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Reinforcement learning (RL)

Goal: learn an optimal policy to maximize cumulative rewards
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Two main paradigms of RL

Online RL
• interact with environment
• actively collect new data

Offline/Batch RL
• no interaction
• data is given
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Why offline RL?

—self-driving car

online data collection

costly, dangerous, unethical

large-scale human driving data

=⇒ offline RL
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An observation on offline RL
— and two motivating questions



Two types of offline data

• Expert data: data from a good/optimal policy
• Uniform coverage data: data that cover state and action spaces
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Disparate treatments in theory/practice

• Expert data:
◦ imitation learning (imitate experts’ behavior)
◦ suboptimality decays at 1/N rate

• Uniform coverage data:
◦ a different set of algorithms
◦ suboptimality decays at 1/

√
N rate
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Question 1: formulation

Question: Can we develop an offline RL framework that captures the
entire data composition?

Answer: Yes!

Single-policy concentrability coefficient C?:

C? ≈ distance(µ, π?)

—µ corresponds to behavior data
—π? corresponds to optimal policy
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Question 2: algorithm design

Question: Can we design an offline RL algorithm that works optimally
for any data composition, without knowing C??

Answer: Yes! This is where pessimism enters the picture

Pessimism via lower confidence bound:

π̂ = arg max
π

L̂CB (J(π))

— compare to π? = arg max
π

J(π)

9/ 41



Question 2: algorithm design

Question: Can we design an offline RL algorithm that works optimally
for any data composition, without knowing C??

Answer: Yes! This is where pessimism enters the picture

Pessimism via lower confidence bound:

π̂ = arg max
π

L̂CB (J(π))

— compare to π? = arg max
π

J(π)

9/ 41



Outline

• Setup and notation
• Warm-up: multi-armed bandit
• Contextual bandit
• Markov decision process
• Conclusion and future directions
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Setup and notation



Infinite-horizon Markov decision processes

MDP(S,A, P,R, ρ, γ)

• State space S = {1, 2, . . . , S}
• Action space A = {1, 2, . . . , A}
• Probability transition P (s′ | s, a)
• Reward distributions R(·|s, a) on [0, 1] with mean r(s, a)
• Initial state distribution ρ(s)
• Discount factor γ ∈ [0, 1)
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Policy and value function

• Stationary deterministic policy π : S 7→ A
• Value function: for all s ∈ S, define

V π(s) := E
[ ∞∑
t=0

γtrt

∣∣∣∣∣ s0 = s, at = π(st) for all t ≥ 0
]

• Expected value of policy: J(π) := Es∼ρ[V π(s)] =
∑
s ρ(s)V π(s)

• There exists deterministic policy π? that achieves maxπ J(π)
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Offline learning in MDP

Given batch dataset D = {(si, ai, ri, s′i)}1≤i≤N , where (si, ai) ∼ µ,
ri ∼ R(· | si, ai), s′i ∼ P (· | si, ai)

Goal: minimize expected sub-optimality based on collected data

ED [J(π?)− J(π̂)]
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Question 1: formulation (revisited)

Question: Can we develop an offline RL framework that captures the
entire data composition?

Answer: Yes!

Single-policy concentrability coefficient C?:

C? ≈ distance(µ, π?)

—need to translate π? into distribution
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Single-policy concentrability coefficient

Occupancy measure induced by π?

dπ
?(s, a) := (1− γ)

∞∑
t=0

γtPt(st = s, at = a;π?)

Definition 1
We say (µ, π?) has C? concentrability coefficient if

max
s,a

dπ
?(s, a)
µ(s, a) ≤ C

?

• Possible values of C?: C? ∈ [1,∞)
• C? = 1: expert data
• C? > 1: D may include “spurious” samples, i.e., state-action

pairs not visited by π?
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Offline learning in MDP (revisited)

Given batch dataset D = {(si, ai, ri, s′i)}1≤i≤N , where (si, ai) ∼ µ,
ri ∼ R(· | si, ai), s′i ∼ P (· | si, ai)

Goal: minimize expected sub-optimality based on collected data

ED [J(π?)− J(π̂)]

Question: How does ED [J(π?)− J(π̂)] depend on C??
Is the dependence optimal?
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Warm-up: multi-armed bandit



Multi-armed bandit

• Action space: A = {1, 2, . . . , A}
• Reward distributions: R(· | a) with mean r(a)

—correspond to MDP with single state and γ = 0
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Offline learning in multi-armed bandit

• Batch dataset D = {(ai, ri)}1≤i≤N , where ai ∼ µ, ri ∼ R(· | ai)
• Single-policy concentrability coefficient

max
a

dπ
?(a)
µ(a) = 1

µ(a?) ≤ C
?

Goal: minimize expected sub-optimality based on collected data

ED[r(a?)− r(â)]
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Why empirical best arm fails?

A natural idea is to pick empirical best arm

â := arg max
a

r̂(a)
— r̂(a) empirical mean reward of arm a

Proposition 1
For any ε < 0.05, N ≥ 500, there exists a bandit problem with two
arms such that for â = argmaxar̂(a), one has

ED[r(a?)− r(â)] ≥ ε.

• Empirical best arm is sensitive to arms with few observations
• This happens even when C? is small
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arms such that for â = argmaxar̂(a), one has

ED[r(a?)− r(â)] ≥ ε.
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Pessimism via lower confidence bound

Lessons learned from failure of empirical best arm
• Should not treat arms equally
• Need to be pessimistic about arms with few observations

Lower confidence bound for bandit: fix some L > 0, return

â := arg max
a

r̂(a)− L√
N(a) ∨ 1

—N(a) number of times arm a is seen
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A closer look at LCB

Lower confidence bound for bandit: fix some L > 0, return

â := arg max
a

r̂(a)− L√
N(a) ∨ 1

—N(a) number of times arm a is seen

• L√
N(a)∨1

is large when N(a) is small

• View r̂(a)− L√
N(a)∨1

as lower confidence bound of r(a)

• L√
N(a)∨1

arises from Hoeffding concentration inequality
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Performance guarantees

Theorem 2
Set L �

√
log(AN). Policy â returned by LCB algorithm obeys

ED[r(a?)− r(â)] .

√
C?

N

• LCB beats empirical best arm
• Performance of LCB degrades gracefully w.r.t. C?
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Is LCB optimal for offline bandits?
— resort to minimax lower bounds in Statistics

Define problem class

MAB(C?) = {(µ,R) | 1
µ(a?) ≤ C

?}

Theorem 3
When C? ≥ 2, one has

inf
â

sup
MAB(C?)

ED[r(a?)− r(â)] &

√
C?

N

When C? ∈ (1, 2), one has

inf
â

sup
MAB(C?)

ED[r(a?)− r(â)] & exp
(
−N(2− C?) · log

(
2

C?−1

))
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Imitation learning is better when C? ∈ (1, 2)

When C? ∈ (1, 2), one has µ(a?) > 1/2. Reasonable to pick most
played arm

â = argmaxa N(a)

—N(a) number of times arm a is seen

Proposition 2

Assume that C? ∈ [1, 2). For â = argmaxa N(a), we have

ED[r(a?)− r(â)] ≤ exp
(
−N · KL

(
Bern

(
1
2

) ∥∥∥ Bern
(

1
C?

)))
.

• Matches the exponential rate
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Non-adaptivity of LCB for bandit

Recall LCB for bandit

â := arg max
a

r̂(a)− L√
N(a) ∨ 1

We showed with L �
√

logN , LCB is optimal for C? ≥ 2

Can LCB with L �
√

logN be optimal for C? ∈ (1, 2)?

—No
• LCB cannot achieve exp(−N) with L �

√
logn when

C? ∈ (1, 2)
• Need to set L � N to achieve exp(−N) rate; however this

choice fails to yield 1/
√
N rate when C? ≥ 2
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â := arg max
a

r̂(a)− L√
N(a) ∨ 1

We showed with L �
√

logN , LCB is optimal for C? ≥ 2

Can LCB with L �
√

logN be optimal for C? ∈ (1, 2)?

—No
• LCB cannot achieve exp(−N) with L �

√
logn when

C? ∈ (1, 2)
• Need to set L � N to achieve exp(−N) rate; however this

choice fails to yield 1/
√
N rate when C? ≥ 2

27/ 41



Summary of LCB for bandit

case when L �
√

logN
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Contextual bandit



Contextual bandit

• State space S = {1, 2, . . . , S}
• Action space A = {1, 2, . . . , A}
• Reward distributions R(· | s, a)

with mean r(s, a)
• Batch dataset
D = {(si, ai, ri)}1≤i≤N , where
(si, ai) ∼ µ, ri ∼ R(· | si, ai)

— correspond to MDP with γ = 0

Goal: minimize expected sub-optimality based on collected data

ED [J(π?)− J(π̂)]
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Assumption and algorithm

• Single-policy concentrability coefficient

max
s

ρ(s)
µ(s, π?(s)) ≤ C

?

• LCB algorithm: fix some L > 0, return

π̂(s) := arg max
a

r̂(s, a)− L√
N(s, a) ∨ 1
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Performance guarantees

Theorem 4
Consider S ≥ 2. Set L �

√
log(SAN). Policy π̂ returned by LCB

algorithm obeys

ED [J(π?)− J(π̂)] .

√
S(C? − 1)

N
+ S

N

Remarks:
• When C? is close to 1, 1/N rate, as in imitation learning
• When C? is large, 1/

√
N rate, as for uniform coverage data

• Rate smoothly transitions from 1/N to 1/
√
N as C? increases
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Heuristic argument

Sub-optimality bound of LCB for contextual bandit

ED [J(π?)− J(π̂)] .

√
S(C? − 1)

N
+ S

N

In particular, we would like to understand
• What are sources of error?
• Why not

√
SC?

N ?
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Source 1: missing mass

When N(s, π?(s)) = 0,

one has error

ED

[∑
s

ρ(s) [r(s, π?(s))− r(s, π̂(s))]1{N(s, π?(s)) = 0}
]

≤ ED

[∑
s

ρ(s)1{N(s, π?(s)) = 0}
]

=
∑
s

ρ(s)(1− µ(s, π?(s)))N

≤
∑
s

C?µ(s, π?(s))(1− µ(s, π?(s)))N .
SC?

N

—maxx∈[0,1] x(1 − x)N ≤ 4/(9N)
—need S ≥ 2
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Source 2: estimation error

When N(s, π?(s)) ≥ 1, one has |r(s, a)− r̂(s, a)| . 1√
N(s,a)

ED [J(π?)− J(π̂)] = ED,ρ [r(s, π?(s))− r(s, π̂(s))]

. ED,ρ

[
1√

N(s, π?(s))

]

≈ Eρ

[
1√

Nµ(s, π?(s))

]

=
∑
s

ρ(s) 1√
Nµ(s, π?(s))

.

√
SC?

N

—hmm, where is C? − 1?
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Where does C? − 1 come from?

Key observation: instead of

r(s, π?(s))− r(s, π̂(s)) . 1√
N(s, π?(s))

One actually has

r(s, π?(s))− r(s, π̂(s)) . 1√
N(s, π?(s))

1{π̂(s) 6= π?(s)}

Identify clean set Sclean such that for s ∈ Sgood, π̂(s) = π?(s) with
high prob., and

∑
s/∈Sclean

ρ(s) 1√
Nµ(s, π?(s))

.

√
S(C? − 1)

N
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Optimality of LCB in offline contextual bandit

As before, define problem class

CB(C?) := {(ρ, µ,R) | max
s

ρ(s)
µ(s, π?(s)) ≤ C

?}

Theorem 5
Assume that S ≥ 2. For any C? ≥ 1, one has

inf
π̂

sup
CB(C?)

ED[J(π?)− J(π̂)] &

√
S(C? − 1)

N
+ S

N
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Summary of LCB in offline contextual bandits

LCB achieves optimality without knowing C?
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Markov decision process



One-page result for MDP

• Combine value iteration with LCB
• Hoeffding confidence bounds yield sub-optimal dependence on

1
1−γ 40/ 41



Future directions

• Close the gap in MDP

• Other measures of quality of behavior data

• Extensions to continuous state-action space and function
approximation

Paper:
“Bridging Offline Reinforcement Learning and Imitation Learning:
A Tale of Pessimism,” to appear in Neurips 2021,
P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, S. Russell, arXiv:2103.12021
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