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Abstract

Noisy matrix completion aims at estimating a low-rank matrix given only partial and corrupted
entries. Despite substantial progress in designing efficient estimation algorithms, it remains largely
unclear how to assess the uncertainty of the obtained estimates and how to perform statistical inference
on the unknown matrix (e.g. constructing a valid and short confidence interval for an unseen entry).

This paper takes a step towards inference and uncertainty quantification for noisy matrix completion.
We develop a simple procedure to compensate for the bias of the widely used convex and nonconvex
estimators. The resulting de-biased estimators admit nearly precise non-asymptotic distributional char-
acterizations, which in turn enable optimal construction of confidence intervals / regions for, say, the
missing entries and the low-rank factors. Our inferential procedures do not rely on sample splitting,
thus avoiding unnecessary loss of data efficiency. As a byproduct, we obtain a sharp characterization of
the estimation accuracy of our de-biased estimators, which, to the best of our knowledge, are the first
tractable algorithms that provably achieve full statistical efficiency (including the preconstant). The anal-
ysis herein is built upon the intimate link between convex and nonconvex optimization — an appealing
feature recently discovered by [CCF+19].

Keywords: matrix completion, statistical inference, confidence intervals, uncertainty quantification, convex
relaxation, nonconvex optimization
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1 Introduction

1.1 Motivation: inference and uncertainty quantification?
Low-rank matrix completion is concerned with recovering a low-rank matrix, when only a small fraction
of its entries are revealed to us [Sre04, CR09,KMO10a]. Tackling this problem in large-scale applications
is computationally challenging, due to the intrinsic nonconvexity incurred by the low-rank structure. To
further complicate matters, another inevitable challenge stems from the imperfectness of data acquisition
mechanisms, wherein the acquired samples are contaminated by a certain amount of noise.
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Fortunately, if the entries of the unknown matrix are sufficiently de-localized and randomly revealed, this
problem may not be as hard as it seems. Substantial progress has been made over the past several years
in designing computationally tractable algorithms — including both convex and nonconvex approaches —
that allow to fill in unseen entries faithfully given only partial noisy samples [CP10,NW12,KLT11,KMO10b,
CW15,MWCC17,CCF+19]. Nevertheless, modern decision making would often require one step further. It
not merely anticipates a faithful estimate, but also seeks to quantify the uncertainty or “confidence” of the
provided estimate, ideally in a reasonably accurate fashion. For instance, given an estimate returned by the
convex approach, how to use it to compute a short interval that is likely to contain a missing entry?

Conducting effective uncertainty quantification for noisy matrix completion is, however, far from straight-
forward. For the most part, the state-of-the-art matrix completion algorithms require solving highly complex
optimization problems, which often do not admit closed-form solutions. Of necessity, it is generally very
challenging to pin down the distributions of the estimates returned by these algorithms. The lack of distri-
butional characterizations presents a major roadblock to performing valid, yet efficient, statistical inference
on the unknown matrix of interest.

It is worth noting that a number of recent papers have been dedicated to inference and uncertainty
quantification for various high-dimensional problems in high-dimensional statistics, including Lasso [ZZ14,
vdGBRD14, JM14a], generalized linear models [vdGBRD14, NL17, BFL+18], graphical models [JVDG15,
RSZZ15,MLL17]), amongst others. Very little work, however, has looked into noisy matrix completion along
this direction. While non-asymptotic statistical guarantees for noisy matrix completion have been derived
in prior theory, most, if not all, of the estimation error bounds are supplied only at an order-wise level. Such
order-wise error bounds either lose a significant factor relative to the optimal guarantees, or come with an
unspecified (but often enormous) pre-constant. Viewed in this light, a confidence region constructed directly
based on such results is bound to be overly conservative, resulting in substantial over-coverage.

1.2 A glimpse of our contributions
This paper takes a substantial step towards efficient inference and uncertainty quantification for noisy matrix
completion. Specifically, we develop a simple procedure to compensate for the bias of the commonly used
convex and nonconvex estimators. The resulting de-biased estimators admit nearly accurate non-asymptotic
distributional guarantees. Such distributional characterizations in turn allow us to reason about the un-
certainty of the obtained estimates vis-à-vis the unknown matrix. While details of our main findings are
postponed to Section 3, we would like to immediately single out a few important merits of the proposed
inferential procedures and theory:

1. Our results enable two types of uncertainty assessment, namely, we can construct (i) confidence intervals
for each entry — either observed or missing — of the unknown matrix; (ii) confidence regions for the
low-rank factors of interest (modulo some unavoidable global ambiguity).

2. Despite the complicated statistical dependency, our procedure and theory do not rely on sample splitting,
thus avoiding the unnecessary widening of confidence intervals / regions due to insufficient data usage.

3. The confidence intervals / regions constructed based on the proposed procedures are, in some sense,
optimal.

4. We present a unified approach that accommodates both convex and nonconvex estimators seamlessly.

5. As a byproduct, we characterize the Euclidean estimation errors of the proposed de-biased estimators.
Such error bounds are sharp and match an oracle lower bound precisely (including the pre-constant).
To the best of our knowledge, this is the first theory that demonstrates that a computationally feasible
algorithm can achieve the statistical limit including the pre-constant.

All of this is built upon the intimate link between convex and nonconvex estimators [CCF+19], as well as
the recent advances in analyzing the stability of nonconvex optimization against random noise [MWCC17].
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2 Models and notation
To cast the noisy matrix completion problem in concrete statistical settings, we adopt a model commonly
studied in the literature [CR09]. We also introduce some useful notation.

Ground truth. Denote byM? ∈ Rn×n the unknown rank-r matrix of interest,1 whose (compact) singular
value decomposition (SVD) is given by M? = U?Σ?V ?>. We set

σmax , σ1(M?), σmin , σr(M
?), and κ , σmax/σmin, (2.1)

where σi(A) denotes the ith largest singular value of a matrix A. Further, we let X? , U?Σ?1/2 ∈ Rn×r
and Y ? , V ?Σ?1/2 ∈ Rn×r stand for the balanced low-rank factors of M?, which obey

X?>X? = Y ?>Y ? = Σ? and M? = X?Y ?>. (2.2)

Observation models. What we observe is a random subset of noisy entries of M?; more specifically, we
observe

Mij = M?
ij + Eij , Eij

i.i.d.∼ N (0, σ2), for all (i, j) ∈ Ω, (2.3)

where Ω ⊆ {1, · · · , n} × {1, · · · , n} is a subset of indices, and Eij denotes independently generated noise
at the location (i, j). From now on, we assume the random sampling model where each index (i, j) is
included in Ω independently with probability p (i.e. data are missing uniformly at random). We shall use
PΩ(·) : Rn×n 7→ Rn×n to represent the orthogonal projection onto the subspace of matrices that vanish
outside the index set Ω.

Incoherence conditions. Clearly, not all matrices can be reliably estimated from a highly incomplete set
of measurements. To address this issue, we impose a standard incoherence condition [CR09,Che15] on the
singular subspaces of M? (i.e. U? and V ?):

max{‖U?‖2,∞ , ‖V ?‖2,∞} ≤
√
µr/n, (2.4)

where µ is termed the incoherence parameter and ‖A‖2,∞ denotes the largest `2 norm of all rows in A. A
small µ implies that the energy of U? and V ? are reasonably spread out across all of their rows.

Asymptotic notation. Here, f(n) . h(n) (or f(n) = O(h(n))) means |f(n)| ≤ c1|h(n)| for some constant
c1 > 0, f(n) & h(n) means |f(n)| ≥ c2|h(n)| for some constant c2 > 0, f(n) � h(n) means c2|h(n)| ≤
|f(n)| ≤ c1|h(n)| for some constants c1, c2 > 0, and f(n) = o(h(n)) means limn→∞ f(n)/h(n) = 0. We write
f(n) � h(n) to indicate that |f(n)| ≤ c1|h(n)| for some small constant c1 > 0 (much smaller than 1), and
use f(n)� h(n) to indicate that |f(n)| ≥ c2|h(n)| for some large constant c2 > 0 (much larger than 1).

3 Inferential procedures and main results
The proposed inferential procedure lays its basis on two of the most popular estimation paradigms — convex
relaxation and nonconvex optimization — designed for noisy matrix completion. Recognizing the complicated
bias of these two highly nonlinear estimators, we shall first illustrate how to perform bias correction, followed
by a distributional theory that establishes the near-Gaussianity and optimality of the proposed de-biased
estimators.

3.1 Background: convex and nonconvex estimators
We first review in passing two tractable estimation algorithms that are arguably the most widely used in
practice. They serve as the starting point for us to design inferential procedures for noisy low-rank matrix
completion. The readers familiar with this literature can proceed directly to Section 3.2.

1We restrict our attention to squared matrices for simplicity of presentation. Most findings extend immediately to the more
general rectangular case M? ∈ Rn1×n2 with different n1 and n2.
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Algorithm 1 Gradient descent for solving the nonconvex problem (3.4).
Suitable initialization: X0, Y 0

Gradient updates: for t = 0, 1, . . . , t0 − 1 do

Xt+1 =Xt − η

p

[
PΩ(XtY t> −M)Y t + λXt

]
, (3.3a)

Y t+1 =Y t − η

p

[
[PΩ(XtY t> −M)]>Xt + λY t

]
, (3.3b)

where η > 0 determines the step size or the learning rate.

Convex relaxation. Recall that the rank function rank(·) is highly nonconvex, which often prevents us
from computing a rank-constrained estimator in polynomial time. For the sake of computational feasibility,
prior works suggest relaxing the rank function into its convex surrogate [Faz02,RFP10]; for example, one
can consider the following penalized least-squares convex program

minimize
Z∈Rn×n

1

2

∑
(i,j)∈Ω

(Zij −Mij)
2

+ λ‖Z‖∗, (3.1)

or using our notation PΩ,

minimize
Z∈Rn×n

1

2

∥∥PΩ

(
Z −M

)∥∥2

F
+ λ‖Z‖∗. (3.2)

Here, ‖ · ‖∗ is the nuclear norm (the sum of singular values, which is a convex surrogate of the rank func-
tion), and λ > 0 is some regularization parameter. Under mild conditions, the solution to the convex
program (3.1) provably attains near-optimal estimation accuracy (in an order-wise sense), provided that a
proper regularization parameter λ is adopted [CCF+19].

Nonconvex optimization. It is recognized that the convex approach, which typically relies on solving a
semidefinite program, is still computationally expensive and not scalable to large dimensions. This motivates
an alternative route, which represents the matrix variable via two low-rank factors X,Y ∈ Rn×r and
attempts solving the following nonconvex program directly

minimize
X,Y ∈Rn×r

1

2

∥∥PΩ

(
XY > −M

)∥∥2

F
+
λ

2
‖X‖2F +

λ

2
‖Y ‖2F. (3.4)

Here, we choose a regularizer of the form 0.5λ(‖X‖2F + ‖Y ‖2F) primarily to mimic the nuclear norm λ‖Z‖∗
(see [SS05, MHT10]). A variety of optimization algorithms have been proposed to tackle the nonconvex
program (3.4) or its variants [SL16, CW15, MWCC17]; the readers are referred to [CLC19] for a recent
overview. As a prominent example, a two-stage algorithm — gradient descent following suitable initializa-
tion — provably enjoys fast convergence and order-wise optimal statistical guarantees for a wide range of
scenarios [MWCC17,CCF+19,CLL19]. The current paper focuses on this simple yet powerful algorithm, as
documented in Algorithm 1 and detailed in Appendix A.1.

Intimate connections between convex and nonconvex estimates. Denote by Zcvx any minimizer
of the convex program (3.1), and denote by (Xncvx,Y ncvx) the estimate returned by Algorithm 1 aimed at
solving (3.4). As was recently shown in [CCF+19], when the regularization parameter λ is properly chosen,
these two estimates obey (see (A.12) in Appendix A.2 for a precise statement)

XncvxY ncvx> ≈ Zcvx ≈ Zcvx,r. (3.5)

Here, Zcvx,r , Prank-r(Zcvx) is the best rank-r approximation of the convex estimateZcvx, where Prank-r(B) ,
arg minA:rank(A)≤r ‖A − B‖F. In truth, the three matrices of interest in (3.5) are exceedingly close to, if
not identical with, each other. This salient feature paves the way for a unified treatment of convex and
nonconvex approaches: most inferential procedures and guarantees developed for the nonconvex estimate
can be readily transferred to perform inference for the convex one, and vice versa.
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3.2 Constructing de-biased estimators
We are now well equipped to describe how to construct new estimators based on the convex estimate Zcvx

and the nonconvex estimate (Xncvx,Y ncvx), so as to enable statistical inference. Motivated by the proximity
of the convex and nonconvex estimates and for the sake of conciseness, we shall abuse notation by using
the shorthand Z,X,Y for both convex and nonconvex estimates; see Table 1 and Appendix B for precise
definitions. This allows us to unify the presentation for both convex and nonconvex estimators.

Given that both (3.1) and (3.4) are regularized least-squares problems, they behave effectively like shrink-
age estimators, indicating that the provided estimates necessarily suffer from non-negligible bias. In order
to enable desired statistical inference, it is natural to first correct the estimation bias.

A de-biased estimator for the matrix. A natural de-biasing strategy that immediately comes to mind
is the following simple linear transformation (recall the notation in Table 1):

Z0 , Z − 1

p
PΩ

(
Z −M

)
=

1

p
PΩ

(
M?

)
︸ ︷︷ ︸
mean:M?

+
1

p
PΩ

(
E
)

︸ ︷︷ ︸
mean: 0

+ Z − 1

p
PΩ

(
Z
)

︸ ︷︷ ︸
mean: 0 (heuristically)

, (3.6)

where we identify PΩ(M) with PΩ(M?) + PΩ (E). Heuristically, if Ω and Z are statistically independent,
then Z0 serves as an unbiased estimator ofM?, i.e. E[Z0] = M?; this arises since the noise E has zero mean
and E[PΩ] = pI under the uniform random sampling model, with I the identity operator. Despite its (near)
unbiasedness nature at a heuristic level, however, the matrix Z0 is typically full-rank, with non-negligible
energy spread across its entire spectrum. This results in dramatically increased variability in the estimate,
which is undesirable for inferential purposes.

To remedy this issue, we propose to further project Z0 onto the set of rank-r matrices, leading to the
following de-biased estimator

Md , Prank-r
[
Z − 1

p
PΩ (Z −M)

]
, (3.7)

where Prank-r(B) = arg minA:rank(A)≤r ‖A−B‖F, and Z can again be found in Table 1. This projection step
effectively suppresses the variability outside the r-dimensional principal subspace. As we shall see shortly,
the proposed estimator (3.7) properly de-biases the provided estimate Z, while optimally controlling the
extent of uncertainty.

Remark 1. The estimator (3.7) can be viewed as performing one iteration of singular value projection
(SVP) [MJD09,DC18] on the current estimate Z.

Remark 2. The estimator (3.7) also bears a similarity to the de-biased estimator proposed by [Xia18] for
low-rank trace regression; the disparity between them shall be discussed in Section 4.

Table 1: Notation used to unify the convex estimate Zcvx and the nonconvex estimate (Xncvx,Y ncvx). Here,
Zcvx,r = Prank-r(Zcvx) is the best rank-r approximation of Zcvx. See Appendix B for a complete summary.

Z ∈ Rn×n either Zcvx or XncvxY ncvx>.

X,Y ∈ Rn×r for the nonconvex case, we take X = Xncvx and Y = Y ncvx; for the convex case, let
X = Xcvx and Y = Y cvx, which are the balanced low-rank factors of Zcvx,r obeying
Zcvx,r = XcvxY cvx> and Xcvx>Xcvx = Y cvx>Y cvx.

Md ∈ Rn×n the proposed de-biased estimator as in (3.7).

Xd,Y d ∈ Rn×r the proposed de-shrunken estimator as in (3.8).
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An equivalent form: a de-shrunken estimator for the low-rank factors. It turns out that the de-
biased estimator (3.7) admits another almost equivalent representation that offers further insights. Specifi-
cally, we consider the following de-shrunken estimator for the low-rank factors

Xd ,X
(
Ir +

λ

p

(
X>X

)−1
)1/2

and Y d , Y
(
Ir +

λ

p

(
Y >Y

)−1
)1/2

, (3.8)

where we recall the definition of X and Y in Table 1. To develop some intuition regarding why this is
called a de-shrunken estimator, let us look at a simple scenario where UΣV > is the SVD of XY > and
X = UΣ1/2, Y = V Σ1/2. It is then self-evident that

Xd = UΣ1/2
(
Ir +

λ

p
Σ−1

)1/2

= U
(
Σ +

λ

p
Ir

)1/2

and Y d = V
(
Σ +

λ

p
Ir

)1/2

.

In words, Xd and Y d are obtained by de-shrinking the spectrum of X and Y properly.
As we shall formalize in Section 5.1, the de-shrunken estimator (3.8) for the low-rank factors is nearly

equivalent to the de-biased estimator (3.7) for the whole matrix, in the sense that

Md ≈XdY d>. (3.9)

Therefore, Md can be viewed as some sort of de-shrunken estimator as well.

3.3 Main results: distributional guarantees
The proposed estimators admit tractable distributional characterizations in the large-n regime, which facili-
tates the construction of confidence regions for many quantities of interest. In particular, this paper centers
around two types of inferential problems:

1. Each entry of the matrix M?: the entry can be either missing (i.e. predicting an unseen entry) or
observed (i.e. de-noising an observed entry). For example, in the Netflix challenge, one would like to
infer a user’s preference about any movie, given partially revealed ratings [CR09]. Mathematically, this
seeks to determine the distribution of

Md
ij −M?

ij , for all 1 ≤ i, j ≤ n. (3.10)

2. The low-rank factors X?,Y ? ∈ Rn×r: the low-rank factors often reveal critical information about the
applications of interest (e.g. community memberships of each individual in the community detection
problem [AFWZ17], or angles between each object and a global reference point in the angular synchro-
nization problem [Sin11]). Recognizing the global rotational ambiguity issue,2 we aim to pin down the
distributions of Xd and Y d up to global rotational ambiguity. More precisely, we intend to characterize
the distributions of

XdHd −X? and Y dHd − Y ? (3.11)

for the global rotation matrix Hd ∈ Rr×r that best “aligns” (Xd,Y d) and (X?,Y ?), i.e.

Hd , arg min
R∈Or×r

∥∥XdR−X?
∥∥2

F
+
∥∥Y dR− Y ?

∥∥2

F
. (3.12)

Here and below, Or×r denotes the set of orthonormal matrices in Rr×r.

Clearly, the above two inferential problems are tightly related: an accurate distributional characterization
for the low-rank factors (3.11) often results in a distributional guarantee for the entries (3.10). As such, we
shall begin by presenting our distributional characterizations of the low-rank factors. Here and throughout,
ei represents the ith standard basis vector in Rn.

2For any r × r rotation matrix H, we cannot distinguish (X?,Y ?) from (X?H,Y ?H), if only pairwise measurements are
available.
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Theorem 1 (Distributional guarantees w.r.t. low-rank factors). Suppose that the sample size and the noise
obey

np & κ8µ3r2 log3 n and σ/σmin .
√
p/(κ8µn log2 n). (3.13)

Then one has the following decomposition

XdHd −X? = ZX + ΨX , (3.14a)

Y dHd − Y ? = ZY + ΨY . (3.14b)

with (X?,Y ?) defined in (2.2), (Xd,Y d) defined in Table 1, and Hd defined in (3.12). Here, the rows of
ZX ∈ Rn×r (resp. ZY ∈ Rn×r) are independent and obey

Z>Xej
i.i.d.∼ N

(
0,
σ2

p
(Σ?)

−1
)
, for 1 ≤ j ≤ n; (3.15a)

Z>Y ej
i.i.d.∼ N

(
0,
σ2

p
(Σ?)

−1
)
, for 1 ≤ j ≤ n. (3.15b)

In addition, the residual matrices ΨX ,ΨY ∈ Rn×r satisfy, with probability at least 1−O(n−3), that

max
{
‖ΨX‖2,∞ , ‖ΨY ‖2,∞

}
= o

(
σ
√
r

√
pσmax

)
. (3.16)

Remark 3. A more complete version can be found in Theorem 5.

Remark 4. Another interesting feature — which we shall make precise in the proof of this theorem — is
that: for any given 1 ≤ i, j ≤ n, the two random vectors Z>Xei and Z

>
Y ej are nearly statistically independent.

This is crucial for deriving inferential guarantees for the entries of the matrix.

Theorem 1 is a non-asymptotic result. In words, Theorem 1 decomposes the estimation errorXdHd−X?

(resp. Y dHd − Y ?) into a Gaussian component ZX (resp. ZY ) and a residual term ΨX (resp. ΨY ). If
the sample size is sufficiently large and the noise size is sufficiently small, then the residual terms are much
smaller in size compared to ZX and ZY . To see this, it is helpful to leverage the Gaussianity (3.15a) and
compute that: for each 1 ≤ j ≤ n, the jth row of ZX obeys

E
[∥∥Z>Xej∥∥2

2

]
= Tr

(σ2

p
(Σ?)

−1
)
≥ σ2r

pσmax
;

in other words, the typical size of the jth row of ZX is no smaller than the order of σ
√
r/(pσmax). In

comparison, the size of each row of ΨX (see (3.16)) is much smaller than σ
√
r/(pσmax) (and hence smaller

than the size of the corresponding row of ZX) with high probability, provided that (3.13) is satisfied.
Equipped with the above master decompositions of the low-rank factors and Remark 4, we are ready to

present a similar decomposition for the entry Md
ij −M?

ij .

Theorem 2 (Distributional guarantees w.r.t. matrix entries). For each 1 ≤ i, j ≤ n, define the variance v?ij as

v?ij ,
σ2

p

(∥∥U?
i,·
∥∥2

2
+
∥∥V ?

j,·
∥∥2

2

)
, (3.17)

where U?
i,· (resp. V ?

j,·) denotes the ith (resp. jth) row of U? (resp. V ?). Suppose that

np & κ8µ3r3 log3 n, σ

√
(κ8µrn log2 n)/p . σmin and (3.18a)

∥∥U?
i,·
∥∥

2
+
∥∥V ?

j,·
∥∥

2
&

√
r

n

σ

σmin

√
κ6µ2rn log3 n

p
. (3.18b)

Then the matrix Md defined in Table 1 satisfies

Md
ij −M?

ij = gij + ∆ij , (3.19)

where gij ∼ N (0, v?ij) and the residual obeys |∆ij | = o(
√
v?ij) with probability exceeding 1−O(n−3).
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Remark 5 (The symmetric case). In the symmetric case where the noise E, the truthM?, and the sampling
pattern are all symmetric (i.e. PΩ(E) =

(
PΩ(E)

)> and M? = M?>), the variance v?ii (cf. (3.17)) for the
diagonal entries has a different formula; more specifically, it is straightforward to extend our theory to show
that

v?ii =
4σ2

p

∥∥U?
i,·
∥∥2

2
=

2σ2

p

(∥∥U?
i,·
∥∥2

2
+
∥∥V ?

i,·
∥∥2

2

)
for the symmetric case.

This additional multiplicative factor of 2 arises since Z>Xei and Z
>
Y ei are identical (and hence not indepen-

dent) in this symmetric case. The variance formula for any v?ij (i 6= j) remains unchanged.

Several remarks are in order. To begin with, we develop some intuition regarding where the variance v?ij
comes from. By virtue of Theorem 1, one has the following Gaussian approximation

XdHd −X? ≈ ZX and Y dHd − Y ? ≈ ZY .

Assuming that the first-order expansion is reasonably tight, one has

Md
ij −M?

ij =
[
XdHd

(
Y dHd

)> −X?Y ?>
]
ij
≈ e>i

(
XdHd −X?

)
Y ?>ej + e>i X

?
(
Y dHd − Y ?

)>
ej

≈ e>i ZXY ?>ej + e>i X
?Z>Y ej . (3.20)

According to Remark 4, Z>Xei and Z
>
Y ej are nearly independent. It is thus straightforward to compute the

variance of (3.20) as

Var
(
Md
ij −M?

ij

) (i)
≈ Var

(
e>i ZXY

?>ej
)

+ Var
(
e>i X

?Z>Y ej
)

(ii)
=

σ2

p

{
e>j Y

? (Σ?)
−1
Y ?>ej + e>i X

? (Σ?)
−1
X?>ei

}
(iii)
=

σ2

p

(∥∥U?
i,·
∥∥2

2
+
∥∥V ?

j,·
∥∥2

2

)
= v?ij .

Here, (i) relies on (3.20) and the near independence between Z>Xei and Z
>
Y ej ; (ii) uses the variance formula in

Theorem 1; (iii) arises from the definitions ofX? and Y ? (cf. (2.2)). This computation explains (heuristically)
the variance formula v?ij .

Given that Theorem 2 reveals the tightness of Gaussian approximation under conditions (3.18), it in
turn allows us to construct nearly accurate confidence intervals for each matrix entry M?

ij . This is formally
summarized in the following corollary, the proof of which is deferred to Appendix F. Here and throughout,
we use [a± b] to denote the interval [a− b, a+ b].

Corollary 1 (Confidence intervals for the entries {M?
ij}). Let Xd, Y d and Md be as defined in Table 1. For

any given 1 ≤ i, j ≤ n, suppose that (3.18a) holds and that

∥∥U?
i,·
∥∥

2
+
∥∥V ?

j,·
∥∥

2
&

√
r

n

σ

σmin

√
κ10µ2rn log3 n

p
. (3.21)

Denote by Φ(t) the CDF of a standard Gaussian random variable and by Φ−1(·) its inverse function. Let

vij ,
σ2

p

(
Xd
i,·
(
Xd>Xd

)−1
(Xd

i,·)
> + Y d

j,·
(
Y d>Y d

)−1
(Y d

j,·)
>
)

(3.22)

be the empirical estimate of the theoretical variance v?ij. Then one has

sup
0<α<1

∣∣∣P{M?
ij ∈

[
Md
ij ± Φ−1 (1− α/2)

√
vij
]}
− (1− α)

∣∣∣ = o(1).

In words, Corollary 1 tells us that for any fixed significance level 0 < α < 1, the interval[
Md
ij ± Φ−1(1− α/2)

√
vij
]

(3.23)

is a nearly accurate two-sided (1− α) confidence interval of M?
ij .
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In addition, we remark that when ‖U?
i,·‖2 = ‖V ?

j,·‖2 = 0 (and hence V ?ij = 0), the above Gaussian
approximation is completely off. In this case, one can still leverage Theorem 1 to show that

Md
ij −M?

ij = Md
ij ≈ u>v, (3.24)

where u,v ∈ Rr are independent and identically distributed according to N (0, σ2(Σ?)−1/p). However,
it is nontrivial to determine whether ‖U?

i,·‖2 + ‖V ?
j,·‖2 is vanishingly small or not based on the observed

data, which makes it challenging to conduct efficient inference for entries with small (but a priori unknown)
‖U?

i,·‖2 + ‖V ?
j,·‖2.

Last but not least, the careful readers might wonder how to interpret our conditions on the sample
complexity and the signal-to-noise ratio. Take the case with r, µ, κ = O(1) for example: our conditions read

n2p & n log3 n; σ

√
(n log2 n)/p . σmin. (3.25)

The first condition matches the minimal sample complexity limit (up to some logarithmic factor), while the
second one coincides with the regime (up to log factor) in which popular algorithms (like spectral methods
or nonconvex algorithms) work better than a random guess [KMO10b, CW15,MWCC17]. The take-away
message is this: once we are able to compute a reasonable estimate in an overall `2 sense, then we can reinforce
it to conduct entrywise inference in a statistically efficient fashion. The discussion of the dependency on r
and κ is deferred to Section 6.

3.4 Lower bounds and optimality for inference
It is natural to ask how well our inferential procedures perform compared to other algorithms. Encouragingly,
the de-biased estimator is optimal in some sense; for instance, it nearly attains the minimum covariance
among all unbiased estimators. To formalize this claim, we shall

1. Quantify the performance of two ideal estimators with the assistance of an oracle;

2. Demonstrate that the performance of our de-biased estimators is arbitrarily close to that of the ideal
estimators.

In what follows, we denote by X?
i,· (resp. Y ?

i,·) the ith row of X? (resp. Y ?).

An ideal estimator for X?
i,· (1 ≤ i ≤ n). Suppose that there is an oracle informing us of Y ?, and that

we observe the same set of data as in (2.3). Under such an idealistic setting and for any given 1 ≤ i ≤ n, the
following least-squares estimator achieves the minimum covariance among all unbiased estimators for the ith
row X?

i,· of X? (see e.g. [Sha03, Theorem 3.7])

X ideal
i,· , arg min

u∈R1×r

∑
k:(i,k)∈Ω

[
Mik − u

(
Y ?
k,·
)>]2

. (3.26)

In other words, for any unbiased estimator u of X?
i,· (conditional on Ω), one has

Cov
(
u
∣∣Ω) � Cov

(
X ideal
i,·

∣∣Ω) =: CRLB
(
X?
i,· | Ω

)
, (3.27)

where Cov
(
X ideal
i,·

∣∣Ω) is precisely the Cramér-Rao lower bound (conditional on Ω) under this ideal setting.
As it turns out, with high probability, this lower bound concentrates around σ2(Σ?)−1/p, as stated in the
following lemma. The proof is postponed to Appendix H.1.

Lemma 1. Fix an arbitrarily small constant ε > 0. Suppose that n2p ≥ C0ε
−2κ4µrn for some sufficiently

large constant C0 > 0 independent of n. Then with probability at least 1−O(n−10), one has

CRLB
(
X?
i,· | Ω

)
� (1− ε) σ

2

p
(Σ?)

−1
.

Given that ε can be an arbitrarily small constant, Lemma 1 uncovers that the covariance of the de-
shrunken estimator Xd

i,· (cf. Theorem 1) matches that of the ideal estimator X ideal
i,· , thus achieving the

Cramér-Rao lower bound with high probability. The same conclusion applies to Y d
j,· as well.

10



An ideal estimator for M?
ij (1 ≤ i, j ≤ n). Suppose that there is another oracle informing us of

{X?
k,·}k:k 6=i and {Y ?

k,·}k:k 6=j ; that is, everything about X? except X?
i,· and everything about Y ? except Y ?

j,·.
In addition, we observe the same set of data as in (2.3), except that we do not get to see Mij .3 Under this
idealistic model, the Cramér-Rao lower bound [Sha03, Theorem 3.3] for estimating M?

ij = X?
i,·(Y

?
j,·)
> can

be computed as

CRLB
(
M?
ij | Ω

)
,
σ2

p
·
[
Y ?
j,·

(1

p

∑
k:k 6=j,(i,k)∈Ω

(Y ?
k,·)
>Y ?

k,·

)−1

(Y ?
j,·)
> +X?

i,·

(1

p

∑
k:k 6=i,(k,j)∈Ω

(X?
k,·)
>X?

k,·

)−1

(X?
i,·)
>
]
. (3.28)

This means that any unbiased estimator of M?
ij must have variance no smaller than CRLB(M?

ij | Ω). This
quantity admits a much simpler lower bound as follows, whose proof can be found in Appendix H.2.

Lemma 2. Fix an arbitrarily small constant ε > 0. Suppose that n2p ≥ C0ε
−2κ4µrn log n for some suffi-

ciently large constant C0 > 0 independent of n. Then with probability at least 1−O(n−10),

CRLB
(
M?
ij | Ω

)
≥ (1− ε) v?ij ,

where v?ij is defined in Theorem 2.

Similar to Lemma 1, Lemma 2 reveals that the variance of our de-biased estimator Md
ij (cf. Theorem 2)

— which certainly does not have access to the side information provided by the oracle — is arbitrarily close
to the Cramér-Rao lower bound aided by an oracle.

All in all, the above lower bounds demonstrate that the degrees of uncertainty underlying our de-shrunken
low-rank factors and de-biased matrix are, in some sense, statistically minimal.

3.5 Back to estimation: the de-biased estimator is optimal
While the emphasis of the current paper is on inference, we would nevertheless like to single out an impor-
tant consequence that informs the estimation step. To be specific, the decompositions and distributional
guarantees derived in Theorem 1 and Theorem 2 allow us to track the estimation accuracy ofMd, as stated
in the following theorem. The proof of this result is postponed to Appendix G.

Theorem 3 (Estimation accuracy ofMd). Let Md be the de-biased estimator as defined in Table 1. Instate
the conditions in (3.18a). Then with probability at least 1−O(n−3), one has∥∥Md −M?

∥∥2

F
=

(2 + o(1))nrσ2

p
. (3.29)

In stark contrast to prior statistical estimation guarantees (e.g. [CP10,NW12,KLT11,CCF+19]), The-
orem 3 pins down the estimation error of the proposed de-biased estimator in a sharp manner (namely,
even the pre-constant is fully determined). Encouragingly, there is a sense in which the proposed de-biased
estimator achieves the best possible statistical estimation accuracy, as revealed by the following result.

Theorem 4 (An oracle lower bound on `2 estimation errors). Fix an arbitrarily small constant ε > 0. Suppose
that n2p & µrn log2 n, and that r = o(n). Then with probability exceeding 1 − O(n−10), any unbiased
estimator M̂ of M? obeys

E
[∥∥M̂ −M?

∥∥2

F
| Ω
]
≥ (1− ε)2nrσ2

p
. (3.30)

Proof. Intuitively, the term 2nr reflects approximately the underlying degrees of freedom in the true subspace
T ? of interest (i.e. the tangent space of the rank-r matrices at the truthM?), whereas the factor 1/p captures
the effect due to sub-sampling. This result has already been established in [CP10, Section III.B] (together
with [CR09, Theorem 4.1]). We thus omit the proof for conciseness. The key idea is to consider an oracle
informing us of the true tangent space T ?.

3The exclusion of Mij is merely for ease of presentation. One can consider the model where all Mij with (i, j) ∈ Ω are
observed with a slightly more complicated argument.
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Figure 1: Q-Q (quantile-quantile) plots of T12, T13 and T14 vs. the standard normal distribution in (a), (b)
and (c), respectively. The results are reported over 200 independent trials for r = 5, p = 0.4 and σ = 10−3.

The implication of the above two theorems is remarkable: the de-biasing step not merely facilitates
uncertainty assessment, but also proves crucial in minimizing the estimation errors. It achieves optimal
statistical efficiency in terms of both the rate and the pre-constant. As far as we know, this is the first
theory about a polynomial time algorithm that matches the statistical limit in terms of the pre-constant.
This intriguing finding is further corroborated by numerical experiments; see Section 3.6 for details (in
particular, Figure 3).

3.6 Numerical experiments
We conduct numerical experiments on synthetic data to verify the distributional characterizations provided
in Theorem 1 and Theorem 2. Note that our main results hold for the de-biased estimators built upon Zcvx

and XncvxY ncvx>. As we will formalize shortly in Section 5.1, these two de-biased estimators are extremely
close to each other; see also Figure 4 for experimental evidence. Therefore, in order to save space, we use
the de-biased estimator built upon the convex estimate Zcvx throughout the experiments.

Fix the dimension n = 1000 and the regularization parameter λ = 2.5σ
√
np throughout the experiments.

We generate a rank-r matrix M? = X?Y ?>, where X?,Y ? ∈ Rn×r are random orthonormal matrices and
apply the proximal gradient method [PB14] to solve the convex program (3.1).

We begin by checking the validity of Theorem 1. Suppose that one is interested in estimating the inner
product e>i X?X?>ej between X?>ei and X?>ej (i 6= j). In the Netflix challenge, this might correspond
to the similarity between the ith user and the jth one. As a straightforward consequence of Theorem 1, the
normalized estimation error

Tij ,
1
√
ρij

(
e>i X

dXd>ej − e>i X?X?>ej
)

(3.31)

Table 2: Empirical coverage rates of e>i X?X?>ej for different (r, p, σ)’s over 200 Monte Carlo trials.

(r, p, σ) Mean(ĈovL) Std(ĈovL)
(2, 0.2, 10−6) 0.9387 0.0197
(2, 0.2, 10−3) 0.9400 0.0193
(2, 0.4, 10−6) 0.9459 0.0161
(2, 0.4, 10−3) 0.9460 0.0162
(5, 0.2, 10−6) 0.9227 0.0244
(5, 0.2, 10−3) 0.9273 0.0226
(5, 0.4, 10−6) 0.9411 0.0173
(5, 0.4, 10−3) 0.9418 0.0171
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Figure 2: Q-Q (quantile-quantile) plot of S11, S12 and S13 vs. the standard normal distribution in (a), (b)
and (c) respectively. The results are reported over 200 independent trials for r = 5, p = 0.4 and σ = 10−3.

is extremely close to a standard Gaussian random variable. Here, similar to (3.22), we let

ρij ,
σ2

p

{
e>i X

d(Xd>Xd)−1Xd>ei + e>j X
d(Xd>Xd)−1Xd>ej

}
(3.32)

be the empirical estimate of the theoretically predicted variance σ2(‖U?
i,·‖22 + ‖U?

j,·‖22)/p. As a result, a 95%

confidence interval of e>i X?X?>ej would be [e>i X
dXd>ej ± 1.96

√
ρij ]. For each (i, j), we define ĈovL,(i,j)

to be the empirical coverage rate of e>i X?X?>ej over 200 Monte Carlo simulations. Correspondingly,
denote by Mean(ĈovL) (resp. Std(ĈovL)) the average (resp. the standard deviation) of ĈovL,(i,j) over indices
1 ≤ i < j ≤ n. Table 2 collects the simulation results for different values of (r, p, σ). As can be seen,
the reported empirical coverage rates are reasonably close to the nominal level 95%. In addition, Figure 1
depicts the Q-Q (quantile-quantile) plots of T12, T13 and T14 vs. the standard Gaussian random variable over
200 Monte Carlo simulations for r = 5, p = 0.4 and σ = 10−3. It is clearly seen that all of these are well
approximated by a standard Gaussian random variable.

Next, we turn to Theorem 2, namely the distributional guarantee for the entries of the matrix. Denote

Sij ,
1
√
vij

(
Md
ij −M?

ij

)
, (3.33)

where vij is the empirical variance defined in (3.22). In view of the 95% confidence interval predicted by
Corollary 1, and similar to what have done for the low-rank components, for each (i, j), we define ĈovE,(i,j)
to be the empirical coverage rate of M?

ij over 200 Monte Carlo simulations. Correspondingly, denote by
Mean(ĈovE) (resp. Std(ĈovE)) the average (resp. the standard deviation) of ĈovE,(i,j) over indices 1 ≤ i, j ≤ n.
As before, Table 3 gathers the empirical coverage rates for M?

ij and Figure 2 displays the Q-Q (quantile-
quantile) plots of S11, S12 and S13 vs. the standard Gaussian random variable over 200 Monte Carlo trials

Table 3: Empirical coverage rates of M?
ij for different (r, p, σ)’s over 200 Monte Carlo trials.

(r, p, σ) Mean(ĈovE) Std(ĈovE)
(2, 0.2, 10−6) 0.9380 0.0200
(2, 0.2, 10−3) 0.9392 0.0196
(2, 0.4, 10−6) 0.9455 0.0164
(2, 0.4, 10−3) 0.9456 0.0164
(5, 0.2, 10−6) 0.9226 0.0247
(5, 0.2, 10−3) 0.9271 0.0228
(5, 0.4, 10−6) 0.9410 0.0173
(5, 0.4, 10−3) 0.9417 0.0172
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Figure 3: (a) Estimation error of Zcvx vs.Md measured in the Frobenius norm. (b) Estimation error of Zcvx

vs. Md measured in the `∞ norm. The results are averaged over 20 independent trials for r = 5, p = 0.2
and n = 1000.

for r = 5, p = 0.4 and σ = 10−3. It is evident that the distribution of Sij matches that of N (0, 1) reasonably
well.

In addition to the tractable distributional guarantees, the de-biased estimatorMd also exhibits superior
estimation accuracy compared to the original estimator Zcvx (cf. Theorem 3). Figure 3 reports the estimation
error ofMd vs. Zcvx measured in both the Frobenius norm and in the `∞ norm across difference noise levels.
The results are averaged over 20 Monte Carlo simulations for r = 5, p = 0.2. It can be seen that the errors
of the de-biased estimator are uniformly smaller than that of the original estimator and are much closer to
the oracle lower bound. As a result, we recommend using Md even for the purpose of estimation.

We conclude this section with experiments on real data. Similar to [CP10], we use the daily temperature
data [NCD19] for 1400 stations across the world in 2018, which results in a 1400×365 data matrix. Inspection
on the singular values reveals that the data matrix is nearly low-rank. We vary the observation probability
p from 0.5 to 0.9 and randomly subsample the data accordingly. Based on the observed temperatures, we
then apply the proposed methodology to obtain 95% confidence intervals for all the entries. Table 4 reports
the empirical coverage probabilities, the average length of the confidence intervals as well as the estimation
error of both Zcvx and Md over 20 independent experiments. It can be seen that the average coverage
probabilities are reasonably close to 95% and the confidence intervals are also quite short. In addition, the
estimation error of Md is smaller than that of Zcvx, which corroborates our theoretical prediction. The
discrepancy between the nominal coverage probability and the actual one might arise from the facts that (1)
the underlying true temperature matrix is only approximately low-rank, and (2) the noise in the temperature
might not be independent.

3.7 A bit of intuition
We pause to develop some intuition behind the distributional guarantees for the proposed estimators. Bearing
in mind the intimate link between convex and nonconvex optimization (cf. (3.5)), it suffices to concentrate

Table 4: Empirical coverage rates, average lengths of the confidence intervals of the entries as well as the
estimation error vs. observation probability p. The results are averaged over 20 Monte Carlo trials.

p
Coverage CI Length ‖Ẑ −M?‖F/‖M?‖F

Mean Std Mean Std Convex Zcvx Debiased Md

0.5 0.8265 0.0016 3.6698 0.0209 0.029 0.028
0.6 0.8268 0.0011 2.8774 0.0098 0.025 0.023
0.7 0.8431 0.0006 2.3426 0.0054 0.022 0.019
0.8 0.8725 0.0003 2.0234 0.0052 0.020 0.015
0.9 0.9093 0.0003 1.8296 0.0072 0.018 0.011
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on the nonconvex problem (3.4). For the sake of clarity, we further restrict attention to the rank-1 positive
semidefinite case where M? = x?x?> and set λ = 0, where one can focus on

minimize
x∈Rn

f (x) ,
1

2

∥∥PΩ

(
xx> −M

)∥∥2

F
. (3.34)

Any optimizer x̂ of (3.34) would necessarily satisfy the first-order optimality condition

PΩ

(
x̂x̂> −M

)
x̂ = 0. (3.35)

We shall also assume that x̂ is a reasonably reliable estimate obeying x̂ ≈ x?.
We begin with the no-missing-data case (i.e. p = 1), which already conveys the key insight. The condi-

tion (3.35) simplifies to
x̂x̂>x̂− x?x?>x̂ = Ex̂, (3.36)

which, through a little manipulation, leads to an equivalent decomposition:

‖x̂‖22 (x̂− x?) = Ex̂︸︷︷︸
approximately Gaussian

+ x? (x? − x̂)
>
x?︸ ︷︷ ︸

negligible first-order term

+ x? (x? − x̂)
>

(x̂− x?)︸ ︷︷ ︸
second-order term

. (3.37)

Then: (1) the third term of (3.37), which can be viewed as a second-order term (in the sense that it is a
quadratic term of x̂−x?), becomes vanishingly small when x̂ ≈ x?; (2) while the second term of (3.37) looks
like a first-order term, it is natural to conjecture that x̂−x? is sufficiently random and hence (x̂−x?)>x? �
‖x̂−x?‖2‖x?‖2 (i.e. the estimation error is not aligned with x?), meaning that this term is also expected to
be negligible compared to a typical first-order term (e.g. the term on the left-hand side of 3.37). In summary,
these non-rigorous arguments suggest that

‖x̂‖22 (x̂− x?) ≈Ex̂. (3.38)

If one can be convinced that E and x̂ are only weakly dependent, then this means

x̂− x? ≈ 1

‖x̂‖22
Ex̂ ≈ 1

‖x?‖22
Ex? ∼ N

(
0,

σ2

‖x?‖22
In

)
. (3.39)

Returning to the missing data scenario with p < 1, everything is based on the following approximation

PΩ

(
x̂x̂> − x?x?>

)
x̂ ≈ p

(
x̂x̂> − x?x?>

)
x̂;

this is certainly expected — using standard concentration arguments — if we “pretend” that PΩ and x̂ are
statistically independent. With this approximation in mind, one can translate (3.35) into

p
(
x̂x̂>x̂− x?x?>x̂

)
≈ PΩ (E) x̂. (3.40)

Repeating the above argument then immediately yields

x̂− x? ≈ 1

‖x̂‖22
· 1

p
PΩ (E) x̂ ≈ 1

p‖x?‖22
· PΩ (E)x?

approx.∼ N
(
0,

σ2

p‖x?‖22
In

)
. (3.41)

The case with λ > 0 can be intuitively understood in a very similar way by first de-shrinking the estimate;
we omit it here for brevity. We note that these hand-waving arguments can all be made rigorous, which is
the main content of the proof.

3.8 Inference based on spectral estimates?
One would naturally be curious about whether there are other estimation procedures that also enable rea-
sonable statistical inference. While this is beyond the scope of the current paper, we take a moment to
discuss one alternative: the spectral method, as pioneered by [KMO10a,KMO10b] in the matrix comple-
tion problem. In a nutshell, this approach consists in computing a rank-r approximation to PΩ(M)/p,

15



which is precisely the spectral initialization widely used in a two-stage nonconvex algorithm (cf. Algo-
rithm 1) [KMO10b, SL16,CW15,CCF18,MWCC17]. While inference has not been, as far as we know, the
focus of prior work on spectral methods,4 the recent papers [AFWZ17,MWCC17] hinted at the possibility
of characterizing the distribution of the spectral estimate. Take a simple symmetric rank-1 case for example
(i.e. M? = x?x?> with ‖x?‖2 = 1): the leading eigenvector uspectral of PΩ(M)/p often admits the following
approximation (up to a global sign)

uspectral ≈ 1

p
PΩ(M)x?.

Expanding PΩ(M) = px?x?> + PΩ(x?x?>)− px?x?> + PΩ(E), we arrive at

uspectral ≈ x?x?>x? +
(1

p
PΩ(x?x?>)− x?x?>

)
x? +

1

p
PΩ(E)x?,

which is equivalent to

uspectral − x? ≈ 1

p
PΩ(E)x?︸ ︷︷ ︸
noise effect

+
(1

p
PΩ(x?x?>)− x?x?>

)
x?︸ ︷︷ ︸

effect of random sub-sampling

. (3.42)

In words, two major factors dictate the uncertainty of the spectral estimate: (1) the additive Gaussian
noise (cf. the 1st term on the right-hand side of (3.42)), and (2) random sub-sampling (in particular, the
randomness incurred by employing the sub-sampled PΩ(x?x?>)/p to approximate the truth x?x?>). Given
that the random sub-sampling effect cannot be ignored at all, the spectral estimates often suffer from a
much larger estimation error (and hence a higher degree of uncertainty) compared to either the convex or
the nonconvex estimates. In truth, this random sub-sampling effect does not go away even when the noise
vanishes. Consequently, uncertainty quantification based on the spectral estimates may not be the most
desirable option.

4 Prior art
Matrix completion. Low-rank matrix completion, or more broadly, low-rank matrix recovery, is a fun-
damental task that permeates through a wide spectrum of applications in science, engineering, and finance
(e.g. [RS05, SY07, CC14, FSZZ18, CCG15, ZPL15, BN06, CC18b, FWZ19,KS11, CZ16,KX15, FLM13,DR17,
CDDD19,DPVW14,SZ12,FS11]). A paper of this length is unable to review all papers motivating and con-
tributing to this enormous subject; interested readers are referred to [DR16,CC18a] for extensive discussions
of motivating applications as well as the exciting recent development.

Numerous algorithms have been proposed to solve this problem efficiently, with two paradigms being
arguably the most widely used: convex relaxation and nonconvex optimization. We briefly review the
literature contributing to these two paradigms.

• Convex relaxation was largely popularized by the seminal works [Faz02,RFP10,CR09]. In the absence
of noise, it has been shown that nuclear norm minimization, which can be solved by semidefinite pro-
gramming, achieves minimal sample complexity under mild conditions [Gro11,Rec11,Che15]. When the
observed entries are further corrupted by noise, Candès and Plan [CP10] provided the first theoretical
guarantee regarding the estimation accuracy of perhaps the most natural convex relaxation algorithm.
While the theory might be tight for certain adversarial scenarios (as shown by the recent work [KS19]),
it is loose by some large factor under the natural random noise model. This statistical guarantee has
been partially improved later on by two papers [NW12,KLT11] under proper modifications to the con-
vex program (e.g. enforcing an additional spikiness constraint [NW12,Klo14], or modifying the squared
loss [KLT11]). Nevertheless, the error bounds provided in these papers (and their follow-ups) remain
suboptimal, unless the typical size of the noise is sufficiently large. Our recent work [CCF+19] estab-
lishes near-optimal statistical guarantees — when the estimation errors are measured by the Frobenius

4We note that inference from spectral estimates has been investigated in other context beyond matrix completion (e.g. the
model without missing data [Xia19,FFHL19]).
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norm, the spectral norm, and the `2,∞ norm — for a wide range of noise levels when r = O(1). All of
these estimation guarantees, however, come with a hidden and likely large pre-constant, which do not
serve the inferential purpose well.

• Nonconvex optimization algorithms, as pioneered by [KMO10a,Sre04], become increasingly more popu-
lar for solving various low-rank factorization problems, due to their appealing computational complex-
ities [JNS13,CLS15,CC17,TBS+16,SL16,ZL16,CCFM19,WZG16,CLL19]. For instance, the gradient-
based nonconvex methods have been analyzed for noisy matrix completion [KMO10b,CW15,MWCC17,
CCF+19], which are shown to achieve near-optimal statistical accuracy and linear-time convergence
guarantees all at once. Going beyond gradient methods, we note that other nonconvex methods
(e.g. [RS05,JMD10,WYZ12,JNS13,FRW11,Van13,LXY13,Har14,JKN16,RT11,WCCL16,DC18,ZWL15,
ZWYG18,MSL19, CCD+19]) and landscape properties [GLM16, CL17,GJZ17, ZSL19, ZJSL18, SXZ19]
have been largely explored as well. The interested readers are referred to [CLC19] for an in-depth dis-
cussion. One limitation, however, is that the theoretical guarantees provided for nonconvex algorithms
often exhibit sub-optimal dependency in the rank r of the unknown matrix; for instance, most theory
requires a sample complexity of at least nr2 (in fact, often much larger than nr2). This is outperformed
by the convex relaxation approach.

Despite these recent developments, very little work has investigated statistical inference for noisy matrix
completion. While [CKLN18, CKL16, CN15, CEGN15] discussed the construction of “honest” confidence
regions, the volume of these regions is dependent on some (possibly huge) hidden constants, thus resulting
in over-coverage. Perhaps the closest to our paper is the recent work [Xia18], which investigated inference
for low-rank trace regression. Employing a closely related de-biased estimator with sample splitting, the
paper [Xia18] established asymptotic normality of a certain projected distance between the estimate and the
truth. The result therein, however, requires a sampling mechanism obeying the restricted isometry property
(e.g. i.i.d. Gaussian designs), which fails to hold for matrix completion. Also, our approach does not require
sample splitting — a technique that is convenient for analysis but conservative in constructing confidence
regions. Another work by Cai et al. [CLR16] developed a unified approach to provide inference guarantees
for linear inverse problems including low-rank matrix estimation. Their results, however, require the sample
size to exceed the total dimension n2 even under the Gaussian design. Finally, a recent line of work [MX17]
explored uncertainty quantification under the Bayesian setting, hypothesizing on a special prior regarding
the true matrix. This departs drastically from the scenario considered herein.

Inference in high-dimensional problems. Inference in high-dimensional sparse regression has received
much attention in the last few years [WR09, ZZ14, BCH11, vdGBRD14, JM14b, DBMM15, CG17, NL17,
NNLL18, LSST16, LTTT14, MMB09, DBZ17, ZC17, BFL+18]. Our inferential approach is partly inspired
by the recent developments on this topic, particularly with regard to the de-biased / de-sparsified estimators
proposed for Lasso. More specifically, recognizing the non-negligible bias of the Lasso estimate

β̂ , arg min
β

1

2
‖y −Xβ‖22 + λ‖β‖1, (4.1)

A line of work [ZZ14,vdGBRD14,JM14a] came up with a linear transformation of β̂ of the form

βd , β̂ +LX>
(
y −Xβ̂

)
, (4.2)

where L is some matrix to be designed, and X>
(
y − Xβ̂

)
corresponds to the negative gradient of the

squared loss at β̂, or equivalently, the (scaled) sub-gradient of the `1 norm at β̂. If L is properly chosen,
then βd is able to correct the bias of this nonlinear estimator β, while controlling the degree of uncertainty.
Many follow-up papers have investigated the design of L as well as the resulting inferential guarantees [ZZ14,
vdGBRD14,JM14a,JM15].

Interestingly, our de-biased estimator (3.7) for matrix completion admits a very similar form as (4.2). To
see this, recall that our de-biased estimator is given by

Md = Prank-r
(
Z − 1

pPΩ

(
Z
)

+ 1
pPΩ

(
M
))
,
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where Z can be either Zcvx or XncvxY ncvx> (see Table 1). Let T be the tangent space of the set of rank-
r matrices at Zcvx,r (resp. XncvxY ncvx>) in the convex (resp. nonconvex) case, and PT be the projection
operator onto T . Somewhat surprisingly, replacing Prank-r by PT does not affect the de-biased estimator by
much, in the sense that

Md ≈ PT
(
Z − 1

pPΩ

(
Z
)

+ 1
pPΩ

(
M
))
. (4.3)

In addition, recognizing that Z almost lies within the tangent space T ,5one can rewrite

Md ≈ Z − 1
pPTPΩ

(
Z −M

)
, (4.4)

a fact to be made precise in Section 5.1. This bears a striking resemblance to the de-biasing approach
developed for Lasso — the term PΩ

(
Z−M?

)
represents the gradient of the squared loss 0.5‖PΩ

(
Z−M

)
‖2F

(or equivalently, the negative sub-gradient of the nuclear norm) at Z, and PT is the linear operator we pick.
To the best of our knowledge, no de-biasing approach — with rigorous theoretical guarantees and without
sample splitting — has been proposed and analyzed for matrix completion in prior literature. In addition,
we note that our de-biased estimator for matrix completion achieves full statistical efficiency in terms of
both the rates and the pre-constant; in comparison, the commonly used de-biased estimators for sparse
linear regression typically fall short of achieving the best possible estimation accuracy, unless additional
thresholding procedures are enforced.

Finally, de-biased estimators have been put forward to tackle other high-dimensional problems, including
but not limited to generalized linear models [vdGBRD14,NL17], graphical models [JVDG15,RSZZ15,MLL17,
JvdG17], sparse PCA [JvdG18], treatment effects estimation [CCD+18,AIW18]. These are beyond the scope
of the current paper.

5 Architecture of the proof
This section outlines the main steps for establishing Theorem 1 and Theorem 2. Before starting, we introduce
some useful notation. For convenience of presentation, we insert the factor 1/p into (3.4) and redefine the
nonconvex loss function as

f (X,Y ) ,
1

2p

∥∥PΩ

(
XY > −M

)∥∥2

F
+

λ

2p
‖X‖2F +

λ

2p
‖Y ‖2F . (5.1)

In addition, for each 1 ≤ j, k ≤ n, we define the indicator δjk , 1{(j, k) ∈ Ω}, which is a Bernoulli random
variable with mean p.

We also note that Theorem 1 (resp. Theorem 2) is subsumed by Theorem 5 (resp. Theorem 6). As a
result, we shall focus on establishing Theorem 5 (resp. Theorem 6) when it comes to estimating low-rank
factors (resp. the entries of the matrix).

Theorem 5. Suppose that the sample complexity meets n2p ≥ Cκ4µ2r2n log3 n for some sufficiently large
constant C > 0 and the noise obeys σ

√
(κ4µrn log n)/p ≤ cσmin for some sufficiently small constant c > 0.

Then the decomposition in Theorem 1 remains valid, except that the residual matrices ΨX ,ΨY ∈ Rn×r
satisfy, with probability at least 1−O(n−3), that

max
{
‖ΨX‖2,∞ , ‖ΨY ‖2,∞

}
.

σ
√
pσmin

 σ

σmin

√
κ7µrn log n

p
+

√
κ7µ3r3 log2 n

np

 . (5.2)

Theorem 6. Instate the assumptions of Theorem 5. Recall the definition of v?ij in (3.17). Then one has the
following decomposition

Md
ij −M?

ij = gij + ∆ij , (5.3)

where gij ∼ N (0, v?ij) and the residual obeys — with probability exceeding 1−O(n−10) — that

|∆ij | .
(∥∥U?

i,·
∥∥

2
+
∥∥V ?

j,·
∥∥

2

) σ
√
p

 σ

σmin

√
κ8µrn log n

p
+

√
κ8µ3r3 log2 n

np

+

(
σ

√
σmin

√
κ3µr log n

p

)2

.

5More precisely, if Z = XncvxY ncvx>, then Z ∈ T ; if Z = Zcvx, one has PT (Z) ≈ Z.
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5.1 Near equivalence between convex and nonconvex estimators
Note that Theorem 5 and Theorem 6 are concerned with the de-biased estimators built upon both convex and
nonconvex estimates. At first glance, one needs to establish theoretical guarantees for each of them separately.
Fortunately, as alluded to previously (cf. (3.5)), the convex and nonconvex estimates are extremely close —
a fact that has been established in [CCF+19]. The proximity of these two estimates naturally extends to
the de-biased estimators constructed based on them. As a result, it suffices to concentrate on proving the
theorems for any of these estimators; the claims for the other one follow immediately.

The following key lemma formalizes this argument, which will be established in Appendix C (see also Fig-
ure 4 for numerical evidence). Before continuing, we remind the readers of the key notation (see Appendix B
for precise definitions):

• (Xncvx,Y ncvx): an approximate solution to the nonconvex problem (3.4) (see Appendix A.1);

• M cvx,d,Xcvx,d,Y cvx,d: the de-biased estimators built upon the convex optimizer Zcvx;

• Mncvx,d,Xncvx,d,Y ncvx,d: the de-biased estimators built upon the nonconvex estimate (Xncvx,Y ncvx).

Our proximity result is this:

Lemma 3. Suppose that the sample size obeys n2p ≥ Cκ4µ2r2n log3 n for some sufficiently large constant
C > 0 and the noise satisfies σ

√
(κ4µnr log n)/p ≤ cσmin for some sufficiently small constant c > 0. Set

λ = Cλσ
√
np with some large enough constant Cλ > 0.

1. With probability at least 1−O(n−10), one has

max
{∥∥M cvx,d −Xncvx,dY ncvx,d>∥∥

F
,
∥∥Mncvx,d −Xncvx,dY ncvx,d>∥∥

F

}
.

1

n4
· σ
√
n

p
, (5.4a)

min
R∈Or×r

√
‖Xcvx,dR−Xncvx,d‖2F + ‖Y cvx,dR− Y ncvx,d‖2F .

1

n3
· σ
√
σmin

√
n

p
, (5.4b)

where Or×r is the set of r × r rotation matrices.

2. With probability exceeding 1−O(n−10), one has∥∥Mncvx,d −
[
XncvxY ncvx> − p−1PTPΩ

(
XncvxY ncvx> −M

)]∥∥
F
.

1

n4
· σ
√
n

p
, (5.5)

where T is the tangent space of the set of rank-r matrices at XncvxY ncvx>. The same holds true if we
replace XncvxY ncvx> with Zcvx and replace T with the tangent space at Zcvx,r = Prank-r(Z

cvx) .

In short, the first part of Lemma 3 tells us that

M cvx,d ≈Xncvx,dY ncvx,d> ≈Mncvx,d, (5.6a)(
Xcvx,d,Y cvx,d

)
≈
(
Xncvx,d,Y ncvx,d

)
(up to global rotation), (5.6b)

whereas the second part of Lemma 3 justifies that the proposed de-biased estimator is closely approximated
by a linearized version (cf. (4.4)). Note that this linearized form bears a resemblance to the de-biased
estimators developed for sparse linear regression [ZZ14,vdGBRD14,JM14a].

With Lemma 3 in place, we shall, from now on, focus on proving the main theorems for the nonconvex
estimators, viz.

1. establishing Theorem 5 for the de-shrunken low-rank factors (Xncvx,d,Y ncvx,d);

2. establishing Theorem 6 for the de-biased matrix estimator Xncvx,dY ncvx,d>.

To simplify the presentation hereafter, we shall use the following notation throughout the rest of this section:

• (X,Y ): the nonconvex estimate (Xncvx,Y ncvx);

• (Xd,Y d): the de-shrunken estimate defined in (3.8) based on (X,Y ) = (Xncvx,Y ncvx);

• Md ,XdY d>.
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Figure 4: The relative estimation errors of M cvx,d and Mncvx,d and related quantities in Lemma 3 vs. the
standard deviation σ of the noise. Here, dist((Xcvx,d,Y cvx,d), (Xncvx,d,Y ncvx,d)) is defined to be the left-hand
side of (5.4b). The results, which are averaged over 20 trials, are reported for n = 1000, r = 5, p = 0.2,
and λ = 5σ

√
np. As can be seen, the difference between M cvx,d, Mncvx,d and Xncvx,dY ncvx,d>, as well as the

distance dist((Xcvx,d,Y cvx,d), (Xncvx,d,Y ncvx,d)), are all significantly smaller than the estimation errors.

5.2 A precise characterization of the de-shrunken low-rank factors
We start with a precise characterization of the de-shrunken low-rank factors Xd and Y d, which paves the
way for demonstrating both Theorem 5 and Theorem 6.

Lemma 4 (Decompositions of low-rank factors). Denote

A ,
1

p
PΩ

(
XY > −X?Y ?>)− (XY > −X?Y ?>) . (5.7)

One has the following decompositions for Xd and Y d

Xd =
1

p
PΩ (E)Y d

(
Y d>Y d

)−1
+X?Y ?>Y d

(
Y d>Y d

)−1 −AY d
(
Y d>Y d

)−1

+∇Xf (X,Y )
(
Ir +

λ

p

(
Y >Y

)−1
)1/2 (

Y d>Y d
)−1

+X∆balancing; (5.8a)

Y d =
1

p
[PΩ (E)]

>
Xd

(
Xd>Xd

)−1
+ Y ?X?>Xd

(
Xd>Xd

)−1 −A>Xd
(
Xd>Xd

)−1

+∇Y f (X,Y )
(
Ir +

λ

p

(
X>X

)−1
)1/2 (

Xd>Xd
)−1 − Y∆balancing. (5.8b)

Here, we denote

∆balancing ,
(
Ir +

λ

p

(
X>X

)−1
)1/2

−
(
Ir +

λ

p

(
Y >Y

)−1
)1/2

, (5.9)

which measures the imbalance between the low-rank factors X and Y .

Proof. The claims follow from straightforward algebraic manipulations; see Appendix D.1.

We make a few observations regarding Lemma 4. Take the decomposition of Xd (5.8a) as an example:

• First, the term AY d(Y d>Y d)−1 vanishes when we have full observations, i.e. p = 1. Second, the terms
involving ∇Xf(X,Y ) and ∆balancing are both zero if (X,Y ) is an exact stationary point of f(·, ·); to
see this, it is not hard to verify that any stationary point of f(·, ·) necessarily satisfies X>X = Y >Y ,
which in turn implies ∆balancing = 0. Consequently, the last three terms in (5.8a) are expected to be
small when p is sufficiently large and (X,Y ) is near a stationary point.
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• Turning to the first two terms in (5.8a), we note that the second term of (5.8a) is close to X?

(up to rotation) if Y d is a nearly accurate approximation to Y ?. In comparison, the first term
PΩ(E)Y d(Y d>Y d)−1/p has to do with a collection of Gaussian random variables, which accounts for
the main uncertainty term.

We shall make precise these arguments in subsequent subsections.

5.3 Taking global rotation into account
In order to invoke the decompositions of Xd and Y d (cf. Lemma 4) to characterize the estimation errors,
we still need to incorporate the (unrecoverable) rotation matrix. From now on, we shall focus primarily on
the factor Xd. The claims on the other factor Y d can be easily obtained via symmetry.

Denote
X

d
,XdHd and Y

d
, Y dHd, (5.10)

where we recall that Hd is the rotation matrix that best aligns (Xd,Y d) and (X?,Y ?) (see (3.12)). Sub-
stituting the identity

Y d
(
Y d>Y d

)−1
Hd = Y dHd

(
Hd>Y d>Y dHd

)−1
= Y

d(
Y

d>
Y

d)−1

into the decomposition (5.8a), we arrive at

XdHd −X? =
1

p
PΩ (E)Y

d(
Y

d>
Y

d)−1
+X?

[
Y ?>Y

d(
Y

d>
Y

d)−1 − Ir
]
−AY d(

Y
d>
Y

d)−1

+∇Xf (X,Y )
(
Ir +

λ

p

(
Y >Y

)−1
)1/2 (

Y d>Y d
)−1

Hd +X∆balancingH
d

=
1

p
PΩ (E)Y ?

(
Y ?>Y ?

)−1
+ ΦX . (5.11)

Here, the term ΦX ∈ Rn×r is defined to be

ΦX ,
1

p
PΩ (E)

[
Y

d(
Y

d>
Y

d)−1 − Y ?
(
Y ?>Y ?

)−1
]

︸ ︷︷ ︸
:=Φ1

+X?
[
Y ?>Y

d(
Y

d>
Y

d)−1 − Ir
]

︸ ︷︷ ︸
:=Φ2

−AY d(
Y

d>
Y

d)−1

︸ ︷︷ ︸
:=Φ3

+∇Xf (X,Y )
(
Ir +

λ

p

(
Y >Y

)−1
)1/2 (

Y d>Y d
)−1

Hd +X∆balancingH
d︸ ︷︷ ︸

:=Φ4

,

(5.12)

where A is defined in (5.7). To establish Theorem 5, it remains to (1) demonstrate that ΦX has small `2,∞
norm, and (2) show that PΩ(E)Y ?(Y ?>Y ?)−1/p is approximately a Gaussian random matrix. These two
steps constitute the main content of the next subsection.

5.4 Key lemmas for establishing Theorem 5
We now state five key lemmas. Taking these collectively and substituting them into (5.11) immediately
establish Theorem 5.

We shall start by controlling the term Φ1 as defined in (5.12).

Lemma 5 (Negligibility of Φ1). Suppose that the sample complexity obeys n2p ≥ Cκ4µ2r2n log3 n for some
sufficiently large constant C > 0 and the noise satisfies σ

√
(κ4µrn log n)/p ≤ cσmin for some sufficiently

small constant c < 0. Then with probability at least 1−O(n−10), we have

‖Φ1‖2,∞ .
σ

√
pσmin

· σ

σmin

√
κ3µrn log n

p
.
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Proof. Fix any 1 ≤ j ≤ n. If the de-shrunken estimate Y
d
were independent of the randomness in the jth

row of the matrix, i.e. e>j PΩ(E), then ‖e>j Φ1‖2 would be well controlled. This hypothesis is certainly false,

as Y
d
clearly depends on e>j PΩ(E). Nevertheless, by exploiting the leave-one-out technique recently used

in [EKBB+13,EK15,AFWZ17,MWCC17,CFMW19,CCF+19,CLL19,DC18], one can properly decouple the
dependency and establish the desired bound. See Appendix D.2.

The next lemma controls the size of ‖Φ2‖2,∞. In essence, the term Φ2 measures the difference between
the estimate Y

d
and the true signal Y ?; the closer these two are, the smaller ‖Φ2‖2,∞ should be. See

Appendix D.3 for the proof of the following result.

Lemma 6 (Negligibility of Φ2). Suppose that the sample complexity obeys n2p ≥ Cκ4µ2r2n log3 n for some
sufficiently large constant C > 0 and the noise satisfies σ

√
(κ4µrn log n)/p ≤ cσmin for some sufficiently

small constant c < 0. Then with probability exceeding 1−O(n−10), one has

‖Φ2‖2,∞ .
σ

√
pσmin

(
κ

σ

σmin

√
κ7µrn

p
+

√
κ7µ3r3 log n

np

)
.

Moving on to Φ3 and Φ4, one has the following lemmas.

Lemma 7 (Negligibility of Φ3). Suppose that the sample complexity obeys n2p ≥ Cκ4µ2r2n log3 n for some
sufficiently large constant C > 0 and the noise satisfies σ

√
(κ4µrn log n)/p ≤ cσmin for some sufficiently

small constant c < 0. Then with probability exceeding 1−O(n−10), we have

‖Φ3‖2,∞ .
σ

√
pσmin

√
κ5µ3r3 log2 n

np
.

Proof. It is straightforward to check that when p = 1, one has ‖Φ3‖2,∞ = ‖A‖ = 0, where we recall the
definition of A in (5.7). Therefore, one expects ‖Φ3‖2,∞ to be small when p is sufficiently large. See
Appendix D.4.

Lemma 8 (Negligibility of Φ4). Suppose that the sample complexity obeys n2p ≥ Cκ4µ2r2n log3 n for some
sufficiently large constant C > 0 and the noise satisfies σ

√
(κ4µrn log n)/p ≤ cσmin for some sufficiently

small constant c < 0. Then with probability at least 1−O(n−10), one has

‖Φ4‖2,∞ .
σ

√
pσmin

· 1

n4
.

Proof. It is easily seen that the size of Φ4 depends on how close (X,Y ) is to a stationary point of f(·, ·).
For instance, in the extreme case where (X,Y ) is an exact stationary point, then one would have Φ4 = 0.
See Appendix D.5.

The last lemma asserts that PΩ(E)Y ?(Y ?>Y ?)−1/p is, in some sense, close to a zero-mean Gaussian
random matrix with the desired covariance.

Lemma 9 (Approximate Gaussianity of PΩ(E)Y ?(Y ?>Y ?)−1/p). Suppose that the sample size obeys n2p ≥
Cκ2µrn log3 n for some sufficiently large constant C > 0. Then one has the decomposition

1

p
PΩ (E)Y ?

(
Y ?>Y ?

)−1
= ZX + ∆X ,

where each row of ZX ∈ Rn×r is independent and identically distributed according to

Z>Xej
i.i.d∼ N

(
0,
σ2

p
(Σ?)

−1
)
, for 1 ≤ j ≤ n.

In addition, with probability at least 1−O(n−10), the remaining term ∆X ∈ Rn×r obeys

‖∆X‖2,∞ .
σ

√
pσmin

√
κ2µr2 log2 n

np
.
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Proof. Fix any 1 ≤ j ≤ n. The jth row, namely e>j [PΩ(E)Y ?(Y ?>Y ?)−1/p] is conditionally Gaussian in
the sense that

e>j

[
1

p
PΩ (E)Y ?

(
Y ?>Y ?

)−1
] ∣∣∣Ω ∼ N

(
0,
σ2

p

( 1

p

n∑
k=1

δjk (Σ?)
−1 (

Y ?
k,·
)>
Y ?
k,· (Σ

?)
−1
))
,

where we recall that δjk = 1{(j, k) ∈ Ω}. Recognize that the conditional covariance matrix concentrates
sharply around its expectation, i.e. σ2(Σ?)−1/p, which is the covariance matrix of Z>Xej that we are after.
Hence, one can expect that PΩ(E)Y ?(Y ?>Y ?)−1/p is, marginally, not too far from a Gaussian random
matrix. This argument can be carried out formally; see Appendix D.6.

5.5 From low-rank factors to matrix entries (Proof of Theorem 6)
We now turn attention to inference on the matrix entries, by establishing Theorem 6. Towards this, we first
make the following observation: for any 1 ≤ i, j ≤ n,

Md
ij −M?

ij = e>i X
d
Y

d>
ej − e>i X

?Y ?>ej

= e>i
(
X

d −X?
)
Y ?>ej + e>i X

?
(
Y

d − Y ?
)>
ej + e>i

(
X

d −X?
)(
Y

d − Y ?
)>
ej . (5.13)

One can readily apply the decompositions in Theorem 5 to obtain

e>i
(
X

d −X?
)
Y ?>ej = e>i ZXY

?>ej + e>i ΨXY
?>ej , (5.14)

e>i X
?
(
Y

d − Y ?
)>
ej = e>i X

?Z>Y ej + e>i X
?Ψ>Y ej . (5.15)

Take the preceding three identities collectively to reach

Md
ij −M?

ij = e>i ZXY
?>ej + e>i X

?Z>Y ej︸ ︷︷ ︸
:=Θij

+ e>i ΨXY
?>ej + e>i X

?Ψ>Y ej + e>i
(
X

d −X?
)(
Y

d − Y ?
)>
ej︸ ︷︷ ︸

:=Λij

.

Following the same route as in Section 5.4, one can verify that Θij = e>i ZXY
?>ej +e>i X

?Z>Y ej is approx-
imately Gaussian, whereas the residual term Λij is small in magnitude. These claims are formally stated in
the next two lemmas, with the proofs deferred to Appendix E.

Lemma 10 (Negligibility of Λij). Suppose that the sample complexity obeys n2p ≥ Cκ4µ2r2n log3 n for some
sufficiently large constant C > 0 and the noise satisfies σ

√
(κ4µrn log n)/p ≤ cσmin for some sufficiently

small constant c < 0. Then with probability exceeding 1−O(n−10), one has

|Λij | .
(∥∥U?

i,·
∥∥

2
+
∥∥V ?

j,·
∥∥

2

) σ
√
p

 σ

σmin

√
κ8µrn log n

p
+

√
κ8µ3r3 log2 n

np

+

(
σ

√
σmin

√
κ3µr log n

p

)2

.

Lemma 11 (Approximate Gaussianity of Θij). Suppose that np ≥ Cκ2µr2 log2 n for some sufficiently large
constant C > 0. Then we have the decomposition

Θij = e>i ZXY
?>ej + e>i X

?Z>Y ej = gij + θij ,

where gij ∼ N (0, v?ij) and the remaining term θij satisfies — with probability exceeding 1−O(n−10) — that

|θij | .
σ
√
p

√
κ2µr log n

np
min

{∥∥U?
i,·
∥∥

2
,
∥∥V ?

j,·
∥∥

2

}
.

Putting the above two lemmas together immediately establishes Theorem 6 and hence Theorem 2.
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6 Discussion
The present paper makes progress towards inference and uncertainty quantification for noisy matrix comple-
tion, by developing simple de-biased estimators that admit tractable and accurate distributional characteri-
zations. While we have achieved some early success in accomplishing this, our results are likely sub-optimal
in the following aspects:

• Dependency on the rank and the condition number. To enable valid inference, our sample complexity
(cf. (3.13) and (3.18a)) scales sub-optimally with the rank r and the condition number κ. The sub-
optimality can be understood through comparisons with the sample size requirement O(nr log2 n) in
the noise-free settings, which is independent of κ and matches the information limit (up to some log
factor). Improving such dependency calls for more refined analysis techniques.

• Detection of the size of the entries. On one hand, when the size of the entry M?
ij is moderately large

(cf. (3.18b)), Corollary 1 allows us to construct a valid confidence interval for it. On the other hand,
when ‖U?

i,·‖2 + ‖V ?
j,·‖2 vanishes, Theorem 5 tells us that the estimation error Md

ij − M?
ij is better

approximated by the inner product of two independent Gaussian random vectors. It remains to be seen
how to determine whether ‖U?

i,·‖2 + ‖V ?
j,·‖2 is too small.

• Low signal-to-noise (SNR) regime. Our theory operates under the moderate-to-high SNR regime, where
σ2

min/σ
2 (which is proportional to the SNR) is required to exceed the order of n/p; see the conditions in

Theorem 5. It is unclear whether the connection between the convex and the nonconvex estimators hold
in the low SNR regime. How to conduct inference in such a scenario is an important future direction.

In addition, our investigation has been dedicated to a natural random model, which by no means covers
the most general settings of practical interest. There are numerous possible extensions that merit future
investigation:

• Approximate low-rank structure. Our current theory is built upon the exact low-rank structure of M?.
Realistically, the matrix of interest is often only approximately low-rank. It is of great interest to study
how to carry out statistical inference under such imperfect structural assumptions.

• More general sampling patterns. This paper operates under the uniform random sampling assumption,
which might sometimes be off in practical situations. It would be interesting to investigate whether our
results in this paper can extend to more general non-uniform sampling patterns (e.g. [NW12]).

• Extensions to robust PCA, sparse PCA, and 1-bit matrix completion. A variety of important extensions
of matrix completion have been explored in prior literature, including but not limited to the case
with sparse outliers (i.e. robust PCA [CLMW11, CSPW11]), the case where the matrix of interest
is simultaneously sparse and low-rank (i.e. sparse PCA [ZHT06, CMW13]), and the case where only
finite-bit observations are available (i.e. 1-bit matrix completion [DPVW14,CZ13]). Performing valid
uncertainty assessment for these scenarios requires non-trivial extensions of the link between convex and
nonconvex optimization.

• Other loss functions. In the estimation stage, one might sometimes prefer other loss functions beyond the
penalized squared loss. This might arise from either statistical considerations (e.g. employing a penalized
Poisson log-likelihood to accommodate Poisson noise [CX16]), or computational concerns (e.g. adopting
a non-smooth loss to improve convergence [CCD+19]). It would be of fundamental importance to
develop a unified inferential framework that covers a broader family of loss functions.
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A Preliminaries
In this section, we gather several notation and preliminary facts that are useful throughout the analysis. All
the proofs, if needed, are deferred to Appendix I.

A.1 Algorithmic details of nonconvex optimization
To begin with, we make precise the algorithm used to minimize the nonconvex loss function (5.1). Specifically,
we describe the following details that are crucial for us to implement Algorithm 1:

• Set the initial point to be (X0,Y 0) = (X?,Y ?) or the spectral initialization as in [MWCC17,CLL19];

• Set the stepsize η � 1/(n6κ3σmax);

• Set the maximum number of iterations to be t0 � n23;

• The returned estimate is (Xncvx,Y ncvx) , (Xt? ,Y t?), where

t? , min

{
0 ≤ t ≤ t0

∣∣∣ ∥∥∇f (Xt,Y t
)∥∥

F
≤ 1

n5

λ

p

√
σmin

}
. (A.1)

In words, we run gradient descent in Algorithm 1 until we reach a point whose gradient is exceedingly
small.

Remark 6 (Spectral initialization). Many of the preliminary facts below were established for the case
(X0,Y 0) = (X?,Y ?) [CCF+19], which is certainly not implementable in practice, however, it serves as
a good proxy for studying the convex estimator. Fortunately, the same theoretical guarantees stated in Ap-
pendix A.2 can be readily established for spectral initialization using almost the same arguments adopted
in [MWCC17,CLL19,CCF+19]. We omit this part mainly for the sake of brevity.

To facilitate analysis, we introduce a set of auxiliary nonconvex loss functions. For any 1 ≤ j ≤ n, define

f (j) (X,Y ) ,
1

2p

∥∥PΩ−j ,·
(
XY > −M

)∥∥2

F
+

1

2

∥∥Pj,· (XY > −M)∥∥2

F
+

λ

2p
‖X‖2F +

λ

2p
‖Y ‖2F , (A.2)

where PΩ−j,· : Rn×n 7→ Rn×n (resp. Pj,·(·)) denotes the orthogonal projection onto the subspace of matrices
that vanish outside of {(i, k) ∈ Ω | i 6= j} (resp. {(i, k) | i = j}). Let

(X(j),Y (j)) = (Xt?,(j),Y t?,(j)) (A.3)

be the nonconvex estimate returned by this auxiliary algorithm (i.e. Algorithm 2), which serves as an
approximate solution to (A.2).

Algorithm 2 Gradient descent for solving the auxiliary nonconvex problem (A.2).

Suitable initialization: (X0,(j),Y 0,(j)) = (X?,Y ?)
Gradient updates: for t = 0, 1, . . . , t? − 1 do

Xt+1,(j) =Xt,(j) − η∇Xf (j)
(
Xt,(j),Y t,(j)

)
; (A.4a)

Y t+1,(j) =Y t,(j) − η∇Y f (j)
(
Xt,(j),Y t,(j)

)
. (A.4b)

25



A.2 Properties of approximate nonconvex solutions
This subsection gathers the properties of the (approximate) nonconvex solutions. Throughout this subsection,
we use the shorthand

(X,Y ) = (Xncvx,Y ncvx) (A.5)

and recall the definition of (X(j),Y (j)) in (A.3). The regularization parameter is chosen to satisfy

λ � σ√np. (A.6)

To further simplify the presentation, we introduce F ?, F , F d, F d,(j) ∈ R2n×r as follows

F ? ,

[
X?

Y ?

]
; F ,

[
X
Y

]
; F d ,

[
Xd

Y d

]
; F d,(j) ,

[
Xd,(j)

Y d,(j)

]
, (A.7)

and define

H , arg min
R∈Or×r

‖FR− F ?‖2F = arg min
R∈Or×r

{
‖XR−X?‖2F + ‖Y R− Y ?‖2F

}
, (A.8a)

H(j) , arg min
R∈Or×r

∥∥F (j)R− F ?
∥∥2

F
= arg min

R∈Or×r

{∥∥X(j)R−X?
∥∥2

F
+
∥∥Y (j)R− Y ?

∥∥2

F

}
, (A.8b)

R(j) , arg min
R∈Or×r

∥∥F (j)R− FH
∥∥2

F
= arg min

R∈Or×r

{∥∥X(j)R−XH
∥∥2

F
+
∥∥Y (j)R− Y H

∥∥2

F

}
, (A.8c)

Hd,(j) , arg min
R∈Or×r

∥∥F d,(j)R− F ?
∥∥2

F
= arg min

R∈Or×r

{∥∥Xd,(j)R−X?
∥∥2

F
+
∥∥Y d,(j)R− Y ?

∥∥2

F

}
. (A.8d)

The claims stated below hold under the sample complexity and the noise condition presumed in [CCF+19,
Theorem 1] (see also Theorem 5 in the current manuscript)

n2p� κ4µ2r2n log3 n and σ

√
n

p
� σmin√

κ4µr log n
.

1. The first set of facts is related to (X,Y ). In view of [CCF+19], F is a faithful estimate6 of F ?, in the
sense that

‖FH − F ?‖F .
σ

σmin

√
n

p
‖X?‖F , (A.9a)

‖FH − F ?‖ . σ

σmin

√
n

p
‖X?‖ , (A.9b)

‖FH − F ?‖2,∞ . κ
σ

σmin

√
n log n

p
‖F ?‖2,∞ (A.9c)

hold with probability exceeding 1−O(n−10). In addition, on the same high-probability event, one has

‖∇f (X,Y )‖F ≤
1

n5

λ

p

√
σmin; (A.10)

∥∥X>X − Y >Y ∥∥
F
≤ 1

n5

σ

σmin

√
n

p
σmax ≤

1

n5
σmax; (A.11)

max
{∥∥Zcvx −XY >

∥∥
F
,
∥∥Zcvx,r −XY >

∥∥
F

}
.
κ2

n5

λ

p
. (A.12)

In words, the first claim ensures that (X,Y ) is an approximate stationary point of f(·, ·); the second
bound tells us that (X,Y ) is nearly balanced, in the sense that X>X ≈ Y >Y ; the last one formalizes
the proximity between the convex solution and the nonconvex one; see also (3.5).

6Technically, the statements in [CCF+19, Lemma 5] are for η � 1/(nκ3σmax) and t0 � n18. Nevertheless, inspecting their
proofs reveals that the claims continue to hold for our choices η � 1/(n6κ3σmax) and t0 � n23.
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2. We move on to the properties of the de-shrunken estimator (Xd,Y d), which is defined in (3.8). Specif-
ically, we can show that (see Appendix I)∥∥F dH − F ?

∥∥ .
σ

σmin

√
n

p
‖X?‖ , (A.13a)

∥∥F dHd − F ?
∥∥ . κ

σ

σmin

√
n

p
‖X?‖ , (A.13b)

∥∥F dHd − F ?
∥∥

F
.

σ

σmin

√
n

p
‖X?‖F , (A.13c)

∥∥F dHd − F ?
∥∥

2,∞ . κ
σ

σmin

√
n log n

p
‖F ?‖2,∞ , (A.13d)

∥∥Xd>Xd − Y d>Y d
∥∥ .

κ

n5

σ

σmin

√
n

p
σmax (A.13e)

hold with probability at least 1−O(n−10).

3. As has been shown in [CCF+19], the leave-one-out auxiliary point (X(j),Y (j)) satisfies

∥∥F (j)R(j) − FH
∥∥

F
.

σ

σmin

√
n log n

p
‖F ?‖2,∞ , (A.14a)

∥∥F (j)H(j) − FH
∥∥

F
. κ

σ

σmin

√
n log n

p
‖F ?‖2,∞ , (A.14b)

∥∥F (j)H(j) − F ?
∥∥ .

σ

σmin

√
n

p
‖X?‖ , (A.14c)

∥∥F (j)R(j) − F ?
∥∥

2,∞ . κ
σ

σmin

√
n log n

p
‖F ?‖2,∞ (A.14d)

with probability exceeding 1−O(n−10).

4. Parallel to the transition from (X,Y ) to (Xd,Y d), we set

Xd,(j) ,X(j)
(
Ir +

λ

p

(
X(j)>X(j)

)−1
)1/2

and Y d,(j) , Y (j)
(
Ir +

λ

p

(
Y (j)>Y (j)

)−1
)1/2

(A.15)

to be the de-shrunken estimators of X(j) and Y (j), respectively. We shall demonstrate in Appendix I
that, with probability at least 1−O(n−10),∥∥F d,(j)Hd,(j) − F ?

∥∥ . κ
σ

σmin

√
n

p
‖X?‖ , (A.16a)

∥∥F d,(j)Hd,(j) − F ?
∥∥

2,∞ . κ
σ

σmin

√
n log n

p
‖F ?‖2,∞ , (A.16b)

∥∥F d,(j)Hd,(j) − F dHd
∥∥ . κ

σ

σmin

√
n log n

p
‖F ?‖2,∞ . (A.16c)

In addition to these four sets of claims, we have the following immediate consequence of the incoherence
condition (2.4)

‖F ?‖2,∞ = max
{
‖X?‖2,∞ , ‖Y ?‖2,∞

}
≤
√
µrσmax/n. (A.17)

Moreover, recall that A = (1/p) ·PΩ

(
XY > −X?Y ?>)− (XY > −X?Y ?>) (cf. (5.7)). We obtain from

the proof of [CCF+19, Lemma 8] that

‖A‖ . σ

√
n

p
·

√
κ4µ2r2 log n

np
. (A.18)

27



Last but not least, we list a few simple but useful results: the nonconvex solution F satisfies

σr(F ) ≥ 0.5
√
σmin, ‖F ‖ ≤ 2 ‖X?‖ , ‖F ‖F ≤ 2 ‖X?‖F , ‖F ‖2,∞ ≤ 2 ‖F ?‖2,∞ . (A.19)

The same holds true if we replace F by either F d, F (j) F d,(j) or their corresponding low-rank factors. Here
j can vary from 1 to n.

B Summary of the proposed estimators
Let Zcvx be the minimizer of the convex program (3.1), and let (Xncvx,Y ncvx) be the solution returned by
the Algorithm 1 (with algorithmic details specified in Appendix A.1). Recall that Zcvx,r is the best rank-r
approximation of Zcvx, viz.

Zcvx,r = arg min
B: rank(B)≤r

‖B −Zcvx‖F.

In addition, we let the matrix estimate obtained by the nonconvex algorithm be Zncvx , XncvxY ncvx>.
We further denote by (Xcvx,Y cvx) the estimate of low-rank factors obtained by convex relaxation; more
specifically, we set (Xcvx,Y cvx) to be the balanced rank-r factorization of Zcvx,r obeyingXcvxY cvx> = Zcvx,r

and Xcvx>Xcvx = Y cvx>Y cvx. With these notations in place, our de-biased and de-shrunken estimators can
be summarized as follows.

• De-biased matrix estimators:

M cvx,d , Prank-r
[
Zcvx − 1

p
PΩ

(
Zcvx −M

)]
, (B.1a)

Mncvx,d , Prank-r
[
XncvxY ncvx> − 1

p
PΩ

(
XncvxY ncvx> −M

)]
. (B.1b)

• De-shrunken estimators for low-rank factors:

Xncvx,d ,Xncvx
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2

, (B.2a)

Y ncvx,d , Y ncvx
(
Ir +

λ

p

(
Y ncvx>Y ncvx

)−1
)1/2

, (B.2b)

Xcvx,d ,Xcvx
(
Ir +

λ

p

(
Xcvx>Xcvx

)−1
)1/2

, (B.2c)

Y cvx,d , Y cvx
(
Ir +

λ

p

(
Y cvx>Y cvx

)−1
)1/2

. (B.2d)

C Proof of Lemma 3
Throughout this section, let UΣV > be the rank-r SVD of the nonconvex estimate XncvxY ncvx> and T the
tangent space of the set of rank-r matrices atXncvxY ncvx>. Correspondingly, we denote by PT the projection
operator onto the tangent space T , and let PT⊥ = I − PT , where I is the identity operator.

C.1 Proof of the inequality (5.4a)
In essence, we intend to justify thatM cvx,d,Mncvx,d andXncvx,dY ncvx,d> are all very close to U(Σ+ λ

pIr)V
>.

Recall from the definition of the de-biased estimator M cvx,d (cf. (B.1a)) that

M cvx,d = Prank-r
[
Zcvx − 1

p
PΩ (Zcvx −M)

]
. (C.1)

Replacing Zcvx by XncvxY ncvx> results in

Zcvx − 1

p
PΩ (Zcvx −M) = XncvxY ncvx> − 1

p
PΩ

(
XncvxY ncvx> −M

)
+ ∆Z , (C.2)
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where we denote
∆Z ,

(
Zcvx −XncvxY ncvx>)+

1

p
PΩ

(
XncvxY ncvx> −Zcvx

)
.

Apply the proximity bound (A.12) to obtain (recall that in (A.12), one has (X,Y ) = (Xncvx,Y ncvx))

‖∆Z‖F ≤
∥∥Zcvx −XncvxY ncvx>∥∥

F
+

1

p

∥∥Zcvx −XncvxY ncvx>∥∥
F

≤ 2

p

∥∥Zcvx −XncvxY ncvx>∥∥
F
.

κ2

n5p

λ

p
≤ λ

8p
, (C.3)

as long as n5p� κ2. In addition, in view of [CCF+19, Claim 2], one has the decomposition

PΩ

(
XncvxY ncvx> −M

)
= −λUV > +R, (C.4)

where R ∈ Rn×n is a residual matrix obeying

‖PT (R)‖F . κ
p

√
σmin

‖∇f (X,Y )‖F .
κ

n5
λ ≤ λ

8
and ‖PT⊥ (R)‖ ≤ λ

2
(C.5)

with probability exceeding 1 − O(n−10). Here we utilize the small-gradient condition ‖∇f(X,Y )‖F ≤
1
n5

λ
p

√
σmin (cf. (A.10)). Take (C.1), (C.2) and (C.4) collectively to reach

M cvx,d = Prank-r
[
XncvxY ncvx> +

λ

p
UV > − 1

p
R+ ∆Z

]
= Prank-r

[
U
(
Σ +

λ

p
Ir

)
V > + ∆Z −

1

p
R

]
= Prank-r

[
U
(
Σ +

λ

p
Ir

)
V > + PT⊥

(
∆Z −

1

p
R
)

︸ ︷︷ ︸
:=C

+PT
(
∆Z −

1

p
R
)

︸ ︷︷ ︸
:=∆

]
, (C.6)

where the middle line follows since UΣV > is defined to be the SVD of XncvxY ncvx>.
We view ∆ as a perturbation and intend to apply Lemma 14 to control ‖M cvx,d−U(Σ+(λ/p)Ir)V

>‖F.
First, notice that the rth largest singular value obeys σr(U(Σ + λ

pIr)V
>) ≥ λ

p , and that∥∥∥PT⊥(∆Z −
1

p
R
)∥∥∥ ≤ ‖∆Z‖F +

1

p
‖PT⊥ (R)‖F ≤

5λ

8p
, (C.7)

where the last inequality results from (C.3) and (C.5). Combining the above two bounds with the fact
that U(Σ + λ

pIr)V
> and PT (∆Z − 1

pR) are orthogonal to each other, we arrive at the conclusion that
U(Σ + λ

pIr)V
> is the top-r SVD of C and

σi (C) = σi

(
U
(
Σ +

λ

p
Ir

)
V >

)
, for 1 ≤ i ≤ r; (C.8a)

σr+1 (C) =

∥∥∥∥PT⊥(∆Z −
1

p
R
)∥∥∥∥ . (C.8b)

Second, let ÛΣ̂V̂ > be the top-r SVD of C + ∆. By definition, one has ÛΣ̂V̂ > = M cvx,d. We are left
with checking the two conditions in Lemma 14. To begin with, the perturbation term ∆ obeys

‖∆‖F ≤ ‖∆Z‖F +
1

p
‖PT (R)‖F

(i)
.

κ2

n5p

λ

p
+

κ

n5

λ

p

(ii)
≤ 1

2n4

λ

p
, (C.9)

where (i) comes from (C.3) and (C.5) and the last inequality (ii) arises since np � κ2. Clearly, the size of
the perturbation is much smaller than λ/p and hence ‖C‖ (cf. (C.8a)). In addition,

σr+1 (C + ∆) ≤ σr+1 (C) + ‖∆‖ =

∥∥∥∥PT⊥(∆Z −
1

p
R
)∥∥∥∥+ ‖∆‖F
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≤ 5λ

8p
+

1

2n4

λ

p
≤ 3λ

4p
,

where the equality depends on (C.8b) and the last line results from (C.7) and (C.9). Consequently,

σr (C)− σr+1 (C + ∆) ≥ σr
(
U
(
Σ +

λ

p
Ir

)
V >

)
− 3λ

4p
≥ σr (Σ) +

λ

4p
≥ σmin

2
.

Here the first relation arises from (C.8a) and the second holds since σr(Σ) ≥ σmin/2, a simple consequence
of (A.19). We are now ready to apply Lemma 14 to obtain∥∥∥M cvx,d −U

(
Σ +

λ

p
Ir

)
V >

∥∥∥
F
≤
(

12 ‖Σ + (λ/p)Ir‖
σmin/2

+ 1

)
‖∆‖F . κ ‖∆‖F ,

where we have used the fact that ‖Σ + (λ/p)Ir‖ . σmax, which also can be derived from (A.19). The above
bound combined with (C.9) yields∥∥∥M cvx,d −U

(
Σ +

λ

p
Ir

)
V >

∥∥∥
F
.

κ3

n5p

λ

p
+
κ2

n5

λ

p
≤ 1

2n4

λ

p

as long as np� κ3. We remark that by setting ∆Z = 0, one also obtains the bound on Mncvx,d, i.e.∥∥∥Mncvx,d −U
(
Σ +

λ

p
Ir

)
V >

∥∥∥
F
≤ 1

2n4

λ

p
. (C.10)

We move on to investigating ‖Xncvx,dY ncvx,d>−U(Σ + λ
pIr)V

>‖, for which we have the following claim.

Claim 1. One has ∥∥∥∥Xncvx,dY ncvx,d> −U
(
Σ +

λ

p
Ir

)
V >

∥∥∥∥ ≤ 1

2n4

λ

p
. (C.11)

Taking the above three bounds collectively and recognizing that λ . σ
√
np yield the advertised bound (5.4a).

Proof of Claim 1. Utilize [CCF+19, Claim 3] to see that

Xncvx = UΣ1/2Q and Y ncvx = V Σ1/2Q−> (C.12)

hold for some invertible matrix Q ∈ Rr×r with SVD UQΣQV
>
Q obeying

∥∥ΣQ −Σ−1
Q

∥∥
F
≤ 8
√
κ

p

λ
√
σmin

∥∥∇f (Xncvx,Y ncvx)
∥∥

F
≤ 8
√
κ

n5
. (C.13)

The last inequality is the small-gradient condition (see (A.10), in which (X,Y ) = (Xncvx,Y ncvx)). Employ
the definitions for Xncvx,d and Y ncvx,d (cf. (B.2a) and (B.2b)) to see that

Xncvx,dY ncvx,d> = Xncvx
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2(

Ir +
λ

p

(
Y ncvx>Y ncvx

)−1
)1/2

Y ncvx>

= Xncvx
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2(

Ir +
λ

p

(
Xncvx>Xncvx

)−1
)1/2

Y ncvx>

−Xncvx
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)
∆balancingY

ncvx>

= Xncvx
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)
Y ncvx>︸ ︷︷ ︸

:=A1

−Xncvx
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)
∆balancingY

ncvx>︸ ︷︷ ︸
:=A2

.

(C.14)

Here we denote

∆balancing ,
(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2

−
(
Ir +

λ

p

(
Y ncvx>Y ncvx

)−1
)1/2

.
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It then boils down to showing that (i) A1 is very close to U(Σ + λ
pIr)V

>, and (ii) A2 is small in size.
First, recall that XncvxY ncvx> = UΣV >, which combined with (C.12) gives∥∥∥∥A1 −U

(
Σ +

λ

p
Ir

)
V >

∥∥∥∥ =
λ

p

∥∥∥Xncvx
(
Xncvx>Xncvx

)−1
Y ncvx> −UV >

∥∥∥
=
λ

p

∥∥∥UΣ−1/2Q−>Q−1Σ1/2V > −UV >
∥∥∥

=
λ

p

∥∥∥Σ−1/2
(
Q−>Q−1 − Ir

)
Σ1/2

∥∥∥ ≤ √κλ
p

∥∥Q−>Q−1 − Ir
∥∥

=
√
κ
λ

p

∥∥Σ−2
Q − Ir

∥∥ ≤ √κλ
p

∥∥Σ−1
Q

∥∥ · ∥∥Σ−1
Q −ΣQ

∥∥
F

. κ
λ

p

1

n5
. (C.15)

Here, the last inequality comes from (C.13) and its immediate consequence that ‖ΣQ‖ � ‖Σ−1
Q ‖ � 1.

Second, apply the perturbation bound for matrix square roots (cf. Lemma 13) to obtain

‖∆balancing‖ .
λ
p

∥∥ (Xncvx>Xncvx
)−1 −

(
Y ncvx>Y ncvx

)−1 ∥∥
λmin

[(
Ir + λ

p (Xncvx>Xncvx)
−1
)1/2

]
+ λmin

[(
Ir + λ

p (Y ncvx>Y ncvx)
−1
)1/2

]
(i)
.
λ

p

∥∥∥(Xncvx>Xncvx
)−1 −

(
Y ncvx>Y ncvx

)−1
∥∥∥

≤ λ

p

∥∥∥(Xncvx>Xncvx
)−1
∥∥∥∥∥Xncvx>Xncvx − Y ncvx>Y ncvx

∥∥
F

∥∥∥(Y ncvx>Y ncvx
)−1
∥∥∥

(ii)
.

1

n5

λ

p

κ

σmin
. (C.16)

Here, the inequality (i) depends on the facts that

λmin

[(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2

]
≥ 1 and λmin

[(
Ir +

λ

p

(
Y ncvx>Y ncvx

)−1
)1/2

]
≥ 1,

whereas the inequality (ii) holds because of the facts that ‖(Xncvx>Xncvx)−1‖ . 1/σmin, ‖(Y ncvx>Y ncvx)−1‖ .
1/σmin and the balancedness condition (A.11)∥∥Xncvx>Xncvx − Y ncvx>Y ncvx

∥∥
F
≤ 1

n5
σmax.

As a result, the operator norm of A2 is bounded by

‖A2‖ ≤
∥∥∥∥Xncvx

(
Ir +

λ

p

(
Xncvx>Xncvx

)−1
)∥∥∥∥ ‖∆balancing‖ ‖Y ncvx‖

.
√
σmax ·

1

n5

λ

p

κ

σmin
·
√
σmax �

λ

p

κ2

n5
. (C.17)

Take (C.14), (C.15) and (C.17) collectively to arrive at∥∥∥∥Xncvx,dY ncvx,d> −U
(
Σ +

λ

p
Ir

)
V >

∥∥∥∥ ≤ ∥∥∥∥A1 −U
(
Σ +

λ

p
Ir

)
V >

∥∥∥∥+ ‖A2‖ .
λ

p

κ2

n5
≤ 1

2n4

λ

p
,

provided that n� κ2.
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C.2 Proof of the inequality (5.4b)
Next, we switch attention to the low-rank factors. Our goal is to demonstrate that (Xcvx,d,Y cvx,d) and
(Xncvx,d,Y ncvx,d) are both extremely close to (U(Σ+ λ

pIr)
1/2,V (Σ+ λ

pIr)
1/2) modulo some global rotation,

which will be established in (C.19) and (C.20) shortly.
We start by justifying the proximity between (Xncvx,d,Y ncvx,d) and (U(Σ + λ

pIr)
1/2,V (Σ + λ

pIr)
1/2). In

view of (C.12), we know that∥∥∥Xncvx −UΣ1/2UQV
>
Q

∥∥∥ =
∥∥∥UΣ1/2UQΣQV

>
Q −UΣ1/2UQV

>
Q

∥∥∥ ≤ ∥∥Σ1/2
∥∥ ‖ΣQ − Ir‖

(i)
.
√
σmax

1

σmin

∥∥X>X − Y >Y ∥∥
F

(ii)
.
√
σmax

1

σmin

1

n5
σmax

σ

σmin

√
n

p

(ii)
≤ 1

n4

σ

σmin

√
n

p
·
√
σmax. (C.18)

Here, (i) depends on the fact that ‖ΣQ − Ir‖ . ‖ΣQ − Σ−1
Q ‖F . ‖X>X − Y >Y ‖F/σmin (see [CCF+19,

Lemma 20]), (ii) makes use of the balancedness assumption (A.11), whereas (iii) holds if n � κ. Denoting
X̃ , UΣ1/2UQV

>
Q , one invokes the triangle inequality to reach∥∥∥∥∥Xncvx,d − X̃

(
Ir +

λ

p

(
X̃>X̃

)−1
)1/2

∥∥∥∥∥
≤
∥∥Xncvx − X̃

∥∥∥∥∥∥(Ir +
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p

(
Xncvx>Xncvx

)−1
)1/2

∥∥∥∥
+
∥∥X̃∥∥∥∥∥∥∥(Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2

−
(
Ir +

λ

p

(
X̃>X̃

)−1
)1/2

∥∥∥∥∥
≤ 1

n4

σ

σmin

√
n

p
·
√
σmax.

Here the last line arises from (C.18) and the facts ‖Ir + λ
p (Xncvx>Xncvx)−1‖ � 1, ‖X̃‖ . √σmax and∥∥∥∥(Ir +

λ

p

(
Xncvx>Xncvx

)−1
)1/2

−
(
Ir +

λ

p

(
X̃>X̃

)−1
)1/2

∥∥∥∥ .
1

n4

σ

σmin

√
n

p
.

The latter bound follows from similar derivations as in (C.16). A similar bound holds for Y ncvx,d. Recognizing
that

X̃

(
Ir +

λ

p

(
X̃>X̃

)−1
)1/2

= U
(
Σ +

λ

p
Ir

)1/2

UQV
>
Q ,

we have

min
R∈Or×r
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p
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p
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+
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p
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UQV >Q
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F
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r
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(
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p
Ir

)1/2

UQV >Q

∥∥∥∥2

+

∥∥∥∥Y ncvx,d − V
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p
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UQV >Q
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.

√
r

n4

σ

σmin

√
n

p
·
√
σmax. (C.19)

Next, we establish the connection between (Xcvx,d,Y cvx,d) and (U(Σ + λ
pIr)

1/2,V (Σ + λ
pIr)

1/2). To
accomplish this, we first study the relationship between (Xcvx,Y cvx) and (UΣ1/2,V Σ1/2). Recall that
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Xcvx and Y cvx constitute a balanced factorization of Zcvx,r, while (UΣ1/2,V Σ1/2) is a balanced one of
XncvxY ncvx> = UΣV >. Hence one can view Zcvx,r as a perturbation of XncvxY ncvx> = UΣV > and
investigate the perturbation bounds on the balanced factorizations. Going through the same derivations as
in [MWCC17, Appendix B.7] and [CLL19, Appendix B.2.1], one reaches

min
R∈Or×r

√∥∥XcvxR−UΣ1/2
∥∥2

F
+
∥∥Y cvxR− V Σ1/2

∥∥2

F
.
√
r · κ2

√
σmin

∥∥Zcvx,r −XncvxY ncvx>∥∥
F

.
√
r · κ4

√
σmin

· 1

n5

λ

p
.

Here the last relation follows from the proximity of the convex estimator and the nonconvex estimator;
see (A.12). Repeating the same argument as above to translate the bound between (Xcvx,Y cvx) and
(UΣ1/2,V Σ1/2) to that of (Xcvx,d,Y cvx,d) and (U(Σ + λ

pIr)
1/2,V (Σ + λ

pIr)
1/2), we conclude that

min
R∈Or×r

√∥∥∥∥Xcvx,dR−U
(
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λ

p
Ir

)1/2
∥∥∥∥2

F

+

∥∥∥∥Y cvx,dR− V
(
Σ +

λ

p
Ir

)1/2
∥∥∥∥2

F

.
√
r · κ

4

n5

σ

σmin

√
n

p
·
√
σmin.

(C.20)
This together with (C.19) and the assumption n� κ4 concludes the proof.

C.3 Proof of the inequality (5.5)
We shall focus on proving the claim for the nonconvex estimatorMncvx,d and XncvxY ncvx>; the claim for the
convex estimator Zcvx can be treated similarly.

Recall from (C.10) that ∥∥∥Mncvx,d −U
(
Σ +

λ

p
Ir

)
V >

∥∥∥
F
≤ 1

2n4

λ

p
.

It then suffices to prove that∥∥∥∥XncvxY ncvx> − 1

p
PTPΩ

(
XncvxY ncvx> −M

)
−U

(
Σ +

λ

p
Ir

)
V >
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F

≤ 1

2n4

λ

p
.

To see this, it has been established in Appendix C.1 that

XncvxY ncvx> − 1

p
PTPΩ

(
XncvxY ncvx> −M

)
= UΣV > − 1

p
PT
(
−λUV > +R

)
= UΣV > +

λ

p
UV > − 1

p
PT (R)

= U
(
Σ +

λ

p
Ir

)
V > − 1

p
PT (R) .

This together with the fact ‖PT (R)‖F ≤ 72κ
n5 λ (cf. (C.5)) and the assumption n� κ immediately completes

the proof.

D Analysis of the low-rank factors

D.1 Proof of Lemma 4
We concentrate on the factor Xd; the other factor Y d can be treated similarly. By definition of the gradient,
one has

∇Xf (X,Y ) =
1

p
PΩ

(
XY > −M

)
Y +

λ

p
X. (D.1)

Making use of the decomposition

1

p
PΩ

(
XY > −M

)
= XY > −X?Y ?> +A− 1

p
PΩ (E) (D.2)
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with A defined in (5.7), we can rearrange (D.1) as follows

X
(
Y >Y +

λ

p
Ir

)
= X?Y ?>Y +

1

p
PΩ (E)Y −AY +∇Xf (X,Y ) . (D.3)

By construction, the de-shrunken estimator Y d satisfies the following property

Y d>Y d =
(
Ir +

λ

p

(
Y >Y

)−1
)1/2 (

Y >Y
) (
Ir +

λ

p

(
Y >Y

)−1
)1/2

=
(
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λ

p

(
Y >Y

)−1
)1/2 (

Y >Y
) 1

2
(
Y >Y

) 1
2

(
Ir +

λ

p

(
Y >Y

)−1
)1/2

= Y >Y +
λ

p
Ir, (D.4)

where the last identity follows since (Y >Y )1/2 and (Ir + λ
p (Y >Y )−1)1/2 commute. Combining (D.3) with

the identity (D.4) gives

X
(
Y d>Y d

)
= X?Y ?>Y +

1

p
PΩ (E)Y −AY +∇Xf (X,Y ) . (D.5)

Multiplying both sides of (D.5) by (Ir + λ
p (Y >Y )−1)1/2 and recalling the definition of Y d in (3.8), we have

X
(
Y d>Y d

) (
Ir +

λ

p

(
Y >Y

)−1
)1/2

= X?Y ?>Y d +
1

p
PΩ (E)Y d −AY d +∇Xf (X,Y )

(
Ir +

λ

p

(
Y >Y

)−1
)1/2

. (D.6)

Since Y d>Y d and (Ir + λ
p (Y >Y )−1)1/2 also commute, we have

X
(
Y d>Y d

) (
Ir +

λ

p

(
Y >Y

)−1
)1/2

= X
(
Ir +

λ

p

(
Y >Y

)−1
)1/2 (

Y d>Y d
)

= X
(
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p

(
X>X
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)1/2 (
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)
−X∆balancing

(
Y d>Y d

)
= Xd

(
Y d>Y d

)
−X∆balancing

(
Y d>Y d

)
, (D.7)

where the last relation uses the definition of Xd (see (3.8)).
Substituting the identity (D.7) back into (D.6) and making a few elementary algebraic manipulations

yield the desired decomposition (5.8a).

D.2 Proof of Lemma 5
Recall that Y

d
= Y dHd and similarly define

Y
d,(j)

, Y d,(j)Hd,(j).

The triangle inequality tells us that for any fixed 1 ≤ j ≤ n,∥∥e>j Φ1

∥∥
2
≤
∥∥∥∥e>j 1

p
PΩ (E)

[
Y

d,(j)(
Y

d,(j)>
Y

d,(j))−1 − Y ?
(
Y ?>Y ?

)−1
]∥∥∥∥

2︸ ︷︷ ︸
:=α1

+

∥∥∥∥e>j 1

p
PΩ (E)

[
Y

d(
Y

d>
Y

d)−1 − Y d,(j)(
Y

d,(j)>
Y

d,(j))−1
]∥∥∥∥

2︸ ︷︷ ︸
:=α2

.

In what follows, we shall control α1 and α2 separately.
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1. To begin with, denoting ∆(j) , Y
d,(j)

(Y
d,(j)>

Y
d,(j)

)−1 − Y ?(Y ?>Y ?)−1 results in

α1 =

∥∥∥∥e>j 1

p
PΩ (E) ∆(j)

∥∥∥∥
2

=

∥∥∥∥1

p

n∑
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(j)
k,·
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2

. (D.8)

Before proceeding, we gather a few useful facts regarding ∆(j), as summarized in the following claim.

Claim 2. With probability at least 1−O(n−11), we have

∥∥∆(j)
∥∥ .

1
√
σmin

· σ

σmin

√
κ3n

p
,

∥∥∆(j)
∥∥

2,∞ .
1

√
σmin

· σ

σmin

√
κ5µr log n

p
.

With the bounds on ‖∆(j)‖ and ‖∆(j)‖2,∞ in place, we are ready to control α1. By construction, ∆(j) is
independent of e>j PΩ (E). Therefore, the vector on the right-hand side of (D.8), 1

p

∑n
k=1Ejkδjk∆

(j)
k,· , is a

sum of conditionally independent random vectors. In particular, conditional on ∆(j) and {δjk}k:1≤k≤n,
one has

1

p

n∑
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Ejkδjk∆
(j)
k,·
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k,· ∆
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:=Σ̂

)
. (D.9)

Invoke the concentration inequality for Gaussian random vectors [HKZ12, Proposition 1.1] to see that

α1 ≤
√
Tr
(
Σ̂
)

+ 2
√
t
∥∥Σ̂∥∥

F
+ 2
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.
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√
t
)

(D.10)

with probability at least 1− e−t. It remains to control ‖Σ̂‖, which we state in the following claim.

Claim 3. Suppose that n2p� κ2µrn log2 n. Then with probability exceeding 1−O(n−11),

∥∥Σ̂∥∥ .
σ2

p

(
1

√
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σ

σmin

√
κ3n

p

)2

.

Combine the upper bound on ‖Σ̂‖ with (D.10) and choose t � log n to arrive at

α1 .
√∥∥Σ̂∥∥(√r +

√
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)
.

σ
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with probability exceeding 1−O(n−11).

2. We move on to bounding α2, for which we have
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. σ

√
n

p

1
√
σmin

σ

σmin

√
κ3µr log n

p
.

Here (i) uses the fact that ‖PΩ(E)‖ . σ
√
np (see [CCF+19, Lemma 3]), the perturbation bounds

for pseudo-inverses (see Lemma 12) and (A.19); the penultimate inequality (ii) comes from the fact
that ‖Y d − Y d,(j)‖ . κ σ

σmin

√
n logn
p ‖Y ?‖2,∞ (see (A.16c)) and last one uses the incoherence condition
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Taking the maximum over 1 ≤ j ≤ n establishes our bound on ‖Φ1‖2,∞.

Proof of Claim 2. Apply the perturbation bound for pseudo-inverses (see Lemma 12) to obtain∥∥∆(j)
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Here we have utilized the facts that ‖Y d,(j)−Y ?‖ . κ σ
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√
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?‖ (see (A.16a)) and a simple consequence

of (A.19), viz.
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Moreover, the triangle inequality tells us that∥∥∆(j)
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where the penultimate inequality follows from the facts that ‖Y d,(j)‖2,∞ ≤ 2‖F ?‖2,∞, ‖Y d,(j) − Y ?‖2,∞ .
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Here the penultimate inequality follows from (A.19). The proof of the claim is then complete.
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Proof of Claim 3. Conditional on ∆(j), using Bernstein’s inequality and the fact that ∆(j) and {δjk}k:1≤k≤n
are independent, we arrive at that with probability exceeding 1−O(n−11),∥∥∥∥Σ̂− σ2
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as long as np� κ2µr log2 n. Here the middle inequality uses Claim 2. In view of the triangle inequality,
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with the proviso that n2p � κ2µrn log2 n. Again, the last line makes use of Claim 2. This concludes the
proof of the claim.

D.3 Proof of Lemma 6
Recall that Y

d
= Y dHd. The sub-multiplicativity of the operator norm gives that for any 1 ≤ j ≤ n,∥∥e>j Φ2
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where the second inequality follows from the incoherence assumption that ‖e>j X?‖2 ≤ ‖X?‖2,∞ ≤
√
µrσmax/n

(cf. (A.17)) and the fact that ‖(Y d>
Y

d
)−1‖ . 1/σmin, a simple consequence of (A.19).
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It remains to control ‖(Y d − Y ?)>Y
d‖. To simplify notation hereafter, define ∆X , X
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Second, in view of the decomposition of Y d given in (5.8b), we have
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As a result, one obtains
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where we have used
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The following claim connects ∆>Y Y
? with X?>∆X .

Claim 4. The following identity holds true:
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,Σ? � 4σmaxIr. Hence one can invoke Lemma 15

with X = ∆>Y Y
?, A = Σ?, B = X

d>
X

d
and C = X

d>
X

d
S + 0.5(∆>X∆X −∆>Y ∆Y )Σ? + ∆d

XY Σ? to
obtain∥∥∆>Y Y ?

∥∥ .
1

σmin

∥∥∥∥Xd>
X

d
S +

1

2

(
∆>X∆X −∆>Y ∆Y

)
Σ? + ∆d

XY Σ?

∥∥∥∥
38



≤ 1

σmin

∥∥∥∥Xd> 1

p
PΩ (E)Y ? −Xd>

AY ? − 1

2

(
∆>X∆X + ∆>Y ∆Y

)
Σ?

∥∥∥∥
+

1

σmin

∥∥∥∥Hd>
(
Ir +

λ

p
(X>X)−1

)1/2

[∇Y f (X,Y )]
>
Y ? +X

d>
X

d
Hd>∆balancingY

>Y ? + ∆d
XY Σ?

∥∥∥∥ ,
where we have plugged in the definition of S (see (D.19)) and used the identity X
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It then boils down to controlling the above terms α1, α2, α3 and α4.

1. First, the term α4 can be upper bounded by
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Here, the second relation uses the fact that∥∥∥∥ 1
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Substituting the bounds on α1, α2, α3 and α4 back to (D.20) results in∥∥∥(Y d − Y ?
)>
Y

d
∥∥∥ .

1

σmin
α1 +

1

σmin
α2 + κα3 +

1

σmin
α4

.
1

σmin

(
σ

√
r2 log n

p
σmax +

(
κσ

√
n

p

)2

+ σmaxσ

√
n

p
·

√
κ4µ2r2 log n

np

)

+ κ

(
κ

σ

σmin

√
n

p

)2

σmax +
1

σmin

κ

n5

σ

σmin

√
n

p
σ2

max

� κσmax

(
κ

σ

σmin

√
n

p

)2

+ σmax
σ

σmin

√
n

p
·

√
κ4µ2r2 log n

np
,

40



which together with (D.15) yields
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Taking the maximum over 1 ≤ j ≤ n leads to the desired result.
Finally, we are left with proving Claim 4.
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Combine (D.23) and (D.24) to arrive at
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This completes the proof of the claim.

D.4 Proof of Lemma 7
Recall that

A =
1

p
PΩ

(
XY > −M?

)
−
(
XY > −M?

)
and Φ3 = −AY d(

Y
d>
Y

d)−1

with Y
d

= Y dHd. For any 1 ≤ j ≤ n, we have∥∥∥e>j AY d(
Y

d>
Y

d)−1
∥∥∥

2
≤
∥∥e>j AY d∥∥

2

∥∥(Y d>
Y

d)−1∥∥
(i)
=
∥∥e>j AY d

∥∥
2

∥∥(Y d>
Y

d)−1∥∥
(ii)
=

∥∥∥∥e>j AY (Ir +
λ

p

(
Y >Y

)−1
)1/2

∥∥∥∥
2

∥∥(Y d>
Y

d)−1∥∥
41



≤
∥∥e>j AY ∥∥2

∥∥∥∥(Ir +
λ

p

(
Y >Y

)−1
)1/2

∥∥∥∥∥∥(Y d>
Y

d)−1∥∥
(iii)
.

1

σmin

∥∥e>j AY ∥∥2

(iv)
=

1

σmin

∥∥e>j AYH∥∥2
.

Here (i) and (iv) rely on the unitary invariance of the operator norm, (ii) uses the definition of Y d (see (3.8))
and (iii) follows from the choice λ . σ

√
np and immediate consequences of (A.19)∥∥∥∥(Ir +
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Therefore, it suffices to control ‖e>j AYH‖2. To this end, we have the following decomposition

e>j AYH = e>j

[
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p
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(
XY > −M?

)
−
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)]
Y H
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[
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p
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(
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)
−
(
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Y (j)H(j) + ∆2, (D.25)

where we define

∆2 , e>j

[
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p
PΩ

(
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)
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(
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Denoting
v = [v1, · · · , vn] , e>j

(
X(j)Y (j)> −M?

)
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we can rewrite the first term of (D.25) as
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[
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]
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.

Since (X(j),Y (j)) is independent of {δjk}1≤k≤n, the right hand side of the above equation can be viewed as
a sum of independent random vectors, conditional on (X(j),Y (j)). Invoke Bernstein’s inequality to see that∥∥∥∥∥1
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holds with probability at least 1−O(n−10). Here, we denote

V ,
∥∥∥∑n

k=1
E
[
(δjk − p)2

]
v2
k

[
Y (j)H(j)

]
k,·

[
Y (j)H(j)

]>
k,·

∥∥∥ ≤ p ‖v‖2∞ ∥∥Y (j)
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As a result, we obtain∥∥∥∥∥1
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[
Y (j)H(j)

]
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with the proviso that np � µ log n. Here the middle line depends on ‖Y (j)‖F .
√
rσmax and ‖Y (j)‖2,∞ .√

µrσmax/n. Additionally,
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Here the penultimate inequality uses (A.14d) and the bound ‖Y (j)‖2,∞ .
√
µrσmax/n. We arrive at the

conclusion that: with probability exceeding 1−O(n−10),∥∥∥∥∥1

p

n∑
k=1

(δjk − p) vk
(
X(j)H(j)

)
k,·

∥∥∥∥∥
2

. σ

√
σmax

p
·

√
κ4µ2r3 log2 n

np
.

Next, we move on to the second term ∆2 of (D.25), which can be further decomposed as follows

∆2 = e>j

[
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In what follows, we bound θ1 and θ2 sequentially.

1. Regarding θ1, using the definition of A we obtain

‖θ1‖2 ≤ ‖A‖
∥∥∥Y H − Y (j)H(j)

∥∥∥
F
. σ

√
n

p
·

√
κ4µ2r2 log n

np
· κ σ

σmin

√
µr log n

p

√
σmax

� σ
√
σmax

p
·

√
κ4µ2r2 log n

np
· σ

σmin

√
κ2µrn log n

p
,

where the second relation holds due to (A.14b) and the fact that ‖A‖ . σ
√

n
p

√
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With regards to α1, we have by Bernstein’s inequality and (A.14b) that
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As a result, we can obtain
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provided that np� µr log n. Here we apply the bounds ‖Y (j)‖ . √σmax and ‖Y (j)‖2,∞ .
√
µrσmax/n

(see (A.19) and the following remarks). In the end, we turn to the term α2, which obeys
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where the second line arises from the Cauchy-Schwarz inequality.

Take the previous bounds collectively to arrive at
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, (D.26)

thus concluding the proof.

D.5 Proof of Lemma 8
First, it is straightforward to verify that∥∥∥∥∇Xf (X,Y )
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where the last line arises from (A.10), the choice λ . σ
√
np (cf. (A.6)), and the bounds∥∥∥∥(Ir +
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Here the latter two are immediate consequences of (A.19). Second, with regards to the term involving
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where the middle line uses (A.19) and the last one follows from (C.16).
Combine (D.27), (D.28) and the triangle inequality to establish the advertised result, with the proviso

that n2 � κ3µr.

D.6 Proof of Lemma 9
We invoke the identity Y ?(Y ?>Y ?)−1 = V ?(Σ?)−1/2 (since Y ? = V ?(Σ?)1/2) to see that for any 1 ≤ i ≤ n,(
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consists of a sum of independent random vectors, where we recall that δik = 1{(i, k) ∈ Ω}. In addition, the
right-hand side of the above formula is conditionally Gaussian, namely,
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p
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Note that S depends on the index i through {δik}k:1≤k≤n. Denote by S? the expectation of S, that is,

S? , E
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S
]
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and introduce the following event
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In view of this relation, we can define the ith row of ZX ∈ Rn×r to be

e>i ZX ,

{
1
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>
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e>i GX , on the event Ec,
(D.31)

where GX ∈ Rn×r is an independently generated random matrix satisfying
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)
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As can be easily seen from (D.29) and (D.30), each row of ZX follows the Gaussian distribution
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In what follows, we shall bound the two terms on the right-hand side of the above display sequentially.

1. First, observe that
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where ‖ · ‖ψ1
denotes the sub-exponential norm [Ver17]. One can then apply the matrix Bernstein
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where we denote
V1 ,

∥∥∥E [∑n

k=1
E2
jkδ

2
jkV

?
k,·
(
V ?
k,·
)>]∥∥∥ = σ2p ‖V ?‖2F = σ2pr.

As a result, we arrive at∥∥∥∑
k
EikδikV

?
k,·

∥∥∥
2
.
√
σ2pr log n+ σ

√
µr

n
log2 n . σ

√
pr log n (D.32)

as long as np� µ log3 n.

2. Next, we move on to ‖Ir − S−1/2(S?)1/2‖. Recall that on the event E , one has
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with the proviso that np� κ2µr log n. Therefore, straightforward calculations yield∥∥Ir − S−1/2 (S?)
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Here the second relation is the perturbation bound for the matrix square roots (see Lemma 13).

Combine the above two bounds to conclude that∥∥e>i ∆X
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Finally, we are left with demonstrating that P(Ec) = O(n−10). To see this, by definition one has
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with probability at least 1−O(n−10). Here the last line utilizes the matrix Bernstein inequality, where
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Consequently with probability exceeding 1−O(n−10) one has

‖S − S?‖ . σ2

p2σmin

(√
µrp log n

n
+
µr

n
log n

)
� σ2

pσmin

√
µr log n

np

as long as np & µr log n. This means that P(Ec) = O(n−10) and taking the union bounds over 1 ≤ i ≤ n
concludes the proof.
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E Analysis of the entries of the matrix

E.1 Proof of Lemma 10
The term Λij can be naturally split into two terms, namely
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In what follows, we shall bound each term individually.
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?Ψ>Y ej
∣∣ ≤ ‖ΨX‖2,∞

∥∥Y ?
j,·
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2
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) σ
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where the last line follows since ‖X?
i,·‖2 ≤

√
σmax‖U?

i,·‖2 and ‖Y ?
j,·‖2 ≤

√
σmax‖V ?

j,·‖2.

2. Turning to the second term, we have by the Cauchy-Schwarz inequality that

∣∣∣e>i (Xd −X?
)(
Y

d − Y ?
)>
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∣∣∣ ≤ ∥∥Xd −X?
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√
κ3µr log n
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where the penultimate inequality uses (A.13d) and the last one depends on the incoherence assumption
that ‖F ?‖2,∞ ≤

√
µrσmax/n (see (A.17)).

Take collectively the above two bounds to complete the proof.

E.2 Proof of Lemma 11
If Z>Xei and Z

>
Y ej were independent, then clearly one would have

e>i ZXY
?>ej + e>i X

?Z>Y ej ∼ N
(
0, v?ij

)
.

As such, the main ingredient of the proof boils down to demonstrating that Z>Xei and Z
>
Y ej are nearly

independent.
To begin with, we remind the readers of the way we construct e>i ZX and e>j ZY in Appendix D.6: there

exist events E and Ẽ with P(Ec ∪ Ẽc) . n−10 such that

e>i ZX ,
1

p
e>i PΩ (E)Y ?(Y ?>Y ?)−1S−1/2 (S?)

1/2 on the event E

e>j ZY ,
1

p
e>j
(
PΩ (E)

)>
X?(X?>X?)−1S̃−1/2 (S?)

1/2 on the event Ẽ

where the randomness of S only comes from {δik}k:1≤k≤n, and the randomness of S̃ only comes from
{δkj}k:1≤k≤n. In addition, the events E and Ẽ depend only on {δik}k:1≤k≤n and {δkj}k:1≤k≤n, respectively.
As a result, Z>Xei depends only on {δik, Eik}k:1≤k≤n and Z>Y ej relies only on {δkj , Ekj}k:1≤k≤n. This tells
us that: the only common randomness underlying Z>Xei and Z

>
Y ej lies in δij and Eij .

Fortunately, this weak dependency can be easily decoupled, for which we have the following claim.
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Claim 5. Suppose that np� κ2µr2 log2 n. One has the decomposition

Z>Xei = Z̃>Xei + ∆i,

where Z̃>Xei ∼ N (0, σ2(Σ?)−1/p) and is independent of {δkj , Ekj}k:1≤k≤n and hence of Z>Y ej. In addition,
with probability at least 1−O(n−10) one has

‖∆i‖2 .
σ

√
pσmin

√
κµr log n

np
.

The desired result follows immediately from Claim 5, since

e>i ZXY
?>ej + e>i X

?Z>Y ej = e>i Z̃XY
?>ej + e>i X

?Z>Y ej︸ ︷︷ ︸
∼N(0,v?ij)

+ ∆>i Y
?>ej ,

where

∣∣∆>i Y ?>ej
∣∣ ≤ ‖∆i‖2‖Y ?

j,·‖2,∞ .
σ

√
pσmin

√
κµr log n
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√
σmax‖V ?

j,·‖2,∞ �
σ
√
p

√
κ2µr log n

np
‖V ?

j,·‖2,∞.

Similarly, repeating the same argument above, we can also show that e>i ZXY ?>ej + e>i X
?Z>Y ej can

be decomposed as a Gaussian random variable N
(
0, v?ij

)
as well as a residual term bounded above by

(σ/
√
p)
√

(κ2µr log n)/(np)‖U?
i,·‖2,∞ with high probability. These together finish the proof.

Proof of Claim 5. Instate the notation used in Appendix D.6. Recall that

Z>Xei =

{
(S?)

1/2
S−1/2

∑n
k=1

1
pEikδik (Σ?)

−1/2 (
V ?
k,·
)>
, on the event E ,

G>Xei, on the event Ec.

To remove the effect of δij , Eij on Z>Xei, we construct an auxiliary random matrix Z̃X as follows

Z̃>Xei =

{
(S?)

1/2
S
−1/2
−j

∑
k:k 6=j

1
pEikδik (Σ?)

−1/2 (
V ?
k,·
)>
, on the event E−j ,

G>Xei, on the event Ec−j ,

where S? = p−1σ2 (Σ?)
−1,

S−j ,
σ2

p2

∑
k:k 6=j

δik (Σ?)
−1/2 (

V ?
k,·
)>
V ?
k,· (Σ

?)
−1/2 and E−j ,

{
‖S−j − S?‖ .

σ2

pσmin

√
µr log n

np

}
.

It is easily seen that Z̃>Xei ∼ N (0, σ2(Σ?)−1/p); more importantly Z̃>Xei is independent of {δkj , Ekj}1≤k≤n
and hence of Z>Y ej .

We still need to verify the closeness between Z̃>Xei and Z
>
Xei. Towards this, we first repeat the proof in

Appendix D.6 to obtain P(E−j) ≥ 1−O(n−10). Therefore on the high probability event E ∩ E−j , one has

∥∥Z̃>Xei −Z>Xei∥∥2
≤
∥∥ (S?)

1/2 ∥∥∥∥∥∥∥S−1/2 (Σ?)
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n∑
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1

p
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(
V ?
k,·
)> − S−1/2

−j (Σ?)
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∑
k:k 6=j

1

p
Eikδik

(
V ?
k,·
)> ∥∥∥∥∥,

which together with the triangle inequality and the fact ‖S?‖ = σ2/(pσmin) yields√
pσmin

σ2
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2
≤
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2
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.
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n
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Here we have used the results in (D.32) and (D.33). We are left with bounding ‖S−1/2 − S−1/2
−j ‖, for which

we have

‖S − S−j‖ =
σ2

p2

∥∥∥δij (Σ?)
−1/2 (

V ?
j,·
)>
V ?
j,· (Σ
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n
.

Take the above bound collectively with (D.33) to yield∥∥∥S−1/2
−j

∥∥∥ .

√
pσmax

σ2
,

as long as np� κµr. As a result, we have∥∥∥S−1/2 − S−1/2
−j
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where the middle line relies on the perturbation of matrix square roots; see Lemma 13. Combining all, we
arrive at √

pσmin

σ2

∥∥∥Z̃>Xei −Z>Xei∥∥∥
2
.
κµr

np
·
√
κr log n+

√
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�
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κµr log n
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,

with the proviso that np� κ2µr2 log2 n. This finishes the proof.

F Proof of Corollary 1
This section is dedicated to establishing the following result, which subsumes Corollary 1 as a special case.

Corollary 2. Suppose that the conditions (3.18) hold, and recall the notation in Corollary 1. Then one has

sup
0<α<1
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Before entering the main proof of Corollary 2, we make a simple observation that

max
{∥∥Xd

i,· −X?
i,·
∥∥

2
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∥∥Y d
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2

)
, (F.1)

where we recall that X
d

= XdHd and Y
d

= Y dHd. Here, the first inequality arises from (A.13d) and the
second one uses the assumption on ‖U?

i,·‖2 + ‖V ?
j,·‖2 (i.e. (3.18b)). A simple consequence of (F.1) is that

max
{∥∥Xd

i,·
∥∥

2
,
∥∥Y d

j,·
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2

}
≤ 2
√
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2

)
. (F.2)

Turning to the main proof, we define

∆V ,
Md
ij −M?

ij√
vij

−
Md
ij −M?

ij√
v?ij

, (F.3)
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which in conjunction with Theorem 6 yields the following decomposition

Md
ij −M?

ij√
vij

=
Md
ij −M?

ij√
v?ij

+ ∆V =
gij√
v?ij

+
∆ij√
v?ij

+ ∆V .

With this decomposition at hand, we have that for any ε > 0,

P

(
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ij −M?

ij√
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)
− Φ (t) = P
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+ ∆V ≤ t

)
− Φ (t)
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≤ t+ ε

)
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(
|∆ij |√
v?ij

+ |∆V | ≥ ε
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− Φ (t)

(i)
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√
v?ij ≥ ε

√
v?ij

)
,

where Φ(·) is the CDF of N (0, 1). Here, the relation (i) uses the fact that gij ∼ N (0, v?ij). It then suffices
to upper bound the right-hand side ε+ P(|∆ij |+ |∆V |

√
v?ij ≥ ε

√
v?ij). Our goal is to demonstrate that for

a particular choice of ε > 0, this quantity is well controlled. In view of Theorem 6, we know that |∆ij | is
small with high probability. We are still in need of a high probability bound on the term |∆V |, which we
obtain through the following claim.

Claim 6. With probability exceeding 1−O(n−10), the term ∆V obeys
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With Claim 6 at hand, we are ready to take
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and arrive at the upper bound
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for any t. This immediately establishes Corollary 2.

Proof of Claim 6. Recall that

∆V =
(
Md
ij −M?

ij

) [
(vij)

−1/2 −
(
v?ij
)−1/2

]
=
(
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ij −M?
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) v?ij − vij√
v?ij
√
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1√
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√
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.

Suppose for the moment that |vij − v?ij | ≤ cv?ij for some c ≤ 1/2. Then it follows immediately that

|∆V | . c

∣∣Md
ij −M?

ij

∣∣√
v?ij

.

Therefore if suffices to control |Md
ij −M?

ij | and |v?ij − vij | (i.e. obtaining the quantity c).
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• First, expand Md
ij and M?
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where the middle line depends on (F.1) and (F.2), and the last inequality arises since σ(‖U?
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• Now we move on to |v?ij − vij |. By the definition of vij , one has
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Here, the first relation comes from the identity Xd
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the inequality arises from the triangle inequality. Notice that ‖(Xd>
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where the last inequality follows from (A.13b). Using the bounds (F.1) and (F.2), we continue the upper
bound in (F.4) as follows∣∣∣X?
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A similar bound holds for the factor Y . Therefore, with high probability we have
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where the last relation results from the condition on ‖U?
i,·‖2 + ‖V ?

j,·‖2 (cf. (3.18b)).

Combine the bounds on |Md
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ij | and |v?ij − vij | to see that with probability exceeding 1−O(n−10),
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This establishes the desired upper bound on |∆V |.

G Proof of Theorem 3
As we have argued in Section 5.1, it suffices to prove the claim forMd = XdXd> = X

d
Y

d>
. For simplicity

of notation, we define
ΓX ,X

d −X? and ΓY , Y
d − Y ?.

Apply the decompositions in Theorem 5 to obtain
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where ΨX and ΨY are defined in Theorem 5. Further, expand ‖Md −M?‖2F to obtain∥∥Md −M?
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where we define the remainder term as
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In what follows, we aim to demonstrate that ‖ZXY ?‖2F + ‖X?Z>Y ‖2F, which can be shown to sharply
concentrate around its mean, is the dominant term, and the remainder term rem is much smaller in magnitude
with high probability.

• We begin with the term ‖ZXY ?‖2F +‖X?Z>Y ‖2F. We shall focus on bounding ‖ZXY ?‖2F since the other
term ‖X?Z>Y ‖2F can be treated analogously. To this end, we first have the identity
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Therefore, the quantity p‖ZXY ?‖2F/σ2 follows the chi-squared distribution with nr degrees of freedom.
Standard concentration inequalities [Wai19, Equation (2.19)] reveals that with probability at least 1−
O(n−10), ∣∣∣ p

σ2

∥∥ZXY ?>∥∥2

F
− nr

∣∣∣ .√nr log n.
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Repeating the above argument for ‖X?Z>Y ‖2F, we conclude that with probability at least 1−O(n−10),

∥∥ZXY ?>∥∥2

F
+
∥∥X?Z>Y

∥∥2

F
= 2

σ2nr

p
+O

(
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p

√
nr log n

)
= (2 + o(1))

σ2nr

p
.

• Now we turn to the term rem, for which we have the following two claims.

Claim 7. With probability at least 1−O(n−10), one has∣∣∣‖Θ‖2F + 2Tr
(
ZXY

?>Θ>
)

+ 2Tr
(
X?Z>Y Θ>

)∣∣∣ = o

(
σ2nr

p

)
.

Claim 8. With probability exceeding 1−O(n−10), we have

∣∣Tr (ZXY ?>ZYX
?>)∣∣ = o

(
σ2nr

p

)
.

Combine all of the above bounds to yield the desired result.

Proof of Claim 7. Use triangle inequality and the bound |Tr(AB)| ≤ ‖A‖F‖B‖F to obtain∣∣∣‖Θ‖2F + 2Tr
(
ZXY

?>Θ>
)

+ 2Tr
(
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)∣∣∣ ≤ ‖Θ‖2F + 2
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F
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∥∥

F
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=
(
‖Θ‖F + 2
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F

+ 2
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∥∥
F

)
‖Θ‖F . (G.2)

Plug in the definition of Θ (cf. (G.1)) and invoke the triangle inequality again to see that

‖Θ‖F ≤
∥∥ΨXY

?>∥∥
F

+
∥∥X?Ψ>Y

∥∥
F

+
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√
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√
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≤
√
nσmax(‖ΨX‖2,∞ + ‖ΨY ‖2,∞) + ‖ΓX‖F ‖ΓY ‖F .

Combine Theorem 5 and the fact max{‖ΓX‖F, ‖ΓY ‖F} . (σ/σmin)
√
n/p‖X?‖F (see (A.13c)) to conclude

that with probability at least 1−O(n−3)

‖Θ‖F .
√
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σ
√
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√
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√
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(
σ

√
nr
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)
.

Here the last relation depends on the assumption (3.18a). Second, we have already established in this section
that

‖ZXY ?‖F + ‖X?Z>Y ‖F = O(σ
√
nr/p)

with probability exceeding 1−O(n−10). Substitute the above two facts into (G.2) to arrive at∣∣∣‖Θ‖2F + 2Tr
(
ZXY

?>Θ>
)

+ 2Tr
(
X?Z>Y Θ>

)∣∣∣ . σ

√
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p
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(
σ2nr

p

)
.

This concludes the proof.

Proof of Claim 8. According to Lemma 9, one can write

ZX =
1

p
PΩ (E)Y ?

(
Y ?>Y ?

)−1

︸ ︷︷ ︸
,ZX,E

−∆X , ZY =
1

p
[PΩ (E)]

>
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(
X?>X?
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,ZY ,E

−∆Y ,
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where max
{
‖∆X‖2,∞, ‖∆Y ‖2,∞

}
. σ√

pσmin

√
κ2µr2 log2 n

np and hence
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√
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σ
√
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√
κ2µr2 log2 n

p
. (G.3)

Consequently, use the triangle inequality and Cauchy-Schwarz to verify that∣∣Tr(ZXY ?>ZYX
?>)− Tr

(
ZX,EY

?>ZY ,EX
?>)∣∣

≤
∣∣Tr(∆XY
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(ii)
≤ σ
√
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√
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p
· κ

3µr2 log2 n

p
, (G.5)

where (i) follows since X? = U?Σ?1/2 and ‖U?‖ = 1, and (ii) makes use of (G.3) as well as the facts
‖Y ?‖, ‖X?‖ =

√
σmax . In addition, invoke Lemma 9 to see that ZXΣ?1/2 and ZY Σ?1/2 are both Gaussian

matrices with i.i.d. N (0, σ2/p) entries, which together with standard concentration results implies that

‖ZXΣ?1/2‖F = (1 + o(1))σ
√
nr/p; ‖ZY Σ?1/2‖F = (1 + o(1))σ

√
nr/p.

Substituting it into (G.5) gives
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with the proviso that np & κ3µr log3 n. This means that, with high probability,

Tr
(
ZXY

?>ZYX
?>) = Tr

(
ZX,EY

?>ZY ,EX
?>)+ o

(
σ2nr/p

)
. (G.6)

Everything then boils down to controlling Tr
(
ZX,EY

?>ZY ,EX
?>). Towards this end, we first note that

ZX,EY
?> = p−1PΩ (E)Y ?

(
Y ?>Y ?

)−1
Y ?> = p−1PΩ (E)V ?V ?>.

Similarly, ZY ,EX?> = [PΩ(E)]>U?U?>/p. These identities allow us to derive
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F
.

Apply the same arguments in controlling (D.21) to obtain that with probability at least 1−O(n−10),∥∥∥U?> 1

p
PΩ (E)V ?

∥∥∥2

F
. σ2 log n

p
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p
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)
,

as long as n & r log2 n. This combined with (G.6) yields the desired claim.
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H Proof of lower bounds

H.1 Proof of Lemma 1
Fix any ε > 0. It suffices to prove that the matrix CRLB(X?

i,· | Ω) defined in (3.27) satisfies∥∥∥ p
σ2

CRLB(X?
i,· | Ω)− (Σ?)

−1
∥∥∥ ≤ ε

σmax
(H.1)

with probability at least 1−O(n−10), provided that np ≥ C0ε
−2κ4µr. Towards this end, we first compute
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,

where we recall that δik = 1{(i, k) ∈ Ω}. Next, define the following event

E ,

{∥∥A−Σ?
∥∥ ≤ C√µr log n
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}
,

where C > 0 is some large absolute constant. On the event E , in view of the fact σminIr � Σ? � σmaxIr,
one has

0.5σminIr � A � 2σmaxIr,

with the proviso that np ≥ 4C2κ2µr log n. This further implies that∥∥∥ p
σ2

CRLB(X?
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−1
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on the event E . Clearly, the requirement (H.1) holds true if np ≥ C0ε
−2κ4µr log n with C0 = 4C2.

To finish up, we are left with proving that E occurs with probability at least 1 − O(n−10). Invoke the
matrix Bernstein inequality to show that
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Here we have used the incoherence condition (A.17). Consequently, one reaches the conclusion that with
probability exceeding 1−O(n−10),
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as long as np� µr log n, thus concluding the proof.
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H.2 Proof of Lemma 2
The proof strategy is similar to the one used in proving Lemma 1 (cf. Appendix H.1). Fix any ε > 0. It is
sufficient to establish the following inequality

p

σ2

∣∣CRLB(M?
ij | Ω)− v?ij

∣∣ ≤ ε p
σ2
v?ij , (H.2)

where the scalar CRLB(M?
ij | Ω) is defined in (3.28) and v?ij is defined in Theorem 2. Expand the left-hand

side to reach
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where the last line follows from the observations that ‖Y ?

j,·‖2 ≤
√
σmax‖V ?

j,·‖2 and ‖X?
i,·‖2 ≤

√
σmax‖U?

i,·‖2.
Define the following event
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{
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{∥∥AY −Σ?
∥∥,∥∥AX −Σ?

∥∥} ≤ C√µr log n

np
σmax

}
,

where C > 0 is some large universal constant. Two observations are sufficient to derive the desired the
result (H.2). First, the event E2 happens with probability at least 1 − O(n−10) — an easy consequence of
the proof of Lemma 1 (cf. Appendix H.1). Second, on the event E2, repeating the same proof of Lemma 1
(cf. Appendix H.1), one can deduce that

p
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. (H.3)

Comparing (H.2) and (H.3), one arrives at the desired result as long as np ≥ 4C2ε−2κ4µr log n.

I Proofs in Section A

I.1 Proof of the inequalities (A.13)
We start with (A.13a). Invoke the triangle inequality to get
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where the last relation depends on the unitary invariance of the operator norm and (A.9b). It then boils
down to controlling ‖F d − F ‖. Notice that
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where the last inequality uses ‖Y ‖ ≤ ‖F ‖ ≤ 2‖X?‖ (cf. (A.19)), the fact that λ . σ
√
np (see (A.6)),

the bound (C.16) and the condition n5 � κ. Apply the perturbation bound for matrix square roots (see
Lemma 13) to obtain that∥∥∥∥(Ir +
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p

(
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− Ir
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Here, (i) uses the facts that ‖(X>X)−1‖ . 1/σmin and that λmin[(Ir + λ/p(X>X)−1)1/2] ≥ 1, and (ii)
follows from the condition that λ . σ

√
np (see (A.6)). Combine the above two bounds with ‖F ‖ ≤ 2‖X?‖

(cf. (A.19)) to reach ∥∥F d − F
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Substitution into (I.1) gives ∥∥F dH − F ?
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Analogous arguments yield∥∥F dHd − F ?
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F
≤
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p
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which is the claim in (A.13c).
Moving on to (A.13b), we apply the triangle inequality and (I.3) to see that
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In order to control ‖Hd −H‖, we leverage [MWCC17, Lemma 36] to get
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where the last relation uses (I.2) and ‖F ?‖ � ‖X?‖ � √σmax. Taking these bounds collectively yields
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Now we turn attention to (A.13d). Observe that∥∥F dHd − F ?
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where the last bound arises from (A.9c). Going through the same calculation as in bounding ‖F d − F ‖, we
arrive at ∥∥F d − F
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Here, the second line results from (I.4).
Finally, we deal with (A.13e). From the definition of the de-shrunken estimator (3.8), we have
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Making use of (A.11) and (C.16) allows us to establish the claim.

I.2 Proof of the inequalities (A.16)
The proofs of (A.16a) and (A.16b) are the same as those of (A.13b) and (A.13d), and are hence omitted for
conciseness. We are left with (A.16c). Denoting
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one has
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where θ is defined to be
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Regarding θ, one can apply the bound (C.16) for (X,Y ) and a similar bound for (X(j),Y (j)) to obtain
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σmin

√
n

p
.

Returning to (I.6), one has by the triangle inequality that∥∥∥∥FH(Ir +
λ

p

(
H>Y >Y H

)−1
)1/2

− F (j)R(j)
(
Ir +

λ

p

(
R(j)>Y (j)>Y (j)R(j)

)−1)1/2
∥∥∥∥

≤
∥∥∥∥(FH − F (j)R(j)

)(
Ir +

λ

p

(
H>Y >Y H

)−1
)1/2

∥∥∥∥
+

∥∥∥∥F (j)R(j)

[(
Ir +

λ

p

(
H>Y >Y H

)−1
)1/2

−
(
Ir +

λ

p

(
R(j)>Y (j)>Y (j)R(j)

)−1)1/2
]∥∥∥∥

≤
∥∥∥FH − F (j)R(j)

∥∥∥
F

∥∥∥∥(Ir +
λ

p

(
H>Y >Y H

)−1
)1/2

∥∥∥∥
+
∥∥∥F (j)R(j)

∥∥∥ ∥∥∥∥(Ir +
λ

p

(
H>Y >Y H

)−1
)1/2

−
(
Ir +

λ

p

(
R(j)>Y (j)>Y (j)R(j)

)−1)1/2
∥∥∥∥ .

Recognizing that

λmin

[(
Ir +

λ

p

(
H>Y >Y H

)−1
)1/2

]
≥ 1 and λmin

[(
Ir +

λ

p

(
R(j)>Y (j)>Y (j)R(j)

)−1)1/2
]
≥ 1,

we can apply the perturbation bound for matrix square roots (see Lemma 13) to obtain∥∥∥∥(Ir +
λ

p

(
H>Y >Y H

)−1
)1/2

−
(
Ir +

λ

p

(
R(j)>Y (j)>Y (j)R(j)

)−1)1/2
∥∥∥∥

.
λ

p

∥∥∥∥(H>Y >Y H)−1 −
(
R(j)>Y (j)>Y (j)R(j)

)−1
∥∥∥∥

.
λ

p

∥∥∥(H>Y >Y H)−1
∥∥∥∥∥∥H>Y >Y H −R(j)>Y (j)>Y (j)R(j)

∥∥∥∥∥∥(R(j)>Y (j)>Y (j)R(j)
)−1 ∥∥∥

.
λ

p

1

σ2
min

∥∥∥H>Y >Y H −R(j)>Y (j)>Y (j)R(j)
∥∥∥ .

λ

p

1

σ2
min

√
σmax

∥∥FH − F (j)R(j)
∥∥

F

.
σ

σmin

√
n

p

√
σmax

σmin

∥∥FH − F (j)R(j)
∥∥

F
.

Collect the pieces to arrive at

‖F1 − F2‖ ‖F0‖ .
√
σmax

(∥∥FH − F (j)R(j)
∥∥

F
+ κ

σ

σmin

√
n

p

∥∥FH − F (j)R(j)
∥∥

F

)
+ σmax ·

κ

n5

σ

σmin

√
n

p

.
√
σmax

∥∥FH − F (j)R(j)
∥∥

F
+ σmax ·

κ

n5

σ

σmin

√
n

p

.
√
σmax

σ

σmin

√
n log n

p

∥∥F ?∥∥
2,∞ �

σ2
r (F0)

4
,

where the penultimate relation uses (A.14a) as well as the fact that ‖F ?‖2,∞ ≥
√
σminr/n.

With the above bound in place, we are ready to invoke [CCF+19, Lemma 22] to obtain∥∥F dHd − F d,(j)Hd,(j)
∥∥ . κ

∥∥F dH − F d,(j)R(j)
∥∥ . κ

∥∥FH − F (j)R(j)
∥∥

F

. κ
σ

σmin

√
n log n

p

∥∥F ?∥∥
2,∞,

where the last line comes from (A.14a). This concludes the proof.
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J Technical lemmas
This section collects a few useful matrix perturbation bounds. The first one is concerned with the perturba-
tion of pseudo-inverses.

Lemma 12 (Perturbation of pseudo-inverses). Let A† (resp. B†) be the pseudo-inverse (i.e. Moore–Penrose
inverse) of A (resp. B). Then we have

‖B† −A†‖ ≤ 3 max
{
‖A†‖2, ‖B†‖2

}
‖B −A‖ .

Proof. See [Ste77, Theorem 3.3].

The next lemma focuses on the perturbation bound for matrix square roots.

Lemma 13 (Perturbation of matrix square roots). Consider two symmetric matrices obeying A1 � µ1I and
A2 � µ2I for some µ1, µ2 > 0. Let R1 � 0 (resp. R2 � 0) be the (principal) matrix square root of A1

(resp. A2). Then one has

‖R1 −R2‖ ≤
1

√
µ1 +

√
µ2
‖A1 −A2‖ .

Proof. See [Sch92, Lemma 2.1].

The following lemma concerns the perturbation of top-r components of matrices.

Lemma 14 (Perturbation of top-r components). Consider two matrices M ,M + E ∈ Rn×n. Suppose
that ‖E‖ ≤ ‖M‖ and σr(M) > σr+1(M + E). Let UΣV > (resp. ÛΣ̂V̂ >) be the rank-r SVD of M
(resp. M +E). Then one has

∥∥UΣV > − ÛΣ̂V̂ >
∥∥

F
≤
(

12 ‖Σ‖
σr (M)− σr+1 (M +E)

+ 1

)
‖E‖F .

Proof. From Wedin’s sin Θ theorem [Wed72], there exist orthonormal matrices R1,R2 ∈ Or×r such that

max
{
‖ÛR1 −U‖F, ‖V̂ R2 − V ‖F

}
≤ 2

σr (M)− σr+1 (M +E)
‖E‖F . (J.1)

In addition, Weyl’s inequality tells us that∥∥Σ− Σ̂
∥∥ ≤ ∥∥E∥∥ and hence

∥∥Σ̂∥∥ ≤ 2
∥∥Σ∥∥. (J.2)

Here, the second inequality follows from the triangle inequality and the assumption that ‖E‖ ≤ ‖M‖ = ‖Σ‖.
Expand UΣV > − ÛΣ̂V̂ > and apply the triangle inequality to obtain∥∥UΣV > − ÛΣ̂V̂ >

∥∥
F

=
∥∥UΣV > − ÛR1R

>
1 Σ̂R2R

>
2 V̂

>∥∥
F

≤
∥∥(U − ÛR1

)
ΣV >

∥∥
F

+
∥∥ÛR1

(
Σ−R>1 Σ̂R2

)
V >

∥∥
F

+
∥∥ÛR1R

>
1 Σ̂R2

(
V − V̂ R2

)>∥∥
F
,

which further implies that∥∥UΣV > − ÛΣ̂V̂ >
∥∥

F
≤
∥∥U − ÛR1

∥∥
F

∥∥Σ∥∥+
∥∥Σ−R>1 Σ̂R2

∥∥
F

+
∥∥Σ̂∥∥∥∥V − V̂ R2

∥∥
F

≤ 6 ‖Σ‖
σr (M)− σr+1 (M +E)

‖E‖F +
∥∥Σ−R>1 Σ̂R2

∥∥
F
. (J.3)

Here, the last line arises from (J.1) and (J.2). It then boils down to controlling ‖Σ−R>1 Σ̂R2‖F. Recognizing
that Σ = U>MV and Σ̂ = Û>(M +E)V̂ , we obtain∥∥Σ−R>1 Σ̂R2

∥∥
F

=
∥∥∥U>MV −R>1 Û> (M +E) V̂ R2

∥∥∥
F
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≤
∥∥(U − ÛR1

)>
MV

∥∥
F

+
∥∥R>1 Û>EV ∥∥F

+
∥∥R>1 Û> (M +E)

(
V − V̂ R2

)∥∥
F

≤
∥∥U − ÛR1

∥∥
F
‖Σ‖+ ‖E‖F +

∥∥Σ̂∥∥∥∥V − V̂ R2

∥∥
F
.

Once again, employ (J.1) and (J.2) to arrive at

∥∥Σ−R>1 Σ̂R2

∥∥
F
≤ 6 ‖Σ‖
σr (M)− σr+1 (M +E)

‖E‖F + ‖E‖F . (J.4)

Combining (J.3) and (J.4), we reach

∥∥UΣV > − ÛΣ̂V̂ >
∥∥

F
≤
(

12 ‖Σ‖
σr (M)− σr+1 (M +E)

+ 1

)
‖E‖F

as claimed.

The last bound centers around the well-known Sylvester equation XA+BX = C.

Lemma 15 (The Sylvester equation). Suppose X ∈ Rr×r satisfies the matrix equation XA+BX = C for
some matrices A ∈ Rr×r,B ∈ Rr×r and C ∈ Rr×r. Then one has

‖X‖ ≤ (2λmin)−1 ‖C‖ ,

as long as λminIr � A � λmaxIr and λminIr � B � λmaxIr for some λmax ≥ λmin > 0.

Proof. To begin with, we intend to show that under the condition λminIr � A,B � λmaxIr for some
λmax ≥ λmin > 0, there is a unique solution to the matrix equation XA +BX = C. Use the notation of
Kronecker product to obtain an equivalent form of XA+BX = C as follows

vec (XA+BX) =
(
A> ⊗ Ir + Ir ⊗B

)
· vec (X) = vec (C) ,

where ⊗ denotes the Kronecker product and vec(A) stands for the vectorization of the matrix A. Given
that A � 0 and B � 0, it is straightforward to see that A> ⊗ Ir + Ir ⊗B is invertible, thus justifying the
uniqueness of X.

The next step is to characterize X explicitly. The argument herein is adapted from [Smi68] and [Sch92].
Specifically, it has been shown in [Smi68] that the equation XA+BX = C is equivalent to

X −UXV = W ,

where U = (qIr +B)−1(qIr −B), V = (qIr −A)(qIr +A)−1 and W = 2q(qIr +B)−1C(qIr +A)−1, for
any q > 0. In particular, when q > λmin, the matrix

X =

∞∑
k=1

Uk−1WV k−1 (J.5)

is the unique solution to X −UXV = W and hence to XA+BX = C. To show this, it suffices to verify
that the matrix series is convergent. Note that when q > λmin, one has

‖U‖ ≤ ‖ (qIr +B)
−1 ‖ ‖qIr −B‖ ≤

q − λmin

q + λmin
< 1,

and similarly ‖V ‖ ≤ (q−λmin)/(q+λmax) < 1. These two bounds taken together immediately establish the
convergence of the matrix series (J.5).

In the end, the explicit representation (J.5) allows us to upper bound ‖X‖. A little algebra reveals that

‖X‖ ≤
∞∑
k=1

∥∥Uk−1WV k−1
∥∥ ≤ ‖W ‖ ∞∑

k=1

‖U‖k−1 ‖V ‖k−1 ≤ ‖W ‖
1− ‖U‖ ‖V ‖

,

62



where we make use of the fact ‖U‖‖V ‖ < 1. In addition, from the definition of W we know that

‖W ‖ ≤ 2q
∥∥ (qIr +B)

−1 ∥∥ ‖C‖ ∥∥ (qIr +A)
−1 ∥∥ ≤ ‖C‖ 2q

(q + λmin)
2 ,

provided that q > 0. Combine this with the bounds on ‖U‖ and ‖V ‖ to reach

‖X‖ ≤
‖C‖ 2q

(q+λmin)2

1−
(
q−λmin

q+λmin

)2 =
2q ‖C‖

(q + λmin)
2 − (q − λmin)

2 =
‖C‖

2λmin

as claimed.
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