4μ

log2 m√
m

+ μ√
m

)
· C3

1

log3/2 m
+ C4μ

log2 m√
m

·√logm � C4μ
log5/2 m√

m
.

Substitution into (216) gives

∥∥∥
(
bHl ĥ

t,(l)
x̂t,(l)Hal − yl

)
blaHl x̂

t,(l)
∥∥∥
2

� C4μ
log5/2 m√

m
·
√

K

m
·√logm. (217)

Similarly, we can also derive

∥∥∥∥
(
bHl ĥ

t,(l)
x̂t,(l)Hal − yl

)
albHl ĥ

t,(l)
∥∥∥∥ ≤

∣∣∣bHl ĥ
t,(l)

x̂t,(l)Hal − yl
∣∣∣ ‖al‖2

∣∣∣bHl ĥ
t,(l)
∣∣∣

� C4μ
log5/2 m√

m
· √

K · C4
μ√
m

log2 m

Putting these bounds together indicates that

‖ν3‖2 � (C4)
2 μ√

m

√
μ2K log9 m

m
.

The above bounds taken together with (212) and (213) ensure the existence of a
constant C > 0 such that

dist
(
zt+1,(l), z̃t+1) ≤ max

{∣∣∣∣
αt+1

αt

∣
∣∣∣ ,
∣
∣∣∣

αt

αt+1

∣
∣∣∣

} {(
1 − η

16
+ CC1η

1

log2 m

)

∥∥̂zt,(l) − z̃t
∥∥
2 + C (C4)

2 η
μ√
m

√
μ2K log9 m

m

⎫
⎬

⎭

(i)≤ 1 − η/21

1 − η/20

{(
1 − η

20

) ∥∥̂zt,(l) − z̃t
∥∥
2

+C (C4)
2 η

μ√
m

√
μ2K log9m

m

⎫
⎬

⎭

≤
(
1 − η

21

) ∥∥̂zt,(l) − z̃t
∥∥
2 + 2C (C4)

2 η
μ√
m

√
μ2K log9 m

m

=
(
1 − η

21

)
dist

(
zt,(l), z̃t

)+ 2C (C4)
2 η

μ√
m

√
μ2K log9 m

m

(ii)≤ C2
μ√
m

√
μ2K log9 m

m
.

123

Foundations of Computational Mathematics

Here, (i) holds as long as m is sufficiently large such that CC11/log2 m � 1 and

max

{∣∣∣∣
αt+1

αt

∣∣∣∣ ,
∣∣∣∣

αt

αt+1

∣∣∣∣

}
<

1 − η/21

1 − η/20
, (218)

which is guaranteed by Lemma 16. Inequality (ii) arises from the induction hypothesis
(90b) and taking C2 > 0 is sufficiently large.

Finally, we establish the second inequality claimed in the lemma. Take (h1, x1) =
(̃h

t+1
, x̃t+1) and (h2, x2) = (̂h

t+1,(l)
, x̂t+1,(l)) in Lemma 55. Since both (h1, x1) and

(h2, x2) are close enough to (h�, x�), we deduce that

∥∥̃zt+1,(l) − z̃t+1
∥∥
2 �

∥∥̂zt+1,(l) − z̃t+1
∥∥
2 � C2

μ√
m

√
μ2K log9 m

m

as claimed.

C.4 Proof of Lemma 18

Before going forward, we make note of the following inequality

max
1≤l≤m

∣∣∣∣b
H
l

1

αt+1
ht+1

∣∣∣∣ ≤
∣∣∣∣

αt

αt+1

∣∣∣∣ max
1≤l≤m

∣∣∣∣b
H
l
1

αt
ht+1

∣∣∣∣ ≤ (1 + δ) max
1≤l≤m

∣∣∣∣b
H
l
1

αt
ht+1

∣∣∣∣

for some small δ
 log−2 m, where the last relation follows from Lemma 16 that

∣∣∣∣
αt+1

αt
− 1

∣∣∣∣ � 1

log2 m
≤ δ

for m sufficiently large. In view of the above inequality, the focus of our subsequent

analysis will be to control maxl
∣∣
∣bHl

1
αt h

t+1
∣∣
∣.

The gradient update rule for ht+1 (cf. (79a)) gives

1

αt
ht+1 = h̃

t − ηξ

m∑

j=1

b j bHj
(̃
h
t
x̃tH − h�x�H)a j aHj x̃

t ,

where h̃
t = 1

αt h
t and x̃t = αt xt . Here and below, we denote ξ = 1/‖x̃t‖22 for nota-

tional convenience. The above formula can be further decomposed into the following
terms

1

αt
ht+1 = h̃

t − ηξ

m∑

j=1

b j bHj h̃
t
∣∣
∣aHj x̃

t
∣∣
∣
2 + ηξ

m∑

j=1

b j bHj h
�x�Ha j aHj x̃

t

123

Foundations of Computational Mathematics

=
(
1 − ηξ

∥∥x�
∥∥2
2

)
h̃
t − ηξ

m∑

j=1

b j bHj h̃
t(∣∣aHj x̃

t
∣∣2 − ∣∣aHj x

�
∣∣2)

︸ ︷︷ ︸
:=v1

− ηξ

m∑

j=1

b j bHj h̃
t(∣∣aHj x

�
∣∣2 − ∥∥x�

∥∥2
2

)

︸ ︷︷ ︸
:=v2

+ ηξ

m∑

j=1

b j bHj h
�x�Ha j aHj x̃

t

︸ ︷︷ ︸
:=v3

,

where we use the fact that
∑m

j=1 b j bHj = IK . In the sequel, we shall control each
term separately.

1. We start with |bHl v1| by making the observation that

1

ηξ

∣
∣∣bHl v1

∣
∣∣ =

∣
∣
∣∣
∣
∣

m∑

j=1

bHl b j b
H
j h̃

t
[
aHj
(
x̃t − x�

) (
aHj x̃

t
)H + aHj x

�
(
aHj
(
x̃t − x�

))H]
∣
∣
∣∣
∣
∣

≤
m∑

j=1

∣
∣∣bHl b j

∣
∣∣
{

max
1≤ j≤m

∣∣bHj h̃
t ∣∣
} {

max
1≤ j≤m

∣
∣∣aHj

(
x̃t − x�

)∣∣∣
(∣∣∣aHj x̃

t
∣
∣∣+

∣
∣∣aHj x

�
∣
∣∣
)}

.

(219)

Combining the induction hypothesis (90c) and condition (189) yields

max
1≤ j≤m

∣∣∣aHj x̃
t
∣∣∣ ≤ max

1≤ j≤m

∣∣∣aHj
(
x̃t − x�

)∣∣∣+ max
1≤ j≤m

∣∣∣aHj x
�
∣∣∣

≤ C3
1

log3/2 m
+ 5

√
logm ≤ 6

√
logm

as long as m is sufficiently large. This further implies

max
1≤ j≤m

∣∣∣aHj
(
x̃t − x�

)∣∣∣
(∣∣∣aHj x̃

t
∣∣∣+

∣∣∣aHj x
�
∣∣∣
)

≤ C3
1

log3/2 m
· 11√logm ≤ 11C3

1

logm
.

Substituting it into (219) and taking Lemma 48, we arrive at

1

ηξ

∣
∣∣bHl v1

∣
∣∣ � logm ·

{
max

1≤ j≤m

∣
∣bHj h̃

t ∣∣
}

· C3
1

logm
� C3 max

1≤ j≤m

∣
∣bHj h̃

t ∣∣ ≤ 0.1 max
1≤ j≤m

∣
∣bHj h̃

t ∣∣,

with the proviso that C3 is sufficiently small.
2. We then move on to |bHl v3|, which obeys

1

ηξ

∣∣
∣bHl v3

∣∣
∣ ≤

∣∣∣∣
∣∣

m∑

j=1

bHl b j bHj h
�x�Ha j aHj x

�

∣∣∣∣
∣∣

+
∣∣∣∣
∣∣

m∑

j=1

bHl b j bHj h
�x�Ha j aHj

(
x̃t − x�

)
∣∣∣∣
∣∣
.

(220)

123

Foundations of Computational Mathematics

Regarding the first term, we have the following lemma, whose proof is given in
Appendix C.4.1.

Lemma 28 Suppose m ≥ CK log2 m for some sufficiently large constant C > 0. Then
with probability at least 1 − O

(
m−10

)
, one has

∣∣∣∣∣
∣

m∑

j=1

bHl b j bHj h
�x�Ha j aHj x

� − bHl h
�

∣∣∣∣∣
∣
� μ√

m
.

For the remaining term, we apply the same strategy as in bounding |bHl v1| to get
∣∣∣∣∣
∣

m∑

j=1

bHl b j bHj h
�x�Ha j aHj

(
x̃t − x�

)
∣∣∣∣∣
∣

≤
m∑

j=1

∣∣
∣bHl b j

∣∣
∣
{

max
1≤ j≤m

∣∣
∣bHj h

�
∣∣
∣
} {

max
1≤ j≤m

∣∣
∣aHj

(
x̃t − x�

)∣∣
∣
} {

max
1≤ j≤m

∣∣
∣aHj x

�
∣∣
∣
}

≤ 4 logm · μ√
m

· C3
1

log3/2 m
· 5√logm

� C3
μ√
m

,

where the second line follows from incoherence (36), the induction hypothesis (90c),
condition (189), and Lemma 48. Combining the above three inequalities and incoher-
ence (36) yields

1

ηξ

∣
∣∣bHl v3

∣
∣∣ �

∣
∣bHl h

�
∣
∣+ μ√

m
+ C3

μ√
m

� (1 + C3)
μ√
m

.

3. Finally, we need to control
∣∣∣bHl v2

∣∣∣. For convenience of presentation, we will only

bound
∣∣∣bH1 v2

∣∣∣ in the sequel, but the argument easily extends to all other bl ’s. The

idea is to group
{
b j
}
1≤ j≤m into bins each containing τ adjacent vectors, and to

look at each bin separately. Here, τ
 poly log(m) is some integer to be specified
later. For notational simplicity, we assume m/τ to be an integer, although all
arguments continue to hold when m/τ is not an integer. For each 0 ≤ l ≤ m − τ ,
the following summation over τ adjacent data obeys

bH1

τ∑

j=1

bl+ j bHl+ j h̃
t
(∣∣∣aHl+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

)

= bH1

τ∑

j=1

bl+1bHl+1 h̃
t
(∣∣
∣aHl+ j x

�
∣∣
∣
2 − ∥

∥x�
∥
∥2
2

)

123

Foundations of Computational Mathematics

+ bH1

τ∑

j=1

(
bl+ j bHl+ j − bl+1bHl+1

)
h̃
t
(∣
∣∣aHl+ j x

�
∣
∣∣
2 − ∥

∥x�
∥
∥2
2

)

=
⎧
⎨

⎩

τ∑

j=1

(∣∣∣aHl+ j x
�
∣∣∣
2 − ∥∥x�

∥∥2
2

)
⎫
⎬

⎭
bH1 bl+1bHl+1 h̃

t

+ bH1

τ∑

j=1

(
bl+ j − bl+1

)
bHl+ j h̃

t
(∣
∣∣aHl+ j x

�
∣
∣∣
2 − ∥

∥x�
∥
∥2
2

)

+ bH1

τ∑

j=1

bl+1
(
bl+ j − bl+1

)H h̃
t
(∣∣∣aHl+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

)
. (221)

We will now bound each term in (221) separately.

• Before bounding the first term in (221), we first bound the pre-factor∣
∣∣
∑τ

j=1

(|aHl+ j x
�|2 − ‖x�‖22

)∣∣∣. Notably, the fluctuation of this quantity does not
grow fast as it is the sum of i.i.d. random variables over a group of relatively

large size, i.e., τ . Since 2
∣∣∣aHj x

�
∣∣∣
2
follows the χ2

2 distribution, by standard

concentration results (e.g., [95, Theorem 1.1]), with probability exceeding
1 − O

(
m−10

)
,

∣∣∣
∣∣∣

τ∑

j=1

(∣∣aHl+ j x
�
∣
∣2 − ‖x�‖22

)
∣∣∣
∣∣∣
�
√

τ logm.

With this result in place, we can bound the first term in (221) as

∣∣
∣
∣∣
∣

⎧
⎨

⎩

τ∑

j=1

(∣∣aHl+ j x
�
∣
∣2 − ‖x�‖22

)
⎫
⎬

⎭
bH1 bl+1bHl+1 h̃

t

∣∣
∣
∣∣
∣
�
√

τ logm
∣
∣
∣bH1 bl+1

∣
∣
∣ max
1≤l≤m

∣
∣
∣bHl h̃

t
∣
∣
∣ .

Taking the summation over all bins gives

m
τ

−1∑

k=0

∣∣
∣∣∣∣

⎧
⎨

⎩

τ∑

j=1

(∣∣aHkτ+ j x
�
∣∣2 − ‖x�‖22

)
⎫
⎬

⎭
bH1 bkτ+1bHkτ+1 h̃

t

∣∣
∣∣∣∣

�
√

τ logm

m
τ

−1∑

k=0

∣∣∣bH1 bkτ+1

∣∣∣ max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣ . (222)

It is straightforward to see from the proof of Lemma 48 that

m
τ

−1∑

k=0

∣∣∣bH1 bkτ+1

∣∣∣ = ‖b1‖22 +
m
τ

−1∑

k=1

∣∣∣bH1 bkτ+1

∣∣∣ ≤ K

m
+ O

(
logm

τ

)
. (223)

123

Foundations of Computational Mathematics

Substituting (223) into the previous inequality (222) gives

m
τ

−1∑

k=0

∣∣∣∣∣
∣

⎧
⎨

⎩

τ∑

j=1

(∣∣aHkτ+ j x
�
∣∣2 − ‖x�‖22

)
⎫
⎬

⎭
bH1 bkτ+1bHkτ+1 h̃

t

∣∣∣∣∣
∣

�

⎛

⎝K
√

τ logm

m
+
√
log3m

τ

⎞

⎠ max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣

≤ 0.1 max
1≤l≤m

∣
∣∣bHl h̃

t
∣
∣∣ ,

as long as m � K
√

τ logm and τ � log3 m.
• The second term of (221) obeys

∣∣∣∣∣
∣
bH1

τ∑

j=1

(
bl+ j − bl+1

)
bHl+ j h̃

t
(∣∣∣aHl+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

)
∣∣∣∣∣
∣

≤ max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣

√√√
√

τ∑

j=1

∣∣∣bH1
(
bl+ j − bl+1

)∣∣∣
2

√√√
√

τ∑

j=1

(∣∣aHl+ j x
�
∣∣2 − ‖x�‖22

)2

�
√

τ max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣

√√√√
τ∑

j=1

∣∣∣bH1
(
bl+ j − bl+1

)∣∣∣
2
,

where the first inequality is due to Cauchy–Schwarz, and the second one holds
because of the following lemma, whose proof can be found in Appendix C.4.2.

Lemma 29 Suppose τ ≥ C log4 m for some sufficiently large constant C > 0. Then
with probability exceeding 1 − O

(
m−10

)
,

τ∑

j=1

(∣∣
∣aHj x

�
∣∣
∣
2 − ∥

∥x�
∥
∥2
2

)2

� τ.

With the above bound in mind, we can sum over all bins of size τ to obtain

∣
∣∣∣∣∣
bH1

m
τ

−1∑

k=0

τ∑

j=1

(
bkτ+ j − bkτ+1

)
bHkτ+ j h̃

t
{∣∣∣aHl+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

}
∣
∣∣∣∣∣

�

⎧
⎨

⎩
√

τ

m
τ

−1∑

k=0

√√√
√

τ∑

j=1

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣
2

⎫
⎬

⎭
max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣

≤ 0.1 max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣ .

123

Foundations of Computational Mathematics

Here, the last line arises fromLemma 51, which says that for any small constant c > 0,
as long as m � τK logm

m
τ

−1∑

k=0

√√√
√

τ∑

j=1

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣
2 ≤ c

1√
τ

.

• The third term of (221) obeys

∣∣
∣∣∣∣
bH1

τ∑

j=1

bl+1
(
bl+ j − bl+1

)H h̃
t
{∣∣∣aHl+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

}
∣∣
∣∣∣∣

≤
∣
∣∣bH1 bl+1

∣
∣∣

⎧
⎨

⎩

τ∑

j=1

∣∣
∣∣

∣
∣∣aHl+ j x

�
∣
∣∣
2 − ∥

∥x�
∥
∥2
2

∣∣
∣∣

⎫
⎬

⎭
max

0≤l≤m−τ, 1≤ j≤τ

∣
∣∣
(
bl+ j − bl+1

)H h̃
t
∣
∣∣

� τ

∣∣∣bH1 bl+1

∣∣∣ max
0≤l≤m−τ, 1≤ j≤τ

∣∣∣
(
bl+ j − bl+1

)H h̃
t
∣∣∣ ,

where the last line relies on the inequality

τ∑

j=1

∣∣∣
∣

∣∣
∣aHl+ j x

�
∣∣
∣
2 − ∥∥x�

∥∥2
2

∣∣∣
∣ ≤ √

τ

√√√
√

τ∑

j=1

(∣∣
∣aHl+ j x

�

∣∣
∣
2 − ‖x�‖22

)2

� τ

owing to Lemma 29 and the Cauchy–Schwarz inequality. Summing over all bins
gives

m
τ

−1∑

k=0

∣∣
∣∣∣∣
bH1

τ∑

j=1

bkτ+1
(
bkτ+ j − bkτ+1

)H h̃
t
{∣
∣∣aHkτ+ j x

�
∣
∣∣
2 − ∥∥x�

∥∥2
2

}
∣∣
∣∣∣∣

� τ

m
τ

−1∑

k=0

∣∣∣bH1 bkτ+1

∣∣∣ max
0≤l≤m−τ, 1≤ j≤τ

∣∣∣
(
bl+ j − bl+1

)H h̃
t
∣∣∣

� logm max
0≤l≤m−τ, 1≤ j≤τ

∣∣∣
(
bl+ j − bl+1

)H h̃
t
∣∣∣ ,

where the last relation makes use of (223) with the proviso that m � K τ . It then
boils down to bounding max0≤l≤m−τ, 1≤ j≤τ

∣
∣ (bl+ j − bl+1

)H h̃
t ∣∣. Without loss of

generality, it suffices to look at
∣∣(b j − b1)H h̃

t ∣∣ for all 1 ≤ j ≤ τ . Specifically, we
claim for the moment that

max
1≤ j≤τ

∣∣∣
(
b j − b1

)H h̃
t
∣∣∣ ≤ cC4

μ√
m

logm (224)

123

Foundations of Computational Mathematics

for some sufficiently small constant c > 0, provided that m � τK log4 m. As a
result,

m
τ

−1∑

k=0

∣∣
∣∣∣∣
bH1

τ∑

j=1

bkτ+1
(
bkτ+ j − bkτ+1

)H h̃
t
{∣∣∣aHkτ+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

}
∣∣
∣∣∣∣
� cC4

μ√
m

log2 m.

• Putting the above results together, we get

1

ηξ

∣∣∣bH1 v2

∣∣∣ ≤
m
τ

−1∑

k=0

∣∣∣∣∣
∣
bH1

τ∑

j=1

bkτ+ j bHkτ+ j h̃
t
{∣∣∣aHkτ+ j x

�
∣∣∣
2 − ∥∥x�

∥∥2
2

}
∣∣∣∣∣
∣

≤ 0.2 max
1≤l≤m

∣∣∣bHl h̃
t
∣∣∣+ O

(
cC4

μ√
m

log2 m

)
.

4. Combining the preceding bounds guarantees the existence of some constant C8 >

0 such that

∣∣
∣bHl h̃

t+1
∣∣
∣ ≤ (1 + δ)

{
(1 − ηξ)

∣∣
∣bHl h̃

t
∣∣
∣+ 0.3ηξ max

1≤l≤m

∣∣
∣bHl h̃

t
∣∣
∣

+C8(1 + C3)ηξ
μ√
m

+ C8ηξcC4
μ√
m

log2 m

}

(i)≤
(
1 + O

(
1

log2 m

)){
(1 − 0.7ηξ)C4

μ√
m

log2 m

+C8(1 + C3)ηξ
μ√
m

+ C8ηξcC4
μ√
m

log2 m

}

(ii)≤ C4
μ√
m

log2 m.

Here, (i) uses the induction hypothesis (90d), and (ii) holds as long as c > 0 is
sufficiently small (so that (1+δ)C8ηξc � 1) and η > 0 is some sufficiently small
constant. In order for the proof to go through, it suffices to pick

τ = c10 log
4 m

for some sufficiently large constant c10 > 0. Accordingly, we need the sample
size to exceed

m � μ2τK log4 m
 μ2K log8m.

Finally, it remains to verify claim (224), which we accomplish in Appendix C.4.3.

123

Foundations of Computational Mathematics

C.4.1 Proof of Lemma 28

Denote

w j = bHl b j bHj h
�x�Ha j aHj x

�.

Recognizing that E[a j aHj] = IK and
∑m

j=1 b j bHj = IK , we can write the quantity of
interest as the sum of independent random variables, namely

m∑

j=1

bHl b j bHj h
�x�Ha j aHj x

� − bHl h
� =

m∑

j=1

(
w j − E

[
w j
])

.

Further, the sub-exponential norm (see definition in [116]) of w j − E
[
w j
]
obeys

∥
∥w j − E

[
w j
]∥∥

ψ1

(i)≤ 2
∥
∥w j

∥
∥

ψ1

(ii)≤ 4
∣
∣
∣bHl b j

∣
∣
∣
∣
∣
∣bHj h

�
∣
∣
∣
∥
∥
∥aHj x

�
∥
∥
∥
2

ψ2

(iii)
�
∣
∣
∣bHl b j

∣
∣
∣

μ√
m

(iv)≤ μ
√
K

m
,

where (i) arises from the centering property of the sub-exponential norm (see [116,
Remark 5.18]), (ii) utilizes the relationship between the sub-exponential norm and
the sub-Gaussian norm [116, Lemma 5.14], (iii) is a consequence of the incoherence

condition (36) and the fact that
∥∥∥aHj x

�
∥∥∥

ψ2
� 1, and (iv) follows from ‖b j‖2 = √

K/m.

Let M = max j∈[m]
∥∥w j − E

[
w j
]∥∥

ψ1
and

V 2 =
m∑

j=1

∥∥w j − E
[
w j
]∥∥2

ψ1
�

m∑

j=1

(∣
∣∣bHl b j

∣
∣∣

μ√
m

)2

= μ2

m
‖bl‖22 = μ2K

m2 ,

which follows since
∑m

j=1

∣∣
∣bHl b j

∣∣
∣
2 = bHl

(∑m
j=1 b j bHj

)
bl = ‖bl‖22 = K/m. Let

a j = ∥∥w j − E
[
w j
]∥∥

ψ1
and X j = (w j −E[w j])/a j . Since ‖X j‖ψ1 = 1,

∑m
j=1 a

2
j =

V 2 and max j∈[m] |a j | = M , we can invoke [116, Proposition 5.16] to obtain that

P

⎛

⎝

∣
∣∣∣∣∣

m∑

j=1

a j X j

∣
∣∣∣∣∣

≥ t

⎞

⎠ ≤ 2 exp

(
−cmin

{
t

M
,
t2

V 2

})
,

where c > 0 is some universal constant. By taking t = μ/
√
m, we see there exists

some constant c′ such that

P

⎛

⎝

∣∣∣∣
∣∣

m∑

j=1

bHl b j bHj h
�x�Ha j aHj x

� − bHl h
�

∣∣∣∣
∣∣

≥ μ√
m

⎞

⎠

≤ 2 exp

(
−cmin

{
μ/

√
m

M
,
μ2/m

V 2

})

123

Foundations of Computational Mathematics

≤ 2 exp

(
−c′ min

{
μ/

√
m

μ
√
K/m

,
μ2/m

μ2K/m2

})

= 2 exp
(

−c′ min
{√

m/K ,m/K
})

.

We conclude the proof by observing that m � K log2 m as stated in the assumption.

C.4.2 Proof of Lemma 29

From the elementary inequality (a − b)2 ≤ 2
(
a2 + b2

)
, we see that

τ∑

j=1

(∣∣∣aHj x
�
∣∣∣
2 − ∥∥x�

∥∥2
2

)2

≤ 2
τ∑

j=1

(∣∣∣aHj x
�
∣∣∣
4 + ∥∥x�

∥∥4
2

)
= 2

τ∑

j=1

∣∣∣aHj x
�
∣∣∣
4 + 2τ,

(225)
where the last identity holds true since ‖x�‖2 = 1. It thus suffices to control
∑τ

j=1

∣∣
∣aHj x

�
∣∣
∣
4
. Let ξi = aHj x

�, which is a standard complex Gaussian random vari-

able. Since the ξi ’s are statistically independent, one has

Var

(
τ∑

i=1

|ξi |4
)

≤ C4τ

for some constant C4 > 0. It then follows from the hypercontractivity concentration
result for Gaussian polynomials that [99, Theorem 1.9]

P

{
τ∑

i=1

(
|ξi |4 − E

[
|ξi |4

])
≥ cτ

}

≤ C exp

⎛

⎝−c2

(
c2τ 2

Var
(∑τ

i=1 |ξi |4
)

)1/4
⎞

⎠

≤ C exp

(

−c2

(
c2τ 2

C4τ

)1/4
)

= C exp

(

−c2

(
c2

C4

)1/4

τ 1/4

)

≤ O(m−10),

for some constants c, c2,C > 0, with the proviso that τ � log4 m. As a consequence,
with probability at least 1 − O(m−10),

τ∑

j=1

∣∣∣aHj x
�
∣∣∣
4

� τ +
τ∑

j=1

E

[∣∣∣aHj x
�
∣∣∣
4
]

 τ,

which together with (225) concludes the proof.

123

Foundations of Computational Mathematics

C.4.3 Proof of Claim (224)

We will prove the claim by induction. Again, observe that

∣∣∣
(
b j − b1

)H h̃
t
∣∣∣ =

∣∣∣∣
(
b j − b1

)H 1

αt
ht
∣∣∣∣ =

∣∣∣∣
αt−1

αt

∣∣∣∣

∣∣∣∣
(
b j − b1

)H 1

αt−1
ht
∣∣∣∣

≤ (1 + δ)

∣∣
∣∣
(
b j − b1

)H 1

αt−1
ht
∣∣
∣∣

for some δ
 log−2 m, which allows us to look at
(
b j − b1

)H 1
αt−1

ht instead.

Use the gradient update rule for ht (cf. (79a)) once again to get

1

αt−1
ht = 1

αt−1

(

ht−1 − η
∥∥xt−1

∥∥2
2

m∑

l=1

blbHl
(
ht−1xt−1H − h�x�H

)
alaHl x

t−1

)

= h̃
t−1 − ηθ

m∑

l=1

blbHl
(
h̃
t−1

x̃t−1H − h�x�H
)
alaHl x̃

t−1,

where we denote θ := 1/
∥∥x̃t−1

∥∥2
2. This further gives rise to

(
b j − b1

)H 1

αt−1
ht

= (
b j − b1

)H h̃
t−1 − ηθ

(
b j − b1

)H
m∑

l=1

blbHl
(
h̃
t−1

x̃t−1H − h�x�H
)
alaHl x̃

t−1

= (
b j − b1

)H h̃
t−1 − ηθ

(
b j − b1

)H
m∑

l=1

blbHl
(
h̃
t−1

x̃t−1H − h�x�H
)
x̃t−1

− ηθ
(
b j − b1

)H
m∑

l=1

blbHl
(
h̃
t−1

x̃t−1H − h�x�H
) (

alaHl − IK
)
x̃t−1

=
(
1 − ηθ‖x̃t−1‖22

) (
b j − b1

)H h̃
t−1 + ηθ

(
b j − b1

)H h�
(
x�H x̃t−1

)

︸ ︷︷ ︸
:=β1

− ηθ
(
b j − b1

)H
m∑

l=1

blbHl
(
h̃
t−1

x̃t−1H − h�x�H
) (

alaHl − IK
)
x̃t−1

︸ ︷︷ ︸
:=β2

,

where the last identity makes use of the fact that
∑m

l=1 blb
H
l = IK . For β1, one can

get

1

ηθ
|β1| ≤

∣∣∣
(
b j − b1

)H h�
∣∣∣ ‖x�‖2‖x̃t−1‖2 ≤ 4

μ√
m

,

123

Foundations of Computational Mathematics

where we utilize the incoherence condition (36) and the fact that x̃t−1 and x� are
extremely close, i.e.,

∥∥∥x̃t−1 − x�
∥∥∥
2

≤ dist
(
zt−1, z�

)
� 1 �⇒ ‖x̃t−1‖2 ≤ 2.

Regarding the second term β2, we have

1

ηθ
|β2| ≤

{
m∑

l=1

∣
∣
∣
(
b j − b1

)H bl
∣
∣
∣

}

max
1≤l≤m

∣
∣
∣bHl

(
h̃
t−1

x̃t−1H − h�x�H
) (

alaHl − IK
)
x̃t−1

∣
∣
∣

︸ ︷︷ ︸
:=ψ

.

The term ψ can be bounded as follows

ψ ≤ max
1≤l≤m

∣
∣∣bHl h̃

t−1
x̃t−1H

(
alaHl − I

)
x̃t−1

∣
∣∣+ max

1≤l≤m

∣
∣∣bHl h

�x�H
(
alaHl − IK

)
x̃t−1

∣
∣∣

≤ max
1≤l≤m

∣
∣∣bHl h̃

t−1
∣
∣∣ max
1≤l≤m

∣
∣∣̃xt−1H

(
alaHl − IK

)
x̃t−1

∣
∣∣

+ max
1≤l≤m

∣
∣∣bHl h

�
∣
∣∣ max
1≤l≤m

∣
∣∣x�H

(
alaHl − IK

)
x̃t−1

∣
∣∣

� logm

{
max
1≤l≤m

∣
∣∣bHl h̃

t−1
∣
∣∣+ μ√

m

}
.

Here, we have used the incoherence condition (36) and the facts that

∣∣∣(̃xt−1)H
(
alaHl − I

)
x̃t−1

∣∣∣ ≤ ∥∥aHl x̃
t−1
∥∥2
2 + ∥∥x̃t−1

∥∥2
2 � logm,

∣
∣∣x�H

(
alaHl − I

)
x̃t−1

∣
∣∣ ≤ ∥

∥aHl x̃
t−1
∥
∥
2

∥
∥aHl x

�
∥
∥
2 + ∥

∥x̃t−1
∥
∥
2‖x�‖2 � logm,

which are immediate consequences of (90c) and (189). Combining this with
Lemma 50, we see that for any small constant c > 0

1

ηθ
|β2| ≤ c

1

logm

{
max
1≤l≤m

∣∣∣bHl h̃
t−1
∣∣∣+ μ√

m

}

holds as long as m � τK log4 m.
To summarize, we arrive at

∣∣∣
(
b j − b1

)H h̃
t
∣∣∣ ≤ (1 + δ)

{(
1 − ηθ

∥∥∥x̃t−1
∥∥∥
2

2

) ∣∣∣
(
b j − b1

)H h̃
t−1
∣∣∣

+ 4ηθ
μ√
m

+ cηθ
1

logm

[
max
1≤l≤m

∣∣∣bHl h̃
t−1
∣∣∣+ μ√

m

]}
.

123

Foundations of Computational Mathematics

Making use of the induction hypothesis (85c) and the fact that
∥∥x̃t−1

∥∥2
2 ≥ 0.9, we

reach
∣
∣∣
(
b j − b1

)H h̃t
∣
∣∣ ≤ (1 + δ)

{
(1 − 0.9ηθ)

∣
∣∣
(
b j − b1

)H h̃t−1
∣
∣∣+ cC4ηθ

μ√
m

logm + cμηθ√
m logm

}
.

Recall that δ
 1/ log2 m. As a result, if η > 0 is some sufficiently small constant
and if

∣∣∣
(
b j − b1

)H h̃
t−1
∣∣∣ ≤ 10c

(
C4

μ√
m

logm + μ

ηθ
√
m logm

)
≤ 20cC4

μ√
m

logm

holds, then one has

∣
∣∣
(
b j − b1

)H h̃
t
∣
∣∣ ≤ 20cC4

μ√
m

logm.

Therefore, this concludes the proof of claim (224) by induction, provided that the
base case is true, i.e., for some c > 0 sufficiently small

∣
∣∣
(
b j − b1

)H h̃
0
∣
∣∣ ≤ 20cC4

μ√
m

logm. (226)

Claim (226) is proved in Appendix C.6 (see Lemma 30).

C.5 Proof of Lemma 19

Recall that ȟ
0
and x̌0 are the leading left and right singular vectors of M, respectively.

Applying a variant of Wedin’s sin� theorem [42, Theorem 2.1], we derive that

min
α∈C,|α|=1

{∥∥αȟ
0 − h�

∥∥
2 + ∥∥α x̌0 − x�

∥∥
2

}
≤ c1 ‖M − E [M]‖

σ1 (E [M]) − σ2 (M)
, (227)

for some universal constant c1 > 0. Regarding the numerator of (227), it has been
shown in [76, Lemma 5.20] that for any ξ > 0,

‖M − E [M]‖ ≤ ξ (228)

with probability exceeding 1 − O(m−10), provided that

m ≥ c2μ2K log2 m

ξ2

for some universal constant c2 > 0. For the denominator of (227), we can take (228)
together with Weyl’s inequality to demonstrate that

σ1 (E [M]) − σ2 (M) ≥ σ1 (E [M]) − σ2 (E [M]) − ‖M − E [M]‖ ≥ 1 − ξ,

123

Foundations of Computational Mathematics

where the last inequality utilizes the facts that σ1 (E [M]) = 1 and σ2 (E[M]) = 0.
These together with (227) reveal that

min
α∈C,|α|=1

{∥∥αȟ
0 − h�

∥∥
2 + ∥∥α x̌0 − x�

∥∥
2

}
≤ c1ξ

1 − ξ
≤ 2c1ξ (229)

as long as ξ ≤ 1/2.
Now we connect the preceding bound (229) with the scaled singular vectors h0 =√
σ1 (M) ȟ

0
and x0 = √

σ1 (M) x̌0. For any α ∈ C with |α| = 1, from the definition
of h0 and x0 we have

∥
∥αh0 − h�

∥
∥
2 + ∥

∥αx0 − x�
∥
∥
2 =

∥
∥
∥
√

σ1 (M)
(
αȟ

0)− h�
∥
∥
∥
2

+
∥
∥
∥
√

σ1 (M)
(
α x̌0

)
− x�

∥
∥
∥
2
.

Since αȟ
0
, α x̌0 are also the leading left and right singular vectors of M, we can invoke

Lemma 60 to get

∥∥
∥αh0 − h�

∥∥
∥
2

+
∥∥
∥αx0 − x�

∥∥
∥
2

≤ √
σ1(E[M])

(∥∥αȟ
0 − h�

∥∥
2 + ∥∥α x̌0 − x�

∥∥
2

)
+ 2 |σ1(M) − σ1 (E [M])|√

σ1(M) + √
σ1 (E [M])

=
∥
∥∥αȟ

0 − h�
∥
∥∥
2

+
∥
∥∥α x̌0 − x�

∥
∥∥
2

+ 2 |σ1(M) − σ1 (E [M])|√
σ1(M) + 1

. (230)

In addition, we can apply Weyl’s inequality once again to deduce that

|σ1(M) − σ1(E[M])| ≤ ‖M − E[M]‖ ≤ ξ, (231)

where the last inequality comes from (228). Substitute (231) into (230) to obtain

∥∥∥αh0 − h�
∥∥∥
2

+
∥∥∥αx0 − x�

∥∥∥
2

≤
∥∥∥αȟ

0 − h�
∥∥∥
2

+
∥∥∥α x̌0 − x�

∥∥∥
2

+ 2ξ. (232)

Taking the minimum over α, one can thus conclude that

min
α∈C,|α|=1

{∥∥∥αh0 − h�
∥∥∥
2

+
∥∥∥αx0 − x�

∥∥∥
2

}

≤ min
α∈C,|α|=1

{∥∥αȟ
0 − h�

∥∥
2 + ∥∥α x̌0 − x�

∥∥
2

}
+ 2ξ ≤ 2c1ξ + 2ξ,

where the last inequality comes from (229). Since ξ is arbitrary, by taking
m/(μ2K log2 m) to be large enough, we finish the proof for (92). Carrying out similar
arguments (which we omit here), we can also establish (93).

The last claim in Lemma 19 that ||α0| − 1| ≤ 1/4 is a direct corollary of (92) and
Lemma 52.

123

Foundations of Computational Mathematics

C.6 Proof of Lemma 20

The proof is composed of three steps:

• In the first step, we show that the normalized singular vectors of M and M(l) are
close enough; see (240).

• We then proceed by passing this proximity result to the scaled singular vectors;
see (243).

• Finally,we translate the usual �2 distancemetric to the distance functionwe defined
in (34); see (245). Along the way, we also prove the incoherence of h0 with respect
to {bl}.
Here comes the formal proof. Recall that ȟ

0
and x̌0 are, respectively, the leading

left and right singular vectors of M, and ȟ
0,(l)

and x̌0,(l) are, respectively, the leading
left and right singular vectors of M(l). Invoke Wedin’s sin� theorem [42, Theorem
2.1] to obtain

min
α∈C,|α|=1

{∥∥αȟ
0 − ȟ

0,(l)∥∥
2 + ∥∥α x̌0 − x̌0,(l)

∥∥
2

}

≤ c1

∥∥∥
(
M − M(l)

)
x̌0,(l)

∥∥∥
2

+
∥∥∥ȟ

0,(l)H (
M − M(l)

)∥∥∥
2

σ1
(
M(l)

)− σ2 (M)

for some universal constant c1 > 0. Using the Weyl’s inequality we get

σ1
(
M(l))− σ2 (M) ≥ σ1

(
E[M(l)])− ‖M(l) − E[M(l)]‖ − σ2 (E[M]) − ‖M − E[M]‖

≥ 3/4 − ‖M(l) − E[M(l)]‖ − ‖M − E[M]‖ ≥ 1/2,

where the penultimate inequality follows from

σ1
(
E[M(l)]) ≥ 3/4

form sufficiently large, and the last inequality comes from [76, Lemma 5.20], provided
that m ≥ c2μ2K log2 m for some sufficiently large constant c2 > 0. As a result,
denoting

β0,(l) := argmin
α∈C,|α|=1

{∥∥αȟ
0 − ȟ

0,(l)∥∥
2 + ∥∥α x̌0 − x̌0,(l)

∥∥
2

}
(233)

allows us to obtain

∥∥β0,(l) ȟ
0 − ȟ

0,(l)∥∥
2 + ∥∥β0,(l) x̌0 − x̌0,(l)

∥∥
2

≤ 2c1
{∥∥(M − M(l))x̌0,(l)

∥∥
2 + ∥∥ȟ

0,(l)H(
M − M(l))∥∥

2

}
. (234)

It then boils down to controlling the two terms on the right-hand side of (234). By
construction,

M − M(l) = blbHl h
�x�HalaHl .

123

Foundations of Computational Mathematics

• To bound the first term, observe that

∥
∥∥
(
M − M(l))x̌0,(l)

∥
∥∥
2

=
∥
∥∥blbHl h

�x�HalaHl x̌
0,(l)

∥
∥∥
2

= ‖bl‖2
∣
∣∣bHl h

�
∣
∣∣
∣
∣∣aHl x

�
∣
∣∣ · ∣∣aHl x̌0,(l)

∣
∣

≤ 30
μ√
m

·
√

K log2 m

m
, (235)

where we use the fact that ‖bl‖2 = √
K/m, the incoherence condition (36), bound

(189), and the fact that with probability exceeding 1 − O
(
m−10

)
,

max
1≤l≤m

∣∣aHl x̌
0,(l)∣∣ ≤ 5

√
logm,

due to the independence between x̌0,(l) and al .
• To bound the second term, for any α̃ obeying |̃α| = 1, one has

∥
∥∥ȟ

0,(l)H(
M − M(l))

∥
∥∥
2

=
∥∥
∥ȟ

0,(l)H
blbHl h

�x�HalaHl

∥∥
∥
2

= ‖al‖2
∣∣
∣bHl h

�
∣∣
∣
∣∣
∣aHl x

�
∣∣
∣ · ∣∣bHl ȟ

0,(l)∣∣

(i)≤ 3
√
K · μ√

m
· 5√logm · ∣∣bHl ȟ

0,(l)∣∣

(ii)≤ 15

√
μ2K logm

m

∣∣̃αbHl ȟ
0∣∣+ 15

√
μ2K logm

m

∣∣∣bHl
(
α̃ȟ

0 − ȟ
0,(l))∣∣∣

(iii)≤ 15

√
μ2K logm

m

∣∣bHl ȟ
0∣∣+ 15

√
μ2K logm

m
·
√

K

m

∥∥∥α̃ȟ
0 − ȟ

0,(l)
∥∥∥
2
.

Here, (i) arises from the incoherence condition (36) together with bounds (189)
and (190), inequality (ii) comes from the triangle inequality, and the last line (iii)
holds since ‖bl‖2 = √

K/m and |̃α| = 1.

Substitution of the above bounds into (234) yields

∥
∥∥β0,(l) ȟ

0 − ȟ
0,(l)

∥
∥∥
2

+
∥
∥∥β0,(l) x̌0 − x̌0,(l)

∥
∥∥
2

≤ 2c1

⎧
⎨

⎩
30

μ√
m

·
√

K log2 m

m
+ 15

√
μ2K logm

m

∣
∣∣bHl ȟ

0
∣
∣∣

+ 15

√
μ2K logm

m
·
√

K

m

∥∥
∥α̃ȟ

0 − ȟ
0,(l)

∥∥
∥
2

⎫
⎬

⎭
.

123

Foundations of Computational Mathematics

Since the previous inequality holds for all |̃α| = 1, we can choose α̃ = β0,(l) and
rearrange terms to get

⎛

⎝1 − 30c1

√
μ2K logm

m

√
K

m

⎞

⎠
(∥∥∥β0,(l) ȟ

0 − ȟ
0,(l)

∥∥∥
2

+
∥∥∥β0,(l) x̌0 − x̌0,(l)

∥∥∥
2

)

≤ 60c1
μ√
m

·
√

K log2 m

m
+ 30c1

√
μ2K logm

m

∣∣∣bHl ȟ
0
∣∣∣ .

Under the condition that m � μK log1/2 m, one has 1 − 30c1
√

μ2K logm/m ·√
K/m ≥ 1

2 , and therefore,

∥∥∥β0,(l) ȟ
0 − ȟ

0,(l)
∥∥∥
2

+
∥∥∥β0,(l) x̌0 − x̌0,(l)

∥∥∥
2

≤ 120c1
μ√
m

·
√

K log2 m

m
+ 60c1

√
μ2K logm

m

∣∣∣bHl ȟ
0
∣∣∣ ,

which immediately implies that

max
1≤l≤m

{∥∥∥β0,(l) ȟ
0 − ȟ

0,(l)
∥∥∥
2

+
∥∥∥β0,(l) x̌0 − x̌0,(l)

∥∥∥
2

}

≤ 120c1
μ√
m

·
√

K log2 m

m
+ 60c1

√
μ2K logm

m
max
1≤l≤m

∣∣
∣bHl ȟ

0
∣∣
∣ . (236)

We then move on to
∣∣∣bHl ȟ

0
∣∣∣. The aim is to show that max1≤l≤m

∣∣∣bHl ȟ
0
∣∣∣ can also

be upper bounded by the left-hand side of (236). By construction, we have Mx̌0 =
σ1 (M) ȟ

0
, which further leads to

∣∣∣bHl ȟ
0
∣∣∣ = 1

σ1 (M)

∣∣∣bHl Mx̌0
∣∣∣

(i)≤ 2

∣∣∣∣∣∣

m∑

j=1

(
bHl b j

)
bHj h

�x�Ha j aHj x̌
0

∣∣∣∣∣∣

≤ 2

⎛

⎝
m∑

j=1

∣∣∣bHl b j

∣∣∣

⎞

⎠ max
1≤ j≤m

{∣∣∣bHj h
�
∣∣∣
∣∣∣aHj x

�
∣∣∣
∣∣∣aHj x̌

0
∣∣∣
}

(ii)≤ 8 logm · μ√
m

·
(
5
√
logm

)
max

1≤ j≤m

{∣∣∣aHj x̌
0,(j)

∣∣∣+ ∥∥a j
∥∥
2

∥∥∥β0,(j) x̌0 − x̌0,(j)
∥∥∥
2

}

≤ 200
μ log2 m√

m
+ 120

√
μ2K log3 m

m
max

1≤ j≤m

∥∥∥β0,(j) x̌0 − x̌0,(j)
∥∥∥
2
, (237)

123

Foundations of Computational Mathematics

where β0,(j) is as defined in (233). Here, (i) comes from the lower bound σ1 (M) ≥
1/2. Bound (ii) follows by combining the incoherence condition (36), bound (189), the

triangle inequality, as well as the estimate
∑m

j=1

∣
∣∣bHl b j

∣
∣∣ ≤ 4 logm from Lemma 48.

The last line uses the upper estimate max1≤ j≤m

∣∣∣aHj x̌
0,(j)

∣∣∣ ≤ 5
√
logm and (190). Our

bound (237) further implies

max
1≤l≤m

∣∣∣bHl ȟ
0
∣∣∣ ≤ 200

μ log2 m√
m

+ 120

√
μ2K log3m

m
max

1≤ j≤m

∥∥∥β0,(j) x̌0 − x̌0,(j)
∥∥∥
2
.

(238)
The above bound (238) taken together with (236) gives

max
1≤l≤m

{∥∥∥β0,(l) ȟ
0 − ȟ

0,(l)
∥∥∥
2

+
∥∥∥β0,(l) x̌0 − x̌0,(l)

∥∥∥
2

}
≤ 120c1

μ√
m

·
√

K log2 m

m

+ 60c1

√
μ2K logm

m

⎛

⎝200
μ log2 m√

m
+ 120

√
μ2K log3 m

m
max

1≤ j≤m

∥∥
∥β0,(j) x̌0 − x̌0,(j)

∥∥
∥
2

⎞

⎠ .

(239)

As long asm � μ2K log2 m, we have 60c1
√

μ2K logm/m ·120
√

μ2K log3 m/m ≤
1/2. Rearranging terms, we are left with

max
1≤l≤m

{∥∥∥β0,(l) ȟ
0 − ȟ

0,(l)
∥
∥∥
2

+
∥
∥∥β0,(l) x̌0 − x̌0,(l)

∥
∥∥
2

}
≤ c3

μ√
m

√
μ2K log5 m

m
(240)

for some constant c3 > 0. Further, this bound combined with (238) yields

max
1≤l≤m

∣∣∣bHl ȟ
0
∣∣∣ ≤ 200

μ log2 m√
m

+ 120

√
μ2K log3 m

m
· c3 μ√

m

√
μ2K log5 m

m
≤ c2

μ log2 m√
m

(241)

for some constant c2 > 0, with the proviso that m � μ2K log2 m.
We now translate the preceding bounds to the scaled version. Recall from bound

(231) that
1/2 ≤ 1 − ξ ≤ ‖M‖ = σ1(M) ≤ 1 + ξ ≤ 2, (242)

as long as ξ ≤ 1/2. For any α ∈ C with |α| = 1, αȟ
0
, α x̌0 are still the leading left

and right singular vectors of M. Hence, we can use Lemma 60 to derive that

∣∣∣σ1
(
M
)− σ1

(
M(l))

∣∣∣

≤
∥∥∥
(
M − M(l))x̌0,(l)

∥∥∥
2

+
{∥∥∥αȟ

0 − ȟ
0,(l)

∥∥∥
2

+
∥∥∥α x̌0 − x̌0,(l)

∥∥∥
2

}
‖M‖

≤
∥
∥∥
(
M − M(l))x̌0,(l)

∥
∥∥
2

+ 2
{∥∥∥αȟ

0 − ȟ
0,(l)

∥
∥∥
2

+
∥
∥∥α x̌0 − x̌0,(l)

∥
∥∥
2

}

123

Foundations of Computational Mathematics

and

∥∥
∥αh0 − h0,(l)

∥∥
∥
2

+
∥∥
∥αx0 − x0,(l)

∥∥
∥
2

=
∥∥
∥∥
√

σ1 (M)
(
αȟ

0)−
√

σ1
(
M(l)

)
ȟ
0,(l)

∥∥
∥∥
2

+
∥∥
∥∥
√

σ1 (M)α x̌0 −
√

σ1
(
M(l)

)
x̌0,(l)

∥∥
∥∥
2

≤ √
σ1(M)

{∥∥∥αȟ
0 − ȟ

0,(l)
∥∥∥
2

+
∥∥∥α x̌0 − x̌0,(l)

∥∥∥
2

}
+ 2

∣
∣σ1(M) − σ1(M(l))

∣
∣

√
σ1(M) +

√
σ1(M(l))

≤ √
2
{∥∥
∥αȟ

0 − ȟ
0,(l)

∥∥
∥
2

+
∥∥
∥α x̌0 − x̌0,(l)

∥∥
∥
2

}
+ √

2
∣∣
∣σ1(M) − σ1(M(l))

∣∣
∣ .

Taking the previous two bounds collectively yields

∥∥∥αh0 − h0,(l)
∥∥∥
2

+
∥∥∥αx0 − x0,(l)

∥∥∥
2

≤ √
2
∥∥∥
(
M − M(l))x̌0,(l)

∥∥∥
2

+6
{∥∥∥αȟ

0 − ȟ
0,(l)

∥
∥∥
2

+
∥
∥∥α x̌0 − x̌0,(l)

∥
∥∥
2

}
,

which together with (235) and (240) implies

min
α∈C,|α|=1

{∥∥∥αh0 − h0,(l)
∥∥∥
2

+
∥∥∥αx0 − x0,(l)

∥∥∥
2

}
≤ c5

μ√
m

√
μ2K log5 m

m
(243)

for some constant c5 > 0, as long as ξ is sufficiently small. Moreover, we have

∥∥∥
1

α0
h0 − α

α0
h0,(l)

∥∥∥
2

+
∥∥∥α0x0 − αα0x0,(l)

∥∥∥
2

≤ 2
{∥∥∥h0 − αh0,(l)

∥∥∥
2

+
∥∥∥x0 − αx0,(l)

∥∥∥
2

}

for any |α| = 1, where α0 is defined in (38) and, according to Lemma 19, satisfies

1/2 ≤ |α0| ≤ 2. (244)

Therefore,

min
α∈C,|α|=1

√
∥∥∥
1

α0
h0 − α

α0
h0,(l)

∥∥∥
2

2
+
∥∥∥α0x0 − αα0x0,(l)

∥∥∥
2

2

≤ min
α∈C,|α|=1

{∥∥∥∥
1

α0
h0 − α

α0
h0,(l)

∥∥∥∥
2

+
∥∥∥α0x0 − αα0x0,(l)

∥∥∥
2

}

≤ 2 min
α∈C,|α|=1

{∥∥∥h0 − αh0,(l)
∥
∥∥
2

+
∥
∥∥x0 − αx0,(l)

∥
∥∥
2

}

≤ 2c5
μ√
m

√
μ2K log5 m

m
.

123

Foundations of Computational Mathematics

Furthermore, we have

dist
(
z0,(l), z̃0

) =min
α∈C

√
∥∥∥
1

α
h0,(l) − 1

α0
h0
∥∥∥22 + ∥∥αx0,(l) − α0x0

∥∥2
2

≤ min
α∈C,|α|=1

√
∥∥∥
1

α0
h0 − α

α0
h0,(l)

∥∥∥
2

2
+
∥∥∥α0x0 − αα0x0,(l)

∥∥∥
2

2

≤ 2c5
μ√
m

√
μ2K log5 m

m
, (245)

where the second line follows since the latter is minimizing over a smaller feasible
set. This completes the proof for claim (96).

Regarding
∣∣bHl h̃

0∣∣, one first sees that

∣∣∣bHl h
0
∣∣∣ =

∣∣∣
√

σ1 (M)bHl ȟ
0
∣∣∣ ≤ √

2c2
μ log2 m√

m
,

where the last relation holds due to (241) and (242). Hence, using the property (244),
we have

∣
∣bHl h̃

0∣∣ =
∣∣
∣∣b

H
l
1

α0
h0
∣∣
∣∣ ≤

∣∣
∣∣
1

α0

∣∣
∣∣

∣
∣∣bHl h

0
∣
∣∣ ≤ 2

√
2c2

μ log2 m√
m

,

which finishes the proof of claim (97).
Before concluding this section, we note a by-product of the proof. Specifically, we

can establish the claim required in (226) using many results derived in this section.
This is formally stated in the following lemma.

Lemma 30 Fix any small constant c > 0. Suppose the number of samples obeys
m � τK log4 m. Then with probability at least 1 − O

(
m−10

)
, we have

max
1≤ j≤τ

∣∣∣
(
b j − b1

)H h̃
0
∣∣∣ ≤ c

μ√
m

logm.

Proof Instate the notation and hypotheses in Appendix C.6. Recognize that

∣∣∣
(
b j − b1

)H h̃
0
∣∣∣ =

∣∣∣∣
(
b j − b1

)H 1

α0
h0
∣∣∣∣ =

∣∣∣∣
(
b j − b1

)H 1

α0

√
σ1 (M)ȟ

0
∣∣∣∣

≤
∣
∣∣∣
1

α0

∣
∣∣∣
√

σ1 (M)

∣∣∣
(
b j − b1

)H ȟ
0
∣∣∣

≤ 4
∣∣∣
(
b j − b1

)H ȟ
0
∣∣∣ ,

where the last inequality comes from (242) and (244). It thus suffices to prove that∣∣∣
(
b j − b1

)H ȟ
0
∣∣∣ ≤ cμ logm/

√
m for some c > 0 small enough. To this end, it can be

123

Foundations of Computational Mathematics

seen that

∣∣∣
(
b j − b1

)H ȟ
0
∣∣∣ = 1

σ1 (M)

∣∣∣
(
b j − b1

)H Mx̌0
∣∣∣

≤ 2

∣∣
∣∣∣

m∑

k=1

(
b j − b1

)H bkbHk h
�x�HakaHk x̌

0

∣∣
∣∣∣

≤ 2

(
m∑

k=1

∣∣
∣
(
b j − b1

)H bk
∣∣
∣

)

max
1≤k≤m

{∣∣
∣bHk h

�
∣∣
∣
∣∣
∣aHk x

�
∣∣
∣
∣∣
∣aHk x̌

0
∣∣
∣
}

(i)≤ c
1

log2 m
· μ√

m
·
(
5
√
logm

)
max

1≤ j≤m

{∣∣∣aHj x̌
0,(j)

∣∣∣

+ ∥∥a j
∥∥
2

∥∥∥α0,(j) x̌0 − x̌0,(j)
∥∥∥
2

}

(ii)
� c

μ√
m

1

logm
≤ c

μ√
m

logm, (246)

where (i) comes from Lemma 50, the incoherence condition (36), and estimate (189).
The last line (ii) holds since we have already established (see (237) and (240))

max
1≤ j≤m

{∣∣∣aHj x̌
0,(j)

∣∣∣+ ∥∥a j
∥∥
2

∥∥∥α0,(j) x̌0 − x̌0,(j)
∥∥∥
2

}
�
√
logm.

The proof is then complete. ��

C.7 Proof of Lemma 21

Recall that α0 and α0,(l) are the alignment parameters between z0 and z�, and between
z0,(l) and z�, respectively, that is,

α0 := argmin
α∈C

{∥∥∥
1

α
h0 − h�

∥∥∥22 + ∥∥αx0 − x�
∥∥2
2

}
,

α0,(l) := argmin
α∈C

{∥∥∥
1

α
h0,(l) − h�

∥∥∥22 + ∥∥αx0,(l) − x�
∥∥2
2

}
.

Also, we let

α
0,(l)
mutual := argmin

α∈C

{∥∥∥
1

α
h0,(l) − 1

α0
h0
∥∥∥22 + ∥∥αx0,(l) − α0x0

∥∥2
2

}
.

The triangle inequality together with (94) and (245) then tells us that

√√√√
∥∥∥

1

α
0,(l)
mutual

h0,(l) − h�
∥∥∥
2

2
+ ∥∥α0,(l)

mutualx
0,(l) − x�

∥∥2
2

123

Foundations of Computational Mathematics

≤
√√√√
∥∥
∥
1

α0
h0 − 1

α
0,(l)
mutual

h0,(l)
∥∥
∥
2

2
+
∥∥
∥α0x0 − α

0,(l)
mutualx

0,(l)
∥∥
∥
2

2

+
√∥∥∥∥

1

α0
h0 − h�

∥∥∥∥

2

2
+ ∥∥α0x0 − x�

∥∥2
2

≤ 2c5
μ√
m

√
μ2K log5 m

m
+ C1

1

log2 m

≤ 2C1
1

log2 m
,

where the last relation holds as long as m � μ2
√
K log9/2 m.

Let

x1 = α0x0, h1 = 1

α0
h0 and x2 = α

0,(l)
mutualx

0,(l), h2 = 1

α
0,(l)
mutual

h0,(l).

It is easy to see that x1, h1, x2, h2 satisfy the assumptions in Lemma 55, which implies

√
∥∥∥

1

α0,(l)
h0,(l) − 1

α0
h0
∥∥∥
2

2
+ ∥∥α0,(l)x0,(l) − α0x0

∥∥2
2

�
√√√√
∥
∥∥
1

α0
h0 − 1

α
0,(l)
mutual

h0,(l)
∥
∥∥
2

2
+
∥
∥∥α0x0 − α

0,(l)
mutualx

0,(l)
∥
∥∥
2

2

� μ√
m

√
μ2K log5m

m
, (247)

where the last line comes from (245). With this upper estimate at hand, we are now
ready to show that with high probability,

∣∣∣aHl
(
α0x0 − x�

)∣∣∣
(i)≤
∣∣∣aHl
(
α0,(l)x0,(l) − x�

)∣∣∣+
∣∣∣aHl
(
α0x0 − α0,(l)x0,(l)

)∣∣∣

(ii)≤ 5
√
logm

∥∥∥α0,(l)x0,(l) − x�
∥∥∥
2

+ ‖al‖2
∥∥∥α0x0 − α0,(l)x0,(l)

∥∥∥
2

(iii)
�
√
logm · 1

log2 m
+ √

K
μ√
m

√
μ2K log5 m

m
(iv)
� 1

log3/2 m
,

where (i) follows from the triangle inequality, (ii) uses Cauchy–Schwarz and the
independence between x0,(l) and al , (iii) holds because of (95) and (247) under the
condition m � μ2K log6m, and (iv) holds true as long as m � μ2K log4 m.

123

Foundations of Computational Mathematics

D Technical Lemmas

D.1 Technical Lemmas for Phase Retrieval

D.1.1 Matrix Concentration Inequalities

Lemma 31 Suppose that a j
i.i.d.∼ N (0, In) for every 1 ≤ j ≤ m. Fix any small

constant δ > 0. With probability at least 1 − C2e−c2m, one has

∥∥∥∥∥∥

1

m

m∑

j=1

a j a�
j − In

∥∥∥∥∥∥
≤ δ,

as long as m ≥ c0n for some sufficiently large constant c0 > 0. Here, C2, c2 > 0 are
some universal constants.

Proof This is an immediate consequence of [116, Corollary 5.35]. ��

Lemma 32 Suppose that a j
i.i.d.∼ N (0, In), for every 1 ≤ j ≤ m. Fix any small

constant δ > 0. With probability at least 1 − O(n−10), we have

∥∥∥∥∥
∥

1

m

m∑

j=1

(
a�
j x

�
)2

a j a�
j −

(
‖x�‖22 In + 2x�x��)

∥∥∥∥∥
∥

≤ δ‖x�‖22,

provided that m ≥ c0n log n for some sufficiently large constant c0 > 0.

Proof This is adapted from [18, Lemma 7.4]. ��

Lemma 33 Suppose that a j
i.i.d.∼ N (0, In), for every 1 ≤ j ≤ m. Fix any small

constant δ > 0 and any constant C > 0. Suppose m ≥ c0n for some sufficiently large
constant c0 > 0. Then with probability at least 1 − C2e−c2m,

∥∥∥∥∥
∥

1

m

m∑

j=1

(
a�
j x
)2

1{|a�
j x|≤C} a j a�

j −
(
β1xx� + β2‖x‖22 In

)
∥∥∥∥∥
∥

≤ δ‖x‖22, ∀x ∈ R
n,

holds for some absolute constants c2,C2 > 0, where

β1 := E

[
ξ4 1{|ξ |≤C}

]
− E

[
ξ2 1|ξ |≤C

]
and β2 = E

[
ξ2 1|ξ |≤C

]

with ξ being a standard Gaussian random variable.

Proof This is supplied in [25, supplementary material]. ��

123

Foundations of Computational Mathematics

D.1.2 Matrix Perturbation Bounds

Lemma 34 Let λ1(A), u be the leading eigenvalue and eigenvector of a symmetric
matrix A, respectively, and λ1(Ã), ũ be the leading eigenvalue and eigenvector of a
symmetric matrix Ã, respectively. Suppose that λ1(A), λ1(Ã), ‖A‖, ‖ Ã‖ ∈ [C1,C2]
for some C1,C2 > 0. Then,

∥∥∥
∥
√

λ1(A) u −
√

λ1(Ã) ũ

∥∥∥
∥
2

≤
∥∥(A − Ã

)
u
∥∥
2

2
√
C1

+
(√

C2 + C2√
C1

)
‖u − ũ‖2 .

Proof Observe that

∥∥∥∥
√

λ1(A) u −
√

λ1(Ã) ũ

∥∥∥∥
2

≤
∥∥
∥∥
√

λ1(A) u −
√

λ1(Ã) u

∥∥
∥∥
2

+
∥∥
∥∥

√
λ1(Ã) u −

√
λ1(Ã) ũ

∥∥
∥∥
2

≤
∣∣∣∣
√

λ1 (A) −
√

λ1(Ã)

∣∣∣∣+
√

λ1(Ã) ‖u − ũ‖2 , (248)

where the last inequality follows since ‖u‖2 = 1. Using the identity
√
a − √

b =
(a − b)/(

√
a + √

b), we have

∣∣∣∣
√

λ1 (A) −
√

λ1(Ã)

∣∣∣∣ =
∣∣λ1
(
A
)− λ1(Ã)

∣∣
∣∣∣
√

λ1 (A) +
√

λ1(Ã)

∣∣∣
≤
∣∣λ1
(
A
)− λ1(Ã)

∣∣

2
√
C1

,

where the last inequality comes from our assumptions on λ1(A) and λ1(Ã). This
combined with (248) yields

∥∥
∥∥
√

λ1(A) u −
√

λ1(Ã) ũ

∥∥
∥∥
2

≤
∣∣λ1
(
A
)− λ1(Ã)

∣∣

2
√
C1

+√
C2 ‖u − ũ‖2 . (249)

To control
∣∣λ1
(
A
)− λ1(Ã)

∣∣, use the relationship between the eigenvalue and the
eigenvector to obtain

∣∣λ1(A) − λ1(Ã)
∣∣ =

∣
∣∣u�Au − ũ� Ãũ

∣
∣∣

≤
∣∣∣u�(A − Ã

)
u
∣∣∣+

∣∣∣u� Ãu − ũ� Ãu
∣∣∣+

∣∣∣̃u� Ãu − ũ� Ãũ
∣∣∣

≤ ∥∥(A − Ã
)
u
∥∥
2 + 2 ‖u − ũ‖2

∥∥ Ã
∥∥,

123

Foundations of Computational Mathematics

which together with (249) gives

∥∥∥∥
√

λ1(A) u −
√

λ1(Ã) ũ

∥∥∥∥
2

≤
∥∥(A − Ã

)
u
∥∥
2 + 2 ‖u − ũ‖2

∥∥ Ã
∥∥

2
√
C1

+√
C2 ‖u − ũ‖2

≤
∥∥(A − Ã

)
u
∥∥
2

2
√
C1

+
(

C2√
C1

+√
C2

)
‖u − ũ‖2

as claimed. ��

D.2 Technical Lemmas for Matrix Completion

D.2.1 Orthogonal Procrustes Problem

The orthogonal Procrustes problem is a matrix approximation problem which seeks
an orthogonal matrix R to best “align” twomatrices A and B. Specifically, for A, B ∈
R
n×r , define R̂ to be the minimizer of

minimizeR∈Or×r ‖AR − B‖F . (250)

The first lemma is concerned with the characterization of the minimizer R̂ of (250).

Lemma 35 For A, B ∈ R
n×r , R̂ is the minimizer of (250) if and only if R̂

�
A�B is

symmetric and positive semidefinite.

Proof This is an immediate consequence of [112, Theorem 2]. ��
Let A�B = U�V� be the singular value decomposition of A�B ∈ R

r×r . It is

easy to check that R̂ := UV� satisfies the conditions that R̂
�
A�B is both symmetric

and positive semidefinite. In view of Lemma 35, R̂ = UV� is the minimizer of (250).
In the special case when C := A�B is invertible, R̂ enjoys the following equivalent
form:

R̂ = Ĥ (C) := C
(
C�C

)−1/2
, (251)

where Ĥ (·) is an R
r×r -valued function on R

r×r . This motivates us to look at the
perturbation bounds for the matrix-valued function Ĥ (·), which is formulated in the
following lemma.

Lemma 36 Let C ∈ R
r×r be a nonsingular matrix. Then for any matrix E ∈ R

r×r

with ‖E‖ ≤ σmin (C) and any unitarily invariant norm |||·|||, one has
∣∣∣∣∣∣Ĥ (C + E) − Ĥ (C)

∣∣∣∣∣∣ ≤ 2

σr−1 (C) + σr (C)
|||E|||,

where Ĥ (·) is defined above.

Proof This is an immediate consequence of [85, Theorem 2.3]. ��

123

Foundations of Computational Mathematics

With Lemma 36 in place, we are ready to present the following bounds on two
matrices after “aligning” them with X�.

Lemma 37 Instate the notation in Sect. 3.2. Suppose X1, X2 ∈ R
n×r are two matrices

such that

∥∥X1 − X�
∥∥ ∥∥X�

∥∥ ≤ σmin/2, (252a)

‖X1 − X2‖ ∥∥X�
∥
∥ ≤ σmin/4. (252b)

Denote

R1 := argmin
R∈Or×r

∥∥X1R − X�
∥∥
F and R2 := argmin

R∈Or×r

∥∥X2R − X�
∥∥
F .

Then the following two inequalities hold true:

‖X1R1−X2R2‖ ≤ 5κ ‖X1 − X2‖ and ‖X1R1−X2R2‖F ≤ 5κ ‖X1−X2‖F .

Proof Before proving the claims, we first gather some immediate consequences of
assumptions (252). Denote C = X�

1 X
� and E = (X2 − X1)

� X�. It is easily seen
that C is invertible since

∥
∥∥C − X��X�

∥
∥∥ ≤ ∥∥X1 − X�

∥∥ ∥∥X�
∥∥ (i)≤ σmin/2

(ii)�⇒ σr (C) ≥ σmin/2,

(253)
where (i) follows from assumption (252a) and (ii) is a direct application of Weyl’s
inequality. In addition, C + E = X�

2 X
� is also invertible since

‖E‖ ≤ ‖X1 − X2‖ ∥∥X�
∥
∥ (i)≤ σmin/4

(ii)
< σr (C) ,

where (i) arises from assumption (252b) and (ii) holds because of (253). When both
C and C + E are invertible, the orthonormal matrices R1 and R2 admit closed-form
expressions as follows

R1 = C
(
C�C

)−1/2
and R2 = (C + E)

[
(C + E)� (C + E)

]−1/2
.

Moreover, we have the following bound on ‖X1‖:

‖X1‖
(i)≤ ∥∥X1 − X�

∥∥+ ∥∥X�
∥∥ (ii)≤ σmin

2
∥∥X�

∥∥ + ∥∥X�
∥∥ ≤ σmax

2
∥∥X�

∥∥ + ∥∥X�
∥∥ (iii)≤ 2

∥∥X�
∥∥ ,

(254)
where (i) is the triangle inequality, (ii) uses assumption (252a), and (iii) arises from
the fact that

∥
∥X�

∥
∥ = √

σmax.
With these in place, we turn to establishing the claimed bounds. We will focus on

the upper bound on ‖X1R1 − X2R2‖F, as the bound on ‖X1R1 − X2R2‖ can be

123

Foundations of Computational Mathematics

easily obtained using the same argument. Simple algebra reveals that

‖X1R1 − X2R2‖F = ‖(X1 − X2) R2 + X1 (R1 − R2)‖F
≤ ‖X1 − X2‖F + ‖X1‖ ‖R1 − R2‖F
≤ ‖X1 − X2‖F + 2

∥∥X�
∥∥ ‖R1 − R2‖F , (255)

where the first inequality uses the fact that ‖R2‖ = 1 and the last inequality comes
from (254). An application of Lemma 36 leads us to conclude that

‖R1 − R2‖F ≤ 2

σr (C) + σr−1 (C)
‖E‖F

≤ 2

σmin

∥∥∥(X2 − X1)
� X�

∥∥∥
F

(256)

≤ 2

σmin
‖X2 − X1‖F

∥∥X�
∥∥ , (257)

where (256) utilizes (253). Combine (255) and (257) to reach

‖X1R1 − X2R2‖F ≤ ‖X1 − X2‖F + 4

σmin
‖X2 − X1‖F

∥
∥X�

∥
∥2

≤ (1 + 4κ) ‖X1 − X2‖F ,

which finishes the proof by noting that κ ≥ 1. ��

D.2.2 Matrix Concentration Inequalities

This section collects various measure concentration results regarding the Bernoulli
random variables {δ j,k}1≤ j,k≤n , which is ubiquitous in the analysis for matrix com-
pletion.

Lemma 38 Fix any small constant δ > 0, and suppose that m � δ−2μnr log n. Then
with probability exceeding 1 − O

(
n−10

)
, one has

(1 − δ)‖B‖F ≤ 1√
p

‖P�(B)‖F ≤ (1 + δ)‖B‖F

which holds simultaneously for all B ∈ R
n×n lying within the tangent space of M�.

Proof This result has been established in [19, Section 4.2] for asymmetric sampling
patterns (where each (i, j), i �= j , is included in� independently). It is straightforward
to extend the proof and the result to symmetric sampling patterns (where each (i, j),
i ≥ j , is included in � independently). We omit the proof for conciseness. ��

123

Foundations of Computational Mathematics

Lemma 39 Fix a matrix M ∈ R
n×n. Suppose n2 p ≥ c0n log n for some sufficiently

large constant c0 > 0. With probability at least 1 − O
(
n−10

)
, one has

∥∥∥
∥
1

p
P� (M) − M

∥∥∥
∥ ≤ C

√
n

p
‖M‖∞ ,

where C > 0 is some absolute constant.

Proof See [64, Lemma 3.2]. Similar to Lemma 38, the result therein was provided
for the asymmetric sampling patterns but can be easily extended to the symmetric
case. ��
Lemma 40 Recall fromSect.3.2 that E ∈ R

n×n is the symmetric noisematrix. Suppose
the sample size obeys n2 p ≥ c0n log2 n for some sufficiently large constant c0 > 0.
With probability at least 1 − O

(
n−10

)
, one has

∥∥∥∥
1

p
P� (E)

∥∥∥∥ ≤ Cσ

√
n

p
,

where C > 0 is some universal constant.

Proof See [32, Lemma 11]. ��
Lemma 41 Fix some matrix A ∈ R

n×r with n ≥ 2r and some 1 ≤ l ≤ n. Suppose{
δl, j
}
1≤ j≤n are independent Bernoulli random variables with means

{
p j
}
1≤ j≤n no

more than p. Define

Gl (A) :=
[
δl,1A�

1,·, δl,2A�
2,·, · · · , δl,nA�

n,·
]

∈ R
r×n .

Then one has

Median [‖Gl (A)‖] ≤
√

p ‖A‖2 +
√
2p ‖A‖22,∞ ‖A‖2 log (4r) + 2 ‖A‖22,∞

3
log (4r)

and for any constant C ≥ 3, with probability exceeding 1 − n−(1.5C−1)

∥∥∥∥∥
∥

n∑

j=1

(δl, j − p)A�
j,·A j,·

∥∥∥∥∥
∥

≤ C

(√
p ‖A‖22,∞ ‖A‖2 log n + ‖A‖22,∞ log n

)
,

and

‖Gl (A)‖ ≤
√

p ‖A‖2 + C

(√
p ‖A‖22,∞ ‖A‖2 log n + ‖A‖22,∞ log n

)
.

123

Foundations of Computational Mathematics

Proof By the definition of Gl (A) and the triangle inequality, one has

‖Gl (A)‖2 =
∥
∥∥Gl (A) Gl (A)�

∥
∥∥ =

∥∥∥
∥∥∥

n∑

j=1

δl, j A�
j,·A j,·

∥∥∥
∥∥∥

≤
∥∥∥
∥∥∥

n∑

j=1

(
δl, j − p j

)
A�

j,·A j,·

∥∥∥
∥∥∥

+ p ‖A‖2 .

Therefore, it suffices to control the first term. It can be seen that{(
δl, j − p j

)
A�

j,·A j,·
}

1≤ j≤n
are i.i.d. zero-mean random matrices. Letting

L := max
1≤ j≤n

∥∥∥
(
δl, j − p j

)
A�

j,·A j,·
∥∥∥ ≤ ‖A‖22,∞

and V :=
∥∥∥∥
∥∥

n∑

j=1

E

[(
δl, j − p j

)2 A�
j,·A j,·A�

j,·A j,·
]
∥∥∥∥
∥∥

≤ E

[(
δl, j − p j

)2] ‖A‖22,∞

∥∥∥∥∥
∥

n∑

j=1

A�
j,·A j,·

∥∥∥∥∥
∥

≤ p ‖A‖22,∞ ‖A‖2

and invokingmatrix Bernstein’s inequality [114, Theorem 6.1.1], one has for all t ≥ 0,

P

⎧
⎨

⎩

∥∥
∥∥∥∥

n∑

j=1

(
δl, j − p j

)
A�

j,·A j,·

∥∥
∥∥∥∥

≥ t

⎫
⎬

⎭
≤ 2r ·exp

(
−t2/2

p ‖A‖22,∞ ‖A‖2 + ‖A‖22,∞ · t/3

)

.

(258)

We can thus find an upper bound onMedian
[∥∥∥
∑n

j=1

(
δl, j − p j

)
A�

j,·A j,·
∥∥∥
]
by find-

ing a value t that ensures the right-hand side of (258) is smaller than 1/2. Using this
strategy and some simple calculations, we get

Median

⎡

⎣

∥
∥∥
∥
∥∥

n∑

j=1

(
δl, j − p j

)
A�

j,·A j,·

∥
∥∥
∥
∥∥

⎤

⎦ ≤
√
2p ‖A‖22,∞ ‖A‖2 log (4r) + 2 ‖A‖22,∞

3
log (4r)

and for any C ≥ 3,

∥
∥∥∥∥∥

n∑

j=1

(
δl, j − p j

)
A�

j,·A j,·

∥
∥∥∥∥∥

≤ C

(√
p ‖A‖22,∞ ‖A‖2 log n + ‖A‖22,∞ log n

)

123

Foundations of Computational Mathematics

holds with probability at least 1 − n−(1.5C−1). As a consequence, we have

Median [‖Gl (A)‖] ≤
√

p ‖A‖2 +
√
2p ‖A‖22,∞ ‖A‖2 log (4r) + 2 ‖A‖22,∞

3
log (4r),

and with probability exceeding 1 − n−(1.5C−1),

‖Gl (A)‖2 ≤ p ‖A‖2 + C

(√
p ‖A‖22,∞ ‖A‖2 log n + ‖A‖22,∞ log n

)
.

This completes the proof. ��
Lemma 42 Let

{
δl, j
}
1≤l≤ j≤n be i.i.d. Bernoulli random variables with mean p and

δl, j = δ j,l . For any � ∈ R
n×r , define

Gl (�) :=
[
δl,1�

�
1,·, δl,2��

2,·, · · · , δl,n�
�
n,·
]

∈ R
r×n .

Suppose the sample size obeys n2 p � κμrn log2 n. Then for any k > 0 and α > 0
large enough, with probability at least 1 − c1e−αCnr log n/2,

n∑

l=1

1{‖Gl (�)‖≥4
√
pψ+2

√
krξ

} ≤ 2αn log n

k

holds simultaneously for all � ∈ R
n×r obeying

‖�‖2,∞ ≤ C5ρ
tμr

√
log n

np

∥∥X�
∥∥
2,∞ + C8σ

√
n log n

p

∥∥X�
∥∥
2,∞ := ξ

and ‖�‖ ≤ C9ρ
tμr

1√
np

∥∥X�
∥∥+ C10σ

√
n

p

∥∥X�
∥∥ := ψ,

where c1,C5,C8,C9,C10 > 0 are some absolute constants.

Proof For simplicity of presentation, we will prove the claim for the asymmetric
case where

{
δl, j
}
1≤l, j≤n are independent. The results immediately carry over to the

symmetric case as claimed in this lemma. To see this, note that we can always divide
Gl(�) into

Gl(�) = Gupper
l (�) + Glower

l (�),

where all nonzero components ofGupper
l (�) come from the upper triangular part (those

blocks with l ≤ j), while all nonzero components of Glower
l (�) are from the lower

triangular part (those blocks with l > j).We can then look at
{
Gupper
l (�) | 1 ≤ l ≤ n

}

and
{
Gupper
l (�) | 1 ≤ l ≤ n

}
separately using the argument we develop for the asym-

metric case. From now on, we assume that
{
δl, j
}
1≤l, j≤n are independent.

123

Foundations of Computational Mathematics

Suppose for the moment that � is statistically independent of
{
δl, j
}
. Clearly, for

any �, �̃ ∈ R
n×r ,

∣
∣
∥
∥Gl (�)

∥
∥− ∥

∥Gl(�̃)
∥
∥
∣
∣ ≤ ∥

∥Gl (�) − Gl
(
�̃
)∥∥ ≤ ∥

∥Gl (�) − Gl
(
�̃
)∥∥

F

≤
√√√
√

n∑

j=1

∥∥� j,· − �̃ j,·
∥∥2
2

:= d
(
�, �̃

)
,

which implies that‖Gl (�)‖ is 1-Lipschitzwith respect to themetricd (·, ·).Moreover,

max
1≤ j≤n

∥
∥δl, j� j,·

∥
∥
2 ≤ ‖�‖2,∞ ≤ ξ

according to our assumption. Hence, Talagrand’s inequality [24, Proposition 1] reveals
the existence of some absolute constants C, c > 0 such that for all λ > 0

P {‖Gl (�)‖ − Median [‖Gl (�)‖] ≥ λξ} ≤ C exp
(

−cλ2
)

. (259)

We then proceed to control Median [‖Gl (�)‖]. A direct application of Lemma 41
yields

Median [‖Gl (�)‖] ≤
√

2pψ2 +√
p log (4r)ξψ + 2ξ2

3
log (4r) ≤ 2

√
pψ,

where the last relation holds since pψ2 � ξ2 log r , which follows by combining
the definitions of ψ and ξ , the sample size condition np � κμr log2 n, and the
incoherence condition (114). Thus, substitution into (259) and taking λ = √

kr give

P

{
‖Gl (�)‖ ≥ 2

√
pψ + √

krξ
}

≤ C exp (−ckr) (260)

for any k ≥ 0. Furthermore, invoking [4, Corollary A.1.14] and using bound (260),
one has

P

(
n∑

l=1

1{‖Gl (�)‖≥2
√
pψ+√

krξ
} ≥ tnC exp (−ckr)

)

≤ 2 exp

(
− t log t

2
nC exp (−ckr)

)

for any t ≥ 6. Choose t = α log n/
[
kC exp (−ckr)

] ≥ 6 to obtain

P

(
n∑

l=1

1{‖Gl (�)‖≥2
√
pψ+√

krξ
} ≥ αn log n

k

)

≤ 2 exp

(
−αC

2
nr log n

)
. (261)

123

Foundations of Computational Mathematics

So far, we have demonstrated that for any fixed � obeying our assumptions,∑n
l=1 1

{
‖Gl (�)‖≥2

√
pψ+√

krξ
} is well controlled with exponentially high probability.

In order to extend the results to all feasible�, we resort to the standard ε-net argument.
Clearly, due to the homogeneity property of ‖Gl (�)‖, it suffices to restrict attention
to the following set:

S = {� | min {ξ, ψ} ≤ ‖�‖ ≤ ψ} , (262)

where ψ/ξ � ‖X�‖/‖X�‖2,∞ � √
n. We then proceed with the following steps.

1. Introduce the auxiliary function

χl(�) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if ‖Gl (�)‖ ≥ 4
√
pψ + 2

√
krξ,

‖Gl (�)‖−2
√
pψ−√

krξ

2
√
pψ+√

krξ
, if ‖Gl (�)‖ ∈ [2√

pψ + √
krξ, 4

√
pψ + 2

√
krξ],

0, else.

Clearly, this function is sandwiched between two indicator functions

1{‖Gl (�)‖≥4
√
pψ+2

√
krξ

} ≤ χl(�) ≤ 1{‖Gl (�)‖≥2
√
pψ+√

krξ
} .

Note that χl is more convenient to work with due to continuity.
2. Consider an ε-netNε [111, Section 2.3.1] of the set S as defined in (262). For any

ε = 1/nO(1), one can find such a net with cardinality log |Nε | � nr log n. Apply
the union bound and (261) to yield

P

(
n∑

l=1

χl(�) ≥ αn log n

k
, ∀� ∈ Nε

)

≤ P

(
n∑

l=1

1{‖Gl (�)‖≥2
√
pψ+√

krξ
} ≥ αn log n

k
, ∀� ∈ Nε

)

≤ 2|Nε | exp
(

−αC

2
nr log n

)
≤ 2 exp

(
−αC

4
nr log n

)
,

as long as α is chosen to be sufficiently large.
3. One can then use the continuity argument to extend the bound to all � outside the

ε-net, i.e., with exponentially high probability,

n∑

l=1

χl(�) ≤ 2αn log n

k
, ∀� ∈ S

�⇒
n∑

l=1

1{‖Gl (�)‖≥4
√
pψ+2

√
krξ

} ≤
n∑

l=1

χl(�) ≤ 2αn log n

k
, ∀� ∈ S.

This is fairly standard (see, e.g., [111, Section 2.3.1]) and is thus omitted here.

We have thus concluded the proof. ��

123

Foundations of Computational Mathematics

Lemma 43 Suppose the sample size obeys n2 p ≥ Cκμrn log n for some sufficiently
large constant C > 0. Then with probability at least 1 − O

(
n−10

)
,

∥∥∥
∥
1

p
P�

(
XX� − X�X��)

∥∥∥
∥ ≤ 2nε2

∥∥X�
∥∥2
2,∞ + 4ε

√
n log n

∥∥X�
∥∥
2,∞

∥∥X�
∥∥

holds simultaneously for all X ∈ R
n×r satisfying

∥∥X − X�
∥∥
2,∞ ≤ ε

∥∥X�
∥∥
2,∞ , (263)

where ε > 0 is any fixed constant.

Proof To simplify the notations hereafter, we denote� := X −X�. With this notation
in place, one can decompose

XX� − X�X�� = �X�� + X��� + ���,

which together with the triangle inequality implies that
∥∥
∥∥
1

p
P�

(
XX� − X�X��)

∥∥
∥∥ ≤

∥∥
∥∥
1

p
P�

(
�X��)

∥∥
∥∥+

∥∥
∥∥
1

p
P�

(
X���)

∥∥
∥∥+

∥∥
∥∥
1

p
P�

(
���)

∥∥
∥∥

=
∥
∥∥
∥
1

p
P�

(
���)

∥
∥∥
∥

︸ ︷︷ ︸
:=α1

+2

∥
∥∥
∥
1

p
P�

(
�X��)

∥
∥∥
∥

︸ ︷︷ ︸
:=α2

. (264)

In the sequel, we bound α1 and α2 separately.

1. Recall from [84, Theorem 2.5] the elementary inequality that

‖C‖ ≤ ∥∥|C|∥∥, (265)

where |C| := [|ci, j |]1≤i, j≤n for any matrix C = [ci, j]1≤i, j≤n . In addition, for
any matrix D := [di, j]1≤i, j≤n such that |di, j | ≥ |ci, j | for all i and j , one has∥∥|C|∥∥ ≤ ∥∥|D|∥∥. Therefore,

α1 ≤
∥∥∥
∥
1

p
P�

(∣∣
∣���

∣∣
∣
)∥∥∥
∥ ≤ ‖�‖22,∞

∥∥∥
∥
1

p
P�

(
11�)

∥∥∥
∥ .

Lemma 39 then tells us that with probability at least 1 − O(n−10),

∥∥∥∥
1

p
P�

(
11�)− 11�

∥∥∥∥ ≤ C

√
n

p
(266)

for some universal constant C > 0, as long as p � log n/n. This together with
the triangle inequality yields

∥∥∥∥
1

p
P�

(
11�)

∥∥∥∥ ≤
∥∥∥∥
1

p
P�

(
11�)− 11�

∥∥∥∥+
∥∥∥11�

∥∥∥ ≤ C

√
n

p
+ n ≤ 2n, (267)

123

Foundations of Computational Mathematics

provided that p � 1/n. Putting together the previous bounds, we arrive at

α1 ≤ 2n ‖�‖22,∞ . (268)

2. Regarding the second term α2, apply the elementary inequality (265) once again
to get

∥
∥∥P�

(
�X��)

∥
∥∥ ≤

∥
∥∥P�

(∣∣∣�X��
∣
∣∣
)∥∥∥ ,

which motivates us to look at
∥∥P�

(∣∣�X��∣∣)∥∥ instead. A key step of this part is
to take advantage of the �2,∞ norm constraint of P�

(∣∣�X��∣∣). Specifically, we
claim for the moment that with probability exceeding 1 − O(n−10),

∥∥∥P�

(∣∣∣�X��
∣∣∣
)∥∥∥

2

2,∞ ≤ 2pσmax ‖�‖22,∞ := θ (269)

holds under our sample size condition. In addition, we also have the following
trivial �∞ norm bound

∥∥∥P�

(∣∣∣�X��
∣∣∣
)∥∥∥∞ ≤ ‖�‖2,∞

∥∥X�
∥∥
2,∞ := γ. (270)

In what follows, for simplicity of presentation, we will denote

A := P�

(∣∣∣�X��
∣∣∣
)

. (271)

(a) To facilitate the analysis of ‖A‖, we first introduce k0 + 1 = 1
2 log (κμr)

auxiliary matrices9 Bs ∈ R
n×n that satisfy

‖A‖ ≤ ∥∥Bk0

∥∥+
k0−1∑

s=0

‖Bs‖ . (272)

To be precise, each Bs is defined such that

[Bs] j,k =
{

1
2s γ, if A j,k ∈ (1

2s+1 γ, 1
2s γ],

0, else,
for 0 ≤ s ≤ k0 − 1 and

[
Bk0

]
j,k =

{
1
2k0

γ, if A j,k ≤ 1
2k0

γ,

0, else,

which clearly satisfy (272); in words, Bs is constructed by rounding up those
entries of A within a prescribed magnitude interval. Thus, it suffices to bound

9 For simplicity, we assume 1
2 log (κμr) is an integer. The argument here can be easily adapted to the case

when 1
2 log (κμr) is not an integer.

123

Foundations of Computational Mathematics

‖Bs‖ for every s. To this end, we start with s = k0 and use the definition of
Bk0 to get

∥∥Bk0

∥∥ (i)≤ ∥∥Bk0

∥∥∞
√

(2np)2
(ii)≤ 4np

1√
κμr

‖�‖2,∞
∥∥X�

∥∥
2,∞

(iii)≤ 4
√
n p ‖�‖2,∞

∥∥X�
∥∥ ,

where (i) arises from Lemma 44, with 2np being a crude upper bound on the
number of nonzero entries in each row and each column. This can be derived by
applying the standard Chernoff bound on �. The second inequality (ii) relies
on the definitions of γ and k0. The last one (iii) follows from the incoherence
condition (114). Besides, for any 0 ≤ s ≤ k0 − 1, by construction one has

‖Bs‖22,∞ ≤ 4θ = 8pσmax ‖�‖22,∞ and ‖Bs‖∞ = 1

2s
γ,

where θ is as defined in (269). Here, we have used the fact that the magnitude
of each entry of Bs is at most two times that of A. An immediate implication
is that there are at most

‖Bs‖22,∞
‖Bs‖2∞

≤ 8pσmax ‖�‖22,∞
(1
2s γ

)2 := kr

nonzero entries in each row of Bs and at most

kc = 2np

nonzero entries in each column of Bs , where kc is derived from the standard
Chernoff bound on �. Utilizing Lemma 44 once more, we discover that

‖Bs‖ ≤ ‖Bs‖∞
√
krkc = 1

2s
γ
√
krkc =

√
16np2σmax ‖�‖22,∞

= 4
√
n p ‖�‖2,∞

∥∥X�
∥∥

for each 0 ≤ s ≤ k0 − 1. Combining all, we arrive at

‖A‖ ≤
k0−1∑

s=0

‖Bs‖ + ∥∥Bk0

∥∥ ≤ (k0 + 1) 4
√
n p ‖�‖2,∞

∥∥X�
∥∥

≤ 2
√
n p log (κμr) ‖�‖2,∞

∥∥X�
∥∥

≤ 2
√
n p log n ‖�‖2,∞

∥∥X�
∥∥ ,

where the last relation holds under the condition n ≥ κμr . This further gives

α2 ≤ 1

p
‖A‖ ≤ 2

√
n log n ‖�‖2,∞

∥∥X�
∥∥ . (273)

123

Foundations of Computational Mathematics

(b) In order to finish the proof of this part, we need to justify claim (269). Observe
that

∥∥∥∥
[
P�

(∣∣∣�X��
∣∣∣
)]

l,·

∥∥∥∥

2

2
=
∑n

j=1

(
�l,·X��

j,·δl, j
)2

= �l,·
(∑n

j=1
δl, jX��

j,· X�
j,·
)

��
l,·

≤ ‖�‖22,∞
∥∥∥
∑n

j=1
δl, jX��

j,· X�
j,·
∥∥∥ (274)

for every 1 ≤ l ≤ n, where δl, j indicates whether the entry with the index
(l, j) is observed or not. Invoke Lemma 41 to yield

∥∥∥
∥
∑n

j=1
δl, j X

��
j ,· X�

j ,·
∥∥∥
∥ =

∥
∥∥
[
δl,1X

��
1,· , δl,2X��

2,· , · · · , δl,nX
��
n,·
]∥∥∥

2

≤ pσmax + C

(√

p
∥∥X�

∥∥2
2,∞

∥∥X�
∥∥2 log n + ∥∥X�

∥∥2
2,∞ log n

)

≤
(

p + C

√
pκμr log n

n
+ C

κμr log n

n

)

σmax

≤ 2pσmax, (275)

with high probability, as soon as np � κμr log n. Combining (274) and (275)
yields

∥∥∥∥
[
P�

(∣∣∣�X��
∣∣∣
)]

l,·

∥∥∥∥

2

2
≤ 2pσmax ‖�‖22,∞ , 1 ≤ l ≤ n,

as claimed in (269).

3. Taken together, the preceding bounds (264), (268), and (273) yield

∥∥
∥∥
1

p
P�

(
XX� − X�X��)

∥∥
∥∥ ≤ α1 + 2α2 ≤ 2n ‖�‖22,∞ + 4

√
n log n ‖�‖2,∞

∥
∥X�

∥
∥ .

The proof is completed by substituting the assumption ‖�‖2,∞ ≤ ε
∥∥X�

∥∥
2,∞ . ��

In the end of this subsection, we record a useful lemma to bound the spectral norm
of a sparse Bernoulli matrix.

Lemma 44 Let A ∈ {0, 1}n1×n2 be a binary matrix, and suppose that there are at most
kr and kc nonzero entries in each row and column of A, respectively. Then one has
‖A‖ ≤ √

kckr.

Proof This immediately follows from the elementary inequality ‖A‖2 ≤ ‖A‖1→1
‖A‖∞→∞ (see [56, equation (1.11)]), where ‖A‖1→1 and ‖A‖∞→∞ are the induced
1-norm (or maximum absolute column sum norm) and the induced ∞-norm (or max-
imum absolute row sum norm), respectively. ��

123

Foundations of Computational Mathematics

D.2.3 Matrix Perturbation Bounds

Lemma 45 Let M ∈ R
n×n be a symmetric matrix with the top-r eigendecomposition

U�U�. Assume
∥∥M − M�

∥∥ ≤ σmin/2, and denote

Q̂ := argmin
R∈Or×r

∥∥UR − U�
∥∥
F .

Then there is some numerical constant c3 > 0 such that

∥∥U Q̂ − U�
∥∥ ≤ c3

σmin

∥∥M − M�
∥∥ .

Proof Define Q = U�U�. The triangle inequality gives

∥∥U Q̂ − U�
∥∥ ≤ ∥∥U

(
Q̂ − Q

)∥∥+ ∥∥U Q − U�
∥∥ ≤ ∥∥ Q̂ − Q

∥∥+
∥∥∥UU�U� − U�

∥∥∥ .

(276)

[1, Lemma 3] asserts that

∥
∥ Q̂ − Q

∥
∥ ≤ 4

(∥∥M − M�
∥
∥ /σmin

)2

as long as
∥
∥M − M�

∥
∥ ≤ σmin/2. For the remaining term in (276), one can use

U��U� = Ir to obtain

∥
∥∥UU�U� − U�

∥
∥∥ =

∥
∥∥UU�U� − U�U��U�

∥
∥∥ ≤

∥
∥∥UU� − U�U��

∥
∥∥ ,

which together with the Davis–Kahan sin� theorem [39] reveals that

∥∥
∥UU�U� − U�

∥∥
∥ ≤ c2

σmin

∥
∥M − M�

∥
∥

for some constant c2 > 0. Combine the estimates on
∥∥ Q̂ − Q

∥∥,
∥∥UU�U� − U�

∥∥
and (276) to reach

∥∥U Q̂ − U�
∥∥ ≤

(
4

σmin

∥∥M − M�
∥∥
)2

+ c2
σmin

∥∥M − M�
∥∥ ≤ c3

σmin

∥∥M − M�
∥∥

for some numerical constant c3 > 0, where we have utilized the fact that∥
∥M − M�

∥
∥ /σmin ≤ 1/2. ��

Lemma 46 Let M, M̃ ∈ R
n×n be two symmetric matrices with top-r eigendecom-

positions U�U� and Ũ�̃Ũ
�
, respectively. Assume

∥∥M − M�
∥∥ ≤ σmin/4 and∥∥M̃ − M�

∥∥ ≤ σmin/4, and suppose σmax/σmin is bounded by some constant c1 > 0,

123

Foundations of Computational Mathematics

with σmax and σmin the largest and the smallest singular values of M�, respectively.
If we denote

Q := argmin
R∈Or×r

∥∥UR − Ũ
∥∥
F,

then there exists some numerical constant c3 > 0 such that

∥
∥∥�1/2Q − Q�̃

1/2
∥
∥∥ ≤ c3√

σmin

∥
∥M̃ − M

∥
∥ and

∥∥∥�1/2Q − Q�̃
1/2
∥∥∥
F

≤ c3√
σmin

∥∥(M̃ − M
)
U
∥∥
F .

Proof Here, we focus on the Frobenius norm; the bound on the operator norm follows
from the same argument, and hencewe omit the proof. Since ‖·‖F is unitarily invariant,
we have

∥∥∥�1/2Q − Q�̃
1/2
∥∥∥
F

=
∥∥∥Q��1/2Q − �̃

1/2
∥∥∥
F
,

where Q��1/2Q and �̃
1/2

are thematrix square roots of Q��Q and �̃, respectively.
In view of the matrix square root perturbation bound [97, Lemma 2.1],

∥∥∥�1/2Q − Q�̃
1/2
∥∥∥
F

≤ 1

σmin
[
(�)1/2

]+ σmin
[
(�̃)1/2

]
∥∥∥Q��Q − �̃

∥∥∥
F

≤ 1√
σmin

∥∥∥Q��Q − �̃

∥∥∥
F
, (277)

where the last inequality follows from the lower estimates

σmin (�) ≥ σmin
(
��
)− ‖M − M�‖ ≥ σmin/4

and, similarly, σmin(�̃) ≥ σmin/4. Recognizing that � = U�MU and �̃ = Ũ
�
M̃Ũ ,

one gets

∥∥
∥Q��Q − �̃

∥∥
∥
F

=
∥∥
∥
(
U Q

)�M
(
U Q

)− Ũ
�
M̃Ũ

∥∥
∥
F

≤
∥∥
∥
(
U Q

)�M
(
U Q

)− (
U Q

)�M̃
(
U Q

)∥∥
∥
F

+
∥∥
∥
(
U Q

)�M̃
(
U Q

)− Ũ
�
M̃
(
U Q

)∥∥
∥
F

+
∥
∥∥Ũ

�
M̃
(
U Q

)− Ũ
�
M̃Ũ

∥
∥∥
F

≤ ∥
∥(M̃ − M

)
U
∥
∥
F + 2

∥
∥U Q − Ũ

∥
∥
F

∥
∥M̃

∥
∥ ≤ ∥

∥(M̃ − M
)
U
∥
∥
F + 4σmax

∥
∥U Q − Ũ

∥
∥
F,

(278)

where the last relation holds due to the upper estimate

∥∥M̃
∥∥ ≤ ∥∥M�

∥∥+ ∥∥M̃ − M�
∥∥ ≤ σmax + σmin/4 ≤ 2σmax.

123

Foundations of Computational Mathematics

Invoke the Davis–Kahan sin� theorem [39] to obtain

∥∥U Q − Ũ
∥∥
F ≤ c2

σr (M) − σr+1(M̃)

∥∥(M̃ − M
)
U
∥∥
F ≤ 2c2

σmin

∥∥(M̃ − M
)
U
∥∥
F ,

(279)
for some constant c2 > 0, where the last inequality follows from the bounds

σr (M) ≥ σr
(
M�
)− ‖M − M�‖ ≥ 3σmin/4,

σr+1(M̃) ≤ σr+1
(
M�
)+ ‖M̃ − M�‖ ≤ σmin/4.

Combine (277), (278), (279), and the fact σmax/σmin ≤ c1 to reach

∥
∥∥�1/2Q − Q�̃

1/2
∥
∥∥
F

≤ c3√
σmin

∥
∥(M̃ − M

)
U
∥
∥
F

for some constant c3 > 0. ��
Lemma 47 Let M ∈ R

n×n be a symmetric matrix with the top-r eigendecomposition
U�U�. Denote X = U�1/2 and X� = U�(��)1/2, and define

Q̂ := argmin
R∈Or×r

∥∥UR − U�
∥∥
F and Ĥ := argmin

R∈Or×r

∥∥XR − X�
∥∥
F .

Assume
∥∥M − M�

∥∥ ≤ σmin/2, and suppose σmax/σmin is bounded by some constant
c1 > 0. Then there exists a numerical constant c3 > 0 such that

∥∥ Q̂ − Ĥ
∥∥ ≤ c3

σmin

∥∥M − M�
∥∥ .

Proof We first collect several useful facts about the spectrum of �. Weyl’s inequality
tells us that

∥
∥� − ��

∥
∥ ≤ ∥

∥M − M�
∥
∥ ≤ σmin/2, which further implies that

σr (�) ≥ σr
(
��
)− ∥∥� − ��

∥∥ ≥ σmin/2 and ‖�‖ ≤ ∥∥��
∥∥+ ∥∥� − ��

∥∥ ≤ 2σmax.

Denote

Q = U�U� and H = X�X�.

Simple algebra yields

H = �1/2Q
(
��
)1/2 = �1/2(Q − Q̂

) (
��
)1/2 + (

�1/2 Q̂ − Q̂�1/2) (��
)1/2

︸ ︷︷ ︸
:=E

+ Q̂
(
���

)1/2
︸ ︷︷ ︸

:=A

.

123

Foundations of Computational Mathematics

It can be easily seen that σr−1 (A) ≥ σr (A) ≥ σmin/2, and

‖E‖ ≤ ∥∥�1/2
∥∥ · ∥∥Q − Q̂

∥∥ · ∥∥(��
)1/2∥∥+

∥∥∥�1/2 Q̂ − Q̂�1/2
∥∥∥ · ∥∥(��

)1/2∥∥

≤ 2σmax
∥∥Q − Q̂

∥∥
︸ ︷︷ ︸

:=α

+√
σmax

∥∥∥�1/2 Q̂ − Q̂�1/2
∥∥∥

︸ ︷︷ ︸
:=β

,

which can be controlled as follows.

• Regarding α, use [1, Lemma 3] to reach

α = ∥∥Q − Q̂
∥∥ ≤ 4

∥∥M − M�
∥∥2 /σ 2

min.

• For β, one has

β
(i)=
∥∥∥ Q̂

�
�1/2 Q̂ − �1/2

∥∥∥
(ii)≤ 1

2σr
(
�1/2)

∥∥∥ Q̂
�

� Q̂ − �

∥∥∥
(iii)= 1

2σr
(
�1/2)

∥
∥� Q̂ − Q̂�

∥
∥ ,

where (i) and (iii) come from the unitary invariance of ‖·‖ and (ii) follows from
the matrix square root perturbation bound [97, Lemma 2.1]. We can further take
the triangle inequality to obtain

∥∥� Q̂ − Q̂�
∥∥ = ∥∥�Q − Q� + �(Q̂ − Q) − (Q̂ − Q)�

∥∥

≤ ‖�Q − Q�‖ + 2 ‖�‖ ∥∥Q − Q̂
∥∥

=
∥∥∥U

(
M − M�

)
U�� + Q

(
�� − �

)∥∥∥+ 2 ‖�‖ ∥∥Q − Q̂
∥∥

≤
∥
∥∥U

(
M − M�

)
U��∥∥+ ∥

∥Q
(
�� − �

)∥∥∥+ 2 ‖�‖ ∥∥Q − Q̂
∥
∥

≤ 2
∥∥M − M�

∥∥+ 4σmaxα,

where the last inequality uses the Weyl’s inequality ‖�� − �‖ ≤ ‖M − M�‖ and
the fact that ‖�‖ ≤ 2σmax.

• Rearrange the previous bounds to arrive at

‖E‖ ≤ 2σmaxα + √
σmax

1√
σmin

(
2
∥
∥M − M�

∥
∥+ 4σmaxα

) ≤ c2
∥
∥M − M�

∥
∥

for some numerical constant c2 > 0, where we have used the assumption that
σmax/σmin is bounded.

Recognizing that Q̂ = sgn (A) (see definition in (177)), we are ready to invoke
Lemma 36 to deduce that

∥∥ Q̂ − Ĥ
∥∥ ≤ 2

σr−1 (A) + σr (A)
‖E‖ ≤ c3

σmin

∥∥M − M�
∥∥

for some constant c3 > 0. ��

123

Foundations of Computational Mathematics

D.3 Technical Lemmas for Blind Deconvolution

D.3.1 Wirtinger Calculus

In this section, we formally prove the fundamental theorem of calculus and the mean
value form of Taylor’s theorem under the Wirtinger calculus; see (283) and (284),
respectively.

Let f : Cn → R be a real-valued function. Denote z = x+ i y ∈ C
n , and then f (·)

can alternatively be viewed as a function R
2n → R. There is a one-to-one mapping

connecting the Wirtinger derivatives and the conventional derivatives [69]:

[
x
y

]
= J−1

[
z
z

]
, (280a)

∇R f

([
x
y

])
= JH∇C f

([
z
z

])
, (280b)

∇2
R
f

([
x
y

])
= JH∇2

C
f

([
z
z

])
J, (280c)

where the subscripts R and C represent calculus in the real (conventional) sense and
in the complex (Wirtinger) sense, respectively, and

J =
[
In i In
In −i In

]
.

With these relationships in place, we are ready to verify the fundamental theorem
of calculus using the Wirtinger derivatives. Recall from [70, Chapter XIII, Theorem
4.2] that

∇R f

([
x1
y1

])
− ∇R f

([
x2
y2

])
=
[∫ 1

0
∇2
R
f

([
x (τ)

y (τ)

])
dτ

]([
x1
y1

]
−
[
x2
y2

])
,

(281)
where

[
x (τ)

y (τ)

]
:=
[
x2
y2

]
+ τ

([
x1
y1

]
−
[
x2
y2

])
.

Substitute identities (280) into (281) to arrive at

JH∇C f

([
z1
z1

])
− JH∇C f

([
z2
z2

])

= JH
[∫ 1

0
∇2
C
f

([
z (τ)

z (τ)

])
dτ

]
J J−1

([
z1
z1

]
−
[
z2
z2

])

= JH
[∫ 1

0
∇2
C
f

([
z (τ)

z (τ)

])
dτ

]([
z1
z1

]
−
[
z2
z2

])
, (282)

123

Foundations of Computational Mathematics

where z1 = x1 + i y1, z2 = x2 + i y2 and

[
z (τ)

z (τ)

]
:=
[
z2
z2

]
+ τ

([
z1
z1

]
−
[
z2
z2

])
.

Simplification of (282) gives

∇C f

([
z1
z1

])
− ∇C f

([
z2
z2

])
=
[∫ 1

0
∇2
C
f

([
z (τ)

z (τ)

])
dτ

]([
z1
z1

]
−
[
z2
z2

])
.

(283)

Repeating the above arguments, one can also show that

f (z1) − f (z2) = ∇C f (z2)H
[
z1 − z2
z1 − z2

]
+ 1

2

[
z1 − z2
z1 − z2

]H
∇2
C
f (̃z)

[
z1 − z2
z1 − z2

]
,

(284)

where z̃ is some point lying on the vector connecting z1 and z2. This is the mean value
form of Taylor’s theorem under the Wirtinger calculus.

D.3.2 Discrete Fourier TransformMatrices

Let B ∈ C
m×K be the first K columns of a discrete Fourier transform (DFT) matrix

F ∈ C
m×m , and denote by bl the lth column of the matrix BH. By definition,

bl = 1√
m

(
1, ω(l−1), ω2(l−1), · · · , ω(K−1)(l−1)

)H
,

where ω := e−i 2πm with i representing the imaginary unit. It is seen that for any j �= l,

bHl b j = 1

m

K−1∑

k=0

ωk(l−1) · ωk(j−1) (i)= 1

m

K−1∑

k=0

ωk(l−1) · ωk(1− j) = 1

m

K−1∑

k=0

(
ωl− j

)k

(ii)= 1

m

1 − ωK (l− j)

1 − ωl− j
. (285)

Here, (i) uses ωα = ω−α for all α ∈ R, while the last identity (ii) follows from the
formula for the sum of a finite geometric series when ωl− j �= 1. This leads to the
following lemma.

Lemma 48 For any m ≥ 3 and any 1 ≤ l ≤ m, we have

m∑

j=1

∣∣∣bHl b j

∣∣∣ ≤ 4 logm.

123

Foundations of Computational Mathematics

Proof We first make use of identity (285) to obtain

m∑

j=1

∣
∣∣bHl b j

∣
∣∣ = ‖bl‖22 + 1

m

m∑

j : j �=l

∣
∣∣∣
1 − ωK (l− j)

1 − ωl− j

∣
∣∣∣ = K

m
+ 1

m

m∑

j : j �=l

∣∣
∣∣∣
sin
[
K (l − j) π

m

]

sin
[
(l − j) π

m

]

∣∣
∣∣∣
,

where the last identity follows since ‖bl‖22 = K/m and, for all α ∈ R,

∣∣1 − ωα
∣∣ =

∣∣∣1 − e−i 2πm α
∣∣∣ =

∣∣∣e−i π
m α
(
ei

π
m α − e−i π

m α
)∣∣∣ = 2

∣∣∣sin
(
α

π

m

)∣∣∣ . (286)

Without loss of generality, we focus on the case when l = 1 in the sequel. Recall that
for c > 0, we denote by $c% the largest integer that does not exceed c. We can continue
the derivation to get

m∑

j=1

∣∣
∣bH1 b j

∣∣
∣ = K

m
+ 1

m

m∑

j=2

∣
∣∣
∣∣
sin
[
K (1 − j) π

m

]

sin
[
(1 − j) π

m

]

∣
∣∣
∣∣

(i)≤ 1

m

m∑

j=2

∣
∣∣
∣∣

1

sin
[
(j − 1) π

m

]

∣
∣∣
∣∣

+ K

m

= 1

m

⎛

⎝
$ m

2 %+1∑

j=2

∣∣∣
∣∣

1

sin
[
(j − 1) π

m

]

∣∣∣
∣∣

+
m∑

j=$ m
2 %+2

∣∣∣
∣∣

1

sin
[
(j − 1) π

m

]

∣∣∣
∣∣

⎞

⎠+ K

m

(ii)= 1

m

⎛

⎝
$ m

2 %+1∑

j=2

∣
∣∣∣
∣

1

sin
[
(j − 1) π

m

]

∣
∣∣∣
∣

+
m∑

j=$ m
2 %+2

∣
∣∣∣
∣

1

sin
[
(m + 1 − j) π

m

]

∣
∣∣∣
∣

⎞

⎠+ K

m
,

where (i) follows from
∣∣sin

(
K (1 − j) π

m

)∣∣ ≤ 1 and |sin (x)| = |sin (−x)|, and (ii)
relies on the fact that sin (x) = sin (π − x). The property that sin (x) ≥ x/2 for any
x ∈ [0, π/2] allows one to further derive

m∑

j=1

∣∣∣bH1 b j

∣∣∣ ≤ 1

m

⎛

⎝
$m

2 %+1∑

j=2

2m

(j − 1) π
+

m∑

j=$m
2 %+2

2m

(m + 1 − j) π

⎞

⎠

+ K

m
= 2

π

⎛

⎜⎜
⎝

$m
2 %∑

k=1

1

k
+

⌊
m+1
2

⌋
−1

∑

k=1

1

k

⎞

⎟⎟
⎠+ K

m

(i)≤ 4

π

m∑

k=1

1

k
+ K

m

(ii)≤ 4

π
(1 + logm) + 1

(iii)≤ 4 logm,

where in (i) we extend the range of the summation, (ii) uses the elementary inequality∑m
k=1 k

−1 ≤ 1 + logm, and (iii) holds true as long as m ≥ 3. ��

Thenext lemmaconsiders the differenceof two inner products, namely (bl−b1)H b j .

123

Foundations of Computational Mathematics

Lemma 49 For all 0 ≤ l − 1 ≤ τ ≤ ⌊ m
10

⌋
, we have

∣∣∣(bl − b1)H b j

∣∣∣ ≤
{ 4τ

(j−l)
K
m + 8τ/π

(j−l)2
for l + τ ≤ j ≤ ⌊m

2

⌋+ 1,
4τ

m−(j−l)
K
m + 8τ/π

[m−(j−1)]2
for

⌊m
2

⌋+ l ≤ j ≤ m − τ.

In addition, for any j and l, the following uniform upper bound holds

∣∣
∣(bl − b1)H b j

∣∣
∣ ≤ 2

K

m
.

Proof Given (285), we can obtain for j �= l and j �= 1,

∣∣
∣(bl − b1)H b j

∣∣
∣ = 1

m

∣∣∣
∣
1 − ωK (l− j)

1 − ωl− j
− 1 − ωK (1− j)

1 − ω1− j

∣∣∣
∣

= 1

m

∣
∣∣∣
1 − ωK (l− j)

1 − ωl− j
− 1 − ωK (1− j)

1 − ωl− j
+ 1 − ωK (1− j)

1 − ωl− j
− 1 − ωK (1− j)

1 − ω1− j

∣
∣∣∣

= 1

m

∣∣∣
∣∣
ωK (1− j) − ωK (l− j)

1 − ωl− j
+
(
ωl− j − ω1− j

) 1 − ωK (1− j)
(
1 − ωl− j

) (
1 − ω1− j

)

∣∣∣
∣∣

≤ 1

m

∣∣∣
∣
1 − ωK (l−1)

1 − ωl− j

∣∣∣
∣+ 2

m

∣
∣∣
∣∣

(
1 − ω1−l

) 1
(
1 − ωl− j

) (
1 − ω1− j

)

∣
∣∣
∣∣
,

where the last line is due to the triangle inequality and |ωα| = 1 for all α ∈ R. Identity
(286) allows us to rewrite this bound as

∣∣
∣(bl − b1)H b j

∣∣
∣ ≤ 1

m

∣∣∣
∣∣

1

sin
[
(l − j) π

m

]

∣∣∣
∣∣

{∣∣
∣sin

[
K (l − 1)

π

m

]∣∣
∣+

∣∣∣
∣∣
sin
[
(1 − l) π

m

]

sin
[
(1 − j) π

m

]

∣∣∣
∣∣

}

.

(287)
Combined with the fact that |sin x | ≤ 2 |x | for all x ∈ R, we can upper bound (287)

as

∣∣∣(bl − b1)H b j

∣∣∣ ≤ 1

m

∣∣∣∣
∣

1

sin
[
(l − j) π

m

]

∣∣∣∣
∣

{

2K τ
π

m
+
∣∣∣∣
∣

2τ π
m

sin
[
(1 − j) π

m

]

∣∣∣∣
∣

}

,

where we also utilize the assumption 0 ≤ l −1 ≤ τ . Then for l +τ ≤ j ≤ $m/2%+1,
one has

∣
∣∣(l − j)

π

m

∣
∣∣ ≤ π

2
and

∣
∣∣(1 − j)

π

m

∣
∣∣ ≤ π

2
.

Therefore, utilizing the property sin (x) ≥ x/2 for any x ∈ [0, π/2], we arrive at

∣∣∣(bl − b1)H b j

∣∣∣ ≤ 2

(j − l) π

(
2K τ

π

m
+ 4τ

j − 1

)
≤ 4τ

(j − l)

K

m
+ 8τ/π

(j − l)2
,

123

Foundations of Computational Mathematics

where the last inequality holds since j −1 > j − l. Similarly, we can obtain the upper
bound for $m/2% + l ≤ j ≤ m − τ using nearly identical argument (which is omitted
for brevity).

The uniform upper bound can be justified as follows

∣∣∣(bl − b1)H b j

∣∣∣ ≤ (‖bl‖2 + ‖b1‖2)
∥∥b j

∥∥
2 ≤ 2K/m.

The last relation holds since ‖bl‖22 = K/m for all 1 ≤ l ≤ m. ��
Next, we list two consequences of the above estimates in Lemmas 50 and 51.

Lemma 50 Fix any constant c > 0 that is independent of m and K . Suppose m ≥
CτK log4 m for some sufficiently large constant C > 0, which solely depends on c. If
0 ≤ l − 1 ≤ τ , then one has

m∑

j=1

∣
∣∣(bl − b1)H b j

∣
∣∣ ≤ c

log2 m
.

Proof For some constant c0 > 0, we can split the index set [m] into the following
three disjoint sets

A1 =
{
j : l + c0τ log2 m ≤ j ≤

⌊m
2

⌋}
,

A2 =
{
j :
⌊m
2

⌋
+ l ≤ j ≤ m − c0τ log2 m

}
,

and A3 = [m] \ (A1 ∪ A2) .

With this decomposition in place, we can write

m∑

j=1

∣∣∣(bl − b1)H b j

∣∣∣ =
∑

j∈A1

∣∣∣(bl − b1)H b j

∣∣∣+
∑

j∈A2

∣∣∣(bl − b1)H b j

∣∣∣+
∑

j∈A3

∣∣∣(bl − b1)H b j

∣∣∣ .

We first look at A1. By Lemma 49, one has for any j ∈ A1,

∣∣∣(bl − b1)H b j

∣∣∣ ≤ 4τ

j − l

K

m
+ 8τ/π

(j − l)2
,

and hence

∑

j∈A1

∣∣∣(bl − b1)H b j

∣∣∣ ≤
$m

2 %+1∑

j=l+c0τ log2 m

(
4τ

j − l

K

m
+ 8τ/π

(j − l)2

)

≤ 4τK

m

m∑

k=1

1

k
+ 8τ

π

m∑

k=c0τ log2 m

1

k2

123

Foundations of Computational Mathematics

≤ 8τ
K

m
logm + 16τ

π

1

c0τ log2 m
,

where the last inequality arises from
∑m

k=1 k
−1 ≤ 1 + logm ≤ 2 logm and∑m

k=c k
−2 ≤ 2/c.

Similarly, for j ∈ A2, we have

∣∣∣(bl − b1)H b j

∣∣∣ ≤ 4τ

m − (j − l)

K

m
+ 8τ/π

[m − (j − 1)]2
,

which in turn implies

∑

j∈A2

∣∣
∣(bl − b1)H b j

∣∣
∣ ≤ 8τ

K

m
logm + 16τ

π

1

c0τ log2 m
.

Regarding j ∈ A3, we observe that

|A3| ≤ 2
(
c0τ log2 m + l

)
≤ 2

(
c0τ log2 m + τ + 1

)
≤ 4c0τ log2 m.

This together with the simple bound
∣∣∣(bl − b1)H b j

∣∣∣ ≤ 2K/m gives

∑

j∈A3

∣∣∣(bl − b1)H b j

∣∣∣ ≤ 2
K

m
|A3| ≤ 8c0τK log2 m

m
.

The previous three estimates taken collectively yield

m∑

j=1

∣
∣∣(bl − b1)

H b j
∣
∣∣ ≤ 16τK logm

m
+ 32τ

π

1

c0τ log2 m
+ 8c0τK log2 m

m
≤ c

1

log2 m

as long as c0 ≥ (32/π) · (1/c) and m ≥ 8c0τK log4 m/c. ��
Lemma 51 Fix any constant c > 0 that is independent of m and K . Consider an
integer τ > 0, and suppose that m ≥ CτK logm for some large constant C > 0,
which depends solely on c. Then we have

$m/τ%∑

k=0

√√
√√

τ∑

j=1

∣
∣∣bH1

(
bkτ+ j − bkτ+1

)∣∣∣
2 ≤ c√

τ
.

Proof The proof strategy is similar to the one used in Lemma 50. First, notice that

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣ =
∣∣∣
(
bm − bm+1− j

)H bkτ
∣∣∣ .

123

Foundations of Computational Mathematics

As before, for some c1 > 0, we can split the index set {1, · · · , $m/τ%} into three
disjoint sets

B1 =
{
k : c1 ≤ k ≤

⌊(⌊m
2

⌋
+ 1 − j

)
/τ
⌋}

,

B2 =
{
k :
⌊(⌊m

2

⌋
+ 1 − j

)
/τ
⌋

+ 1 ≤ k ≤ $(m + 1 − j) /τ% − c1
}

,

and B3 =
{
1, · · · ,

⌊m
τ

⌋}
\ (B1 ∪ B2) ,

where 1 ≤ j ≤ τ .
By Lemma 49, one has

∣∣∣
(
bm − bm+1− j

)H bkτ
∣∣∣ ≤ 4τ

kτ

K

m
+ 8τ/π

(kτ)2
, k ∈ B1.

Hence, for any k ∈ B1,

√√√√
τ∑

j=1

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣
2 ≤ √

τ

(
4τ

kτ

K

m
+ 8τ/π

(kτ)2

)
= √

τ

(
4

k

K

m
+ 8/π

k2τ

)
,

which further implies that

∑

k∈B1

√√√√
τ∑

j=1

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣
2 ≤ √

τ

m∑

k=c1

(
4

k

K

m
+ 8/π

k2τ

)

≤ 8
√

τ
K logm

m
+ 16

π

1√
τ

1

c1
,

where the last inequality follows since
∑m

k=1 k
−1 ≤ 2 logm and

∑m
k=c1 k

−2 ≤ 2/c1.
A similar bound can be obtained for k ∈ B2.

For the remaining set B3, observe that

|B3| ≤ 2c1.

This together with the crude upper bound
∣∣∣(bl − b1)H b j

∣∣∣ ≤ 2K/m gives

∑

k∈B3

√√√√
τ∑

j=1

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣
2 ≤ |B3|

√

τ max
j

∣∣∣bH1
(
bkτ+ j − bkτ+1

)∣∣∣
2

≤ |B3| √
τ · 2K

m
≤ 4c1

√
τK

m
.

123

Foundations of Computational Mathematics

The previous estimates taken collectively yield

$m/τ%∑

k=0

√√
√√

τ∑

j=1

∣
∣∣bH1

(
bkτ+ j − bkτ+1

)∣∣∣
2 ≤ 2

(
8
√

τ
K logm

m
+ 16

π

1√
τ

1

c1

)
+ 4c1

√
τK

m
≤ c

1√
τ

,

as long as c1 � 1/c and m/(c1τK logm) � 1/c. ��

D.3.3 Complex-Valued Alignment

Let gh,x (·) : C → R be a real-valued function defined as

gh,x (α) :=
∥∥∥∥
1

α
h − h�

∥∥∥∥

2

2
+ ∥∥αx − x�

∥∥2
2 ,

which is the key function in definition (34). Therefore, the alignment parameter of
(h, x) to (h�, x�) is the minimizer of gh,x (α). This section is devoted to studying
various properties of gh,x (·). To begin with, the Wirtinger gradient and Hessian of
gh,x (·) can be calculated as

∇gh,x (α) =
[

∂gh,x (α,α)

∂α
∂gh,x (α,α)

∂α

]

=
[

α ‖x‖22 − xHx� − α−1 (α)−2 ‖h‖22 + (α)−2 h�Hh
α ‖x‖22 − x�Hx − (α)−1 α−2 ‖h‖22 + α−2hHh�

]
;

(288)

∇2gh,x (α) =
[‖x‖22 + |α|−4 ‖h‖22 2α−1 (α)−3 ‖h‖22 − 2 (α)−3 h�Hh
2 (α)−1 α−3 ‖h‖22 − 2α−3hHh� ‖x‖22 + |α|−4 ‖h‖22

]
.

(289)

The first lemma reveals that, as long as
(
1
β
h, βx

)
is sufficiently close to (h�, x�),

the minimizer of gh,x (α) cannot be far away from β.

Lemma 52 Assume there exists β ∈ C with 1/2 ≤ |β| ≤ 3/2 such that

max
{∥∥∥ 1

β
h − h�

∥∥∥
2
, ‖βx − x�‖2

}
≤ δ ≤ 1/4. Denote by α̂ the minimizer of gh,x (α),

and then we necessarily have

∣∣|̂α| − |β|∣∣ ≤ |̂α − β| ≤ 18δ.

Proof The first inequality is a direct consequence of the triangle inequality. Hence,
we concentrate on the second one. Notice that by assumption,

gh,x (β) =
∥∥∥∥
1

β
h − h�

∥∥∥∥

2

2
+ ∥∥βx − x�

∥∥2
2 ≤ 2δ2, (290)

which immediately implies that gh,x (̂α) ≤ 2δ2. It thus suffices to show that for any α

obeying |α − β| > 18δ, one has gh,x (α) > 2δ2, and hence, it cannot be theminimizer.

123

Foundations of Computational Mathematics

To this end, we lower bound gh,x (α) as follows:

gh,x (α) ≥ ∥∥αx − x�
∥∥2
2 = ∥∥(α − β) x + (

βx − x�
)∥∥2

2

= |α − β|2 ‖x‖22 + ∥∥βx − x�
∥∥2
2 + 2Re

[
(α − β)

(
βx − x�

)H x
]

≥ |α − β|2 ‖x‖22 − 2 |α − β|
∣∣∣
(
βx − x�

)H x
∣∣∣ .

Given that ‖βx − x�‖2 ≤ δ ≤ 1/4 and ‖x�‖2 = 1, we have

‖βx‖2 ≥ ‖x�‖2 − ∥∥βx − x�
∥∥
2 ≥ 1 − δ ≥ 3/4,

which together with the fact that 1/2 ≤ |β| ≤ 3/2 implies

‖x‖2 ≥ 1/2 and ‖x‖2 ≤ 2

and

∣∣ (βx − x�
)H x

∣∣ ≤ ∥∥βx − x�
∥∥
2 ‖x‖2 ≤ 2δ.

Taking the previous estimates collectively yields

gh,x (α) ≥ 1

4
|α − β|2 − 4δ |α − β| .

It is self-evident that once |α − β| > 18δ, one gets gh,x (α) > 2δ2, and hence, α

cannot be the minimizer as gh,x (α) > gh,x (β) according to (290). This concludes
the proof. ��

The next lemma reveals the local strong convexity of gh,x (α) when α is close to
one.

Lemma 53 Assume thatmax
{∥∥h − h�

∥∥
2 , ‖x − x�‖2

} ≤ δ for some sufficiently small
constant δ > 0. Then, for any α satisfying |α − 1| ≤ 18δ and any u, v ∈ C, one has

[
uH, vH

]
∇2gh,x (α)

[
u
v

]
≥ 1

2

(
|u|2 + |v|2

)
,

where ∇2gh,x (·) stands for the Wirtinger Hessian of gh,x(·).
Proof For simplicity of presentation, we use gh,x (α, α) and gh,x (α) interchangeably.
By (289), for any u, v ∈ C , one has

[
uH, vH

]
∇2gh,x (α)

[
u
v

]
=
(

‖x‖22 + |α|−4 ‖h‖22
)

︸ ︷︷ ︸
:=β1

(
|u|2 + |v|2

)

123

Foundations of Computational Mathematics

+2Re
[
uHv

(
2α−1 (α)−3 ‖h‖22 − 2 (α)−3 h�Hh

)]

︸ ︷︷ ︸
:=β2

.

Wewould like to demonstrate that this is at least on the order of |u|2 +|v|2. We first
develop a lower boundonβ1.Given the assumption thatmax

{∥∥h − h�
∥∥
2 , ‖x − x�‖2

}

≤ δ, one necessarily has

1 − δ ≤ ‖x‖2 ≤ 1 + δ and 1 − δ ≤ ‖h‖2 ≤ 1 + δ.

Thus, for any α obeying |α − 1| ≤ 18δ, one has

β1 ≥
(
1 + |α|−4

)
(1 − δ)2 ≥

(
1 + (1 + 18δ)−4

)
(1 − δ)2 ≥ 1

as long as δ > 0 is sufficiently small. Regarding the second term β2, we utilize the
conditions |α − 1| ≤ 18δ, ‖x‖2 ≤ 1 + δ and ‖h‖2 ≤ 1 + δ to get

|β2| ≤ 2 |u| |v| |α|−3
∣∣∣α−1 ‖h‖22 − h�Hh

∣∣
∣∣∣

= 2 |u| |v| |α|−3
∣
∣∣
(
α−1 − 1

)
‖h‖22 − (h� − h)Hh

∣∣
∣
∣∣

≤ 2 |u| |v| |α|−3
(∣∣∣α−1 − 1

∣∣∣ ‖h‖22 + ∥∥h − h�
∥∥
2 ‖h‖2

)

≤ 2 |u| |v| (1 − 18δ)−3
(

18δ

1 − 18δ
(1 + δ)2 + δ (1 + δ)

)

� δ
(|u|2 + |v|2),

where the last relation holds since 2 |u| |v| ≤ |u|2 + |v|2 and δ > 0 is sufficiently
small. Combining the previous bounds on β1 and β2, we arrive at

[
uH, vH

]
∇2gh,x (α)

[
u
v

]
≥ (1 − O(δ))

(
|u|2 + |v|2

)
≥ 1

2

(
|u|2 + |v|2

)

as long as δ is sufficiently small. This completes the proof. ��
Additionally, in a local region surrounding the optimizer, the alignment parameter

is Lipschitz continuous; namely, the difference of the alignment parameters associated
with two distinct vector pairs is at most proportional to the �2 distance between the
two vector pairs involved, as demonstrated below.

Lemma 54 Suppose that the vectors x1, x2, h1, h2 ∈ C
K satisfy

max
{∥∥x1 − x�

∥∥
2 ,
∥∥h1 − h�

∥∥
2 ,
∥∥x2 − x�

∥∥
2 ,
∥∥h2 − h�

∥∥
2

} ≤ δ ≤ 1/4 (291)

for some sufficiently small constant δ > 0. Denote by α1 and α2 the minimizers of
gh1,x1 (α) and gh2,x2 (α), respectively. Then we have

|α1 − α2| � ‖x1 − x2‖2 + ‖h1 − h2‖2 .

123

Foundations of Computational Mathematics

Proof Since α1 minimizes gh1,x1 (α), the mean value form of Taylor’s theorem (see
Appendix D.3.1) gives

gh1,x1 (α2) ≥ gh1,x1 (α1)

= gh1,x1 (α2) + ∇gh1,x1 (α2)
H
[

α1 − α2
α1 − α2

]

+ 1

2

(
α1 − α2, α1 − α2

)∇2gh1,x1 (̃α)

[
α1 − α2
α1 − α2

]
,

where α̃ is some complex number lying between α1 and α2, and ∇gh1,x1 and ∇2gh1,x1
are the Wirtinger gradient and Hessian of gh1,x1 (·), respectively. Rearrange the pre-
vious inequality to obtain

|α1 − α2| �
∥
∥∇gh1,x1 (α2)

∥
∥
2

λmin
(∇2gh1,x1 (̃α)

) (292)

as long as λmin
(∇2gh1,x1 (̃α)

)
> 0. This calls for evaluation of the Wirtinger gradient

and Hessian of gh1,x1 (·).
Regarding the Wirtinger Hessian, by assumption (291), we can invoke Lemma 52

with β = 1 to reach max {|α1 − 1| , |α2 − 1|} ≤ 18δ. This together with Lemma 53
implies

λmin

(
∇2gh1,x1 (̃α)

)
≥ 1/2,

since α̃ lies between α1 and α2.
For the Wirtinger gradient, since α2 is the minimizer of gh2,x2 (α), the first-order

optimality condition [69, equation (38)] requires ∇gh2,x2 (α2) = 0 , which gives

∥
∥∇gh1,x1 (α2)

∥
∥
2 = ∥

∥∇gh1,x1 (α2) − ∇gh2,x2 (α2)
∥
∥
2 .

Plug in the gradient expression (288) to reach
∥∥∇gh1,x1 (α2) − ∇gh2,x2 (α2)

∥∥
2

= √
2
∣∣∣
[
α2 ‖x1‖22 − xH1 x

� − α−1
2 (α2)

−2 ‖h1‖22 + (α2)
−2 h�Hh1

]

−
[
α2 ‖x2‖22 − xH2 x

� − α−1
2 (α2)

−2 ‖h2‖22 + (α2)
−2 h�Hh2

] ∣∣∣

� |α2|
∣∣
∣‖x1‖22 − ‖x2‖22

∣∣
∣+

∣∣
∣xH1 x

� − xH2 x
�
∣∣
∣+ 1

|α2|3
∣∣
∣‖h1‖22 − ‖h2‖22

∣∣
∣+ 1

|α2|2
∣∣
∣h�Hh1 − h�Hh2

∣∣
∣

� |α2|
∣∣
∣‖x1‖22 − ‖x2‖22

∣∣
∣+ ‖x1 − x2‖2 + 1

|α2|3
∣∣
∣‖h1‖22 − ‖h2‖22

∣∣
∣+ 1

|α2|2 ‖h1 − h2‖2 ,

where the last line follows from the triangle inequality. It is straightforward to see that

1/2 ≤ |α2| ≤ 2,
∣
∣‖x1‖22 − ‖x2‖22

∣
∣ � ‖x1 − x2‖2 ,

∣
∣‖h1‖22 − ‖h2‖22

∣
∣ � ‖h1 − h2‖2

123

Foundations of Computational Mathematics

under condition (291) and assumption ‖x�‖2 = ‖h�‖2 = 1, where the first inequality
follows from Lemma 52. Taking these estimates together reveals that

∥
∥∇gh1,x1 (α2) − ∇gh2,x2 (α2)

∥
∥
2 � ‖x1 − x2‖2 + ‖h1 − h2‖2 .

The proof is accomplished by substituting the two bounds on the gradient and the
Hessian into (292). ��

Further, if two vector pairs are both close to the optimizer, then their distance after
alignment (w.r.t. the optimizer) cannot be much larger than their distance without
alignment, as revealed by the following lemma.

Lemma 55 Suppose that the vectors x1, x2, h1, h2 ∈ C
K satisfy

max
{∥∥x1 − x�

∥
∥
2 ,
∥
∥h1 − h�

∥
∥
2 ,
∥
∥x2 − x�

∥
∥
2 ,
∥
∥h2 − h�

∥
∥
2

} ≤ δ ≤ 1/4 (293)

for some sufficiently small constant δ > 0. Denote by α1 and α2 the minimizers of
gh1,x1 (α) and gh2,x2 (α), respectively. Then we have

‖α1x1 − α2x2‖22 +
∥∥∥∥
1

α1
h1 − 1

α2
h2

∥∥∥∥

2

2
� ‖x1 − x2‖22 + ‖h1 − h2‖22 .

Proof To start with, we control the magnitudes of α1 and α2. Lemma 52 together with
assumption (293) guarantees that

1/2 ≤ |α1| ≤ 2 and 1/2 ≤ |α2| ≤ 2.

Now we can prove the lemma. The triangle inequality gives

‖α1x1 − α2x2‖2 = ‖α1 (x1 − x2) + (α1 − α2) x2‖2
≤ |α1| ‖x1 − x2‖2 + |α1 − α2| ‖x2‖2
(i)≤ 2 ‖x1 − x2‖2 + 2 |α1 − α2|
(ii)
� ‖x1 − x2‖2 + ‖h1 − h2‖2 ,

where (i) holds since |α1| ≤ 2 and ‖x2‖2 ≤ 1+ δ ≤ 2, and (ii) arises from Lemma 54
that |α1 − α2| � ‖x1 − x2‖2 + ‖h1 − h2‖2. Similarly,

∥∥
∥∥
1

α1
h1 − 1

α2
h2

∥∥
∥∥
2

=
∥∥
∥∥
1

α1
(h1 − h2) +

(
1

α1
− 1

α2

)
h2

∥∥
∥∥
2

≤
∣∣∣∣
1

α1

∣∣∣∣ ‖h1 − h2‖2 +
∣∣∣∣
1

α1
− 1

α2

∣∣∣∣ ‖h2‖2

≤ 2 ‖h1 − h2‖2 + 2
|α1 − α2|

|α1α2|
� ‖x1 − x2‖2 + ‖h1 − h2‖2 ,

123

Foundations of Computational Mathematics

where the last inequality comes from Lemma 54 as well as the facts that |α1| ≥ 1/2
and |α2| ≥ 1/2 as shown above. Combining all of the above bounds and recognizing

that ‖x1 − x2‖2 + ‖h1 − h2‖2 ≤
√
2 ‖x1 − x2‖22 + 2 ‖h1 − h2‖22, we conclude the

proof. ��
Finally, there is a useful identity associated with the minimizer of g̃(α) as defined

below.

Lemma 56 For any h1, h2, x1, x2 ∈ C
K , denote

α� := argmin
α

g̃(α), where g̃ (α) :=
∥∥∥∥
1

α
h1 − h2

∥∥∥∥

2

2
+ ‖αx1 − x2‖22 .

Let x̃1 = α�x1 and h̃1 = 1
α�
h1, then we have

∥∥x̃1 − x2
∥∥2
2 + xH2 (̃x1 − x2) = ∥∥h̃1 − h2

∥∥2
2 + (̃

h1 − h2
)Hh2.

Proof We can rewrite the function g̃ (α) as

g̃ (α) = |α|2 ‖x1‖22 + ‖x2‖22 − (αx1)H x2 − xH2 (αx1) +
∣∣∣
∣
1

α

∣∣∣
∣

2

‖h1‖22 + ‖h2‖22

−
(
1

α
h1

)H

h2 − hH2

(
1

α
h1

)

= αα ‖x1‖22 + ‖x2‖22 − αxH1 x2 − αxH2 x1 + 1

αα
‖h1‖22 + ‖h2‖22

− 1

α
hH1 h2 − 1

α
hH2 h1.

The first-order optimality condition [69, equation (38)] requires

∂ g̃

∂α

∣∣∣∣
α=α�

= α� ‖x1‖22 − xH1 x2 + 1

α�

(

− 1

α�
2

)

‖h1‖22 −
(

− 1

α�
2

)

hH2 h1 = 0,

which further simplifies to

‖x̃1‖22 − x̃H1 x2 = ∥
∥h̃1

∥
∥2
2 − hH2 h̃1

since x̃1 = α�x1, h̃1 = 1
α�
h1, and α� �= 0 (otherwise g̃(α�) = ∞ and cannot be the

minimizer). Furthermore, this condition is equivalent to

x̃H1 (̃x1 − x2) = (̃
h1 − h2

)H h̃1.

Recognizing that

x̃H1 (̃x1 − x2) = xH2 (̃x1 − x2) + (
x̃1 − x2

)H
(̃x1 − x2) = xH2 (̃x1 − x2) + ‖x̃1 − x2‖22,

123

Foundations of Computational Mathematics

h̃
H
1

(̃
h1 − h2

) = hH2
(̃
h1 − h2

)+ (̃
h1 − h2

)H(̃h1 − h2
) = hH2

(̃
h1 − h2

)+ ‖h̃1 − h2‖22,

we arrive at the desired identity. ��

D.3.4 Matrix Concentration Inequalities

The proof for blind deconvolution is largely built upon the concentration of random

matrices that are functions of
{
a j aHj

}
. In this subsection, we collect the measure

concentration results for various forms of random matrices that we encounter in the
analysis.

Lemma 57 Suppose a j
i.i.d.∼ N

(
0, 1

2 IK
) + iN

(
0, 1

2 IK
)
for every 1 ≤ j ≤ m,

and {c j }1≤ j≤m are a set of fixed numbers. Then there exist some universal constants
C̃1, C̃2 > 0 such that for all t ≥ 0

P

⎛

⎝
∥∥
∥∥

m∑

j=1

c j (a j aHj − IK)

∥∥
∥∥ ≥ t

⎞

⎠ ≤ 2 exp

(

C̃1K − C̃2 min

{
t

max j |c j | ,
t2

∑m
j=1 c

2
j

})

.

Proof This is a simple variant of [116, Theorem 5.39], which uses the Bernstein
inequality and the standard covering argument. Hence, we omit its proof. ��
Lemma 58 Suppose a j

i.i.d.∼ N
(
0, 1

2 IK
) + iN

(
0, 1

2 IK
)
for every 1 ≤ j ≤

m. Then there exist some absolute constants C̃1, C̃2, C̃3 > 0 such that for all
max{1, 3C̃1K/C̃2}/m ≤ ε ≤ 1, one has

P

⎛

⎝ sup
|J |≤εm

∥∥∥
∥
∑

j∈J

a j aHj

∥∥∥
∥ ≥ 4C̃3εm log

e

ε

⎞

⎠ ≤ 2 exp

(
− C̃2C̃3

3
εm log

e

ε

)
,

where J ⊆ [m] and |J | denotes its cardinality.
Proof The proof relies on Lemma 57 and the union bound. First, invoke Lemma 57
to see that for any fixed J ⊆ [m] and for all t ≥ 0, we have

P

⎛

⎝
∥∥∥∥
∑

j∈J

(a j aHj − IK)

∥∥∥∥ ≥ |J | t
⎞

⎠ ≤ 2 exp
(
C̃1K − C̃2|J |min

{
t, t2

})
, (294)

for some constants C̃1, C̃2 > 0, and as a result,

P

⎛

⎝ sup
|J |≤εm

∥∥∥∥
∑

j∈J

a j aHj

∥∥∥∥ ≥ "εm#(1 + t)

⎞

⎠

(i)≤ P

⎛

⎝ sup
|J |="εm#

∥∥∥∥
∑

j∈J

a j aHj

∥∥∥∥ ≥ "εm#(1 + t)

⎞

⎠

123

Foundations of Computational Mathematics

≤ P

⎛

⎝ sup
|J |="εm#

∥
∥∥∥
∑

j∈J

(a j aHj − IK)

∥
∥∥∥ ≥ "εm#t

⎞

⎠

(ii)≤
(

m

"εm#
)

· 2 exp
(
C̃1K − C̃2"εm#min

{
t, t2

})
,

where "c# denotes the smallest integer that is no smaller than c. Here, (i) holds since
we take the supremum over a larger set and (ii) results from (294) and the union bound.
Apply the elementary inequality

(n
k

) ≤ (en/k)k for any 0 ≤ k ≤ n to obtain

P

⎛

⎝ sup
|J |≤εm

∥∥∥∥
∑

j∈J

a j aHj

∥∥∥∥ ≥ "εm#(1 + t)

⎞

⎠

≤ 2

(
em

"εm#
)"εm#

exp
(
C̃1K − C̃2"εm#min

{
t, t2

})

≤ 2
(e
ε

)2εm
exp

(
C̃1K − C̃2εmmin

{
t, t2

})

= 2 exp
[
C̃1K − εm

(
C̃2 min

{
t, t2

}
− 2 log(e/ε)

)]
, (295)

where the second inequality uses εm ≤ "εm# ≤ 2εm whenever 1/m ≤ ε ≤ 1.
The proof is then completed by taking C̃3 ≥ max{1, 6/C̃2} and t = C̃3 log(e/ε).

To see this, it is easy to check that min{t, t2} = t since t ≥ 1. In addition, one has
C̃1K ≤ C̃2εm/3 ≤ C̃2εmt/3, and 2 log(e/ε) ≤ C̃2t/3. Combine the estimates above
with (295) to arrive at

P

⎛

⎝ sup
|J |≤εm

∥
∥∥∥
∑

j∈J

a j aHj

∥
∥∥∥ ≥ 4C̃3εm log(e/ε)

⎞

⎠

(i)≤ P

⎛

⎝ sup
|J |≤εm

∥∥
∥∥
∑

j∈J

a j aHj

∥∥
∥∥ ≥ "εm#(1 + t)

⎞

⎠

≤ 2 exp
[
C̃1K − εm

(
C̃2 min

{
t, t2

}
− 2 log(e/ε)

)]

(ii)≤ 2 exp
(−εmC̃2t/3

) = 2 exp

(
− C̃2C̃3

3
εm log(e/ε)

)

as claimed. Here, (i) holds due to the facts that "εm# ≤ 2εm and 1 + t ≤ 2t ≤
2C̃3 log(e/ε). Inequality (ii) arises from the estimates listed above. ��
Lemma 59 Suppose m � K log3m. With probability exceeding 1 − O

(
m−10

)
, we

have

∥∥∥∥

m∑

j=1

∣∣∣aHj x
�
∣∣∣
2
b j bHj − IK

∥∥∥∥ �
√

K

m
logm.

123

Foundations of Computational Mathematics

Proof The identity
∑m

j=1 b j bHj = IK allows us to rewrite the quantity on the left-hand
side as

∥∥
∥∥

m∑

j=1

∣∣
∣aHj x

�
∣∣
∣
2
b j bHj − IK

∥∥
∥∥ =

∥∥
∥∥

m∑

j=1

(∣∣
∣aHj x

�
∣∣
∣
2 − 1

)
b j bHj

︸ ︷︷ ︸
:=Z j

∥∥
∥∥,

where the Z j ’s are independent zero-mean random matrices. To control the above
spectral norm, we resort to the matrix Bernstein inequality [66, Theorem 2.7]. To this
end, we first need to upper bound the sub-exponential norm ‖ · ‖ψ1 (see definition in
[116]) of each summand Z j , i.e.,

∥∥‖Z j‖
∥∥

ψ1
= ∥∥b j

∥∥2
2

∥∥∥∥

∣∣∣∣
∣∣∣aHj x

�
∣∣∣
2 − 1

∣∣∣∣

∥∥∥∥
ψ1

�
∥∥b j

∥∥2
2

∥∥∥∥
∣∣∣aHj x

�
∣∣∣
2
∥∥∥∥

ψ1

� K

m
,

where we make use of the facts that

∥∥b j
∥∥2
2 = K/m and

∥∥∥∥
∣∣∣aHj x

�
∣∣∣
2
∥∥∥∥

ψ1

� 1.

We further need to bound the variance parameter, that is,

σ 2
0 :=

∥∥∥∥∥
∥
E

⎡

⎣
m∑

j=1

Z j ZH
j

⎤

⎦

∥∥∥∥∥
∥

=
∥∥∥∥∥
∥
E

[m∑

j=1

(∣∣∣aHj x
�
∣∣∣
2 − 1

)2

b j bHj b j bHj

]
∥∥∥∥∥
∥

�
∥∥
∥∥

m∑

j=1

b j bHj b j bHj

∥∥
∥∥ = K

m

∥∥
∥∥

m∑

j=1

b j bHj

∥∥
∥∥ = K

m
,

where the second line arises since E
[(|aHj x�|2 − 1

)2]
 1, ‖b j‖22 = K/m, and
∑m

j=1 b j bHj = IK . A direct application of the matrix Bernstein inequality [66, Theo-

rem 2.7] leads us to conclude that with probability exceeding 1 − O
(
m−10

)
,

∥∥∥
∑m

j=1
Z j

∥∥∥ � max

{√
K

m
logm,

K

m
log2 m

}

√

K

m
logm,

where the last relation holds under the assumption that m � K log3 m. ��

D.3.5 Matrix Perturbation Bounds

We also need the following perturbation bound on the top singular vectors of a given
matrix. The following lemma is parallel to Lemma 34.

123

Foundations of Computational Mathematics

Lemma 60 Let σ1(A), u, and v be the leading singular value, left and right singular
vectors of A, respectively, and let σ1(Ã), ũ, and ṽ be the leading singular value,
left and right singular vectors of Ã, respectively. Suppose σ1(A) and σ1(Ã) are not
identically zero, and then one has

∣∣σ1(A) − σ1(Ã)
∣∣ ≤ ∥∥(A − Ã

)
v
∥∥
2 + (‖u − ũ‖2 + ‖v − ṽ‖2)

∥∥ Ã
∥∥;

∥∥∥∥
√

σ1(A) u −
√

σ1(Ã) ũ

∥∥∥∥
2

+
∥∥∥∥
√

σ1(A) v −
√

σ1(Ã) ṽ

∥∥∥∥
2

≤ √
σ1(A) (‖u − ũ‖2 + ‖v − ṽ‖2) + 2

∣∣σ1(A) − σ1(Ã)
∣∣

√
σ1(A) +

√
σ1(Ã)

.

Proof The first claim follows since

∣
∣σ1(A) − σ1(Ã)

∣
∣ =

∣
∣∣uHAv − ũH Ã̃v

∣
∣∣

≤
∣∣∣uH

(
A − Ã

)
v

∣∣∣+
∣∣∣uH Ãv − ũH Ãv

∣∣∣+
∣∣∣̃uH Ãv − ũH Ã̃v

∣∣∣

≤ ∥∥(A − Ã
)
v
∥∥
2 + ‖u − ũ‖2

∥∥ Ã
∥∥+ ∥∥ Ã

∥∥ ‖v − ṽ‖2 .

With regard to the second claim, we see that
∥∥
∥∥
√

σ1(A) u −
√

σ1(Ã) ũ

∥∥
∥∥
2

≤
∥∥∥
√

σ1(A) u −√
σ1(A) ũ

∥∥∥
2

+
∥∥
∥∥
√

σ1(A) ũ −
√

σ1(Ã) ũ

∥∥
∥∥
2

= √
σ1(A) ‖u − ũ‖2 +

∣∣∣
∣
√

σ1(A) −
√

σ1(Ã)

∣∣∣
∣

= √
σ1(A) ‖u − ũ‖2 +

∣
∣σ1(A) − σ1(Ã)

∣
∣

√
σ1(A) +

√
σ1(Ã)

.

Similarly, one can obtain

∥∥∥∥
√

σ1(A) v −
√

σ1(Ã) ṽ

∥∥∥∥
2

≤ √
σ1(A) ‖v − ṽ‖2 +

∣
∣σ1(A) − σ1(Ã)

∣
∣

√
σ1(A) +

√
σ1(Ã)

.

Add these two inequalities to complete the proof. ��

References

1. Abbe, E., Fan, J., Wang, K., Zhong, Y.: Entrywise eigenvector analysis of random matrices with low
expected rank. arXiv preprint arXiv:1709.09565 (2017)

2. Aghasi, A., Ahmed, A., Hand, P., Joshi, B.: Branchhull: Convex bilinear inversion from the entrywise
product of signals with known signs. Applied and Computational Harmonic Analysis (2019)

3. Ahmed, A., Recht, B., Romberg, J.: Blind deconvolution using convex programming. IEEE Transac-
tions on Information Theory 60(3), 1711–1732 (2014)

4. Alon, N., Spencer, J.H.: The Probabilistic Method (3rd Edition). Wiley (2008)
5. Bahmani, S., Romberg, J.: Phase retrieval meets statistical learning theory: A flexible convex relax-

ation. In: Artificial Intelligence and Statistics, pp. 252–260 (2017)
6. Bendory, T., Eldar, Y.C., Boumal, N.: Non-convex phase retrieval from STFT measurements. IEEE

Transactions on Information Theory (2017)

123

http://arxiv.org/abs/1709.09565

Foundations of Computational Mathematics

7. Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of local search for low rank matrix
recovery. In: Advances in Neural Information Processing Systems, pp. 3873–3881 (2016)

8. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learning Research
2(Mar), 499–526 (2002)

9. Bubeck, S.: Convex optimization: Algorithms and complexity. Foundations and Trends® in Machine
Learning 8(3-4), 231–357 (2015)

10. Cai, J.F., Liu, H., Wang, Y.: Fast rank-one alternating minimization algorithm for phase retrieval.
Journal of Scientific Computing 79(1), 128–147 (2019)

11. Cai, T., Zhang, A.: ROP: Matrix recovery via rank-one projections. The Annals of Statistics 43(1),
102–138 (2015)

12. Cai, T.T., Li, X., Ma, Z.: Optimal rates of convergence for noisy sparse phase retrieval via thresholded
Wirtinger flow. The Annals of Statistics 44(5), 2221–2251 (2016)

13. Candès, E., Plan, Y.: A probabilistic and RIPless theory of compressed sensing. IEEE Transactions
on Information Theory 57(11), 7235–7254 (2011). https://doi.org/10.1109/TIT.2011.2161794

14. Candès, E., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans-
actions on Information Theory 56(5), 2053 –2080 (2010)

15. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM
Journal on Imaging Sciences 6(1), 199–225 (2013)

16. Candès, E.J., Li, X.: Solving quadratic equations via PhaseLift when there are about asmany equations
as unknowns. Foundations of Computational Mathematics 14(5), 1017–1026 (2014)

17. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of ACM 58(3),
11:1–11:37 (2011)

18. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: Theory and algorithms.
IEEE Transactions on Information Theory 61(4), 1985–2007 (2015)

19. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computa-
tional Mathematics 9(6), 717–772 (2009)

20. Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: Exact and stable signal recovery frommagnitude
measurements via convex programming. Communications on Pure and Applied Mathematics 66(8),
1017–1026 (2013)

21. Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Rank-sparsity incoherence for matrix
decomposition. SIAM Journal on Optimization 21(2), 572–596 (2011)

22. Chen, P., Fannjiang, A., Liu, G.R.: Phase retrieval with one or two diffraction patterns by alternating
projections with the null initialization. Journal of Fourier Analysis and Applications, pp. 1–40 (2015)

23. Chen, Y.: Incoherence-optimal matrix completion. IEEE Transactions on Information Theory 61(5),
2909–2923 (2015)

24. Chen, Y., Candès, E.: The projected power method: An efficient algorithm for joint alignment from
pairwise differences. Communications on Pure and Applied Mathematics 71(8), 1648–1714 (2018)

25. Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving
linear systems. Communications on Pure and Applied Mathematics 70(5), 822–883 (2017). https://
doi.org/10.1002/cpa.21638.

26. Chen, Y., Cheng, C., Fan, J.: Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetri-
cally perturbed low-rank matrices. arXiv preprint arXiv:1811.12804 (2018)

27. Chen,Y., Chi, Y., Fan, J.,Ma, C.: Gradient descentwith random initialization: Fast global convergence
for nonconvex phase retrieval. Mathematical Programming 176(1-2), 5–37 (2019)

28. Chen, Y., Chi, Y., Fan, J., Ma, C., Yan, Y.: Noisy matrix completion: Understanding statistical guar-
antees for convex relaxation via nonconvex optimization. arXiv preprint arXiv:1902.07698 (2019)

29. Chen, Y., Chi, Y., Goldsmith, A.J.: Exact and stable covariance estimation from quadratic sampling
via convex programming. IEEE Transactions on Information Theory 61(7), 4034–4059 (2015)

30. Chen, Y., Fan, J., Ma, C., Wang, K.: Spectral method and regularizedMLE are both optimal for top-K
ranking. Annals of Statistics 47(4), 2204–2235 (2019)

31. Chen,Y., Fan, J.,Ma,C.,Yan,Y.: Inference and uncertainty quantification for noisymatrix completion.
arXiv preprint arXiv:1906.04159 (2019)

32. Chen,Y.,Wainwright,M.J.: Fast low-rank estimation by projected gradient descent:General statistical
and algorithmic guarantees. arXiv preprint arXiv:1509.03025 (2015)

33. Chen, Y., Yi, X., Caramanis, C.: A convex formulation for mixed regression with two components:
Minimax optimal rates. In: Conference on Learning Theory, pp. 560–604 (2014)

123

https://doi.org/10.1109/TIT.2011.2161794
https://doi.org/10.1002/cpa.21638
https://doi.org/10.1002/cpa.21638
http://arxiv.org/abs/1811.12804
http://arxiv.org/abs/1902.07698
http://arxiv.org/abs/1906.04159
http://arxiv.org/abs/1509.03025

Foundations of Computational Mathematics

34. Cherapanamjeri, Y., Jain, P., Netrapalli, P.: Thresholding based outlier robust PCA. In: Conference
on Learning Theory, pp. 593–628 (2017)

35. Chi, Y.: Guaranteed blind sparse spikes deconvolution via lifting and convex optimization. IEEE
Journal of Selected Topics in Signal Processing 10(4), 782–794 (2016)

36. Chi, Y., Lu, Y.M.: Kaczmarz method for solving quadratic equations. IEEE Signal Processing Letters
23(9), 1183–1187 (2016)

37. Chi, Y., Lu, Y.M., Chen, Y.: Nonconvex optimization meets low-rank matrix factorization: An
overview. arXiv preprint arXiv:1809.09573 (2018)

38. Davenport, M.A., Romberg, J.: An overview of low-rank matrix recovery from incomplete observa-
tions. IEEE Journal of Selected Topics in Signal Processing 10(4), 608–622 (2016)

39. Davis, C., Kahan, W.M.: The rotation of eigenvectors by a perturbation. iii. SIAM Journal on Numer-
ical Analysis 7(1), 1–46 (1970)

40. Davis, D., Drusvyatskiy, D., Paquette, C.: The nonsmooth landscape of phase retrieval. arXiv preprint
arXiv:1711.03247 (2017)

41. Dhifallah, O., Thrampoulidis, C., Lu, Y.M.: Phase retrieval via linear programming: Fundamental
limits and algorithmic improvements. arXiv preprint arXiv:1710.05234 (2017)

42. Dopico, F.M.: A note on sin� theorems for singular subspace variations. BIT 40(2), 395–403 (2000).
https://doi.org/10.1023/A:1022303426500.

43. Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: Composite optimization for
robust phase retrieval. Information and Inference (2018)

44. El Karoui, N.: On the impact of predictor geometry on the performance on high-dimensional ridge-
regularized generalized robust regression estimators. Probability Theory and Related Fields pp. 1–81
(2015)

45. El Karoui, N., Bean, D., Bickel, P.J., Lim, C., Yu, B.: On robust regression with high-dimensional
predictors. Proceedings of the National Academy of Sciences 110(36), 14557–14562 (2013)

46. Fan, J., Ma, C., Zhong, Y.: A selective overview of deep learning. arXiv preprint arXiv:1904.05526
(2019)

47. Gao, B., Xu, Z.: Phase retrieval usingGauss-Newtonmethod. arXiv preprint arXiv:1606.08135 (2016)
48. Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. In: Advances in Neural

Information Processing Systems, pp. 2973–2981 (2016)
49. Ge, R., Ma, T.: On the optimization landscape of tensor decompositions. In: Advances in Neural

Information Processing Systems, pp. 3653–3663 (2017)
50. Goldstein, T., Studer, C.: Phasemax: Convex phase retrieval via basis pursuit. IEEE Transactions on

Information Theory 64(4), 2675–2689 (2018)
51. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on

Information Theory 57(3), 1548–1566 (2011)
52. Gunasekar, S., Woodworth, B.E., Bhojanapalli, S., Neyshabur, B., Srebro, N.: Implicit regularization

in matrix factorization. In: Advances in Neural Information Processing Systems, pp. 6151–6159
(2017)

53. Hand, P., Voroninski, V.: An elementary proof of convex phase retrieval in the natural parameter
space via the linear program phasemax. Communications in Mathematical Sciences 16(7), 2047–
2051 (2018)

54. Hardt, M.,Wootters, M.: Fast matrix completion without the condition number. Conference on Learn-
ing Theory, pp. 638–678 (2014)

55. Hastie, T., Mazumder, R., Lee, J.D., Zadeh, R.: Matrix completion and low-rank SVD via fast alter-
nating least squares. Journal of Machine Learning Research 16, 3367–3402 (2015)

56. Higham, N.J.: Estimating the matrix p-norm. Numerische Mathematik 62(1), 539–555 (1992)
57. Hsu,D., Kakade, S.M., Zhang, T.: A tail inequality for quadratic forms of subgaussian randomvectors.

Electron. Commun. Probab. 17, no. 52, 6 (2012). https://doi.org/10.1214/ECP.v17-2079.
58. Huang, W., Hand, P.: Blind deconvolution by a steepest descent algorithm on a quotient manifold.

SIAM Journal on Imaging Sciences 11(4), 2757–2785 (2018)
59. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: An overview of recent developments. arXiv

preprint arXiv:1510.07713 (2015)
60. Jain, P., Netrapalli, P.: Fast exact matrix completion with finite samples. In: Conference on Learning

Theory, pp. 1007–1034 (2015)
61. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In:

ACM symposium on Theory of computing, pp. 665–674 (2013)

123

http://arxiv.org/abs/1809.09573
http://arxiv.org/abs/1711.03247
http://arxiv.org/abs/1710.05234
https://doi.org/10.1023/A:1022303426500
http://arxiv.org/abs/1904.05526
http://arxiv.org/abs/1606.08135
https://doi.org/10.1214/ECP.v17-2079
http://arxiv.org/abs/1510.07713

Foundations of Computational Mathematics

62. Javanmard, A., Montanari, A., et al.: Debiasing the lasso: Optimal sample size for gaussian designs.
The Annals of Statistics 46(6A), 2593–2622 (2018)

63. Jin, C., Kakade, S.M., Netrapalli, P.: Provable efficient online matrix completion via non-convex
stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 4520–4528
(2016)

64. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Transactions on
Information Theory 56(6), 2980–2998 (2010)

65. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from noisy entries. J. Mach. Learn. Res.
11, 2057–2078 (2010)

66. Koltchinskii, V.: Oracle inequalities in empirical risk minimization and sparse recovery problems,
Lecture Notes in Mathematics, vol. 2033. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22147-7

67. Koltchinskii, V., Lounici, K., Tsybakov, A.B.: Nuclear-norm penalization and optimal rates for noisy
low-rank matrix completion. Ann. Statist. 39(5), 2302–2329 (2011). https://doi.org/10.1214/11-
AOS894.

68. Kolte, R., Özgür, A.: Phase retrieval via incremental truncated Wirtinger flow. arXiv preprint
arXiv:1606.03196 (2016)

69. Kreutz-Delgado, K.: The complex gradient operator and the CR-calculus. arXiv preprint
arXiv:0906.4835 (2009)

70. Lang, S.: Real and functional analysis. Springer-Verlag, New York, 10, 11–13 (1993)
71. Lee, K., Bresler, Y.: Admira: Atomic decomposition for minimum rank approximation. IEEE Trans-

actions on Information Theory 56(9), 4402–4416 (2010)
72. Lee, K., Li, Y., Junge, M., Bresler, Y.: Blind recovery of sparse signals from subsampled convolution.

IEEE Transactions on Information Theory 63(2), 802–821 (2017)
73. Lee, K., Tian, N., Romberg, J.: Fast and guaranteed blind multichannel deconvolution under a bilinear

system model. IEEE Transactions on Information Theory 64(7), 4792–4818 (2018)
74. Lerman, G., Maunu, T.: Fast, robust and non-convex subspace recovery. Information and Inference:

A Journal of the IMA 7(2), 277–336 (2017)
75. Li, Q., Tang, G.: The nonconvex geometry of low-rank matrix optimizations with general objective

functions. In: 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp.
1235–1239. IEEE (2017)

76. Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex
optimization. Applied and computational harmonic analysis (2018)

77. Li, X., Wang, Z., Lu, J., Arora, R., Haupt, J., Liu, H., Zhao, T.: Symmetry, saddle points, and global
geometry of nonconvex matrix factorization. arXiv preprint arXiv:1612.09296 (2016)

78. Li, Y., Lee, K., Bresler, Y.: Blind gain and phase calibration for low-dimensional or sparse signal
sensing via power iteration. In: Sampling Theory and Applications (SampTA), 2017 International
Conference on, pp. 119–123. IEEE (2017)

79. Li, Y., Ma, C., Chen, Y., Chi, Y.: Nonconvex matrix factorization from rank-one measurements. arXiv
preprint arXiv:1802.06286 (2018)

80. Lin, J., Camoriano, R., Rosasco, L.: Generalization properties and implicit regularization for multiple
passes SGM. In: International Conference on Machine Learning, pp. 2340–2348 (2016)

81. Ling, S., Strohmer, T.: Self-calibration and biconvex compressive sensing. Inverse Problems 31(11),
115002 (2015)

82. Ling, S., Strohmer, T.: Regularized gradient descent: a non-convex recipe for fast joint blind decon-
volution and demixing. Information and Inference: A Journal of the IMA 8(1), 1–49 (2018)

83. Lu, Y.M., Li, G.: Phase transitions of spectral initialization for high-dimensional nonconvex estima-
tion. arXiv preprint arXiv:1702.06435 (2017)

84. Mathias, R.: The spectral norm of a nonnegative matrix. Linear Algebra Appl. 139, 269–284 (1990).
https://doi.org/10.1016/0024-3795(90)90403-Y.

85. Mathias, R.: Perturbation bounds for the polar decomposition. SIAM Journal on Matrix Analysis and
Applications 14(2), 588–597 (1993)

86. Maunu, T., Zhang, T., Lerman, G.: A well-tempered landscape for non-convex robust subspace recov-
ery. Journal of Machine Learning Research 20(37), 1–59 (2019)

87. Mei, S., Bai, Y., Montanari, A.: The landscape of empirical risk for nonconvex losses. The Annals of
Statistics 46(6A), 2747–2774 (2018)

123

https://doi.org/10.1007/978-3-642-22147-7
https://doi.org/10.1007/978-3-642-22147-7
https://doi.org/10.1214/11-AOS894
https://doi.org/10.1214/11-AOS894
http://arxiv.org/abs/1606.03196
http://arxiv.org/abs/0906.4835
http://arxiv.org/abs/1612.09296
http://arxiv.org/abs/1802.06286
http://arxiv.org/abs/1702.06435
https://doi.org/10.1016/0024-3795(90)90403-Y

Foundations of Computational Mathematics

88. Mondelli,M.,Montanari,A.: Fundamental limits ofweak recoverywith applications to phase retrieval.
Foundations of Computational Mathematics, pp. 1–71 (2017)

89. Negahban, S.,Wainwright,M.J.:Restricted strong convexity andweightedmatrix completion: optimal
bounds with noise. J. Mach. Learn. Res. 13, 1665–1697 (2012)

90. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. Advances in
Neural Information Processing Systems (NIPS) (2013)

91. Netrapalli, P., Niranjan, U., Sanghavi, S., Anandkumar, A., Jain, P.: Non-convex robust PCA. In:
Advances in Neural Information Processing Systems, pp. 1107–1115 (2014)

92. Qing, Q., Zhang, Y., Eldar, Y., Wright, J.: Convolutional phase retrieval via gradient descent. Neural
Information Processing Systems (2017)

93. Recht, B.: A simpler approach to matrix completion. Journal of Machine Learning Research 12(Dec),
3413–3430 (2011)

94. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010)

95. Rudelson, M., Vershynin, R., et al.: Hanson-Wright inequality and sub-Gaussian concentration. Elec-
tronic Communications in Probability 18 (2013)

96. Sanghavi, S., Ward, R., White, C.D.: The local convexity of solving systems of quadratic equations.
Results in Mathematics 71(3-4), 569–608 (2017)

97. Schmitt, B.A.: Perturbation bounds for matrix square roots and Pythagorean sums. Linear Algebra
Appl. 174, 215–227 (1992). https://doi.org/10.1016/0024-3795(92)90052-C.

98. Schniter, P., Rangan, S.: Compressive phase retrieval via generalized approximate message passing.
IEEE Transactions on Signal Processing 63(4), 1043–1055 (2015)

99. Schudy, W., Sviridenko, M.: Concentration and moment inequalities for polynomials of independent
random variables. In: Symposium on Discrete Algorithms, pp. 437–446. ACM, New York (2012)

100. Shechtman, Y., Beck, A., Eldar, Y.C.: GESPAR: Efficient phase retrieval of sparse signals. IEEE
Transactions on Signal Processing 62(4), 928–938 (2014)

101. Soltanolkotabi, M.: Algorithms and theory for clustering and nonconvex quadratic programming.
Ph.D. thesis, Stanford University (2014)

102. Soltanolkotabi, M.: Structured signal recovery from quadratic measurements: Breaking sample
complexity barriers via nonconvex optimization. IEEE Transactions on Information Theory 65(4),
2374–2400 (2019)

103. Soltanolkotabi, M., Javanmard, A., Lee, J.D.: Theoretical insights into the optimization landscape
of over-parameterized shallow neural networks. IEEE Transactions on Information Theory 65(2),
742–769 (2019)

104. Soudry, D., Hoffer, E., Nacson, M.S., Gunasekar, S., Srebro, N.: The implicit bias of gradient descent
on separable data. The Journal of Machine Learning Research 19(1), 2822–2878 (2018)

105. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. In: Information Theory (ISIT),
2016 IEEE International Symposium on, pp. 2379–2383. IEEE (2016)

106. Sun, J.,Qu,Q.,Wright, J.: Complete dictionary recovery over the sphere i:Overviewand the geometric
picture. IEEE Transactions on Information Theory 63(2), 853–884 (2017)

107. Sun, R., Luo, Z.Q.: Guaranteed matrix completion via non-convex factorization. IEEE Transactions
on Information Theory 62(11), 6535–6579 (2016)

108. Sur, P., Chen, Y., Candès, E.J.: The likelihood ratio test in high-dimensional logistic regression
is asymptotically a rescaled chi-square. arXiv preprint arXiv:1706.01191, accepted to Probability
Theory and Related Fields (2017)

109. Tan, Y.S., Vershynin, R.: Phase retrieval via randomized kaczmarz: Theoretical guarantees. Informa-
tion and Inference: A Journal of the IMA 8(1), 97–123 (2018)

110. Tanner, J., Wei, K.: Low rank matrix completion by alternating steepest descent methods. Applied
and Computational Harmonic Analysis 40(2), 417–429 (2016)

111. Tao, T.: Topics in RandomMatrix Theory. Graduate Studies inMathematics. AmericanMathematical
Society, Providence, Rhode Island (2012)

112. Ten Berge, J.M.: Orthogonal procrustes rotation for two or more matrices. Psychometrika 42(2),
267–276 (1977)

113. Tropp, J.A.: Convex recovery of a structured signal from independent random linear measurements.
In: Sampling Theory, a Renaissance, pp. 67–101. Springer (2015)

114. Tropp, J.A.: An introduction tomatrix concentration inequalities. Found. TrendsMach. Learn. 8(1-2),
1–230 (2015). https://doi.org/10.1561/2200000048.

123

https://doi.org/10.1016/0024-3795(92)90052-C
http://arxiv.org/abs/1706.01191
https://doi.org/10.1561/2200000048

Foundations of Computational Mathematics

115. Tu, S., Boczar, R., Simchowitz,M., Soltanolkotabi,M., Recht, B.: Low-rank solutions of linear matrix
equations via procrustes flow. In: InternationalConference onMachineLearning, pp. 964–973. JMLR.
org (2016)

116. Vershynin, R.: Introduction to the non-asymptotic analysis of randommatrices. Compressed Sensing,
Theory and Applications, pp. 210–268 (2012)

117. Wang, G., Giannakis, G., Saad, Y., Chen, J.: Solving most systems of random quadratic equations.
In: Advances in Neural Information Processing Systems, pp. 1867–1877 (2017)

118. Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated
amplitude flow. IEEE Transactions on Information Theory (2017)

119. Wang, G., Zhang, L., Giannakis, G.B., Akçakaya, M., Chen, J.: Sparse phase retrieval via truncated
amplitude flow. IEEE Transactions on Signal Processing 66(2), 479–491 (2018)

120. Wang, L., Chi, Y.: Blind deconvolution from multiple sparse inputs. IEEE Signal Processing Letters
23(10), 1384–1388 (2016)

121. Wedin, P.Å.: Perturbation bounds in connection with singular value decomposition. BIT Numerical
Mathematics 12(1), 99–111 (1972)

122. Wei, K.: Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study.
Inverse Problems 31(12), 125008 (2015)

123. Wei, K., Cai, J.F., Chan, T.F., Leung, S.: Guarantees of riemannian optimization for low rank matrix
recovery. SIAM Journal on Matrix Analysis and Applications 37(3), 1198–1222 (2016)

124. Yu, Y., Wang, T., Samworth, R.J.: A useful variant of the Davis-Kahan theorem for statisticians.
Biometrika 102(2), 315–323 (2015). https://doi.org/10.1093/biomet/asv008.

125. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires
rethinking generalization. International Conference on Learning Representations (2017)

126. Zhang, H., Chi, Y., Liang, Y.: Provable non-convex phase retrieval with outliers: Median truncated
Wirtinger flow. In: International conference on machine learning, pp. 1022–1031 (2016)

127. Zhang, H., Zhou, Y., Liang, Y., Chi, Y.: A nonconvex approach for phase retrieval: Reshapedwirtinger
flow and incremental algorithms. Journal of Machine Learning Research (2017)

128. Zhang,Y., Lau,Y.,Kuo,H.w., Cheung, S., Pasupathy,A.,Wright, J.: On the global geometry of sphere-
constrained sparse blind deconvolution. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4894–4902 (2017)

129. Zhao, T., Wang, Z., Liu, H.: A nonconvex optimization framework for low rank matrix estimation.
In: Advances in Neural Information Processing Systems, pp. 559–567 (2015)

130. Zheng, Q., Lafferty, J.: A convergent gradient descent algorithm for rank minimization and semidefi-
nite programming from random linear measurements. In: Advances in Neural Information Processing
Systems, pp. 109–117 (2015)

131. Zheng, Q., Lafferty, J.: Convergence analysis for rectangularmatrix completion usingBurer-Monteiro
factorization and gradient descent. arXiv preprint arXiv:1605.07051 (2016)

132. Zhong, K., Song, Z., Jain, P., Bartlett, P.L., Dhillon, I.S.: Recovery guarantees for one-hidden-layer
neural networks. In: International Conference on Machine Learning, pp. 4140–4149. JMLR. org
(2017)

133. Zhong, Y., Boumal, N.: Near-optimal bounds for phase synchronization. SIAM Journal on Optimiza-
tion 28(2), 989–1016 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Cong Ma1 · Kaizheng Wang1 · Yuejie Chi2 · Yuxin Chen3

B Yuxin Chen
yuxin.chen@princeton.edu

Cong Ma
congm@princeton.edu

123

https://doi.org/10.1093/biomet/asv008
http://arxiv.org/abs/1605.07051

Foundations of Computational Mathematics

Kaizheng Wang
kaizheng@princeton.edu

Yuejie Chi
yuejiechi@cmu.edu

1 Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA

2 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
15213, USA

3 Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

123

	Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution
	Abstract
	1 Introduction
	1.1 Nonlinear Systems and Empirical Loss Minimization
	1.2 Nonconvex Optimization via Regularized Gradient Descent
	1.3 Regularization-Free Procedures?
	1.4 Numerical Surprise of Unregularized Gradient Descent
	1.5 This Paper
	1.6 Notations
	2 Implicit Regularization: A Case Study
	2.1 Gradient Descent Theory Revisited
	2.2 Local Geometry for Solving Random Quadratic Systems
	2.3 Which Region Enjoys Nicer Geometry?
	2.4 Implicit Regularization
	2.5 A Glimpse of the Analysis: A Leave-One-Out Trick
	3 Main Results
	3.1 Phase Retrieval
	3.2 Low-Rank Matrix Completion
	3.3 Blind Deconvolution

	4 Related Work
	5 A General Recipe for Trajectory Analysis
	5.1 General Model
	5.2 Outline of the Recipe

	6 Analysis for Phase Retrieval
	6.1 Step 1: Characterizing Local Geometry in the RIC
	6.1.1 Local Geometry
	6.1.2 Error Contraction

	6.2 Step 2: Introducing the Leave-One-Out Sequences
	6.3 Step 3: Establishing the Incoherence Condition by Induction
	6.4 The Base Case: Spectral Initialization

	7 Analysis for Matrix Completion
	7.1 Step 1: Characterizing Local Geometry in the RIC
	7.1.1 Local Geometry
	7.1.2 Error Contraction

	7.2 Step 2: Introducing the Leave-One-Out Sequences
	7.3 Step 3: Establishing the Incoherence Condition by Induction
	7.4 The Base Case: Spectral Initialization

	8 Analysis for Blind Deconvolution
	8.1 Step 1: Characterizing Local Geometry in the RIC
	8.1.1 Local Geometry
	8.1.2 Error Contraction

	8.2 Step 2: Introducing the Leave-One-Out Sequences
	8.3 Step 3: Establishing the Incoherence Condition by Induction
	8.4 The Base Case: Spectral Initialization

	9 Discussion
	Acknowledgements
	A Proofs for Phase Retrieval
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Lemma 4
	A.5 Proof of Lemma 5
	A.6 Proof of Lemma 6
	B Proofs for Matrix Completion
	B.1 Proof of Lemma 7
	B.2 Proof of Lemma 8
	B.3 Proof of Lemma 9
	B.3.1 Proof of Lemma 22
	B.3.2 Proof of Lemma 23

	B.4 Proof of Lemma 10
	B.5 Proof of Lemma 11
	B.5.1 Proof of Lemma 24
	B.5.2 Proof of Lemma 25

	B.6 Proof of Lemma 12
	B.7 Proof of Lemma 13
	C Proofs for Blind Deconvolution
	C.1 Proof of Lemma 14
	C.1.1 Proof of Lemma 26
	C.1.2 Proof of Lemma 27

	C.2 Proofs of Lemmas 15 and 16
	C.3 Proof of Lemma 17
	C.4 Proof of Lemma 18
	C.4.1 Proof of Lemma 28
	C.4.2 Proof of Lemma 29
	C.4.3 Proof of Claim (224)

	C.5 Proof of Lemma 19
	C.6 Proof of Lemma 20
	C.7 Proof of Lemma 21
	D Technical Lemmas
	D.1 Technical Lemmas for Phase Retrieval
	D.1.1 Matrix Concentration Inequalities
	D.1.2 Matrix Perturbation Bounds

	D.2 Technical Lemmas for Matrix Completion
	D.2.1 Orthogonal Procrustes Problem
	D.2.2 Matrix Concentration Inequalities
	D.2.3 Matrix Perturbation Bounds

	D.3 Technical Lemmas for Blind Deconvolution
	D.3.1 Wirtinger Calculus
	D.3.2 Discrete Fourier Transform Matrices
	D.3.3 Complex-Valued Alignment
	D.3.4 Matrix Concentration Inequalities
	D.3.5 Matrix Perturbation Bounds

	References

