Minimax Off-Policy Evaluation for Multi-Armed Bandits

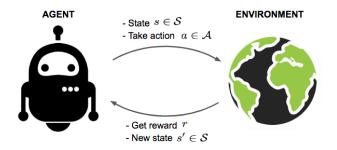
FODSI seminar, April 9th, 2021

Banghua Zhu EECS

Jiantao Jiao EECS & Stat

Martin Wainwright EECS & Stat

Reinforcement learning (RL)



Goal: learn an optimal policy to maximize rewards

on-policy evaluation

deploy policy in environment

on-policy evaluation

deploy policy in environment

- costly, dangerous, unethical

on-policy evaluation

deploy policy in environment

— costly, dangerous, unethical

off-policy evaluation (OPE)

leverage historical data

on-policy evaluation

deploy policy in environment

— costly, dangerous, unethical

off-policy evaluation (OPE)

leverage historical data

- distribution shift!

Off-policy evaluation for multi-armed bandits

- how to optimally tackle distribution shift

Off-policy evaluation for multi-armed bandits

- how to optimally tackle distribution shift

"Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism"

- with P. Rashidinejad, B. Zhu, J. Jiao, and S. Russell

Background: multi-armed bandits and OPE

Multi-armed bandits

- Action space: $\mathcal{A} = [k] \coloneqq \{1, 2, \dots, k\}$
- Reward distributions: $f \coloneqq \{f(\cdot \mid a)\}_{a \in \mathcal{A}}$

 $\mathcal{F}(r_{\max}) \coloneqq \{f \mid \operatorname{supp}(f(\,\cdot \mid a)) \subseteq [0, r_{\max}] \text{ for each } a \in [k]\}$

Multi-armed bandits

- Action space: $\mathcal{A} = [k] \coloneqq \{1, 2, \dots, k\}$
- Reward distributions: $f \coloneqq \{f(\cdot \mid a)\}_{a \in \mathcal{A}}$

 $\mathcal{F}(r_{\max}) \coloneqq \{f \mid \operatorname{supp}(f(\,\cdot \mid a)) \subseteq [0, r_{\max}] \text{ for each } a \in [k]\}$

• Policy π : a distribution over [k]

Multi-armed bandits

- Action space: $\mathcal{A} = [k] \coloneqq \{1, 2, \dots, k\}$
- Reward distributions: $f \coloneqq \{f(\cdot \mid a)\}_{a \in \mathcal{A}}$

 $\mathcal{F}(r_{\max}) \coloneqq \{f \mid \operatorname{supp}(f(\,\cdot \mid a)) \subseteq [0, r_{\max}] \text{ for each } a \in [k]\}$

- Policy π : a distribution over [k]
- Value function of a policy: $V_f(\pi) \coloneqq \sum_{a \in [k]} \pi(a) r_f(a)$

— $r_f(a)$: mean reward of $f(\cdot \mid a)$

Given

- observed data: $\{(A_i, R_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \pi_{\mathbf{b}} \otimes f$
- target policy π_t

Goal: estimate value function of target policy

$$V_f(\pi_{\mathsf{t}}) = \sum_{a \in [k]} \pi_{\mathsf{t}}(a) r_f(a)$$

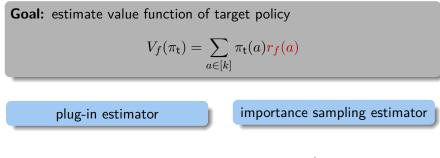
Goal: estimate value function of target policy

$$V_f(\pi_{\mathsf{t}}) = \sum_{a \in [k]} \pi_{\mathsf{t}}(a) r_f(a)$$

plug-in estimator

$$\widehat{V}_{\mathsf{plug}} \coloneqq \sum_{a \in [k]} \pi_{\mathsf{t}}(a) \widehat{r}(a)$$

 $\widehat{r}(a) \coloneqq \mathsf{empirical} \ \mathsf{mean} \ \mathsf{reward}$



$$\widehat{V}_{\mathsf{plug}} \coloneqq \sum_{a \in [k]} \pi_{\mathsf{t}}(a) \widehat{r}(a)$$

 $\widehat{r}(a) \coloneqq \mathsf{empirical} \mathsf{mean} \mathsf{reward}$

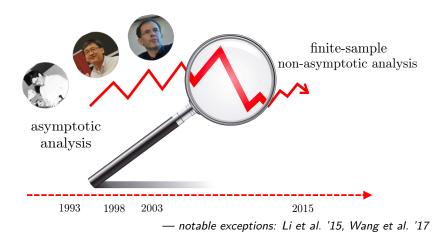
 $\widehat{V}_{\mathsf{IS}} \coloneqq \frac{1}{n} \sum_{i \in [n]} \rho(A_i) R_i$

$$\rho(a) \coloneqq \frac{\pi_{\mathsf{t}}(a)}{\pi_{\mathsf{b}}(a)}$$

Gaps in statistical understanding of OPE

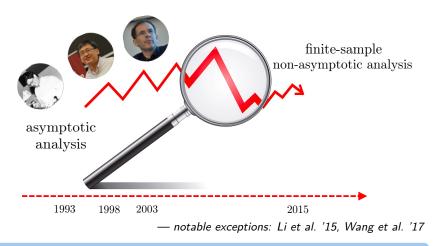
— a few motivating questions

Non-asymptotic analysis of OPE



11/37

Non-asymptotic analysis of OPE



Can we develop procedures that are optimal for all sample sizes?

Known vs. unknown behavior policies

Known behavior policy

Unknown behavior policy

Known vs. unknown behavior policies

Known behavior policy

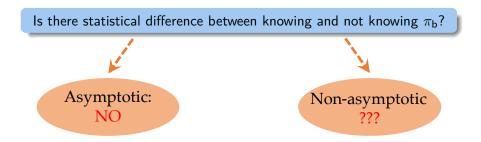
Unknown behavior policy

Is there statistical difference between knowing and not knowing π_b ?

Known vs. unknown behavior policies

Known behavior policy

Unknown behavior policy



What if we have partial knowledge of behavior policy,

What if we have partial knowledge of behavior policy, say

• we know how close behavior policy is to target policy

$$\max_{a} \pi_{\mathsf{t}}(a) / \pi_{\mathsf{b}}(a) \le U$$

What if we have partial knowledge of behavior policy, say

• we know how close behavior policy is to target policy

$$\max_{a} \pi_{\mathsf{t}}(a) / \pi_{\mathsf{b}}(a) \le U$$

• or how well behavior policy explores action space

$$\min_{a} \pi_{\mathsf{b}}(a) \ge \nu$$

What if we have partial knowledge of behavior policy, say

• we know how close behavior policy is to target policy

$$\max_{a} \pi_{\mathsf{t}}(a) / \pi_{\mathsf{b}}(a) \le U$$

• or how well behavior policy explores action space

 $\min_{a} \pi_{\mathsf{b}}(a) \geq \nu$

Can we fully utilize such partial knowledge in OPE?

OPE with known behavior policy

Plug-in and importance sampling estimators

Goal: estimate value function of target policy

$$V_f(\pi_t) = \sum_{a \in [k]} \pi_t(a) r_f(a)$$

plug-in estimator

importance sampling estimator

$$\widehat{V}_{\mathsf{plug}} \coloneqq \sum_{a \in [k]} \pi_{\mathsf{t}}(a) \widehat{r}(a)$$

$$\widehat{V}_{\mathsf{IS}} \coloneqq rac{1}{n} \sum_{i \in [n]} oldsymbol{
ho}(A_i) R_i$$

$$\widehat{r}(a) \coloneqq \mathsf{empirical} \mathsf{ mean} \mathsf{ reward}$$

$$\rho(a) \coloneqq \frac{\pi_{\mathsf{t}}(a)}{\pi_{\mathsf{b}}(a)}$$

Switch estimators

- inspired by Wang et al. '17

Switch estimators: for any subset $S \subseteq [k]$, we define

$$\widehat{V}_{\mathsf{switch}}(S) \coloneqq \sum_{a \in S} \pi_{\mathsf{t}}(a)\widehat{r}(a) + \frac{1}{n}\sum_{i=1}^{n} \rho(A_i)R_i\mathbb{1}\{A_i \notin S\}$$

Switch estimators

- inspired by Wang et al. '17

Switch estimators: for any subset $S \subseteq [k]$, we define

$$\widehat{V}_{\mathsf{switch}}(S) \coloneqq \sum_{a \in S} \pi_{\mathsf{t}}(a) \widehat{r}(a) + \frac{1}{n} \sum_{i=1}^{n} \rho(A_i) R_i \mathbb{1}\{A_i \notin S\}$$

- when S = [k], recover plug-in estimator
- when $S = \emptyset$, recover importance sampling (IS) estimator
- $\bullet\,$ Intermediate choices of S lead to interpolation between plug-in and IS estimators

For any subset $S \subseteq [k]$, we have

$$\mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{switch}}(S) - V_{f}(\pi_{\mathsf{t}}))^{2}] \leq 3r_{\max}^{2} \left\{ \pi_{\mathsf{t}}^{2}(S) + \frac{\sum_{a \notin S} \pi_{\mathsf{b}}(a)\rho^{2}(a)}{n} \right\}$$

For any subset $S \subseteq [k]$, we have

$$\mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{switch}}(S) - V_{f}(\pi_{\mathsf{t}}))^{2}] \leq 3r_{\max}^{2} \left\{ \pi_{\mathsf{t}}^{2}(S) + \frac{\sum_{a \notin S} \pi_{\mathsf{b}}(a)\rho^{2}(a)}{n} \right\}$$

— How to choose subset S?

For any subset $S \subseteq [k]$, we have

$$\mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{switch}}(S) - V_{f}(\pi_{\mathsf{t}}))^{2}] \leq 3r_{\max}^{2} \left\{ \pi_{\mathsf{t}}^{2}(S) + \frac{\sum_{a \notin S} \pi_{\mathsf{b}}(a)\rho^{2}(a)}{n} \right\}$$

— How to choose subset S?

A simple idea:

$$\min_{S \subseteq [k]} \left\{ \pi_{\mathsf{t}}^2(S) + \frac{\sum_{a \notin S} \pi_{\mathsf{b}}(a) \rho^2(a)}{n} \right\}$$

For any subset $S \subseteq [k]$, we have

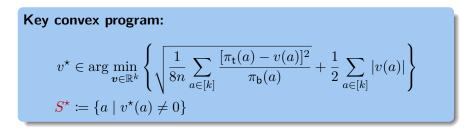
$$\mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{switch}}(S) - V_{f}(\pi_{\mathsf{t}}))^{2}] \leq 3r_{\max}^{2} \left\{ \pi_{\mathsf{t}}^{2}(S) + \frac{\sum_{a \notin S} \pi_{\mathsf{b}}(a)\rho^{2}(a)}{n} \right\}$$

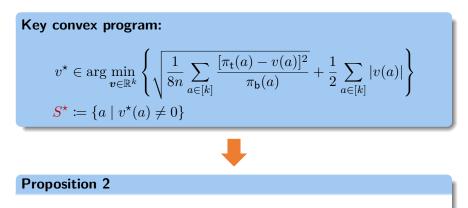
— How to choose subset S?

A simple idea:

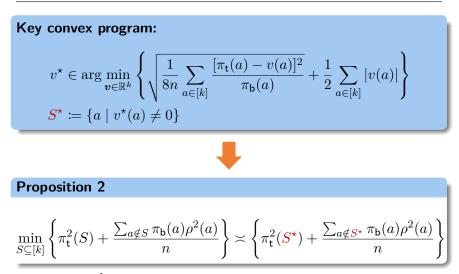
$$\min_{S \subseteq [k]} \left\{ \pi_{\mathsf{t}}^2(S) + \frac{\sum_{a \notin S} \pi_{\mathsf{b}}(a) \rho^2(a)}{n} \right\}$$

- combinatorial optimization problem!





$$\min_{S\subseteq[k]} \left\{ \pi_{\mathsf{t}}^2(S) + \frac{\sum_{a\notin S} \pi_{\mathsf{b}}(a)\rho^2(a)}{n} \right\} \asymp \left\{ \pi_{\mathsf{t}}^2(S^{\star}) + \frac{\sum_{a\notin S^{\star}} \pi_{\mathsf{b}}(a)\rho^2(a)}{n} \right\}$$



— $\widehat{V}_{\rm switch}(S^{\star})$ is optimal among family of Switch estimators

Is Switch estimator universally optimal?

Minimax risk of OPE:

$$\mathcal{R}_n^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}}) \coloneqq \inf_{\widehat{V}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_f(\pi_{\mathsf{t}}))^2]$$

Is Switch estimator universally optimal?

Minimax risk of OPE:

$$\mathcal{R}_n^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}}) \coloneqq \inf_{\widehat{V}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_f(\pi_{\mathsf{t}}))^2]$$

Theorem 1

For all pairs $(\pi_{\rm b},\pi_{\rm t})$ and for all n, we have

$$\mathcal{R}_n^{\star}(\pi_{\mathsf{t}};\pi_{\mathsf{b}}) \gtrsim r_{\max}^2 \left\{ \pi_{\mathsf{t}}^2(\boldsymbol{S}^{\star}) + \frac{\sum_{a \notin \boldsymbol{S}^{\star}} \pi_{\mathsf{b}}(a)\rho^2(a)}{n} \right\}$$

- Switch estimator is minimax optimal for all sample sizes

• Degenerate case of on-policy evaluation, i.e., $\pi_t = \pi_b$ We know IS estimator (a.k.a. Monte Carlo estimator) is optimal

$$\widehat{V}_{\rm IS} = \frac{1}{n} \sum_{i=1}^{n} \rho(A_i) R_i = \frac{1}{n} \sum_{i=1}^{n} R_i$$

with optimal rate $r_{
m max}^2/n$

Degenerate case of on-policy evaluation, i.e., π_t = π_b
 We know IS estimator (a.k.a. Monte Carlo estimator) is optimal

$$\widehat{V}_{\mathsf{IS}} = \frac{1}{n} \sum_{i=1}^{n} \rho(A_i) R_i = \frac{1}{n} \sum_{i=1}^{n} R_i$$

with optimal rate $r_{
m max}^2/n$

It can be shown from our minimax theorem that $S^{\star} = \emptyset$ in this case

• Large-sample regime: in general when $\pi_{\rm t}\neq\pi_{\rm b},$ one can show that when

$$n \gg \frac{\max_{a \in [k]} \rho^2(a)}{\sum_{a \in [k]} \pi_{\mathsf{b}}(a) \rho^2(a)},$$

 $S^\star=\emptyset,$ and hence IS estimator is optimal, with rate $r_{\max}^2\cdot\sum_{a\in[k]}\pi_{\rm b}(a)\rho^2(a)/n$

 \bullet Large-sample regime: in general when $\pi_{\rm t} \neq \pi_{\rm b},$ one can show that when

$$n \gg \frac{\max_{a \in [k]} \rho^2(a)}{\sum_{a \in [k]} \pi_{\mathsf{b}}(a) \rho^2(a)},$$

 $S^\star=\emptyset,$ and hence IS estimator is optimal, with rate $r_{\max}^2\cdot\sum_{a\in[k]}\pi_{\rm b}(a)\rho^2(a)/n$

- * recover large-sample result in Li et al. '15 (bounded reward setting)
- * our results accommodate any sample size, especially small sample size where IS could perform poorly

Numerics

Setup: $\pi_{t}(a) = 1/k$, $f(\cdot \mid a) = \text{Bern}(0.5)$ for all $a \in [k]$, n = 1.5k $\pi_{b}(1) = \pi_{b}(2) = \dots = \pi_{b}(\sqrt{k}) = \frac{1}{k^{2}}$, $\pi_{b}(\sqrt{k}+1) = \pi_{b}(\sqrt{k}+2) = \dots = \pi_{b}(k) = \frac{1-\frac{1}{k^{3/2}}}{k-\sqrt{k}}$

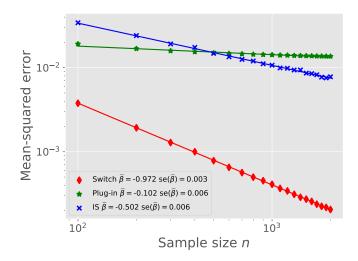
Numerics

Setup: $\pi_{t}(a) = 1/k$, $f(\cdot \mid a) = \text{Bern}(0.5)$ for all $a \in [k]$, n = 1.5k $\pi_{b}(1) = \pi_{b}(2) = \dots = \pi_{b}(\sqrt{k}) = \frac{1}{k^{2}}$, $\pi_{b}(\sqrt{k}+1) = \pi_{b}(\sqrt{k}+2) = \dots = \pi_{b}(k) = \frac{1-\frac{1}{k^{3/2}}}{k-\sqrt{k}}$

Theoretical predictions:

$$\begin{split} \mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{plug}} - V_{f}(\pi_{\mathsf{t}}))^{2}] &\asymp 1, \\ \mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{IS}} - V_{f}(\pi_{\mathsf{t}}))^{2}] &\asymp n^{-1/2}, \quad \text{and} \\ \mathbb{E}_{\pi_{\mathsf{b}}\otimes f}[(\widehat{V}_{\mathsf{switch}}(S^{\star}) - V_{f}(\pi_{\mathsf{t}}))^{2}] &\asymp n^{-1} \end{split}$$

Numerics (cont.)



Switch estimator:

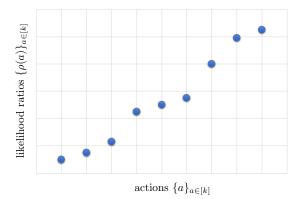
$$\widehat{V}_{\mathsf{switch}}(S^{\star}) \coloneqq \sum_{a \in S^{\star}} \pi_{\mathsf{t}}(a)\widehat{r}(a) + \frac{1}{n}\sum_{i=1}^{n} \rho(A_{i})R_{i}\mathbb{1}\{A_{i} \notin S^{\star}\}$$

Key convex program:

$$v^{\star} \in \arg\min_{v \in \mathbb{R}^{k}} \left\{ \sqrt{\frac{1}{8n} \sum_{a \in [k]} \frac{[\pi_{t}(a) - v(a)]^{2}}{\pi_{b}(a)}} + \frac{1}{2} \sum_{a \in [k]} |v(a)| \right\}$$
$$S^{\star} \coloneqq \{a \mid v^{\star}(a) \neq 0\}$$

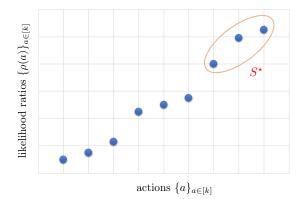
A closer look at Switch estimator

Without loss of generality, we assume



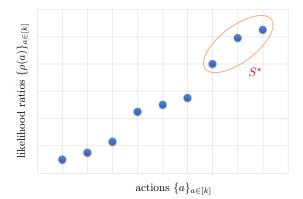
A closer look at Switch estimator

 S^{\star} —if nonempty—must contain actions with largest likelihood ratios



A closer look at Switch estimator

 S^{\star} —if nonempty—must contain actions with largest likelihood ratios



Key message: Switch optimally truncates large likelihood ratios

variance reduction
 24/37

OPE with unknown behavior policy

What's the right performance metric?

• First attempt: global worst-case risk of \widehat{V}

$$\sup_{\pi_{\mathbf{b}}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathbf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathbf{t}}))^{2}]$$

What's the right performance metric?

• First attempt: global worst-case risk of \widehat{V}

$$\sup_{\pi_{\mathsf{b}}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]$$

• Failure of attempt:

$$\inf_{\widehat{V}} \sup_{\pi_{\mathsf{b}}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_f(\pi_{\mathsf{t}}))^2] \asymp r_{\max}^2$$

in addition, $\widehat{V}\equiv 0$ is minimax optimal...

What's the right performance metric?

• First attempt: global worst-case risk of \widehat{V}

$$\sup_{\pi_{\mathsf{b}}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]$$

• Failure of attempt:

$$\inf_{\widehat{V}} \sup_{\pi_{\mathbf{b}}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathbf{b}} \otimes f}[(\widehat{V} - V_f(\pi_{\mathbf{t}}))^2] \asymp r_{\max}^2$$

in addition, $\widehat{V}\equiv 0$ is minimax optimal...

• Rationale for failure: adversary can choose bad behavior policy without paying price

Competitive ratio

- inspired by online learning literature

Worst-case competitive ratio of \hat{V} :

$$\mathcal{C}(\widehat{V}; \pi_{\mathsf{t}}) \coloneqq \sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})}$$

$$- \mathcal{R}_n^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}}) = \inf_{\widehat{V}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_f(\pi_{\mathsf{t}}))^2]$$

Competitive ratio

- inspired by online learning literature

Worst-case competitive ratio of \hat{V} :

$$\mathcal{C}(\widehat{V}; \pi_{\mathsf{t}}) \coloneqq \sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})}$$

$$- \mathcal{R}_n^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}}) = \inf_{\widehat{V}} \sup_{f \in \mathcal{F}} \mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_f(\pi_{\mathsf{t}}))^2]$$

• Proof of concept: when $\widehat{V}\equiv 0,$ we have

$$\mathcal{C}(\widehat{V}; \pi_{\mathsf{t}}) \geq \frac{\mathbb{E}_{\pi_{\mathsf{t}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{t}})} \asymp \frac{(V_{f}(\pi))^{2}}{r_{\max}^{2}/n} \asymp n$$

Competitive ratio of plug-in estimator

Theorem 2

For any target policy π_t , plug-in estimator \hat{V}_{plug} satisfies

$$\sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V}_{\mathsf{plug}} - V_f(\pi_{\mathsf{t}}))^2]}{\mathcal{R}_n^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})} \lesssim |\operatorname{supp}(\pi_{\mathsf{t}})|$$

For any target policy π_t , plug-in estimator \widehat{V}_{plug} satisfies

$$\sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V}_{\mathsf{plug}} - V_{f}(\pi_{\mathsf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})} \lesssim |\operatorname{supp}(\pi_{\mathsf{t}})|$$

Worst-case competitive ratio is at most k (since |supp(πt)| ≤ k)
 ⇒ plug-in estimator is strictly better than all-zeros estimator

For any target policy π_t , plug-in estimator \widehat{V}_{plug} satisfies

$$\sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V}_{\mathsf{plug}} - V_f(\pi_{\mathsf{t}}))^2]}{\mathcal{R}_n^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})} \lesssim |\operatorname{supp}(\pi_{\mathsf{t}})|$$

- Worst-case competitive ratio is at most k (since |supp(πt)| ≤ k)
 ⇒ plug-in estimator is strictly better than all-zeros estimator
- Adaptivity of plug-in estimator to target policy

Suppose that sample size obeys $n \gg \frac{k}{\log k}$. Then for each $s \in \{1, 2, \ldots, k\}$, there exists a target policy π_t supported on s actions and

$$\inf_{\widehat{V}} \sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})} \gtrsim \max\left\{\frac{s}{\log k}, 1\right\}$$

Suppose that sample size obeys $n \gg \frac{k}{\log k}$. Then for each $s \in \{1, 2, \ldots, k\}$, there exists a target policy π_t supported on s actions and

$$\inf_{\widehat{V}} \sup_{\pi_{\mathbf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathbf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathbf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathbf{t}}; \pi_{\mathbf{b}})} \gtrsim \max\left\{\frac{s}{\log k}, 1\right\}$$

• Plug-in estimator is rate-optimal up to a log factor

Suppose that sample size obeys $n \gg \frac{k}{\log k}$. Then for each $s \in \{1, 2, \ldots, k\}$, there exists a target policy π_t supported on s actions and

$$\inf_{\widehat{V}} \sup_{\pi_{\mathbf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathbf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathbf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathbf{t}}; \pi_{\mathbf{b}})} \gtrsim \max\left\{\frac{s}{\log k}, 1\right\}$$

- Plug-in estimator is rate-optimal up to a log factor
- Performance difference between knowing and not knowing behavior policy scales as $|\operatorname{supp}(\pi_t)|$

Suppose that sample size obeys $n \gg \frac{k}{\log k}$. Then for each $s \in \{1, 2, \ldots, k\}$, there exists a target policy π_t supported on s actions and

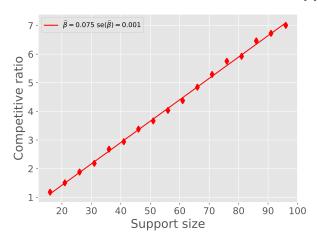
$$\inf_{\widehat{V}} \sup_{\pi_{\mathsf{b}}, f \in \mathcal{F}} \frac{\mathbb{E}_{\pi_{\mathsf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathsf{t}}))^{2}]}{\mathcal{R}_{n}^{\star}(\pi_{\mathsf{t}}; \pi_{\mathsf{b}})} \gtrsim \max\left\{\frac{s}{\log k}, 1\right\}$$

- Plug-in estimator is rate-optimal up to a log factor
- Performance difference between knowing and not knowing behavior policy scales as $|\operatorname{supp}(\pi_t)|$

— in contrast to asymptotics

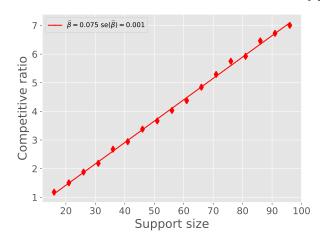
Numerics

Setup: k = 100, n = 2k, fix π_b and vary π_t uniform over [s]



Numerics

Setup: k = 100, n = 2k, fix π_b and vary π_t uniform over [s]



Knowing behavior policy helps in non-asymptotics!

OPE with partial knowledge of behavior policy

OPE with partial knowledge of behavior policy

What if we have partial knowledge of behavior policy?

Our focus: minimum exploration probability

$$\pi_{\mathsf{b}} \in \Pi(\boldsymbol{\nu}) \coloneqq \{\pi \mid \min_{a \in [k]} \pi(a) \ge \boldsymbol{\nu}\}$$

 $-\nu \in [0,1/k]$

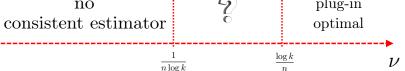
Optimal estimators

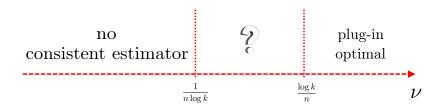
Goal: develop estimators that can achieve

$$\inf_{\widehat{V}} \sup_{(\pi_{\mathbf{b}}, f) \in \Pi(\nu) \times \mathcal{F}} \mathbb{E}_{\pi_{\mathbf{b}} \otimes f}[(\widehat{V} - V_{f}(\pi_{\mathbf{t}}))^{2}]$$

Optimal estimators

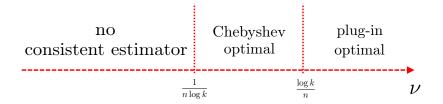
Goal: develop estimators that can achieve $\inf_{\widehat{V}} \sup_{(\pi_{b},f)\in\Pi(\nu)\times\mathcal{F}} \mathbb{E}_{\pi_{b}\otimes f}[(\widehat{V}-V_{f}(\pi_{t}))^{2}]$ no
plug-in





• Why plug-in fails when π_{b} is less exploratory?

- large bias due to insufficient observations



• Why plug-in fails when π_b is less exploratory?

- large bias due to insufficient observations

• How to reduce bias?

draw connection to support size estimation (cf. Wu and Yang '16)
 best polynomial approximation

plug-in estimator

Chebyshev estimator

$$\widehat{V}_{\mathsf{plug}} \coloneqq \sum_{a \in [k]} \pi_{\mathsf{t}}(a) \widehat{r}(a)$$

$$\widehat{V}_{\mathsf{C}} \coloneqq \sum_{a \in [k]} \pi_{\mathsf{t}}(a) \widehat{r}(a) g_L(n(a))$$

 $\widehat{r}(a) \coloneqq \mathsf{empirical} \ \mathsf{mean} \ \mathsf{reward}$

 $g_L(n(a)) \coloneqq \mathsf{Chebyshev} \ \mathsf{poly}$

- Known π_b : Switch is minimax optimal for all sample sizes
- Unknown π_b : fundamentally different, plug-in is near-optimal
- Partial knowledge: improvement is possible, bias reduction is needed

Concluding remarks

- Known π_b : Switch is minimax optimal for all sample sizes
- Unknown $\pi_{\rm b}$: fundamentally different, plug-in is near-optimal
- Partial knowledge: improvement is possible, bias reduction is needed

• Extension to other reward families

- Smooth characterization of gap between knowing and not knowing $\pi_{\rm b}$
- Adaptivity to $\min_a \pi_{\mathsf{b}}(a)$

Paper:

"Minimax Off-Policy Evaluation for Multi-Armed Bandits,"

C. Ma, B. Zhu, J. Jiao, M. J. Wainwright, arXiv:2101.07781, 2021