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Abstract
Reinforcement learning (RL) provides a theoret-
ical framework for continuously improving an
agent’s behavior via trial and error. However,
efficiently learning policies from scratch can be
very difficult, particularly for tasks with explo-
ration challenges. In such settings, it might be
desirable to initialize RL with an existing policy,
offline data, or demonstrations. However, naively
performing such initialization in RL often works
poorly, especially for value-based methods. In
this paper, we present a meta algorithm that can
use offline data, demonstrations, or a pre-existing
policy to initialize an RL policy, and is compatible
with any RL approach. In particular, we propose
Jump-Start Reinforcement Learning (JSRL), an
algorithm that employs two policies to solve tasks:
a guide-policy, and an exploration-policy. By us-
ing the guide-policy to form a curriculum of start-
ing states for the exploration-policy, we are able to
efficiently improve performance on a set of simu-
lated robotic tasks. We show via experiments that
JSRL is able to significantly outperform existing
imitation and reinforcement learning algorithms,
particularly in the small-data regime. In addi-
tion, we provide an upper bound on the sample
complexity of JSRL and show that with the help
of a guide-policy, one can improve the sample
complexity for non-optimism exploration meth-
ods from exponential in horizon to polynomial.

1. Introduction
One of the most promising aspects of reinforcement learn-
ing (RL) is the ability of a policy to iteratively improve via
trial and error. Often, however, the most difficult part of this
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process is the very beginning, where a policy that is learning
without any prior data needs to randomly encounter rewards
to further improve. A common way to side-step this explo-
ration issue is to aid the policy with prior knowledge. One
source of prior knowledge for bootstrapping reinforcement
learning might come in the form of a prior policy, which
can provide some initial guidance in collecting data with
non-zero rewards, but which is not by itself fully optimal.
Such policies could be obtained from demonstration data
(e.g., via behavioral cloning), from sub-optimal prior data
(e.g., via offline RL), or even simply via manual engineering.
In the case where this prior policy is itself parameterized
as a function approximator, it could serve to simply initial-
ize a policy gradient method. However, sample-efficient
algorithms based on value functions are notoriously difficult
to bootstrap in this way. As observed in prior work (Peng
et al., 2019; Nair et al., 2020; Kostrikov et al., 2021; Lu
et al., 2021), value functions require both good and bad
data to initialize successfully, and the mere availability of a
reasonable starting policy does not by itself readily provide
an initial value function of comparable performance. This
leads to the main question we pose in this work: how can we
bootstrap a value-based reinforcement learning algorithm
with a prior policy that attains reasonable but sub-optimal
performance?

The main insight that we leverage to address this prob-
lem is that we can bootstrap any RL algorithm by grad-
ually “rolling in” with the prior policy, which we refer to
as the guide-policy. In particular, the guide-policy pro-
vides a curriculum of starting states for the RL exploration-
policy, which significantly simplifies the exploration prob-
lem and allows for fast learning. As the exploration-policy
improves, the effect of the guide-policy is diminished, even-
tually leading to an RL-only policy that is capable of further
autonomous improvement. Our approach is generic, as
it can be applied to any downstream RL method, though
we focus on value-based methods in this work. The only
requirements of our method are that the guide-policy can
select actions based on observations of the environment,
and its performance is reasonable (i.e., better than a ran-
dom policy). Since the guide-policy significantly speeds up
the early phases of RL, we call this approach Jump-Start
Reinforcement Learning (JSRL). We provide an overview
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Figure 1. We study how to efficiently bootstrap value-based reinforcement learning algorithms given access to a prior policy. In vanilla
RL (left), the agent explores randomly from the initial state until it encounters a reward (denoted by the gold star). Our method,
JSRL (right), leverages a prior guide-policy (dashed blue line) that takes the agent close to the reward. After the guide-policy finishes,
the exploration-policy (solid orange line) continues acting in the environment. As the exploration-policy improves its performance, the
influence of the guide-policy diminishes, resulting in a learning curriculum that leads to an effective bootstrapping for any reinforcement
learning method.

diagram of JSRL in Fig. 1.

JSRL can utilize any form of prior policy to accelerate RL. It
is also compatible with any RL algorithm and can be there-
fore easily combined with existing offline and/or online RL
methods. In addition, we provide a theoretical justification
of JSRL by deriving an upper bound on its sample com-
plexity compared to classic RL alternatives. Finally, we
demonstrate that JSRL significantly outperforms previously
proposed imitation and reinforcement learning approaches
on a set of benchmark tasks as well as more challenging
vision-based robotic problems.

2. Related Work
Imitation learning combined with reinforcement learn-
ing (IL+RL). Several previous works on leveraging a prior
policy to initialize reinforcement learning focus on doing so
by combining imitation learning and reinforcement learn-
ing. One well-studied class of approaches initializes pol-
icy search methods with policies trained via behavioral
cloning (Schaal et al., 1997; Kober et al., 2010; Rajeswaran
et al., 2017). This is an effective strategy for initializing
policy search methods, but is generally ineffective with
actor-critic or value-based methods, where the critic also
needs to be initialized (Nair et al., 2020), as we also illus-
trate in Section 3. Several prior methods have proposed
to include prior data in the replay buffer for a value-based

0A project webpage is available at https://
jumpstart-rl.github.io

approach (Nair et al., 2018; Vecerik et al., 2018), but this
requires prior data rather than just a prior policy. More
recent approaches improve this strategy by utilizing offline
RL (Kumar et al., 2020; Nair et al., 2020; Lu et al., 2021)
to pretrain on prior data and then finetune. We compare to
such methods, showing that our approach not only makes
weaker assumptions (requiring only a policy rather than a
dataset), but also performs comparably or better.

Curriculum learning and exact state resets for RL. A
number of prior works have investigated more efficient ex-
ploration strategies in RL that are based on starting explo-
ration from specific states. Commonly, these works as-
sume the ability to reset to arbitrary states in simulation.
Some methods uniformly sample states from demonstra-
tions as start states (Hosu & Rebedea, 2016; Peng et al.,
2018; Nair et al., 2018), while others generate curriculas
of start states. The latter includes methods that start at
the goal state and iteratively expand the start state distribu-
tion, assuming reversible dynamics (Florensa et al., 2017;
McAleer et al., 2019) or access to an approximate dynamics
model (Ivanovic et al., 2019). Other approaches generate the
curriculum from demonstration states (Resnick et al., 2018)
or from online exploration (Ecoffet et al., 2019). In con-
trast, our method does not aim to control the exact starting
state distribution, but instead utilizes the implicit distribu-
tion naturally arising from rolling out the guide-policy. This
broadens the distribution of start states compared to exact
resets along a narrow set of demonstrations, making the
learning process more robust. In addition, our approach

https://jumpstart-rl.github.io
https://jumpstart-rl.github.io
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could be extended to the real world, where instantaneously
resetting to an arbitrary state in the environment is impossi-
ble.

Provably efficient exploration techniques. Online explo-
ration in reinforcement learning has been well studied in
theory (Osband & Van Roy, 2014; Jin et al., 2018; Zhang
et al., 2020b; Xie et al., 2021; Zanette et al., 2020; Jin et al.,
2020). The proposed methods either rely on the estimation
of confidence intervals (e.g. UCB, Thompson sampling),
which is hard to approximate and implement when com-
bined with neural networks, or suffer from exponential sam-
ple complexity in the worst-case. In this paper, we leverage
a pre-trained guide-policy to design an algorithm that is
more sample-efficient than these approaches while being
easy to implement in practice.

“Rolling in” policies. Using a preexisting policy (or poli-
cies) to initialize reinforcement learning and improve explo-
ration has also been studied in past literature. Some works
use an ensemble of roll-in policies or value functions to
refine exploration (Jiang et al., 2017; Agarwal et al., 2020).
With a policy that models the environment’s dynamics, it
is possible to look ahead to guide the training policy to-
wards useful actions (Lin, 1992). Similar to our work, an
approach from Smart & Pack Kaelbling (2002) rolls out a
fixed controller that provides the bootstrap data for a pol-
icy’s value function. However, this method does not mix the
prior policy and the learned policy, but only uses the prior
policy for data collection. We use a multi-stage curriculum
to gradually reduce the contribution of the pre-existing pol-
icy during training, which allows for on-policy experience
for the learned policy. Our method is also conceptually re-
lated to DAgger (Ross & Bagnell, 2010), which also bridges
distributional shift by rolling in with one policy and then ob-
taining labels from a human expert, but DAgger is intended
for imitation learning and rolls in the learned policy, while
our method addresses RL and rolls in with a suboptimal
guide-policy.

3. Preliminaries
We define a Markov decision process M =
(S,A, P,R, p0, γ,H), where S and A are state and
action spaces, P : S × A × S → R+ is a state-transition
probability function, R : S ×A → R is a reward function,
p0 : S → R+ is an initial state distribution, γ is a
discount factor, and H is the task horizon. Our goal is to
effectively utilize a prior policy of any form in value-based
reinforcement learning (RL). The goal of RL is to find
a policy π(a|s) that maximizes the expected discounted
reward over trajectories, τ , induced by the policy: Eπ[R(τ)]
where s0 ∼ p0, st+1 ∼ P (·|st, at) and at ∼ π(·|st).
To solve this maximization problem, value-based RL
methods take advantage of state or state-action value

functions (Q-function) Qπ(s, a), which can be learned
using approximate dynamic programming approaches. The
Q-function, Qπ(s, a), represents the discounted returns
when starting from state s and action a, followed by the
actions produced by the policy π.

Figure 2. The dangers of naı̈vely initializing the policy. A policy
is pre-trained on offline data to a medium level of performance.
Negative steps correspond to this pre-training. Then, we use the
policy to initialize actor-critic finetuning (positive steps starting
from step 0.0) using this pretrained policy as the initial actor, and
initializing the critic randomly. Actor performance immediately
drops and does not recover, as the untrained critic provides an
exceedingly poor learning signal, causing the good initial policy to
be forgotten. Our method aims to avoid this problem (see Figure
7).

In order to leverage prior data in value-based RL and con-
tinue fine-tuning, researchers commonly use various offline
RL methods (Kostrikov et al., 2021; Kumar et al., 2020; Nair
et al., 2020; Lu et al., 2021) that often rely on pre-trained,
regularized Q-functions that can be further improved using
online data. In the case where a pre-trained Q-function
is not available and we only have access to a prior policy,
value-based RL methods struggle to effectively incorporate
that information as depicted in Fig. 2. In this experiment,
we train an actor-critic method up to step 0, at which point
we start from a fresh Q-function and continue with the pre-
trained actor simulating the case where we only have access
to a prior policy. This is the setting that we are concerned
with in this work, and we propose an effective solution to
this problem in Sec. 4.

4. Jump-Start Reinforcement Learning
In this section, we describe our method, Jump-Start Rein-
forcement Learning (JSRL), that we use to initialize any
value-based RL algorithm with a prior policy of any form.
We first describe the intuition behind our method then lay
out a detailed algorithm along with theoretical analysis.
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4.1. Rolling In With Two Policies

We assume access to a fixed prior policy that we refer to as
the “guide-policy”, πg(a|s), which we leverage to initialize
an RL algorithm. It is important to note that we do not
assume any particular form of πg; it could be learned with
imitation learning, reinforcement learning, or it could be
manually scripted.

We will refer to the RL policy that is being learned via trial
and error as the “exploration-policy” πe(a|s), since, as it is
commonly done in RL literature, this is the policy that is
used for exploration as well as online improvement. The
only requirement for πe is that it is as an RL policy that can
adapt with online experience. Our approach and the set of
assumptions is generic in that it can handle any downstream
RL method, though we focus on the case where πe is learned
via a value-based RL algorithm.

The main idea behind our method is to leverage the two
policies, πg and πe, executed sequentially to learn tasks
more efficiently. During the initial phases of training, πg

is significantly better than the untrained policy πe, so we
would like to collect data using πg. However, this data
is out of distribution for πe, since exploring with πe will
visit different states. Therefore, we would like to gradu-
ally transition data collection away from πg and toward πe.
Intuitively, we would like to use πg to get the agent into
“good” states, and then let πe take over and explore from
those states. As it gets better and better, πe should take over
earlier and earlier, until all data is being collected by πe

and there is no more distributional shift. We can employ
different switching strategies to switch from πg to πe, but
the most direct curriculum simply switches from πg to πe

at some time step h, where h is initialized to the full task
horizon and gradually decreases over the course of training.
This naturally provides a curriculum for πe. At each curricu-
lum stage, πe needs to master a small part of the state-space
that is required to reach the states covered by the previous
curriculum stage.

4.2. Algorithm

We provide a detailed description of JSRL in Algorithm 1.
Given an RL task with horizon H , we first choose a
sequence of initial guide-steps to which we roll out
our guide-policy, H1, H2, · · · , Hi, · · · , Hn, where Hi ∈
{1, 2, · · · , n} denotes the number of steps that the guide-
policy at the ith iteration acts for. Let h denote the iterator
over such a sequence of initial guide-steps. At the beginning
of each training episode, we roll out πg for h steps, then
πe continues acting in the environment for the additional
H − h steps until the task horizon H is reached. We can
write the combination of the two policies as the combined
policy, π, where π1:h = πg1:h and πh+1:H = πeh+1:H . After
we roll out π to collect online data, we use the new data

to update our exploration-policy πe and combined policy
π by calling a standard training procedure TRAINPOLICY.
For example, the training procedure may be updating the
exploration-policy via a Deep Q-Network (Mnih et al., 2013)
with ε-greedy as the exploration technique. The new com-
bined policy is then evaluated over the course of training us-
ing a standard evaluation procedure EVALUATEPOLICY(π).
Once the performance of the combined policy π reaches a
threshold, β, we continue the for loop with the next guide
step h.

While any guide-step sequence could be used with JSRL,
in this paper we focus on two specific strategies for de-
termining guide-step sequences: via a curriculum and via
random-switching. With the curriculum strategy, we start
with a large guide-step (ie. H1 = H) and use policy evalu-
ations of the combined policy π to progressively decrease
Hn as πe improves. Intuitively, this means that we train
our policy in a backward manner by first rolling out πg to
the last guide-step and then exploring with πe, and then
rolling out πg to the second to last guide-step and exploring
with πe, and so on. With the random-switching strategy,
we sample each h uniformly and independently from the
set {H1, H2, · · · , Hn}. In the rest of the paper, we refer to
the curriculum variant as JSRL, and the random switching
variant as JSRL-Random.

Algorithm 1 Jump-Start Reinforcement Learning
1: Input: guide-policy πg , performance threshold β, task hori-

zon H , a sequence of initial guide-steps H1, H2, · · · , Hn,
where Hi ∈ {H1, H2, · · · , Hn} for all i ≤ n.

2: Initialize exploration-policy from scratch or with the guide-
policy πe ← πg

3: Initialize dataset D
4: for current guide step h = H1, H2, · · · , Hn do
5: Set π1:h = πg

1:h, πh+1:H = πe
h+1:H

6: Roll out policy π to get trajectory
{(s1, a1, r1), · · · , (sH , aH , rH)}; Append the trajectory to
the dataset D

7: πe, πh+1:H ← TRAINPOLICY(πe,D)
8: if EVALUATEPOLICY(π) >= β then
9: Continue

10: end if
11: end for

4.3. Theoretical Analysis

In this section, we provide theoretical analysis of JSRL,
showing that the roll-in data collection strategy that we pro-
pose provably attains polynomial sample complexity. The
sample complexity refers to the number of samples required
by the algorithm to learn a policy with small suboptimal-
ity, where we define the suboptimality for a policy π as
Es∼p0 [V ?(s)− V π(s)].

In particular, we aim to answer two questions:
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Why is JSRL better than other exploration algo-
rithms which start exploration from scratch?
Under which conditions does the guide-policy
provably improve exploration?

To answer the two questions, we study upper and lower
bounds for the sample complexity of the exploration algo-
rithms. We first provide a lower bound showing that simple
non-optimism-based exploration algorithms like ε-greedy
suffer from a sample complexity that is exponential in the
horizon. Then, we show that with the help of a guide-policy
with good coverage of important states, the JSRL algorithm
with ε-greedy as the exploration strategy can achieve poly-
nomial sample complexity.

We focus on comparing JSRL with standard non-optimism-
based exploration methods, e.g. ε-greedy (Langford &
Zhang, 2007) and FALCON+ (Simchi-Levi & Xu, 2020).
Although the optimism-based RL algorithms like UCB (Jin
et al., 2018) and Thompson sampling (Ouyang et al., 2017)
turn out to be efficient strategies for exploration from
scratch, they all require uncertainty quantification, which
can be hard for vision-based RL tasks with neural network
parameterization. Note that the cross entropy method used
in the vision-based RL framework Qt-Opt (Kalashnikov
et al., 2018) is also a non-optimism-based method. In partic-
ular, it can be viewed as a variant of ε-greedy in continuous
action spaces, with the Gaussian distribution as the explo-
ration distribution.

We first show that without the help of a guide-policy, the
non-optimism-based method usually suffers from a sample
complexity that is exponential in horizon for an episodic
MDP. We adapt the combination lock example in (Koenig &
Simmons, 1993) to show the hardness of exploration from
scratch for non-optimism-based methods.

Theorem 4.1 ((Koenig & Simmons, 1993)). For 0-
initialized ε-greedy, there exists an MDP instance such that
one has to suffer from a sample complexity that is exponen-
tial in total horizon H in order to find a policy that has
suboptimality smaller than 0.5.

We include the construction of combination lock MDP and
the proof in Appendix A.3.2 for completeness. This lower
bound also applies to any other non-optimism-based explo-
ration algorithm which explores uniformly when the esti-
mated Q for all actions are 0. As a concrete example, this
also shows that iteratively running FALCON+ (Simchi-Levi
& Xu, 2020) suffers from exponential sample complexity.

With the above lower bound, we are ready to show the upper
bound for JSRL under certain assumptions on the guide-
policy. In particular, we assume that the guide-policy πg

is able to cover good states that are visited by the optimal
policy under some feature representation:

Assumption 4.2 (Quality of guide-policy πg). Assume that
the state is parametrized by some feature mapping φ : S 7→
Rd such that for any policy π, Qπ(s, a) and π(s) depend on
s only through φ(s), and that in the feature space, the guide-
policy πg cover the states visited by the optimal policy:

sup
s,h

dπ
?

h (φ(s))

dπ
g

h (φ(s))
≤ C.

In other words, the guide-policy visits only all good states
in the feature space. A policy that satisfies Assumption 4.2
may be far from optimal due to wrong choice of actions
in each step. Assumption 4.2 is also much weaker than
the single policy concentratability coefficient assumption,
which requires the guide-policy visits all good state and
action pairs and is a standard assumption in the literature in
offline learning (Rashidinejad et al., 2021; Xie et al., 2021).
The ratio in Assumption 4.2 is also sometimes referred to
as the distribution mismatch coefficient in the literature of
policy gradient methods (Agarwal et al., 2021).

We show via the following theorem that given Assump-
tion 4.2, a simplified JSRL algorithm gives good perfor-
mance guarantees for both tabular MDPs and MDPs with
general function approximation.

Theorem 4.3 (Informal). Under Assumption 4.2 and an
appropriate choice of TrainPolicy and EvaluatePolicy,
JSRL in Algorithm 1 guarantees a suboptimality of
O(CH5/2S1/2A/T 1/2) for tabular MDP; and a near-
optimal bound up to factor of C · poly(H) for MDP with
general function approximation.

To achieve a polynonmial bound for JSRL, it suffices to
take TrainPolicy as ε-greedy. This is in sharp contrast to
Theorem 4.1, where ε-greedy suffers from exponential sam-
ple complexity. As discussed in the related work section,
although a polynomial and even near-optimal bound can be
achieved by many optimism-based methods (Jin et al., 2018;
Ouyang et al., 2017), the JSRL algorithm does not require
constructing a bonus function for uncertainty quantification,
and can be implemented easily based on naı̈ve ε-greedy
methods. For a formal statement and more discussion re-
lated to Theorem 4.3, please refer to Appendix A.3.3.

5. Experiments
In our experimental evaluation, we study the following ques-
tions: (1) How does JSRL compare with competitive IL+RL
baselines? (2) Does JSRL scale to complex vision-based
robotic manipulation tasks? (3) How sensitive is JSRL to
the quality of the guide-policy? (4) How important is the
curriculum component of JSRL?
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Environment Dataset AWAC1 BC1 CQL1 IQL IQL+JSRL (Ours)
Curriculum Random

antmaze-umaze-v0 1k – – – 0.2± 0.5 15.6± 19.9 10.4± 9.6
antmaze-umaze-v0 10k – – – 55.5± 12.5 71.7± 14.5 52.3± 26.7
antmaze-umaze-v0 100k – – – 74.2± 25.6 93.7± 4.2 92.1± 2.8
antmaze-umaze-v0 1m (standard) 59.0 54.6 99.4 97.6± 3.2 98.1± 1.4 95.0± 3.0

antmaze-umaze-diverse-v0 1k – – – 0.0± 0.0 3.1± 8.0 1.9± 4.8
antmaze-umaze-diverse-v0 10k – – – 33.1± 10.7 72.6± 12.2 39.4± 20.1
antmaze-umaze-diverse-v0 100k – – – 29.9± 23.1 81.3± 23.0 82.3± 14.2
antmaze-umaze-diverse-v0 1m (standard) 49.0 45.6 99.4 53.0± 30.5 88.6± 16.3 89.8± 10.0
antmaze-medium-play-v0 1k – – – 0.0± 0.0 0.0± 0.0 0.0± 0.0
antmaze-medium-play-v0 10k – – – 0.1± 0.3 16.7± 12.9 3.8± 5.0
antmaze-medium-play-v0 100k – – – 32.8± 32.6 86.7± 3.7 56.2± 28.8
antmaze-medium-play-v0 1m (standard) 0.0 0.0 0.0 92.8± 2.7 91.1± 3.9 87.8± 4.2

antmaze-medium-diverse-v0 1k – – – 0.0± 0.0 0.0± 0.0 0.0± 0.0
antmaze-medium-diverse-v0 10k – – – 0.0± 0.0 16.6± 11.7 5.1± 8.2
antmaze-medium-diverse-v0 100k – – – 15.7± 17.7 81.5± 18.8 67.0± 17.4
antmaze-medium-diverse-v0 1m (standard) 0.3 0.0 32.3 92.4± 4.5 93.1± 3.1 86.3± 5.9

antmaze-large-play-v0 1k – – – 0.0± 0.0 0.0± 0.0 0.0± 0.0
antmaze-large-play-v0 10k – – – 0.0± 0.0 0.1± 0.2 0.0± 0.0
antmaze-large-play-v0 100k – – – 2.6± 8.2 36.3± 16.4 17.7± 13.4
antmaze-large-play-v0 1m (standard) 0.0 0.0 0.0 62.4± 12.4 62.9± 11.3 48.6± 10.0

antmaze-large-diverse-v0 1k – – – 0.0± 0.0 0.0± 0.0 0.0± 0.0
antmaze-large-diverse-v0 10k – – – 0.0± 0.0 0.1± 0.2 0.0± 0.0
antmaze-large-diverse-v0 100k – – – 4.1± 10.4 34.4± 23.0 22.4± 15.4
antmaze-large-diverse-v0 1m (standard) 0.0 0.0 0.0 68.3± 8.9 68.3± 8.8 58.3± 6.5

pen-binary-v0 100 – – – 18.8± 11.6 24.3± 12.1 29.1± 7.6
pen-binary-v0 1k – – – 30.1± 10.2 36.7± 7.9 46.3± 6.3
pen-binary-v0 10k – – – 38.4± 11.2 44.3± 6.2 52.1± 3.3
pen-binary-v0 100k (standard) 70.3 0.0 9.9 65.0± 2.9 62.6± 3.6 60.6± 2.7
door-binary-v0 100 – – – 0.8± 3.8 0.4± 1.8 0.1± 0.2
door-binary-v0 1k – – – 0.5± 1.5 0.7± 1.0 0.45± 1.2
door-binary-v0 10k – – – 10.6± 14.1 4.3± 8.4 22.3± 11.6
door-binary-v0 100k (standard) 30.1 0.0 0.0 50.2± 2.5 28.5± 19.5 24.3± 11.5

relocate-binary-v0 100 – – – 0.0± 0.0 0.0± 0.1 0.0± 0.0
relocate-binary-v0 1k – – – 0.0± 0.0 0.0± 0.1 0.0± 0.0
relocate-binary-v0 10k – – – 0.2± 0.3 0.6± 1.6 0.5± 0.7
relocate-binary-v0 100k (standard) 2.7 0.0 0.0 8.6± 7.7 0.0± 0.1 4.7± 4.2

Table 1. Comparing JSRL with IL+RL baselines on D4RL tasks by using averaged normalized scores for D4RL Ant Maze and Adroit
tasks. Each method pretrains on an offline dataset and then runs online finetuning for 1m steps. Our method IQL+JSRL is competitive
with IL+RL baselines in the full dataset setting, but performs significantly better in the small-data regime. For implementation details and
more detailed comparisons, see Appendix A.2.

5.1. Comparison with IL+RL baselines

To study how JSRL compares with competitive IL+RL meth-
ods, we utilize the D4RL (Fu et al., 2020) benchmark tasks,
which vary in task complexity and offline dataset quality.
Out of the suite of D4RL tasks, we focus on the most chal-
lenging tasks: Ant Maze and Adroit manipulation. We
consider a common setting where the agent first trains on
an offline dataset (1m transitions for Ant Maze, 100k tran-
sitions for Adroit) and then runs online fine-tuning for 1m
steps. We compare against algorithms designed specifically
for this setting, which include AWAC (Nair et al., 2020),
IQL (Kostrikov et al., 2021), CQL (Kumar et al., 2020), and
behavior cloning (BC). While JSRL can be used in combi-
nation with any initial guide-policy or fine-tuning algorithm,
we show the combination of JSRL with the strongest base-

line, IQL. In Table 1, we see that across the Ant Maze
environments and Adroit environments, IQL+JSRL is able
to successfully fine-tune given an initial offline dataset, and
is competitive with baselines. We will come back for further
analysis of results in Table 1 when discussing the sensitivity
to the size of the dataset.

5.2. Vision-Based Robotic Tasks

Utilizing offline data is especially challenging in complex
tasks such as vision-based robotic manipulation. The high
dimensionality of both the continuous control action space
as well as the pixel-based state space present unique scal-

1The AWAC, BC, and CQL performance scores for D4RL are
taken from (Kostrikov et al., 2021) which only evaluated settings
with full-sized datasets.
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Figure 3. In the simulated vision-based robotic grasping tasks, a
robot arm must grasp various objects placed in bins in front of it.
Full implementation details are described in Appendix A.1.2.

ing challenges for imitation-learning and reinforcement-
learning-based methods. To study how JSRL scales to such
settings, we focus on two challenging simulated robotic
manipulation tasks: Indiscriminate Grasping and Instance
Grasping. In these tasks, a simulated robot arm is placed
in front of a table with various categories of objects. When
the robot lifts any object, a sparse reward is given for the
Indiscriminate Grasping task; for the more challenging In-
stance Grasping task, the sparse reward is only given when
a sampled target object is grasped. An image of the task is
shown in Fig. 3 and described in detail in Appendix A.1.2.
We compare our algorithm against methods that have been
shown to scale to such complex vision-based robotics set-
tings: Qt-Opt (Kalashnikov et al., 2018), AW-Opt (Lu et al.,
2021), and BC. Each method has access to the same offline
dataset of 2,000 successful demonstrations and is allowed
to run online fine-tuning for up to 100,000 steps. While
AW-Opt and BC utilize offline successes as part of their
original design motivation, we allow a more fair comparison
for Qt-Opt by initializing the replay buffer with the offline
demonstrations, which was not the case in the original Qt-
Opt paper. Since we have already shown that JSRL can work
well with an offline RL algorithm in the previous experi-
ment, to demonstrate the flexibility of our approach, in this
experiment we combine JSRL with an online Q-learning
method: Qt-Opt. As seen in Fig. 4, the combination of
Qt-Opt+JSRL (both versions of the curricula) significantly
outperforms the other methods in both sample efficiency as
well as the final performance.

Figure 4. Comparison of IL+RL methods on two challenging sim-
ulated robotic grasping tasks. While the baselines show improve-
ment with finetuning, Qt-Opt+JSRL is more sample efficient and
attains higher final performance.

5.3. Initial Dataset Sensitivity

While most IL and RL methods are improved by more data
and higher quality data, there are often practical limitations
that restrict initial offline datasets. JSRL is no exception to
this dependency, as the quality of the guide-policy πg di-
rectly depends on the offline dataset when utilizing JSRL in
an IL+RL setting (i.e., when the guide-policy is pre-trained
on an offline dataset). We study the offline dataset sensitiv-
ity of IL+RL algorithms and JSRL on both D4RL tasks as
well as the vision-based robotic grasping tasks. We note that
the two settings presented in D4RL and Robotic Grasping
are quite different: IQL+JSRL in D4RL pretrains with an
offline RL algorithm from a mixed quality offline dataset,
while Qt-Opt+JSRL pretrains with BC from a high quality
dataset.

For D4RL, methods typically utilize 1 million transitions
from mixed-quality policies from previous RL training runs;
as we reduce the size of the offline datasets in Table 1,
IQL+JSRL performance degrades less than the baseline IQL
performance. For the robotic grasping tasks, we initially pro-
vided 2,000 high-quality demonstrations; as we drastically
reduce the number of demonstrations, we find that JSRL ef-
ficiently learns better policies. Across both D4RL and the
robotic grasping tasks, JSRL outperforms baselines in the
low-data regime, as shown in Table 1 and Table 2. In the
high-data regime when we increase the number of demon-
strations by 10x to 20,000 demonstrations, we notice that
AW-Opt and BC perform much more competitively, suggest-
ing that the exploration challenge is no longer the bottleneck.
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Environment # Demos Qt-Opt AW-Opt BC Qt-Opt+JSRL (Ours)
Indiscriminate Grasping 20 0.0± 0.0 0.0± 0.0 0.19± 0.04 0.92± 0.00
Indiscriminate Grasping 200 0.93± 0.01 0.96± 0.02 0.23± 0.00 0.92± 0.01
Indiscriminate Grasping 2k 0.94± 0.01 0.97± 0.01 0.44± 0.05 0.94± 0.03
Indiscriminate Grasping 20k 0.94± 0.01 0.98± 0.01 0.91± 0.01 0.95± 0.00

Instance Grasping 20 0.23± 0.20 0.47± 0.04 0.05± 0.04 0.50± 0.09
Instance Grasping 200 0.47± 0.04 0.49± 0.02 0.15± 0.02 0.54± 0.03
Instance Grasping 2k 0.15± 0.26 0.43± 0.03 0.28± 0.04 0.57± 0.07
Instance Grasping 20k 0.28± 0.25 0.57± 0.01 0.49± 0.02 0.58± 0.02

Table 2. Limiting the initial number of demonstrations is challenging for IL+RL baselines on the difficult robotic grasping tasks. Notably,
only Qt-Opt+JSRL is able to learn in the smallest-data regime of just 20 demonstrations, 100x less than the standard 2,000 demonstrations.

Figure 5. Example ant maze (left) and adroit dexterous manipula-
tion (right) tasks.

While starting with such large numbers of demonstrations
is not typically a realistic setting, this results suggests that
the benefits of JSRL are most prominent when the offline
dataset does not densely cover good state-action pairs. This
aligns with our analysis in A.1 that JSRL does not require
such assumptions about the dataset, but solely requires a
prior policy.

5.4. JSRL-Curriculum vs. JSRL-Random Switching

In order to disentangle these two components, we propose an
augmentation of our method, JSRL-Random, that randomly
selects the number of guide-steps every episode. Using the
D4RL tasks and the robotic grasping tasks, we compare
JSRL-Random to JSRL and previous IL+RL baselines and
find that JSRL-Random performs quite competitively, as
seen in Table 1 and Table 2. However, when considering
sample efficiency, Fig. 4 shows that JSRL is better than
JSRL-Random in early stages of training, while converged
performance is comparable. These same trends hold when
we limit the quality of the guide-policy by constraining the
initial dataset, as seen in Fig. 6. This suggests that while a
curriculum of guide-steps does help sample efficiency, the
largest benefits of JSRL may stem from the presence of good
visitation states induced by the guide-policy as opposed to
the specific order of good visitation states, as suggested by
our analysis in Appendix A.3.3.

Figure 6. We evaluate the importance of guide-policy quality for
JSRL on vision-based Instance Grasping, the most challenging
task we consider. By limiting the initial demonstrations avail-
able, JSRL is less sensitive to limitations of initial demonstrations
compared to baselines, especially in the small-data regime. For
each of these initial demonstration settings, we also find that Qt-
Opt+JSRL is more sample efficient than Qt-Opt+JSRL-Random
in early stages of training, but converge to the same final perfor-
mances. A similar analysis for Indiscriminate Grasping is provided
in Fig. 8 in the Appendix.
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6. Conclusion
In this work, we propose Jump-Start Reinforcement Learn-
ing (JSRL), a method for leveraging a prior policy of any
form to bolster exploration in reinforcement learning and
hence increasing sample efficiency. Our algorithm creates a
learning curriculum by rolling in a preexisting guide-policy,
which is then followed by the self-improving exploration
policy. The job of the exploration policy is significantly
simplified as it starts its exploration from the states closer to
the goal. As the exploration policy improves, the effect of
the guide-policy diminishes, leading to a fully capable RL
policy. Importantly, our approach is generic in that it can
be used with any downstream RL method. We showed the
benefits of JSRL in a set of offline RL benchmark tasks as
well as more challenging vision-based robotic simulation
tasks. Our experiments indicated that JSRL is more sample
efficient than more complex IL+RL approaches while being
easily compatible with other approaches’ benefits. In addi-
tion, we presented theoretical analysis of an upper bound
on the sample complexity of JSRL , which showed from-
exponential-to-polynomial improvement in time horizon
from non-optimism exploration methods.

In the future, we plan on deploying JSRL in the real world in
conjunction with various types of guide policies to further
investigate its ability to initialize reinforcement learning
efficiently.
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A. Appendix
A.1. Experiment Implementation Details

A.1.1. D4RL: ANT MAZE AND ADROIT

We evaluate on the Ant Maze and Adroit tasks, the most challenging tasks in the D4RL benchmark (Fu et al., 2020). For the
baseline IL+RL method comparisons, we utilize implementations and reported results from (Kostrikov et al., 2021): we use
the open-sourced version of IQL and the reported results from for AWAC, BC, and CQL. While the standard initial offline
datasets contain 1m transitions for Ant Maze and 100k transitions for Adroit, we additionally ablate the datasets to evaluate
settings with 100, 1k, 10k, and 100k transitions provided initially.

For the implementation of IQL+JSRL, we build upon the open-sourced IQL implementation (Kostrikov et al., 2021). First,
to obtain a guide-policy, we use IQL without modification for pretraining on the offline dataset. Then, we follow Algorithm 1
when finetuning online and use the IQL online update as the TRAINPOLICY step from Algorithm 1. The IQL neural network
architecture follows the original implementation of (Kostrikov et al., 2021). For finetuning, we maintain two replay buffers
for offline and online transitions. The offline buffer contains all the demonstrations, and the online buffer is FIFO with a
fixed capacity of 100k transitions. For each gradient update during finetuning, we sample minibatches such that 75% of
samples come from the online buffer, and 25% of samples come from the offline buffer.

Our implementation of IQL+JSRL focused on two settings when switching from offline pretraining to online finetuning:
Warm-starting and Cold-starting. When Warm-starting, we copy the actor, critic, target critic, and value networks from
the pre-trained guide-policy to the exploration-policy. When Cold-starting, we instead start training the exploration-policy
from scratch. Results for both variants are shown in Appendix A.2. We find that empirically, the performance of these
two variants is highly dependent on task difficulty as well as the quality of the initial offline dataset. When initial datasets
are very poor, cold-starting usually performs better; when initial datasets are dense and high-quality, warm-starting seems
to perform better. For the results reported in Table 1, we utilize Cold-start results for both IQL+JSRL-Curriculum and
IQL+JSRL-Random.

Finally, the curriculum implementation for IQL+JSRL used policy evaluation every 10,000 steps to gauge learning progress
of the exploration-policy πe. When the moving average of πe’s performance increases over a few samples, we move on to
the next curriculum stage. For the IQL+JSRL-Random variant, we randomly sample the number of guide-steps for every
single episode.

A.1.2. SIMULATED ROBOTIC MANIPULATION

We simulate a 7 DoF arm with an over-the-shoulder camera (see Figure 3). Three bins in front of the robot are filled with
various simulated objects to be picked up by the robot and a sparse binary reward is assigned if any object is lifted above
a bin at the end of an episode. States are represented in the form of RGB images and actions are continuous Cartesian
displacements of the gripper’s 3D positions and yaw. In addition, the policy commands discrete gripper open and close
actions and may terminate an episode.

For the implementation of Qt-Opt+JSRL, we build upon the Qt-Opt algorithm described in (Kalashnikov et al., 2018). First,
to obtain a guide-policy, we use a BC policy trained offline on the provided demonstrations. Then, we follow Algorithm 1
when finetuning online and use the Qt-Opt online update as the TRAINPOLICY step from Algorithm 1. The demonstrations
are not added to the Qt-Opt+JSRL replay buffer. The Qt-Opt neural network architecture follows the original implementation
in (Kalashnikov et al., 2018).

Finally, similar to Appendix A.1.1, the curriculum implementation for Qt-Opt+JSRL used policy evaluation every 1,000 steps
to gauge learning progress of the exploration-policy πe. When the moving average of πe’s performance increases over a few
samples, the number of guide-steps is lowered, allowing the JSRL curriculum to continue. For the Qt-Opt+JSRL-Random
variant, we randomly sample the number of guide-steps for every single episode.

A.2. Additional Experiments
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Figure 7. Naive bootstrapping in IQL vs. IQL+JSRL. JSRL avoids deteriorating the policy in the setting where we have access to a good
actor, but the critic is initialized randomly.

JSRL: Random Switching JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 27.18± 7.77 29.12± 7.62 25.10± 8.73 24.31± 12.05 18.80± 11.63
door-binary-v0 0.01± 0.04 0.06± 0.23 1.45± 4.67 0.40± 1.80 0.84± 3.76

relocate-binary-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.06 0.01± 0.03

Table 3. Adroit 100 Offline Transitions

JSRL: Random Switching JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 47.23± 3.96 46.30± 6.34 34.23± 7.22 36.74± 7.91 30.11± 10.22
door-binary-v0 0.15± 0.25 0.45± 1.22 0.44± 0.89 0.68± 1.02 0.53± 1.46

relocate-binary-v0 0.06± 0.08 0.01± 0.04 0.05± 0.09 0.04± 0.10 0.01± 0.03

Table 4. Adroit 1k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 51.78± 3.00 52.11± 3.30 38.04± 12.71 44.31± 6.22 38.41± 11.18
door-binary-v0 10.59± 11.78 22.32± 11.61 5.08± 7.60 4.33± 8.38 10.61± 14.11

relocate-binary-v0 1.99± 3.15 0.50± 0.65 4.39± 8.17 0.55± 1.60 0.19± 0.32

Table 5. Adroit 10k Offline Transitions
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Figure 8. Comparing IL+RL methods with JSRL on the Indiscriminate Grasping task while adjusting the initial demonstrations available.
In addition, compare the sample efficiency
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Figure 9. Comparing IL+RL methods with JSRL on the Instance Grasping task while adjusting the initial demonstrations available.
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IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL
pen-binary-v0 60.06± 2.94 60.58± 2.73 62.81± 2.79 62.59± 3.62 64.96± 2.87
door-binary-v0 27.23± 8.90 24.27± 11.47 38.70± 17.25 28.51± 19.54 50.21± 2.50

relocate-binary-v0 5.09± 4.39 4.69± 4.16 11.18± 11.69 0.04± 0.14 8.59± 7.70

Table 6. Adroit 100k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 0.10± 0.31 10.35± 9.59 0.40± 0.94 15.60± 19.87 0.20± 0.52
antmaze-umaze-diverse-v0 0.10± 0.31 1.90± 4.81 0.45± 1.23 3.05± 7.99 0.00± 0.00
antmaze-medium-play-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

antmaze-medium-diverse-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
antmaze-large-play-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

antmaze-large-diverse-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 7. Ant Maze 1k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 56.00± 13.70 52.70± 26.71 57.25± 15.86 71.70± 14.49 55.50± 12.51
antmaze-umaze-diverse-v0 23.05± 10.96 39.35± 20.07 26.80± 12.03 72.55± 12.18 33.10± 10.74
antmaze-medium-play-v0 0.05± 0.22 3.75± 4.97 0.00± 0.00 16.65± 12.93 0.10± 0.31

antmaze-medium-diverse-v0 0.00± 0.00 5.10± 8.16 0.00± 0.00 16.60± 11.71 0.00± 0.00
antmaze-large-play-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.05± 0.22 0.00± 0.00

antmaze-large-diverse-v0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.05± 0.22 0.00± 0.00

Table 8. Ant Maze 10k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 73.35± 22.58 92.05± 2.76 71.35± 26.36 93.65± 4.21 74.15± 25.62
antmaze-umaze-diverse-v0 40.95± 13.34 82.25± 14.20 38.80± 21.96 81.30± 23.04 29.85± 23.08
antmaze-medium-play-v0 9.55± 14.42 56.15± 28.78 22.15± 29.82 86.85± 3.67 32.80± 32.64

antmaze-medium-diverse-v0 14.05± 13.30 67.00± 17.43 15.75± 16.48 81.50± 18.80 15.70± 17.69
antmaze-large-play-v0 0.35± 0.93 17.70± 13.35 0.45± 1.19 36.30± 16.41 2.55± 8.19

antmaze-large-diverse-v0 1.25± 2.31 22.40± 15.44 0.75± 1.16 34.35± 22.97 4.10± 10.37

Table 9. Ant Maze 100k Offline Transitions

IQL+JSRL: Random Switching IQL+JSRL: Curriculum
Environment Warm-start Cold-start Warm-start Cold-start IQL

antmaze-umaze-v0 95.35± 2.23 94.95± 2.95 96.70± 1.69 98.05± 1.43 97.60± 3.19
antmaze-umaze-diverse-v0 65.95± 27.00 89.80± 10.00 59.95± 33.90 88.55± 16.37 52.95± 30.48
antmaze-medium-play-v0 82.25± 4.88 87.80± 4.20 92.20± 2.84 91.05± 3.86 92.75± 2.73

antmaze-medium-diverse-v0 83.45± 4.64 86.25± 5.94 91.65± 2.98 93.05± 3.10 92.40± 4.50
antmaze-large-play-v0 50.35± 9.74 48.60± 10.01 72.15± 9.66 62.85± 11.31 62.35± 12.42

antmaze-large-diverse-v0 56.80± 9.15 58.30± 6.54 70.55± 17.43 68.25± 8.76 68.25± 8.85

Table 10. Ant Maze 1m Offline Transitions
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A.3. Theoretical Analysis for JSRL

A.3.1. SETUP AND NOTATIONS

Consider a finite-horizon time-inhomogeneous MDP with a fixed total horizon H and bounded reward rh ∈ [0, 1],∀h ∈ [H].
The transition of state-action pair (s, a) in step h is denoted as Ph(· | s, a). Assume that at step 0, the initial state follows a
distribution p0.

For simplicity, we use π to denote the policy for H steps π = {πh}Hh=1. We let dπh(s) be the marginalized state occupancy
distribution in step h when we follow policy π.

A.3.2. PROOF SKETCH FOR THEOREM 4.1

Figure 10. Lower bound instance: combination lock

We construct a special instance, combination lock MDP, which is depicted in Figure 10 and works as follows. The agent
can only arrive at the red state s?h+1 in step h+ 1 when it takes action a?h at the red state s?h at step h. Once it leaves state
s?h, the agent stays in the blue states and can never get back to red states again. At the last layer, one receives reward 1
when the agent is at state s?H and takes action a?H . For all other cases, the reward is 0. In exploration from scratch, before
seeing rH(s?, a?), one only sees reward 0. Thus 0-initialized ε-greedy always takes each action with probability 1/2.
The probability of arriving at state s?H with uniform actions is 1/2H , which means that one needs at least 2H samples in
expectation to see rH(s?, a?).

A.3.3. UPPER BOUND OF JSRL

In this section, we restate Theorem 4.3 and its assumption in a formal way. First, we make assumption on the quality of
the guide-policy, which is the key assumption that helps improve the exploration from exponential to polynomial sample
complexity. One of the weakest assumption in theory of offline learning literature is the single policy concentratability
coefficient (Rashidinejad et al., 2021; Xie et al., 2021)1. Concretely, they assume that there exists a guide-policy πg such that

sup
s,a,h

dπ
?

h (s, a)

dπ
g

h (s, a)
≤ C. (1)

This means that for any state action pair that the optimal policy visits, the guide-policy shall also visit with certain probability.

In the analysis, we impose a strictly weaker assumption. We only require that the guide-policy visits all good states in the
feature space instead of all good state and action pairs.

Assumption A.1 (Quality of guide-policy πg). Assume that the state is parametrized by some feature mapping φ : S → Rd
such that for any policy π, Qπ(s, a) and π(s) depends on s only through φ(s). We assume that in the feature space, the

1The single policy concentratability assumption is already a weaker version of the traditional concentratability coefficient assumption,
which takes a supremum of the density ratio over all state-action pairs and all policies (Scherrer, 2014; Chen & Jiang, 2019; Jiang, 2019;
Wang et al., 2019; Liao et al., 2020; Liu et al., 2019; Zhang et al., 2020a).
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guide-policy πg cover the states visited by the optimal policy:

sup
s,h

dπ
?

h (φ(s))

dπ
g

h (φ(s))
≤ C.

Note that for the tabular case when φ(s) = s, one can easily prove that (1) implies Assumption A.1. In real robotics,
the assumption implies that the guide-policy at least sees the features of the good states that the optimal policy also see.
However, the guide-policy can be arbitrarily bad in terms of choosing actions.

Before we proceed to the main theorem, we need to impose another assumption on the performance of the exploration step,
which requires to find an exploration algorithm that performs well in the case of H = 1 (contextual bandit).

Assumption A.2 (Performance guarantee for ExplorationOracle CB). In (online) contextual bandit with stochastic context
s ∼ p0 and stochastic reward r(s, a) supported on [0, R], there exists some ExplorationOracle CB which executes a policy
πt in each round t ∈ [T ], such that the total regret is bounded:

T∑
t=1

Es∼p0 [r(s, π?(s))− r(s, πt(s))] ≤ f(T,R).

This assumption is usually given for free since it is implied by a rich literature in contextual bandit, including tabular (Lang-
ford & Zhang, 2007), linear (Chu et al., 2011), general function approximation with finite action (Simchi-Levi & Xu, 2020),
neural networks and continuous actions (Krishnamurthy et al., 2019), either via optimism-based methods (UCB, Thompson
sampling etc.) or non-optimism-based methods (ε-greedy, inverse gap weighting etc.).

Now we are ready to present the algorithm and guarantee. The JSRL algorithm is summarized in Algorithm 1. For the
convenience of theoretical analysis, we make some simplification by only considering curriculum case, replacing the step of
EvaluatePolicy with a fixed iteration time, and set the TrainPolicy in Algorithm 1 as follows: at iteration h, fix the policy
πh+1:H unchanged, set πh = ExplorationOracle CB(D), where the reward for contextual bandit is the cumulative reward∑
t=h:H rt. For concreteness, we show the pseudocode for the algorithm below.

Algorithm 2 Jump-Start Reinforcement Learning for Episodic MDP with CB oracle
1: Input: guide-policy πg , total time step T , horizon length H
2: Initialize exploration policy π = πg , online dataset D = ∅.
3: for iteration h = H − 1, H − 2, · · · , 0 do
4: Execute ExplorationOracle CB for dT/He rounds, with the state-aciton-reward tuple for contextual bandit de-

rived as follows: at round t, first gather a trajectory {(stl , atl , stl+1, r
t
l )}l∈[H−1] by rolling out policy π, then take

{sth, ath,
∑H
l=h r

t
l} as the state-action-reward samples for contextual bandit. Let πt be the executed policy at round t.

5: Set policy πh = Unif({πt}Tt=1}).
6: end for

The performance guarantee of the algorithm is as follows.

Theorem A.3. Under Assumption A.1 and A.2, the JSRL in Algorithm 2 guarantees that after T rounds,

Es0∼p0 [V ∗0 (s0)− V π0 (s0)] ≤ C ·
H−1∑
h=0

f(T/H,H − h).

Theorem A.3 is quite general, and it depends on the choice of the exploration oracle. Below we give concrete results for
tabular RL and RL with function approximation.

Corollary A.4. For tabular case, when we take ExplorationOracle CB as ε-greedy, the rate achieved is
O(CH7/3S1/3A1/3/T 1/3) ; when we take ExplorationOracle CB as FALCON+, the rate becomesO(CH5/2S1/2A/T 1/2).
Here S can be relaxed to the maximum state size that πg visits among all steps.
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The result above implies a polynomial sample complexity when combined with non-optimism exploration techniques,
including ε-greedy (Langford & Zhang, 2007) and FALCON+ (Simchi-Levi & Xu, 2020). In contrast, they both suffer from
a curse of horizon without such a guide-policy.

Next, we move to RL with general function approximation.

Corollary A.5. For general function approximation, when we take ExplorationOracle CB as FALCON+, the rate becomes
Õ(C

∑H
h=1

√
AEF (T/H)) under the following assumption.

Assumption A.6. Let π be an arbitrary policy. Given n training trajectories of the form {(sjh, a
j
h, s

j
h+1, r

j
h)}j∈[n],h∈[H]

drawn from following policy π in a given MDP, according to sjh ∼ dπh, a
j
h|s

j
h ∼ πh(sh), r

j
h|(s

j
h, a

j
h) ∼ Rh(s

j
h, a

j
h),

sjh+1|(s
j
h, a

j
h) ∼ Ph(·|sjh, a

j
h), there exists some offline regression oracle which returns a family of predictors Q̂h :

S ×A → R, h ∈ [H], such that for any h ∈ [H], we have

E
[
(Q̂h(s, a)−Qπh(s, a))2

]
≤ EF (n).

As is shown in (Simchi-Levi & Xu, 2020), this assumption on offline regression oracle implies our Assumption on regret
bound in Assumption A.2. When EF is a polynomial function, the above rate matches the worst-case lower bound for
contextual bandit in (Simchi-Levi & Xu, 2020), up to a factor of C · poly(H).

The results above show that under Assumption A.1, one can achieve polynomial and sometimes near-optimal sample
complexity up to polynomial factors of H without applying Bellman update, but only with a contextual bandit oracle. In
practice, we run Q-learning based exploration oracle, which may be more robust to the violation of assumptions. We leave
the analysis for Q-learning based exploration oracle as an open problem.

Remark A.7. The result generalizes to and is adaptive to the case when one has time-inhomogeneous C, i.e.

∀h ∈ [H], sup
s

dπ
?

h (φ(s))

dπ
g

h (φ(s))
≤ C(h).

The rate becomes
∑H−1
h=0 C(h) · f(T/H,H − h) in this case.

In our current analysis, we heavily rely on the assumption of visitation and applied contextual bandit based exploration
techniques. In our experiments, we indeed run a Q-learning based exploration algorithm which also explores the succinct
states after we roll out the guide-policy. This also suggests why setting K > 1 and even random switching in Algorithm 1
might achieve better performance than the case of K = 1. We conjecture that with a Q-learning based exploration algorithm,
JSRL still works even when Assumption A.1 only holds partially. We leave the related analysis for JSRL with a Q-learning
based exploration oracle for future work.

A.3.4. PROOF OF THEOREM A.3 AND COROLLARIES

Proof. The analysis follows a similar path as (Bagnell et al., 2003), except that we make use of the distribution mismatch
coefficient to show convergence. By the performance difference lemma (Kakade & Langford, 2002), one has

Es0∼d0 [V ?0 (s0)− V π0 (s0)] =

H−1∑
h=0

Es∼d?h [Q
π
h(s, π

?
h(s))−Qπh(s, πh(s))]. (2)

At iteration h, the algorithm adopts a policy π with πl = πgl ,∀l < h, and fixed learned πl for l > h. The algorithm only
updates πh during this iteration. By taking the reward as

∑H
l=h rl, this presents a contextual bandit problem with initial state

distribution dπ
g

h , reward bounded in between [0, H − h], and the expected reward for taking state action (s, a) is Qπh(s, a).
Let π̂?h be the optimal policy for this contextual bandit problem. From Assumption A.2, we know that after T/H rounds at
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iteration h, one has

H−1∑
h=0

Es∼d?h [Q
π
h(s, π

?
h(s))−Qπh(s, πh(s))]

(i)

≤
H−1∑
h=0

Es∼d?h [Q
π
h(s, π̂

?
h(s))−Qπh(s, πh(s))]

(ii)
=

H−1∑
h=0

Es∼d?h [Q
π
h(φ(s), π̂

?
h(φ(s)))−Qπh(φ(s), πh(φ(s)))]

(iii)

≤ C ·
H−1∑
h=0

Es∼dπgh [Qπh(φ(s), π̂
?
h(φ(s)))−Qπh(φ(s), πh(φ(s)))]

(iv)

≤ C ·
H−1∑
h=0

f(T/H,H − h).

Here the inequality (i) uses the fact that π̂? is the optimal policy for the contextual bandit problem. The equality (ii) uses the
fact that Q, π depends on s only through φ(s). The inequality (iii) comes from Assumption A.1. The inequality (iv) comes
from Assumption A.2. From Equation (2) we know that the conclusion holds true.

When ExplorationOracle CB is ε-greedy, the rate in Assumption A.2 becomes f(T,R) = R · ((SA/T )1/3) (Langford
& Zhang, 2007), which gives the rate for JSRL as O(CH7/3S1/3A1/3/T 1/3); when we take ExplorationOracle CB as
FALCON+ in tabular case, the rate in Assumption A.2 becomes f(T,R) = R · ((SA2/T )1/2) (Simchi-Levi & Xu, 2020),
the final rate for JSRL becomes O(CH5/2S1/2A/T 1/2). When we take ExplorationOracle CB as FALCON+ in general
function approximation under Assumption A.6, the rate in Assumption A.2 becomes f(T,R) = R · (AEF (T ))1/2, the final
rate for JSRL becomes Õ(C

∑H
h=1

√
AEF (T/H)).


