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Reinforcement learning (RL)

Goal: learn an optimal policy to maximize rewards
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A key ingredient: policy evaluation

on-policy evaluation

deploy policy in environment

— costly, dangerous, unethical

off-policy evaluation (OPE)

leverage historical data

— distribution shift!
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Background: multi-armed bandits and OPE



Multi-armed bandits

• Action space: A = [k] := {1, 2, . . . , k}
• Reward distributions: f := {f( · | a)}a∈A

F(rmax) := {f | supp(f( · | a)) ⊆ [0, rmax] for each a ∈ [k]}

• Policy π: a distribution over [k]
• Value function of a policy: Vf (π) :=

∑
a∈[k] π(a)rf (a)

— rf (a): mean reward of f( · | a)
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OPE in multi-armed bandits

Given
• observed data: {(Ai, Ri)}ni=1

i.i.d.∼ πb ⊗ f
• target policy πt

Goal: estimate value function of target policy

Vf (πt) =
∑
a∈[k]

πt(a)rf (a)

8/ 37



Two classical estimators

Goal: estimate value function of target policy

Vf (πt) =
∑
a∈[k]

πt(a)rf (a)

plug-in estimator

V̂plug :=
∑
a∈[k]

πt(a)r̂(a)

r̂(a) := empirical mean reward

importance sampling estimator

V̂IS := 1
n

∑
i∈[n]

ρ(Ai)Ri

ρ(a) := πt(a)
πb(a)
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Gaps in statistical understanding of OPE
— a few motivating questions



Non-asymptotic analysis of OPE
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— notable exceptions: Li et al. ’15, Wang et al. ’17

Can we develop procedures that are optimal for all sample sizes?
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Known vs. unknown behavior policies

Known behavior 
policy

Unknown behavior 
policy

Is there statistical difference between knowing and not knowing πb?

Asymptotic:
NO

Non-asymptotic
???
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OPE with partial knowledge of behavior policy

Known behavior 
policy

Unknown behavior 
policy

What if we have partial knowledge of behavior policy, say
• we know how close behavior policy is to target policy

max
a

πt(a)/πb(a) ≤ U

• or how well behavior policy explores action space

min
a
πb(a) ≥ ν

Can we fully utilize such partial knowledge in OPE?
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OPE with known behavior policy



Plug-in and importance sampling estimators

Goal: estimate value function of target policy

Vf (πt) =
∑
a∈[k]

πt(a)rf (a)

plug-in estimator

V̂plug :=
∑
a∈[k]

πt(a)r̂(a)

r̂(a) := empirical mean reward

importance sampling estimator

V̂IS := 1
n

∑
i∈[n]

ρ(Ai)Ri

ρ(a) := πt(a)
πb(a)
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Switch estimators

— inspired by Wang et al. ’17

Switch estimators: for any subset S ⊆ [k], we define

V̂switch(S) :=
∑
a∈S

πt(a)r̂(a) + 1
n

n∑
i=1

ρ(Ai)Ri1{Ai /∈ S}

• when S = [k], recover plug-in estimator
• when S = ∅, recover importance sampling (IS) estimator
• Intermediate choices of S lead to interpolation between plug-in

and IS estimators
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Performance of Switch estimators

Proposition 1
For any subset S ⊆ [k], we have

Eπb⊗f [(V̂switch(S)− Vf (πt))2] ≤ 3r2
max

{
π2

t (S) +
∑
a/∈S πb(a)ρ2(a)

n

}

— How to choose subset S?

A simple idea:

min
S⊆[k]

{
π2

t (S) +
∑
a/∈S πb(a)ρ2(a)

n

}

— combinatorial optimization problem!
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We can “solve” it!

Key convex program:

v? ∈ arg min
v∈Rk


√√√√ 1

8n
∑
a∈[k]

[πt(a)− v(a)]2
πb(a) + 1

2
∑
a∈[k]
|v(a)|


S? := {a | v?(a) 6= 0}

Proposition 2

min
S⊆[k]

{
π2

t (S) +
∑
a/∈S πb(a)ρ2(a)

n

}
�
{
π2

t (S?) +
∑
a/∈S? πb(a)ρ2(a)

n

}

— V̂switch(S?) is optimal among family of Switch estimators
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Is Switch estimator universally optimal?

Minimax risk of OPE:

R?n(πt;πb) := inf
V̂

sup
f∈F

Eπb⊗f [(V̂ − Vf (πt))2]

Theorem 1
For all pairs (πb, πt) and for all n, we have

R?n(πt;πb) & r2
max

{
π2

t (S?) +
∑
a/∈S? πb(a)ρ2(a)

n

}

— Switch estimator is minimax optimal for all sample sizes
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Sanity checks

• Degenerate case of on-policy evaluation, i.e., πt = πb
We know IS estimator (a.k.a. Monte Carlo estimator) is optimal

V̂IS = 1
n

n∑
i=1

ρ(Ai)Ri = 1
n

n∑
i=1

Ri

with optimal rate r2
max/n

* recover large-sample result in Li et al. ’15 (bounded reward
setting)

* our results accommodate any sample size, especially small
sample size where IS could perform poorly
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n
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Sanity checks

• Large-sample regime: in general when πt 6= πb, one can show
that when

n�
maxa∈[k] ρ

2(a)∑
a∈[k] πb(a)ρ2(a) ,

S? = ∅, and hence IS estimator is optimal, with rate
r2

max ·
∑
a∈[k] πb(a)ρ2(a)/n

* recover large-sample result in Li et al. ’15 (bounded reward
setting)

* our results accommodate any sample size, especially small
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Numerics

Setup: πt(a) = 1/k, f( · | a) = Bern(0.5) for all a ∈ [k], n = 1.5k

πb(1) = πb(2) = · · · = πb(
√
k) = 1

k2 ,

πb(
√
k + 1) = πb(

√
k + 2) = · · · = πb(k) =

1− 1
k3/2

k −
√
k

Theoretical predictions:

Eπb⊗f [(V̂plug − Vf (πt))2] � 1,
Eπb⊗f [(V̂IS − Vf (πt))2] � n−1/2, and

Eπb⊗f [(V̂switch(S?)− Vf (πt))2] � n−1
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Numerics (cont.)

102 103

Sample size n

10 3

10 2

M
ea

n-
sq

ua
re

d 
er

ro
r

Switch = -0.972 se( ) = 0.003
Plug-in = -0.102 se( ) = 0.006
IS = -0.502 se( ) = 0.006
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A closer look at Switch estimator

Switch estimator:

V̂switch(S?) :=
∑
a∈S?

πt(a)r̂(a) + 1
n

n∑
i=1

ρ(Ai)Ri1{Ai /∈ S?}

Key convex program:

v? ∈ arg min
v∈Rk


√√√√ 1

8n
∑
a∈[k]

[πt(a)− v(a)]2
πb(a) + 1

2
∑
a∈[k]
|v(a)|


S? := {a | v?(a) 6= 0}
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A closer look at Switch estimator
Without loss of generality, we assume

ac
ti

on
s

{a
} a

2[
k
]

lik
el

ih
oo

d
ra

ti
os

{⇢
(a

)}
a
2[

k
]

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

1

Key message: Switch optimally truncates large likelihood ratios

— variance reduction
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OPE with unknown behavior policy



What’s the right performance metric?

• First attempt: global worst-case risk of V̂

sup
πb

sup
f∈F

Eπb⊗f [(V̂ − Vf (πt))2]

• Failure of attempt:

inf
V̂

sup
πb

sup
f∈F

Eπb⊗f [(V̂ − Vf (πt))2] � r2
max

in addition, V̂ ≡ 0 is minimax optimal...
• Rationale for failure: adversary can choose bad behavior policy

without paying price
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Competitive ratio

— inspired by online learning literature

Worst-case competitive ratio of V̂ :

C(V̂ ;πt) := sup
πb,f∈F

Eπb⊗f [(V̂ − Vf (πt))2]
R?n(πt;πb)

— R?n(πt;πb) = inf
V̂

supf∈F Eπb⊗f [(V̂ − Vf (πt))2]

• Proof of concept: when V̂ ≡ 0, we have

C(V̂ ;πt) ≥
Eπt⊗f [(V̂ − Vf (πt))2]

R?n(πt;πt)
� (Vf (π))2

r2
max/n

� n

27/ 37
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Competitive ratio of plug-in estimator

Theorem 2
For any target policy πt, plug-in estimator V̂plug satisfies

sup
πb,f∈F

Eπb⊗f [(V̂plug − Vf (πt))2]
R?n(πt;πb) . | supp(πt)|

• Worst-case competitive ratio is at most k (since | supp(πt)| ≤ k)
=⇒ plug-in estimator is strictly better than all-zeros estimator

• Adaptivity of plug-in estimator to target policy
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Is plug-in estimator optimal?

Theorem 3
Suppose that sample size obeys n� k

log k . Then for each
s ∈ {1, 2, . . . , k}, there exists a target policy πt supported on s
actions and

inf
V̂

sup
πb,f∈F

Eπb⊗f [(V̂ − Vf (πt))2]
R?n(πt;πb) & max

{
s

log k , 1
}

• Plug-in estimator is rate-optimal up to a log factor
• Performance difference between knowing and not knowing

behavior policy scales as | supp(πt)|
— in contrast to asymptotics
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Numerics
Setup: k = 100, n = 2k, fix πb and vary πt uniform over [s]

20 30 40 50 60 70 80 90 100
Support size

1

2

3

4

5

6

7
Co

m
pe

tit
iv

e 
ra

tio
= 0.075 se( ) = 0.001

Knowing behavior policy helps in non-asymptotics!
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OPE with partial knowledge of behavior policy



OPE with partial knowledge of behavior policy

Known behavior 
policy

Unknown behavior 
policy

What if we have partial knowledge of behavior policy?

Our focus: minimum exploration probability

πb ∈ Π(ν) :=
{
π | min

a∈[k]
π(a) ≥ ν}

— ν ∈ [0, 1/k]
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Optimal estimators

Goal: develop estimators that can achieve

inf
V̂

sup
(πb,f)∈Π(ν)×F
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Tackling less-exploratory πb
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• Why plug-in fails when πb is less exploratory?
— large bias due to insufficient observations

• How to reduce bias?
— draw connection to support size estimation (cf. Wu and Yang ’16)

— best polynomial approximation

34/ 37



Tackling less-exploratory πb

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal
no
consistent estimator

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal
no
consistent estimator

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal
no
consistent estimator
Chebyshev

1

actions {a}a2[k]

likelihood ratios {⇢(a)}a2[k]

S?

⌫

log k

n

1

n log k

plug-in
optimal

1

• Why plug-in fails when πb is less exploratory?
— large bias due to insufficient observations

• How to reduce bias?
— draw connection to support size estimation (cf. Wu and Yang ’16)

— best polynomial approximation

34/ 37



A peek at Chebyshev estimator

plug-in estimator

V̂plug :=
∑
a∈[k]

πt(a)r̂(a)

r̂(a) := empirical mean reward

Chebyshev estimator

V̂C :=
∑
a∈[k]

πt(a)r̂(a)gL(n(a))

gL(n(a)) := Chebyshev poly
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Concluding remarks

• Known πb: Switch is minimax optimal for all sample sizes
• Unknown πb: fundamentally different, plug-in is near-optimal
• Partial knowledge: improvement is possible, bias reduction is

needed

• Extension to other reward families
• Smooth characterization of gap between knowing and not

knowing πb

• Adaptivity to mina πb(a)
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