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Reinforcement learning (RL)

AGENT ENVIRONMENT
-State s €S

- Take action o € .4

/_\

- Getreward 7
-Newstate 5" € S

Goal: learn an optimal policy to maximize rewards
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A key ingredient: policy evaluation

on-policy evaluation J off-policy evaluation (OPE) J
deploy policy in environment leverage historical data
— costly, dangerous, unethical — distribution shift!
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— how to optimally tackle distribution shift



This talk

Off-policy evaluation for multi-armed bandits

— how to optimally tackle distribution shift

“Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism”

— with P. Rashidinejad, B. Zhu, J. Jiao, and S. Russell :l —
m




Background: multi-armed bandits and OPE



Multi-armed bandits

e Action space: A = [k] = {1,2,...,k}
e Reward distributions: f = {f(- ] a)}aca

F(rmax) = {f [ supp(f (- [ @)) € [0, 7mas] for each a € [k]}
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Multi-armed bandits

Action space: A = [k] :={1,2,...,k}
Reward distributions: f = {f(-| a)}seca

F(rmax) = {f [ supp(f (- [ @)) € [0, 7mas] for each a € [k]}

Policy 7: a distribution over [k]
Value function of a policy: Vi(m) =3 i m(a)ry(a)
— 77(a): mean reward of f(-|a)
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OPE in multi-armed bandits

Given
e observed data: {(A4;, R;)}", e @ f

e target policy
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Two classical estimators

Vplug = Z 7Tt(a)"/:(a)

a€lk]

7(a) := empirical mean reward
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Two classical estimators

V o - 1
Vplug = Z m(a)r(a) Vis = — Z P(Ai)Ri
n
a€lk] i)
7(a) := empirical mean reward pla) = 71’t((a))
mh(a
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Gaps in statistical understanding of OPE

— a few motivating questions



Non-asymptotic analysis of OPE

finite-sample
non-asymptotic analysis

asymptotic
analysis

1993 1998 2003 2015
— notable exceptions: Li et al. '15, Wang et al. '17
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Non-asymptotic analysis of OPE

finite-sample
non-asymptotic analysis

g
@

asymptotic
analysis

1993 1998 2003 2015
— notable exceptions: Li et al. '15, Wang et al. '17

Can we develop procedures that are optimal for all sample sizes? J
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Known vs. unknown behavior policies

Known behavior Unknown behavior
policy policy
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Known vs. unknown behavior policies

Known behavior Unknown behavior
policy policy

Is there statistical difference between knowing and not knowing 77 |

Asymptotic: Non-asymptotic
NO ?2?7?
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OPE with partial knowledge of behavior policy
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OPE with partial knowledge of behavior policy

(/‘
Known behavior Unknown behavior

policy é v policy

What if we have partial knowledge of behavior policy, say
e we know how close behavior policy is to target policy

max mi(a)/mp(a) < U
a
e or how well behavior policy explores action space

minp(a) > v
a

Can we fully utilize such partial knowledge in OPE?
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OPE with known behavior policy



Plug-in and importance sampling estimators

7(a) := empirical mean reward pla) =
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Switch estimators

— inspired by Wang et al. '17
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Switch estimators

— inspired by Wang et al. '17

Switch estimators: for any subset S C [k], we define

n
~

‘/switch(S) = Z 7Tt(a)?(a’) + %Z p(Az)RZ]l{Al ¢ S}

a€esS =1

e when S = [k], recover plug-in estimator
e when S = (), recover importance sampling (IS) estimator

e Intermediate choices of S lead to interpolation between plug-in
and IS estimators
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Performance of Switch estimators

Proposition 1

For any subset S C [k], we have

Eryof[(Vawiten(S) — Vi(m))?] < 312, {Wg(g) L Zags Wt;fa)pz(a) }
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Performance of Switch estimators

Proposition 1

For any subset S C [k], we have

Eryof[(Vawiten(S) — Vi(m))?] < 312, {Wg(g) L Zags Wt;fa)pz(a) }

— How to choose subset S7?

A simple idea:

SCIk] n

min {wsm ¥ Zagswbwnﬂ(w}

— combinatorial optimization problem!

17/ 37



We can “solve” it!
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We can “solve” it!

n

min {ﬂ.t?(s) + Zaés Wb(a)pQ(a)} - {W?(S*) I Zags* '/Tb(a)pQ(a)}
n

SCIk]

- ‘7switch(5*) is optimal among family of Switch estimators
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Is Switch estimator universally optimal?

Minimax risk of OPE:

Ry (me; mb) = inf sup By [(V — Vi (me))?]
V feF
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Is Switch estimator universally optimal?

Minimax risk of OPE:

Ry (me; mb) = inf sup By [(V — Vi (me))?]
V feF

Theorem 1
For all pairs (my, ) and for all n, we have

max
n

Ry (s ) 2 r2 {773(5*) + 2 ags* 7rb(a>ﬂ2(a)}

— Switch estimator is minimax optimal for all sample sizes
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Sanity checks

e Degenerate case of on-policy evaluation, i.e., m = mp
We know IS estimator (a.k.a. Monte Carlo estimator) is optimal

Vis =

with optimal rate r2__ /n
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Sanity checks

e Degenerate case of on-policy evaluation, i.e., m = mp
We know IS estimator (a.k.a. Monte Carlo estimator) is optimal

with optimal rate Tfm/n

It can be shown from our minimax theorem that S* = () in this case
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Sanity checks

Large-sample regime: in general when 7 # 7, one can show
that when

max,e p°(a)

> ek T(a)p?(a)’

n >

and hence IS estimator is optimal, with rate

=0,
T " Laclk) T(a)p?(a)/n
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Sanity checks

Large-sample regime: in general when 7 # 7, one can show

that when

max,e p°(a)

n > ,
> aclk) ™(a)p*(a)

and hence IS estimator is optimal, with rate

=0,
T " Laclk) T(a)p?(a)/n

recover large-sample result in Li et al. '15 (bounded reward
setting)

our results accommodate any sample size, especially small
sample size where IS could perform poorly
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Numerics
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Numerics (cont.)

Mean-squared error

10—2,

1073~

¢ Switch B=-0.972 se(B) =0.003
% Plug-in B=-0.102 se(B) = 0.006
x 1S B=-0.502 se(B) = 0.006

102

Sample size n

103
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A closer look at Switch estimator




A closer look at Switch estimator

Without loss of generality, we assume

likelihood ratios {p(a)}ac
L

actions {a}.e[k
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A closer look at Switch estimator

S*—if nonempty—must contain actions with largest likelihood ratios

% o
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S
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A closer look at Switch estimator

S*—if nonempty—must contain actions with largest likelihood ratios

% -
Y -

~

=

S

Y v

- S*
w

RS
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g @ b

el -

<)
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=

E -

= -

actions {a}.e[k

Key message: Switch optimally truncates large likelihood ratios J

— variance reduction
24/ 37



OPE with unknown behavior policy



What's the right performance metric?

e First attempt: global worst-case risk of 1%

sup sup Eﬂb(@f[(f/ — Vf(ﬂ't))2]
T fEF
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e Failure of attempt:
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max
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What's the right performance metric?

e First attempt: global worst-case risk of 1%

sup sup Er, ¢ [(V — Vi (m))?]
T fEF

e Failure of attempt:

2

max

inf sup sup B or[(V = Vi(m))?] < r
VvV ™ feF

in addition, V = 0 is minimax optimal...

e Rationale for failure: adversary can choose bad behavior policy

without paying price
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Competitive ratio

— inspired by online learning literature

— Ry (m;my) = infg supper Eryer[(V = Vi(m))?]
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Competitive ratio

— inspired by online learning literature

— Ry (m;my) = infg supper Eryer[(V = Vi(m))?]

e Proof of concept: when V =0, we have

78 Erear[(V = Vi(m))] _ (Vy(m)* _
C(V,ﬂ't) Z = Rn(ﬂt,ﬁt) = max/n
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Competitive ratio of plug-in estimator

Theorem 2

For any target policy m, plug-in estimator meg satisfies

oy Bt (g = Vy(m0))

< |supp(m
o, fEF Ry (me; ) < [supp(me)|
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Theorem 2

For any target policy m, plug-in estimator meg satisfies

oy Bt (g = Vy(m0))

< | supp(mw
T, fEF RZ(Wt;Wb) | ( t)’

e Worst-case competitive ratio is at most k (since |supp(m)| < k)
= plug-in estimator is strictly better than all-zeros estimator
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Competitive ratio of plug-in estimator

Theorem 2

For any target policy m, plug-in estimator meg satisfies

oy Bt (g = Vy(m0))

< |supp(m
ﬂ—b’fej—' Rz('frt,ﬂ'b) ~Y | pp( t)’

e Worst-case competitive ratio is at most k (since |supp(m)| < k)
= plug-in estimator is strictly better than all-zeros estimator

e Adaptivity of plug-in estimator to target policy
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Is plug-in estimator optimal?

Theorem 3

Suppose that sample size obeys n >

k_ Then for each
log k

s€{1,2,...,k}, there exists a target policy m supported on s

actions and

Enyoof [(V = Vi (m))’]

inf sup
\7 ﬂ'b,fEJ'— Rn(ﬂ-t,ﬂ-b)
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Is plug-in estimator optimal?

Theorem 3

Suppose that sample size obeys n > lo]g;k' Then for each
s€{1,2,...,k}, there exists a target policy m supported on s
actions and

inf sup Enasl(V = Vy(m))) z max{s 1}
V m,feF Rn(ﬂ-t’ﬂ-b) ~ log k'’

e Plug-in estimator is rate-optimal up to a log factor

e Performance difference between knowing and not knowing

behavior policy scales as | supp(m)|
— in contrast to asymptotics
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Numerics

Setup: k£ = 100, n = 2k, fix m, and vary 7 uniform over [s]

7 - —— B=0.075 se(B) = 0.001

Competitive ratio
wos o9

N

20 30 40 50 60 70 80 90 100
Support size
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Numerics

Setup: k£ = 100, n = 2k, fix m, and vary 7 uniform over [s]

7- —— B=0.075 se(B) = 0.001

Competitive ratio
wos o9

N

)

20 30 40 50 60 70 80 90 100
Support size

Knowing behavior policy helps in non-asymptotics! J
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OPE with partial knowledge of behavior policy



OPE with partial knowledge of behavior policy

L{ ‘
Known behavior Unknown behavior

policy - % policy

What if we have partial knowledge of behavior policy?

Our focus: minimum exploration probability

mp € H(v) == {r | (111611[21] m(a) > v}

— v el0,1/k]
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Optimal estimators
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Optimal estimators

no > plug-in
consistent estimator :

optimal
-—--p
1%

N log k
nlogk n
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Tackling less-exploratory 7,

no 9 plug-in
§

consistent estimator optimal

e Why plug-in fails when 7, is less exploratory?
— large bias due to insufficient observations
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Tackling less-exploratory 7,

no :  Chebyshev ! plug-in
consistent estimator ;  optimal ! optimal

e Why plug-in fails when 7, is less exploratory?
— large bias due to insufficient observations

e How to reduce bias?
— draw connection to support size estimation (cf. Wu and Yang '16)
— best polynomial approximation
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A peek at Chebyshev estimator

plug-in estimator J Chebyshev estimator J
Volg == Y me(a)(a) Ve =Y m(a)F(a)gr(n(a))
a€lk] a€lk]
7(a) = empirical mean reward gr.(n(a)) := Chebyshev poly
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Concluding remarks

e Known 7,: Switch is minimax optimal for all sample sizes
e Unknown 7y, fundamentally different, plug-in is near-optimal

e Partial knowledge: improvement is possible, bias reduction is
needed
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Concluding remarks

Known 7 Switch is minimax optimal for all sample sizes
Unknown my,: fundamentally different, plug-in is near-optimal

Partial knowledge: improvement is possible, bias reduction is

(Future

Smooth characterization of gap between knowing and not
knowing

Extension to other reward families

Adaptivity to min, m,(a)
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Paper:
“Minimax Off-Policy Evaluation for Multi-Armed Bandits,”

C. Ma, B. Zhu, J. Jiao, M. J. Wainwright, arXiv:2101.07781, 2021



