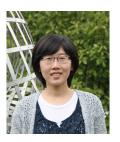
Implicit Regularization in Nonconvex Statistical Estimation

Cong Ma
ORFE, Princeton University

Kaizheng Wang Princeton ORFE



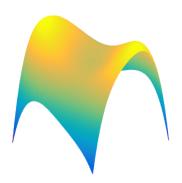
Yuejie Chi CMU ECE

Yuxin Chen Princeton EE

Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

 $\begin{array}{lll} \mathsf{minimize}_{\boldsymbol{x}} & & \ell(\boldsymbol{x};\boldsymbol{y}) & \to & \mathsf{may} \; \mathsf{be} \; \mathsf{nonconvex} \\ \mathsf{subj.} \; \mathsf{to} & & \boldsymbol{x} \in \mathcal{S} & \to & \mathsf{may} \; \mathsf{be} \; \mathsf{nonconvex} \end{array}$

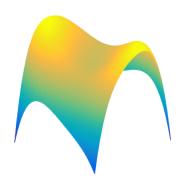


Nonconvex estimation problems are everywhere

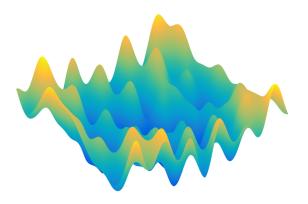
Empirical risk minimization is usually nonconvex

$$\begin{array}{lll} \mathsf{minimize}_{\boldsymbol{x}} & & \ell(\boldsymbol{x};\boldsymbol{y}) & \to & \mathsf{may} \; \mathsf{be} \; \mathsf{nonconvex} \\ \mathsf{subj.} \; \mathsf{to} & & \boldsymbol{x} \in \mathcal{S} & \to & \mathsf{may} \; \mathsf{be} \; \mathsf{nonconvex} \end{array}$$

- low-rank matrix completion
- graph clustering
- dictionary learning
- mixture models
- deep learning
- ...



Nonconvex optimization may be super scary



There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)

Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)

... but is sometimes much nicer than we think

Under certain statistical models, we see benign global geometry: no spurious local optima

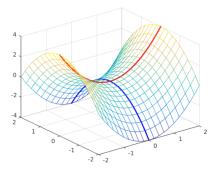
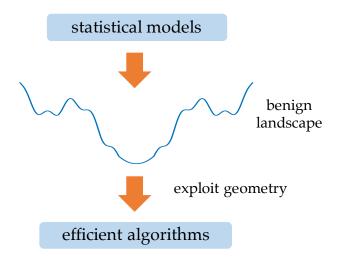
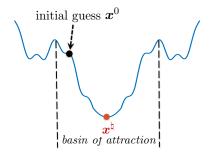


Fig credit: Sun, Qu & Wright

... but is sometimes much nicer than we think

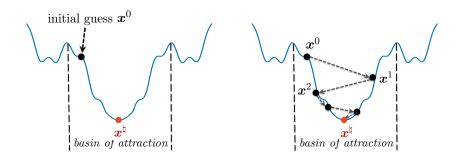


Optimization-based methods: two-stage approach



• Start from an appropriate initial point

Optimization-based methods: two-stage approach



- Start from an appropriate initial point
- Proceed via some iterative optimization algorithms

Roles of regularization

- Prevents overfitting and improves generalization
 - $\circ\,$ e.g. ℓ_1 penalization, SCAD, nuclear norm penalization, ...

Roles of regularization

- Prevents overfitting and improves generalization
 - $\circ\,$ e.g. ℓ_1 penalization, SCAD, nuclear norm penalization, ...

- Improves computation by stabilizing search directions
 - o e.g. trimming, projection, regularized loss

Roles of regularization

- Prevents overfitting and improves generalization
 - $\circ\,$ e.g. ℓ_1 penalization, SCAD, nuclear norm penalization, ...

- Improves computation by stabilizing search directions
 - \implies focus of this talk
 - o e.g. trimming, projection, regularized loss

3 representative nonconvex problems

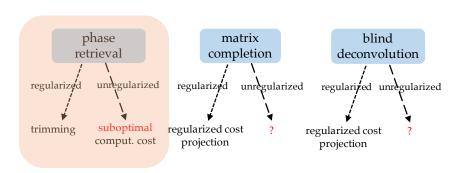
phase retrieval matrix completion

blind deconvolution

Regularized methods

Regularized vs. unregularized methods

Regularized vs. unregularized methods



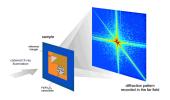
Are unregularized methods suboptimal for nonconvex estimation?

Missing phase problem

Detectors record intensities of diffracted rays

• electric field $x(t_1,t_2) \longrightarrow \text{Fourier transform } \widehat{x}(f_1,f_2)$

Fig credit: Stanford SLAC



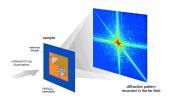
intensity of electrical field:
$$\left|\widehat{x}(f_1,f_2)\right|^2 = \left|\int x(t_1,t_2)e^{-i2\pi(f_1t_1+f_2t_2)}\mathrm{d}t_1\mathrm{d}t_2\right|^2$$

Missing phase problem

Detectors record intensities of diffracted rays

• electric field $x(t_1,t_2) \longrightarrow \text{Fourier transform } \widehat{x}(f_1,f_2)$

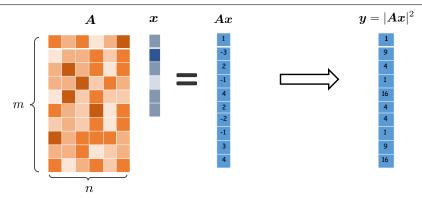
Fig credit: Stanford SLAC



intensity of electrical field:
$$\left|\widehat{x}(f_1,f_2)\right|^2 = \left|\int x(t_1,t_2)e^{-i2\pi(f_1t_1+f_2t_2)}\mathrm{d}t_1\mathrm{d}t_2\right|^2$$

Phase retrieval: recover signal $x(t_1, t_2)$ from intensity $|\widehat{x}(f_1, f_2)|^2$

Solving quadratic systems of equations



Recover $oldsymbol{x}^{
atural} \in \mathbb{R}^n$ from m random quadratic measurements

$$y_k = |\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\natural}|^2, \qquad k = 1, \dots, m$$

Assume w.l.o.g. $\|oldsymbol{x}^{
atural}\|_2=1$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

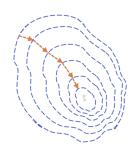
Empirical risk minimization

$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^{m} \left[\left(\boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

Empirical risk minimization

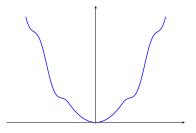
$$\mathsf{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^{m} \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$



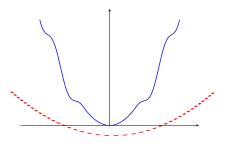
• Initialization by spectral method

• Gradient iterations: for t = 0, 1, ...

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \, \nabla f(\boldsymbol{x}^t)$$

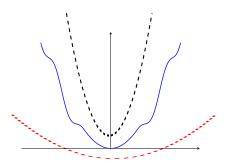


Two standard conditions that enable geometric convergence of GD



Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)



Two standard conditions that enable geometric convergence of GD

- (local) restricted strong convexity (or regularity condition)
- (local) smoothness

$$abla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 and is well-conditioned

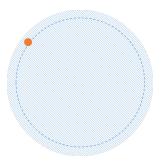
f is said to be lpha-strongly convex and eta-smooth if

$$\mathbf{0} \preceq \alpha \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq \beta \mathbf{I}, \quad \forall \mathbf{x}$$

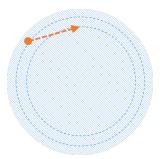
 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

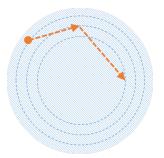
$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



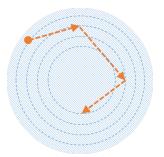
$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



$$\mathbf{0} \leq \alpha \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq \beta \mathbf{I}, \quad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

• Condition number β/α determines rate of convergence

$$\mathbf{0} \ \leq \ \alpha \mathbf{I} \ \leq \ \nabla^2 f(\mathbf{x}) \ \leq \ \beta \mathbf{I}, \qquad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \leq \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

- Condition number β/α determines rate of convergence
- Attains ε -accuracy within $O(\frac{\beta}{\alpha}\log\frac{1}{\varepsilon})$ iterations

Gaussian designs: $a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$

Gaussian designs:
$$a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

Population level (infinite samples)

$$\mathbb{E}\left[\nabla^2 f(\boldsymbol{x})\right] = \underbrace{3\left(\|\boldsymbol{x}\|_2^2\,\boldsymbol{I} + 2\boldsymbol{x}\boldsymbol{x}^\top\right) - \left(\left\|\boldsymbol{x}^{\natural}\right\|_2^2\boldsymbol{I} + 2\boldsymbol{x}^{\natural}\boldsymbol{x}^{\natural\top}\right)}_{\text{locally positive definite and well-conditioned}}$$

Consequence: WF converges within $O(\log \frac{1}{\varepsilon})$ iterations if $m \to \infty$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level ($m \approx n \log n$)

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$abla^2 f(\boldsymbol{x}) \succ \mathbf{0} \quad \underbrace{\text{but ill-conditioned}}_{\text{condition number} \; \succeq \; n} \text{ (even locally)}$$

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m \approx n\log n$

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

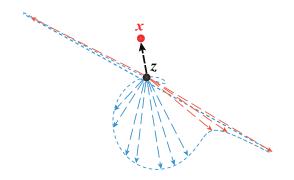
$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m \approx n\log n$

Too slow ... can we accelerate it?

One solution: truncated WF (Chen, Candès '15)

Regularize / trim gradient components to accelerate convergence



WF converges in O(n) iterations

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by generic optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

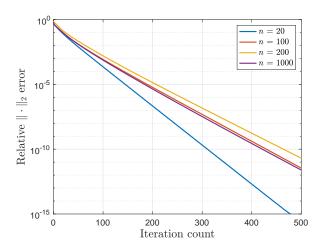
WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?

Numerical surprise with $\eta_t = 0.1$



Vanilla GD (WF) can proceed much more aggressively!

Which region enjoys both strong convexity and smoothness?

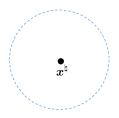
$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[3 oldsymbol{(a_k^ op oldsymbol{x})}^2 - oldsymbol{(a_k^ op oldsymbol{x})}^2
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

Which region enjoys both strong convexity and smoothness?

$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[3 oldsymbol{(a_k^ op oldsymbol{x})}^2 - oldsymbol{(a_k^ op oldsymbol{x})}^2
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

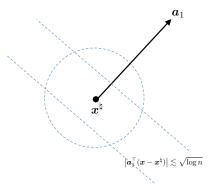
ullet Not smooth if $oldsymbol{x}$ and $oldsymbol{a}_k$ are too close (coherent)

Which region enjoys both strong convexity and smoothness?



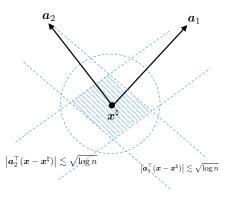
ullet x is not far away from $x^{
atural}$

Which region enjoys both strong convexity and smoothness?

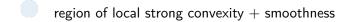


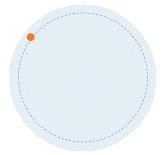
- ullet x is not far away from $x^{
 atural}$
- x is incoherent w.r.t. sampling vectors (incoherence region)

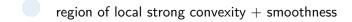
Which region enjoys both strong convexity and smoothness?

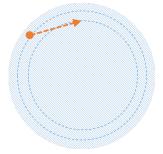


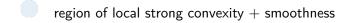
- ullet x is not far away from $x^{
 atural}$
- x is incoherent w.r.t. sampling vectors (incoherence region)

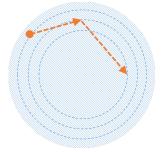


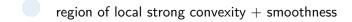


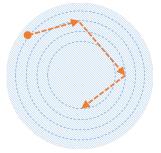


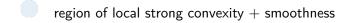


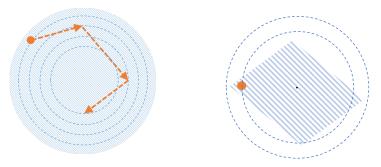


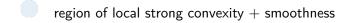


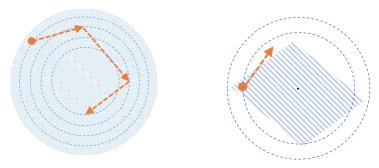


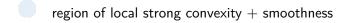


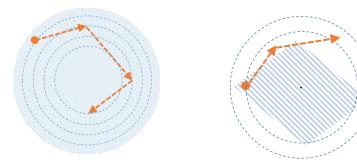


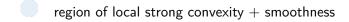


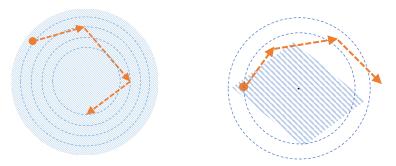


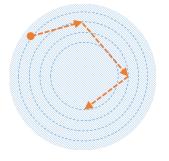


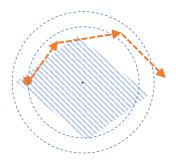




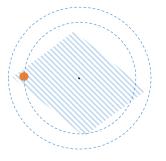


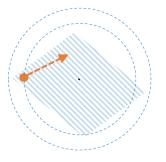


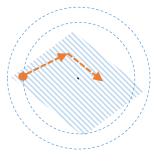


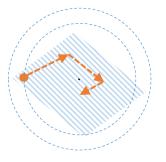


- \bullet Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
- Prior theory enforces regularization to promote incoherence

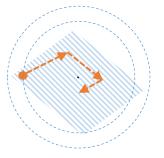








region of local strong convexity + smoothness



GD implicitly forces iterates to remain incoherent

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

 $ullet \max_k ig| oldsymbol{a}_k^ op (oldsymbol{x}^t - oldsymbol{x}^ au) ig| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^ au\|_2 \quad ext{(incoherence)}$

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- $ullet \max_k |oldsymbol{a}_k^ op (oldsymbol{x}^t oldsymbol{x}^
 atural})| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^
 atural}\|_2 \quad ext{(incoherence)}$
- $ullet \|m{x}^t m{x}^ata\|_2 \lesssim \left(1 rac{\eta}{2}
 ight)^t \|m{x}^ata\|_2$ (near-linear convergence)

provided that step size $\eta \approx \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- $\max_k |\boldsymbol{a}_k^{ op}(\boldsymbol{x}^t \boldsymbol{x}^{
 atural})| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{
 atural}\|_2$ (incoherence)
- $\|x^t x^{\natural}\|_2 \lesssim (1 \frac{\eta}{2})^t \|x^{\natural}\|_2$ (near-linear convergence)

provided that step size $\eta \approx \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

• Step size: $\frac{1}{\log n}$ (vs. $\frac{1}{n}$)

Theorem 1 (Phase retrieval)

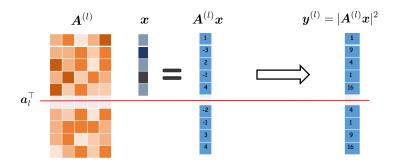
Under i.i.d. Gaussian design, WF achieves

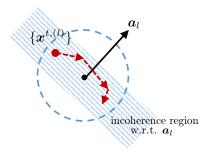
- $\max_k |\boldsymbol{a}_k^{ op}(\boldsymbol{x}^t \boldsymbol{x}^{
 atural})| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{
 atural}\|_2$ (incoherence)
- $ullet \|m{x}^t m{x}^eta\|_2 \lesssim \left(1 rac{\eta}{2}
 ight)^t \|m{x}^eta\|_2$ (near-linear convergence)

provided that step size $\eta \approx \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

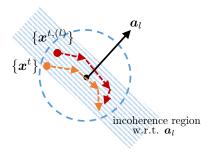
- Step size: $\frac{1}{\log n}$ (vs. $\frac{1}{n}$)
- Computational complexity: $\frac{n}{\log n}$ times faster than existing theory

For each $1 \leq l \leq m$, introduce leave-one-out iterates $\boldsymbol{x}^{t,(l)}$ by dropping lth measurement

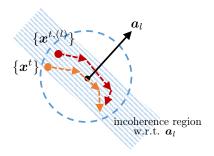




ullet Leave-one-out iterates $\{x^{t,(l)}\}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.



- ullet Leave-one-out iterates $\{x^{t,(l)}\}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.
- ullet Leave-one-out iterates $x^{t,(l)} pprox {
 m true}$ iterates x^t



- Leave-one-out iterates $\{x^{t,(l)}\}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.
- ullet Leave-one-out iterates $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterates $oldsymbol{x}^t$

$$\bullet \ \left| \boldsymbol{a}_l^\top (\boldsymbol{x}^t - \boldsymbol{x}^\natural) \right| \leq \left| \boldsymbol{a}_l^\top (\boldsymbol{x}^{t,(l)} - \boldsymbol{x}^\natural) \right| + \left| \boldsymbol{a}_l^\top (\boldsymbol{x}^t - \boldsymbol{x}^{t,(l)}) \right|$$

This recipe is quite general

Low-rank matrix completion

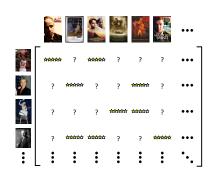


Fig. credit: Candès

Given partial samples Ω of a *low-rank* matrix M, fill in missing entries

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

- regularized loss (solve $\min_{\boldsymbol{X}} f(\boldsymbol{X}) + R(\boldsymbol{X})$ instead)
 - o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

- regularized loss (solve $\min_{\boldsymbol{X}} f(\boldsymbol{X}) + R(\boldsymbol{X})$ instead) • e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
- projection onto set of incoherent matrices
 - o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

• in $O(\log \frac{1}{\varepsilon})$ iterations

if step size $\eta \lesssim 1/\sigma_{\rm max}(\boldsymbol{M})$ and sample size $\gtrsim nr^3\log^3 n$

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

• in $O(\log \frac{1}{\varepsilon})$ iterations w.r.t. $\|\cdot\|_{\mathrm{F}}$, $\|\cdot\|_{\mathrm{,and}}$ incoherence

if step size $\eta \lesssim 1/\sigma_{\max}({\bf M})$ and sample size $\gtrsim nr^3\log^3 n$

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

• in $O(\log \frac{1}{\varepsilon})$ iterations w.r.t. $\|\cdot\|_{\mathrm{F}}$, $\|\cdot\|$, and $\underbrace{\|\cdot\|_{2,\infty}}_{\text{incoherence}}$

if step size $\eta \lesssim 1/\sigma_{\max}({\bf M})$ and sample size $\gtrsim nr^3\log^3 n$

- Byproduct: vanilla GD controls entrywise error
 - errors are spread out across all entries

Blind deconvolution

image deblurring

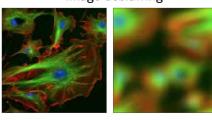


Fig. credit: Romberg

multipath in wireless comm

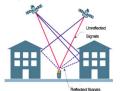


Fig. credit: EngineeringsALL

Reconstruct two signals from their convolution; equivalently,

find
$$h, x \in \mathbb{C}^n$$

find
$$h, x \in \mathbb{C}^n$$
 s.t. $b_k^* h x^* a_k = y_k$, $1 \le k \le m$

$$\begin{split} & \mathsf{minimize}_{\boldsymbol{x},\boldsymbol{h}} \quad f(\boldsymbol{x},\boldsymbol{h}) = \sum_{k=1}^m \left| \boldsymbol{b}_k^* \left(\boldsymbol{h} \boldsymbol{x}^* - \boldsymbol{h}^\natural \boldsymbol{x}^{\natural*} \right) \boldsymbol{a}_k \right|^2 \\ & \boldsymbol{a}_k \overset{\mathrm{i.i.d.}}{\sim} \quad \mathcal{N}(\boldsymbol{0},\boldsymbol{I}) \qquad \text{and} \qquad \{\boldsymbol{b}_k\}: \; \mathsf{partial Fourier basis} \end{split}$$

$$\begin{split} & \mathsf{minimize}_{\boldsymbol{x},\boldsymbol{h}} \quad f(\boldsymbol{x},\boldsymbol{h}) = \sum_{k=1}^m \left| \boldsymbol{b}_k^* \left(\boldsymbol{h} \boldsymbol{x}^* - \boldsymbol{h}^\natural \boldsymbol{x}^{\natural*} \right) \boldsymbol{a}_k \right|^2 \\ & \boldsymbol{a}_k \ \stackrel{\mathrm{i.i.d.}}{\sim} \ \mathcal{N}(\boldsymbol{0},\boldsymbol{I}) \quad \text{ and } \quad \{\boldsymbol{b}_k\} : \ \mathsf{partial Fourier basis} \end{split}$$

- regularized loss + projection
 - e.g. Li, Ling, Strohmer, Wei '16, Huang, Hand '17, Ling, Strohmer '17

$$\begin{split} & \text{minimize}_{\boldsymbol{x},\boldsymbol{h}} \quad f(\boldsymbol{x},\boldsymbol{h}) = \sum_{k=1}^m \left| \boldsymbol{b}_k^* \left(\boldsymbol{h} \boldsymbol{x}^* - \boldsymbol{h}^\natural \boldsymbol{x}^{\natural*} \right) \boldsymbol{a}_k \right|^2 \\ & \boldsymbol{a}_k \ \stackrel{\text{i.i.d.}}{\sim} \ \mathcal{N}(\boldsymbol{0},\boldsymbol{I}) \quad \text{ and } \quad \{\boldsymbol{b}_k\} : \text{ partial Fourier basis} \end{split}$$

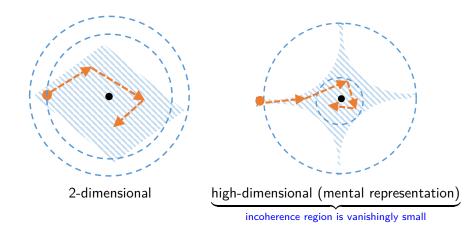
- regularized loss + projection
 - e.g. Li, Ling, Strohmer, Wei '16, Huang, Hand '17, Ling, Strohmer '17
 - \circ requires m iterations even with regularization

Theorem 3 (Blind deconvolution)

Suppose \mathbf{h}^{\natural} is incoherent w.r.t. $\{\mathbf{b}_k\}$. Vanilla gradient descent (with spectral initialization) achieves ε accuracy in $O(\log \frac{1}{\varepsilon})$ iterations, provided that step size $\eta \lesssim 1$ and sample size $m \gtrsim n \operatorname{poly} \log(m)$.

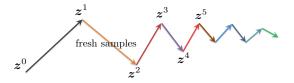
- Regularization-free
- Converges in $O(\log \frac{1}{\varepsilon})$ iterations (vs. $O(m \log \frac{1}{\varepsilon})$ iterations in prior theory)

Incoherence region in high dimensions



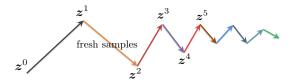
Complicated dependencies across iterations

 Several prior sample-splitting approaches: require fresh samples at each iteration; not what we actually run in practice

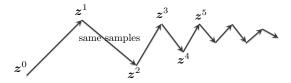


Complicated dependencies across iterations

• Several prior sample-splitting approaches: require fresh samples at each iteration; not what we actually run in practice



• This work: reuses all samples in all iterations



Summary

• Implicit regularization: vanilla gradient descent automatically forces iterates to stay *incoherent*

Summary

- Implicit regularization: vanilla gradient descent automatically forces iterates to stay *incoherent*
- Enable error controls in a much stronger sense (e.g. entrywise error control)

Paper:

"Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion, and blind deconvolution", Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467