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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize,, l(x;y) —  may be nonconvex

subj. to x €S — may be nonconvex
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Empirical risk minimization is usually nonconvex

minimize,, l(x;y) —  may be nonconvex

subj. to x €S — may be nonconvex

low-rank matrix completion

graph clustering

dictionary learning

e mixture models

deep learning
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Nonconvex optimization may be super scary

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima)

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu'98)
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... but is sometimes much nicer than we think

Under certain statistical models,
we see benign global geometry: no spurious local optima

Fig credit: Sun, Qu & Wright
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... but is sometimes much nicer than we think

statistical models

benign
landscape

exploit geometry

efficient algorithms



Optimization-based methods: two-stage approach

0

initial guess @
1

basin of attraction

e Start from an appropriate initial point
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Optimization-based methods: two-stage approach

0

initial guess @

Saen
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1

basin of attraction basin of attraction

e Start from an appropriate initial point

e Proceed via some iterative optimization algorithms
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Roles of regularization

e Prevents overfitting and improves generalization

o e.g. £1 penalization, SCAD, nuclear norm penalization, ...
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Roles of regularization

e Prevents overfitting and improves generalization

o e.g. £1 penalization, SCAD, nuclear norm penalization, ...

e Improves computation by stabilizing search directions
— focus of this talk

o e.g. trimming, projection, regularized loss
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3 representative nonconvex problems

phase matrix blind
retrieval completion deconvolution
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Regularized methods
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Regularized vs. unregularized methods

phase matrix blind
retrieval completion deconvolution
l’ \ I’ \ II \
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trimming suboptimal  regularized cost ? regularized cost ?
comput. cost projection projection
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Regularized vs. unregularized methods

phase matrix blind
retrieval completion deconvolution
I’ \ I’ \ II \
o 1\3 : ; E [/
regulariz¢gd  un \gularlzed regularizgd  unr éularized regularized unrdgularized
] ! /
1 1
/ \ / \ \
< ) 4 < 4 <
trimming suboptimal regularized cost ? regularized cost ?
comput. cost projection projection

Are unregularized methods suboptimal for nonconvex estimation? J
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Missing phase problem

Detectors record intensities of diffracted rays

e clectric field x(t1,t2) — Fourier transform Z( f1, f2)

"
]

Fig credit: Stanford SLAC
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intensity of electrical field: |Z(f1, f2)|” = ( / x(ty, to)e 2t at2) gy, dg,
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Missing phase problem

Detectors record intensities of diffracted rays
e clectric field x(t1,t2) — Fourier transform Z( f1, f2)
Fig credit: Stanford SLAC

. 2
intensity of electrical field: |Z(f1, f>)|” = ( / x(tl,tQ)e*m(flt1+f2t2>dt1dt2]

Phase retrieval: recover signal z(t1,t2) from intensity |§(f1,f2)|2 J
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Solving quadratic systems of equations
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Recover x! € R" from m random quadratic measurements
q
T, 402
Y = |akcch|, k=1,...,m

Assume w.l.o.g. ||xt||y = 1
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

Empirical risk minimization

minimize, f(x) = — Z [(a{x)Q - yk}
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

Empirical risk minimization
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)

e (local) smoothness

V2f(z) = 0 and is well-conditioned
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V%f(x) < BI, Va

14/ 36



Gradient descent theory revisited

lz"*! — @il < (1 —a/B) &' —afla |

region of local strong convexity 4+ smoothness
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Gradient descent theory revisited

0 < ol = V3f(x) < BI, Ve

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

0 < ol < V3f(x) =< BI, Va

{5 error contraction: GD with n = 1//3 obeys

«
o~ ol < (1- 5 ) o' 2l

e Condition number 3/« determines rate of convergence

e Attains s-accuracy within O(Z log 1) iterations

16/ 36



What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Population level (infinite samples)

E[V*/(@)] =3 (llel3 T + 22a”) — (¥ ;1 + 22°2"")

locally positive definite and well-conditioned

Consequence: WF converges within O(log ) iterations if m — oo J
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candeés et al '14): WEF attains e-accuracy within
O(nlog ) iterations if m =< nlogn

Too slow ... can we accelerate it?
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One solution: truncated WF (Chen, Candeés ’15)

Regularize / trim gradient components to accelerate convergence
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But wait a minute ...

WF converges in O(n) iterations
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Step size taken to be 1, = O(1/n)
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WF converges in O(n) iterations

i}

Step size taken to be 1, = O(1/n)

i}

This choice is suggested by generic optimization theory

19/ 36



But wait a minute ...

WF converges in O(n) iterations

i}

Step size taken to be 1, = O(1/n)

i}

This choice is suggested by worst-case optimization theory

19/ 36



But wait a minute ...

WF converges in O(n) iterations

i}

Step size taken to be 1, = O(1/n)

i}

This choice is suggested by worst-case optimization theory

i}

Does it capture what really happens?
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Numerical surprise with 7, = 0.1

10°

10-10 L

Relative || - || error

1015 | | | I
0 100 200 300 400 500
Iteration count

Vanilla GD (WF) can proceed much more aggressively!
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

V(@)= " [3(a]2)” - (a]2%)’] ara]

k=1

e Not smooth if  and a;, are too close (coherent)
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A second look at gradient descent theory
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

ay

[a] (z — 2| < logn

e x is not far away from "
e x is incoherent w.r.t. sampling vectors (incoherence region)
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

az a|

3 (z —2°)| < Viegn .
lay (z — 2| < logn o] (= — )| < v/iogT

e x is not far away from "
e x is incoherent w.r.t. sampling vectors (incoherence region)
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region

e Prior theory enforces regularization to promote incoherence
22/ 36



Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent J
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Theoretical guarantees

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves
o maxy |a] (z! — 2%)| < Viogn||zf|2 (incoherence)
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Theoretical guarantees

Theorem 1 (Phase retrieval)
Under i.i.d. Gaussian design, WF achieves
o maxy |a] (z! — 2%)| < Viogn||zf|2 (incoherence)
o ||zt —xfp < (1— g)t |z?||2 (near-linear convergence)

provided that step size n =< ﬁ and sample size m 2 nlogn.

n

o Step size: —— (vs. 1)

og n

o Computational complexity: @ times faster than existing theory

24/ 36



Key ingredient: leave-one-out analysis

For each 1 <1 < m, introduce leave-one-out iterates x% (%)
by dropping Ith measurement
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Key ingredient: leave-one-out analysis

a;
{xh{h
&~

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterates {x"()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.
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e Leave-one-out iterates {x"()} are independent of a;, and are
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e Leave-one-out iterates z©() ~~ true iterates x'
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Key ingredient: leave-one-out analysis

a;
{xh{h
(a}/o

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterates {x"()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.

e Leave-one-out iterates () a true iterates x!
o |a] (z! — 29| < |a] (zt© — a)| + |a] (zt — zD)|
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This recipe is quite general



Low-rank matrix completion
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Fig. credit: Candés

Given partial samples €2 of a low-rank matrix M, fill in missing entries
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Prior art

minimizex f(X) = Z (GJTXXTek—MJ’,k)Q
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Prior art

minimizex f(X) = Z (GJTXXTek—MJ’,k)Q
(4.k)eQ

Existing theory on gradient descent requires

e regularized loss (solve minx f(X)+ R(X) instead)

o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
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Prior art

minimizex f(X) = Z (GJTXXTek—MJ’,k)Q
(4.k)eQ

Existing theory on gradient descent requires

e regularized loss (solve minx f(X)+ R(X) instead)
o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

e projection onto set of incoherent matrices
o e.g. Chen, Wainwright '15, Zheng, Lafferty '16
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Theoretical guarantees

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves ¢ accuracy

e in O(log?) iterations

if step size N < 1/0max(M) and sample size > nr3log®n
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Theoretical guarantees

Theorem 2 (Matrix completion)
Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves ¢ accuracy

e in O(log?) iterations w.r.t. || - | ,and || -

F ‘2,00

incoherence

if step size n < 1/0max(M) and sample size > nr3log® n
77 ~Y ~Y

e Byproduct: vanilla GD controls entrywise error
— errors are spread out across all entries

30/ 36




Blind deconvolution

image deblurring multipath in wireless comm

Reflected Signals

Fig. credit:
EngineeringsALL

Fig. credit: Romberg

Reconstruct two signals from their convolution; equivalently,

find h,x e C" st. bihx*ar=yr, 1<k<m
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Prior art

m

minimizeyp,  f(x, h) Z

X (hw* — hhwh*) ak‘z

ar K N0, 1) and {by} : partial Fourier basis
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minimizeyp,  f(x, h) Z

¥ (hw* — hhwh*) ak‘z

ar K N0, 1) and {by} : partial Fourier basis

Existing theory on gradient descent requires

e regularized loss + projection

o e.g. Li, Ling, Strohmer, Wei '16, Huang, Hand '17, Ling, Strohmer
17
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Prior art

m

minimizeyp,  f(x, h) Z

¥ (hw* — hhwh*) ak‘z

ar K N0, 1) and {by} : partial Fourier basis

Existing theory on gradient descent requires

e regularized loss + projection

o e.g. Li, Ling, Strohmer, Wei '16, Huang, Hand '17, Ling, Strohmer
17

o requires m iterations even with regularization
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Theoretical guarantees

Theorem 3 (Blind deconvolution)

Suppose h' is incoherent w.r.t. {by}. Vanilla gradient descent (with
spectral initialization) achieves ¢ accuracy in O(log é) iterations,
provided that step size n < 1 and sample size m 2 npoly log(m).

e Regularization-free

e Converges in O(log 1) iterations (vs. O(mlog 1) iterations in
prior theory)
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Incoherence region in high dimensions
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2-dimensional high-dimensional (mental representation)

incoherence region is vanishingly small
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Complicated dependencies across iterations

e Several prior sample-splitting approaches: require fresh samples
at each iteration; not what we actually run in practice

z! 23 5
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Complicated dependencies across iterations

e Several prior sample-splitting approaches: require fresh samples
at each iteration; not what we actually run in practice

z! 23 5




Summary

o Implicit regularization: vanilla gradient descent automatically
forces iterates to stay incoherent
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Summary

o Implicit regularization: vanilla gradient descent automatically
forces iterates to stay incoherent

e Enable error controls in a much stronger sense (e.g. entrywise
error control)

Paper:

“Implicit regularization in nonconvex statistical estimation: Gradient descent
converges linearly for phase retrieval, matrix completion, and blind deconvolution”,
Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467
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