Bridging Offline Reinforcement Learning and
Imitation Learning: A Tale of Pessimism

ares:| Vita
b catsci| €xco.
[ I} entia|latur [

Cong Ma

Department of Statistics, UChicago



Reinforcement learning (RL)

AGENT ENVIRONMENT

-State s €S

- Take action o € .4

@

- Getreward 7
-Newstate 5’ € &

Goal: learn an optimal policy to maximize cumulative rewards

)
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Two main paradigms of RL

Online RL

e interact with environment

e actively collect new data

this is done
many times
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Two main paradigms of RL

Online RL

this is done \ e |nteract W|th environment
manytlmes

e actively collect new data

Offline/Batch RL

e no interaction

S e 5 train for
¥ ; R many epoch
big dataset from
past interactions % i i

deploy learned policy in new scenarios

e data is given
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Why offline RL?

—self-driving car
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Why offline RL?

—self-driving car

online data collection )

costly, dangerous, unethical
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Why offline RL?

—self-driving car

online data collection ) large-scale human driving dataJ

costly, dangerous, unethical — offline RL
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An observation on offline RL
— and two motivating questions



Two types of offline data

e Expert data: data from a good/optimal policy

e Uniform coverage data: data that cover state and action spaces

expert data uniform coverage data

many real datasets are here
motivated D4RL and WILDS datasets
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Disparate treatments in theory/practice

e Expert data:
o imitation learning (imitate experts’ behavior)

o suboptimality decays at 1/N rate
e Uniform coverage data:

o a different set of algorithms
o suboptimality decays at 1/v/ N rate

expert data uniform coverage data

many real datasets are here
motivated D4RL and WILDS datasets
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Question 1: formulation

Question: Can we develop an offline RL framework that captures the
entire data composition?
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Question 1: formulation

Question: Can we develop an offline RL framework that captures the
entire data composition?

Answer: Yes!

Single-policy concentrability coefficient C*:

C* =~ distance(p, )

— corresponds to behavior data
—n* corresponds to optimal policy
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Question 2: algorithm design

Question: Can we design an offline RL algorithm that works optimally
for any data composition, without knowing C*?
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Question 2: algorithm design

Question: Can we design an offline RL algorithm that works optimally
for any data composition, without knowing C*?

Answer: Yes! This is where pessimism enters the picture

Pessimism via lower confidence bound:

# =argmax LCB(J(r))

— compare to 7 = argmax J ()
s
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Outline

Setup and notation

Warm-up: multi-armed bandit
Contextual bandit

Markov decision process

Conclusion and future directions
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Setup and notation



Infinite-horizon Markov decision processes

MDP(S, A, P, R, p,~)

State space S = {1,2,...,S5}
Action space A ={1,2,..., A}
Probability transition P(s’ | s,a)

Reward distributions R(:|s,a) on [0, 1] with mean (s, a)

Initial state distribution p(s)

Discount factor v € [0,1)

12/ 41



Policy and value function

e Stationary deterministic policy 7: S — A

e Value function: for all s € S, define

so = S,a; = 7(se) forall £ >0

VT(s)=E [Z g
t=0
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Policy and value function

e Stationary deterministic policy 7: S — A

e Value function: for all s € S, define

o0

VT(s)=E [Z g

t=0

so = S,a; = 7(se) forall £ >0

e Expected value of policy: J(7) = Esup[V7(5)] = >, p(s)V7(s)
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Policy and value function

Stationary deterministic policy 7 : S — A

Value function: for all s € S, define

o0

VT(s)=E [Z g

t=0

so = S,a; = 7(se) forall £ >0

Expected value of policy: J(7) = Esp[V™(s)] = >, p(s)V7(s)

There exists deterministic policy 7* that achieves max, J(m)
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Offline learning in MDP

Given batch dataset D = {(s;, a;, i, 8;) }1<i<n, Where (s;,a;) ~ p,
i~ R( ‘ Siaai)as; ~ P( | Siaai)
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Question 1: formulation (revisited)

Question: Can we develop an offline RL framework that captures the
entire data composition?

Answer: Yes!

Single-policy concentrability coefficient C*:

C* ~ distance(p, )
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Question 1: formulation (revisited)

Question: Can we develop an offline RL framework that captures the
entire data composition?

Answer: Yes!

Single-policy concentrability coefficient C*:

C* ~ distance(p, )

—need to translate 7* into distribution

15/ 41



Single-policy concentrability coefficient

Occupancy measure induced by 7*

d™ (s,a) = (1 =) Y_7'Pelse = 5,00 = a3 ")
t=0
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Single-policy concentrability coefficient

Occupancy measure induced by 7*

[e.o]

d™ (s,a) = (1 =) Y_7'Pelse = 5,00 = a3 ")
t=0

Definition 1
We say (u, 7*) has C* concentrability coefficient if
d™ (s, a)

max ———— < C*
s,a Iu,(&a) -
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Single-policy concentrability coefficient

Occupancy measure induced by 7*

o0
A" (s,a) = (1=7) Y 7' Pi(ss = s,a; = a; 7¥)
t=0
Definition 1
We say (u, 7*) has C* concentrability coefficient if

d™
max L (5:9)
S

< C*
s,a u(37a) -

e Possible values of C*: C* € [1,00)
e C* = 1: expert data

e C* > 1: D may include "spurious” samples, i.e., state-action
pairs not visited by 7*
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Offline learning in MDP (revisited)

Given batch dataset D = {(s;, a4, 74, S;) }1<i<n, where (s;,a;) ~ p,
i ~ R(- | si,ai),8; ~ P(- | si,a)

Goal: minimize expected sub-optimality based on collected data

Ep [J(7*) — J(7)]

Question: How does Ep [J(n*) — J(7)] depend on C*?
Is the dependence optimal?
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Warm-up: multi-armed bandit



Multi-armed bandit

e Action space: A={1,2,...,A}
e Reward distributions: R(- | a) with mean r(a)

—correspond to MDP with single state and v = 0
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Offline learning in multi-armed bandit

e Batch dataset D = {(ai,m)}lgiSN, where a; ~ u, r; ~ R( ‘ ai)
e Single-policy concentrability coefficient
d™" (a) 1

max = < C*
S i) e S

Goal: minimize expected sub-optimality based on collected data

Ep[r(a*) — r(a)]
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Why empirical best arm fails?

A natural idea is to pick empirical best arm

4 = argmax (a)
a

— 7(a) empirical mean reward of arm a
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Why empirical best arm fails?

A natural idea is to pick empirical best arm

4 = argmax (a)
a
— 7(a) empirical mean reward of arm a
Proposition 1

For any € < 0.05, N > 500, there exists a bandit problem with two
arms such that for a = argmax,7(a), one has

Eplr(a*) —r(a)] > e.
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Why empirical best arm fails?

A natural idea is to pick empirical best arm

4 = argmax (a)
a
— 7(a) empirical mean reward of arm a
Proposition 1

For any € < 0.05, N > 500, there exists a bandit problem with two
arms such that for a = argmax,7(a), one has

Eplr(a*) —r(a)] > e.

e Empirical best arm is sensitive to arms with few observations

e This happens even when C* is small
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Pessimism via lower confidence bound

Lessons learned from failure of empirical best arm
e Should not treat arms equally

e Need to be pessimistic about arms with few observations
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Pessimism via lower confidence bound

Lessons learned from failure of empirical best arm
e Should not treat arms equally

e Need to be pessimistic about arms with few observations

Lower confidence bound for bandit: fix some L > 0, return

L

a = arg;nax f(a) — W

—N (a) number of times arm a is seen
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A closer look at LCB

Lower confidence bound for bandit: fix some L > 0, return

A N L
a ‘= arg(rlnax T(a) — W

—N (a) number of times arm a is seen

L . .
* TR s large when N (a) is small

. ~ . L .

e View 7(a) Ton lower confidence bound of r(a)

o ——L_ arises from Hoeffding concentration inequality
N(a)V1
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Performance guarantees

Theorem 2
Set L =< +/log(AN). Policy a returned by LCB algorithm obeys

Eplr(a”) = r(@)] < ﬁ

e | CB beats empirical best arm

e Performance of LCB degrades gracefully w.r.t. C*
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Is LCB optimal for offline bandits?

— resort to minimax lower bounds in Statistics
Define problem class

MAB(C*) = {(1, R) |

w(a*) =&
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Is LCB optimal for offline bandits?

— resort to minimax lower bounds in Statistics

Define problem class

MAB(C™) = {(u, R) |

w(a*) =&

Theorem 3
When C* > 2, one has
C*

inf sup Ep[r(a*)—r(a)] 21\~
@ MAB(C*) N
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Is LCB optimal for offline bandits?

— resort to minimax lower bounds in Statistics

Define problem class

1
MAB(C*) = {(u, R <cr
(©) = AR | s <€)
Theorem 3
When C* > 2, one has
. * A C*
inf sup Ep[r(a®)—r(a)] 2 N

@ MAB(C*)

When C* € (1,2), one has

inf sup Ep[r(a*) —r(@)] 2 exp (~N(2 - ) log (o25))

@ MAB(C*)
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Imitation learning is better when C* € (1,2)

When C* € (1,2), one has p(a*) > 1/2. Reasonable to pick most
played arm
a = argmax, N(a)

—N (a) number of times arm a is seen
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Imitation learning is better when C* € (1,2)

When C* € (1,2), one has p(a*) > 1/2. Reasonable to pick most
played arm

a = argmax, N(a)
—N (a) number of times arm a is seen

Proposition 2

Assume that C* € [1,2). For a = argmax, N (a), we have

Ep[r(a*) —r(a)] < exp (—N- KL (Bern (%) H Bern (%))) :

e Matches the exponential rate
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Non-adaptivity of LCB for bandit

Recall LCB for bandit

a = arg(rlnax 7%(0/) — W

We showed with L =< y/log N, LCB is optimal for C* > 2

Can LCB with L =< /log N be optimal for C* € (1,2)?
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Non-adaptivity of LCB for bandit

Recall LCB for bandit

a = arg(rlnax 7%(0/) — W

We showed with L =< y/log N, LCB is optimal for C* > 2
Can LCB with L =< /log N be optimal for C* € (1,2)? )

e LCB cannot achieve exp(—N) with L =< /log n when
C*e(1,2)

e Need to set L < N to achieve exp(—NN) rate; however this
choice fails to yield 1/v/N rate when C* > 2
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Summary of LCB for bandit

sub-optimality

»

LCB upper
bound

/

C*
N
: \ Information

theoretic
lower bound

1 2 1+(1) Cc*

case when L < /log N

28/ 41



Contextual bandit



Contextual bandit

arms

p(1)

contexts

s=2

si=13

e State space S ={1,2,...,S5}
e Action space A ={1,2,..., A}
e Reward distributions R(- | s, a)
with mean r(s,a)
e Batch dataset
03 D = {(si,ai,7i) }1<i<n, Where

(si,ai) ~ p, mi ~ R(- | s4,a;)

— correspond to MDP with v =0
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Contextual bandit

contexts
s=1 s=2 si=13

State space S = {1,2,...,S}
Action space A ={1,2,..., A}
Reward distributions R(- | s, a)
with mean r(s,a)

Batch dataset

D = {(s4,a;,73) h1<i<n, where
(5i,i) ~ i, 75~ R(- | i, 04)

arms
[ ]

p(1) p(2) p(3)

— correspond to MDP with v =0

Goal: minimize expected sub-optimality based on collected data

Ep [J(7*) — J(7)]
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Assumption and algorithm

e Single-policy concentrability coefficient

max A < C*

P s () S

e L CB algorithm: fix some L > 0, return

L
N(s,a)V1

7i(s) == argmax 7(s,a) —
a
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Performance guarantees

Theorem 4

Consider S > 2. Set L < \/log(SAN). Policy &t returned by LCB
algorithm obeys

Ep [1() (@) £\ 2 4 2

Remarks:
e When C* is close to 1, 1/N rate, as in imitation learning
e When C* is large, 1/\/]V rate, as for uniform coverage data
e Rate smoothly transitions from 1/N to 1/v/N as C* increases

32/ 41



Heuristic argument

In particular, we would like to understand

e What are sources of error?
e Why not /257
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Source 1: missing mass

When N(s,7*(s)) =0,
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Source 1: missing mass

When N(s,7*(s)) = 0, one has error
Ep lz p(s) [r(s,m"(s)) — r(s, 7(s))] L{N (s, 7"(s)) = 0}

<Ep Zp JI{N(s,7*(s)) = 0}
= n(s) s, (s))N

<D Culs, 7 () (1 = uls, 7 ()Y S
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Source 1: missing mass

When N(s,7*(s)) = 0, one has error
Ep lz p(s) [r(s,m"(s)) — r(s, 7(s))] L{N (s, 7"(s)) = 0}

<Ep Zp JI{N(s,7*(s)) = 0}
= n(s) s, (s))N

<D Culs, 7 () (1 = uls, 7 ()Y S

—max,e(o1) 2(1 — )V < 4/(9N)
—need S > 2
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Source 2: estimation error

When N(s,7*(s)) > 1, one has |r(s,a) — 7(s,a)| < Nl( )
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Source 2: estimation error

When N(s,7*(s)) > 1, one has |r(s,a) — 7(s,a)|

N

N(s,a)
Ep [J(7") = J(#)] = Ep, [r(s,77(s)) — (s, 7(s))]
1
SEpyp l N(s, w*(s))]

1
“E”[ Nits, w*( >>1
—ZP <

571'*

SC’*
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Source 2: estimation error

When N(s,7*(s)) > 1, one has |r(s,a) — 7(s,a)|

N

—
Ep [J(7") = J(#)] = Ep, [r(s,77(s)) — (s, 7(s))]
=l E

571'*

SC’*

—hmm, where is C* — 17
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Where does C* — 1 come from?

Key observation: instead of

o ) o 7)) S s
One actually has
*(s)) — r(s, (s 1 #(s) #£ 7*(s
o, (8) = o #6) § —7ms L(S) #7°(5)
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Where does C* — 1 come from?

Key observation: instead of

1
r(s,7*(s)) —r(s,7(s)) < ——m——
( Y ( )) ( Y ( )) ~ N(S,']T*(S))
One actually has
1

r(s, 7 (s)) —r(s,7(s)) S ING ) {7 (s) # 7" (s)}

Identify clean set Scjean such that for s € Sgood, T(s) = 7*(s) with
high prob.,
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Where does C* — 1 come from?

Key observation: instead of
r(5,74(5)) = (s, 7(5)) S s
’ ’ T VN (s,7(s))
One actually has
1

r(s, 7 (s)) —r(s,7(s)) S ING ) {7 (s) # 7" (s)}

Identify clean set Scjean such that for s € Sgood, T(s) = 7*(s) with
high prob., and

s ! < /5C 1)
gészl o Np(s,m(s)) = N
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Optimality of LCB in offline contextual bandit

As before, define problem class

CB(C*) = {(p.e B) [ max — ) < 07}

Theorem 5
Assume that S > 2. For any C* > 1, one has

*x
inf sup EplJ(r) — J(3)] 2 21
T CB(C*) N

Z| @
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Summary of LCB in offline contextual bandits

ZA

= LCB upper
g oL bound

Z N__L
3
1

0 \ Information
5 theoretic

lower bound

11+0(%) 1401  ¢c*

LCB achieves optimality without knowing C* J
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Markov decision process



One-page result for MDP

sub-optimality

L

LCB upper
Vol bound
N f

LCB \* Information
conjecture theoretic

Cc*—1 lower bound

>

1 1+0(%) 1+901) C*

e Combine value iteration with LCB
e Hoeffding confidence bounds yield sub-optimal dependence on

1

1—y

40/ 41



Future directions

e Close the gap in MDP
e Other measures of quality of behavior data

e Extensions to continuous state-action space and function

approximation
Fitg:
Paper:

“Bridging Offline Reinforcement Learning and Imitation Learning:
A Tale of Pessimism,” to appear in Neurips 2021,

P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, S. Russell, arXiv:2103.12021
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