The Power of Preconditioning in
Overparameterized Low-Rank Matrix Sensing
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Low-rank matrices in data science
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Low-rank matrix recovery
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Goal: recover M in the sample-starved regime
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Convex relaxation via nuclear norm minimization

min  rank(Z) s.t. y~ A(Z)
ZeR’VLl Xng
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Significant developments in the last decade:

Fazel '02, Recht, Parrilo, Fazel '10, Candés, Recht'09, Candés, Tao '10, Cai et al.'10, Gross '10, Negahban,
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Wainwright '11, Sanghavi et al. 13, Chen, Chi'14, ...

Poor scalability: operate in the ambient matrix space
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Low-rank matrix factorization
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Low-rank matrix factorization
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Nonconvex problems are hard (in theory)
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Statistics meets optimization

Statistical model

—)

worst case average case
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Matrix sensing: GD with balancing regularization

min  freg(X,Y) = 2Hy AXYT) H

)

Apex vy |

e Spectral initialization: find an initial point

“Basin of attraction” in the “basin of attraction
’ (Xo,Y0) <= SVD, (A" (y))
e Gradient iterations: fort =0,1,...
Xi11 = Xt — VX freg( X1, Y7)

— n+1 :n—?'IVYfreg(Xh},t)
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Prior theory for vanilla GD

Jmax(M)

Condition number xk = Omin (M)

Theorem 1 (Tu et al., ICML 2016)

For low-rank matrix sensing with i.i.d. Gaussian design, vanilla GD
(with spectral initialization) achieves

1X:Y," — Mlp < & - oumin(M)

e Computational: within O(rlog 1) iterations;
e Statistical: as long as the sample size satisfies

m > (ng + ng)r’k?

Similar results hold for many other low-rank problems
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GD slows down for ill-conditioned matrices

. Omax (M
Condition number 5 = Zmax(M)
Omin (M)
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Condition number can be large

40

30t

Singular values
nN
o

101

0 5 10 15 20
Index

chlorine concentration levels
120 junctions, 180 time slots

power-law spectrum

Data source: www.epa.gov/water-research/epanet 12/ 38


www.epa.gov/water-research/epanet

Condition number can be large

40

30} 88%
g
%
! Kk~ 20
5
g
(2]

10+

. -

0 5 10 15 20

Index

chlorine concentration levels
120 junctions, 180 time slots

rank-5 approximation

Data source: www.epa.gov/water-research/epanet 12/ 38


www.epa.gov/water-research/epanet

Condition number can be large

40

wl 96%
.
[}
3 Kk ~ 60
520f
5
2
(5]

101

. _

0 5 10 15 20

Index

chlorine concentration levels
120 junctions, 180 time slots

rank-10 approximation

Data source: www.epa.gov/water-research/epanet 12/ 38


www.epa.gov/water-research/epanet

Condition number can be large

40

96%
Kk =~ 60

W
o

Singular values
n
o

10

0 5 10 15 20
Index

chlorine concentration levels
120 junctions, 180 time slots

rank-10 approximation

Can we accelerate the convergence rate of GD to O(log1)?
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A recipe: scaled gradient descent (ScaledGD)

—joint work with Tian Tong, and Yuejie Chi

JX,Y)=lly-AXY )3 e Spectral initialization: find an initial point
in the “basin of attraction”

e Scaled gradient iterations: for
t=0,1,...,

X=X —nVxf(X,Yy) (Y, Yy) !
N—_———

preconditioner

S— Yi =Y —nVy f(X, V) (X X,)!
—_——

preconditioner

13/ 35



A recipe: scaled gradient descent (ScaledGD)

—joint work with Tian Tong, and Yuejie Chi

JX,Y)=lly-AXY )3 e Spectral initialization: find an initial point
in the “basin of attraction”

e Scaled gradient iterations: for
t=0,1,...,

X=X —nVxf(X,Yy) (Y, Yy) !
N—_———

preconditioner

S~ Yip =Y —nVy f(X,Y) (X X,)"!
—_——
preconditioner

ScaledGD is a preconditioned gradient method
without balancing regularization

123./-35
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ScaledGD for low-rank matrix completion
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Huge computational saving: ScaledGD converges in a
k-independent manner with minimal overhead
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A closer look at ScaledGD

Connection to quasi-Newton method :

Define F; = [X,1,Y,"]T € R(™m+72)X"  One can write update rule as

vec(Fiy1)
—1

-
(Y,'Y;) ® I,, 0 vec(VrL(Fy))

= vee(Fy) = n 0 (X X)) ® I,

::Hf1
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A closer look at ScaledGD

Invariance to invertible transforms:

(Xth

M, =X, Y
/\ ﬁﬂ X, Y],

Xt+l7Yt+1) X{+1Q Yf+1Q

— not true for GD
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Theoretical guarantees of ScaledGD

Theorem 2 (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," — Mllp S € - omin(M)

e Computational: within O(logl) iterations
e Statistical: the sample complexity satisfies

m > (ny + ng)rx?
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Theorem 2 (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," — Mllp S € - omin(M)

e Computational: within O(logl) iterations
e Statistical: the sample complexity satisfies

m > (ny + ng)rx?

Strict improvement over Tu et al.: ScaledGD provably accelerates
vanilla GD with the same sample complexity
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Key ingredient in analysis

where USV is SVD of M, X = UXY?, U = vx/?
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Key ingredient in analysis

Scaled distance metric:
ot (%] [5]) = o, e -0
+ove T~y

where USV isSVDof M, X = UXY?, U =Vvx'/?

e Account for ambiguity arising from invertible transforms

e Fidelity to reconstruction loss: locally, we have
. X X
dist? QYS] : M) = X:Y," - M|?
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ScaledGD works more broadly
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Huge computational saving at comparable sample complexities
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?
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Misspecification by overparameterization:

M=XX", X e R™*7, F>r

ScaledGD:

X1 =X —nVxf(Xy) (X X))
——————

preconditioner

analysis break down and might be unstable...
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX", X e R™*7, F>r

ScaledGD()\):

X=X —nVxf(Xy) (X, X, +21)7!

preconditioner

add regularization to stablize the preconditioner
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Does preconditioning hurt generalization?

e Infinitely many global minima, not all generalize
e Can we still guarantee generalization?

optimization M Y o ]

WHEN DOES PRECONDITIONING HELP OR HURT GEN-
ERALIZATION?

generalization

*Shun-ichi Amari!, Jimmy Ba??, Roger Grosse*>, Xuechen Li*, Atsushi Nitanda®f,
Taiji Suzuki®, Denny Wu?3, Ji Xu’
IRIKEN CBS, 2University of Toronto, 3Vector Institute, 4Google Research, Brain Team,
5University of Tokyo, SRIKEN AIP, "Columbia University
amari@brain.riken.jp, {jba, rgrosse, lxuechen, dennywu}@cs.toronto.edu,
{nitanda,taiji}@mist.i.u-tokyo.ac.jp, jixu@cs.columbia.edu
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Theoretical guarantees

Theorem 3 (Xu, Shen, Chi, Ma, ICML 2023)

For low-rank matrix sensing with i.i.d. Gaussian design,
overparameterized ScaledGD(\) with A\ < opin (M), n< 1, and a
sufficiently small random initialization achieves

1X: X, = M|lp S € omin(M)
e Computational: within O(log rlog(kn) + log 1) iterations;
e Statistical: the sample complexity satisfies

m 2 m‘zpoly(li)

e Our analysis also enables exact convergence under random
initialization with correct rank specification
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Comparison with overparameterized GD

error

GD

ScaledGD

[

1iteration
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Comparison with overparameterized GD

K r>log(1/e)

>

error

A

(Stoger and Soltanolkotabi, '21)

GD

ScaledGD

[

1teration
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Comparison with overparameterized GD

1 K k*log(1/e)

(Stoger and Soltanolkotabi, '21)

error
A
- ——— (—

log(1/e) GD

ScaledGD

[
'

iteration

ScaledGD picks up the signal component much faster than GD even
from small random initialization

23/ 35



Comparisons with prior art

Comparison with Zhang, Fattahi, and Zhang '21

X1 =X —nVxf(X) (X, X, + M)t

preconditioner

where \; = |A(X; X, — M)||

e Local analysis: require spectral initialization

e Large sample complexity: sample complexity is n#2 poly(k),
depending on the overparameterized rank  instead of the true
rank r
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Robustness to noise

Consider the noisy setting

yi = (A;, M)+ &, where & ~ ./\/(0,02)

Theorem 4 (Xu, Shen, Chi, Ma, '23)

For low-rank matrix sensing with i.i.d. Gaussian design,
overparameterized ScaledGD(\) with the same configuration as
before achieves

1X:X, — Ml S w0 /nr
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ScaledGD()\) is nearly optimal

ScaledGD(\) achieves

X:X,' — M||r < k2cv/nr
X X, S KoV

e ScaledGD()) is minimax optimal (up to x2) for recovering rank-r
matrices, cf. Candés and Plan '09

e Both the rate and sample size requirement improve over prior art

(e.g., Zhuo et al., '21, Zhang et al., '23) as ours depend on true
rank r
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A little analysis



Phase |: approximating power method

Recall update rule of ScaledGD(\)

X = Xy — A AX X, — M)X (X, X, + )7}

Since initialization is small, i.e., X; ~ 0, we have
Xt+1 =~ Xt + ’I’]A*A(M)Xt)\_l
- (I + ZA*A(M)) X,

power method iterates
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Phase |: approximating power method

Indeed, we show that

~ 7

t
X, ~ (I + ZA*A(M) X,,  whent<1

Consequently, ScaledGD(\) has three nice properties after phase |
e subspace misalignment is small
e signal strength is mildly large

e overparameterization error remains small
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Phase 1l: exponential amplification of the signal

In phase Il, equipped with the three properties, signal is exponentially
amplified in the sense that

Gmm(E_l/QUTXt) grows at rate 1 + 7
until a constant level

U'X, X, /U > 0.1X%

Scaled signal strength op,in (32U T X;) is the key
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Phase Il: comparison with GD

Note that signal is amplified in a scale-independent way

omin(E7Y2UTX,)  grows with rate 1+ 17
— O'?(UTXt)/O'Z‘(M) grows uniformly with rate 1 + 7

In contrast, for GD the growth of different singular values are
different:
o2(U " XP) grows with rate 1 4 5oy (M),
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Phase Il: comparison with GD

Note that signal is amplified in a scale-independent way

omin(E7Y2UTX,)  grows with rate 1+ 17
— O'?(UTXt)/O'Z‘(M) grows uniformly with rate 1 + 7

In contrast, for GD the growth of different singular values are
different:
o2(U " XP) grows with rate 1 4 5oy (M),

Issue: GD requires nomax (M) < 1 to stay in control, but then the
growth rate for o2(U " XFP) would only be 1+ O(x71)
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Phase Ill: local convergence

Recall update rule of ScaledGD(\)

X1 = X; — nA"AX X, — M) X (X, Xy + M)}

When signal is at constant level, X;—Xt dominates \I, which yields

X~ X, —nA"AX X, — M)X,(X,] X))t

ScaledGD() is similar to ScaledGD locally
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Concluding remarks



Preconditioning helps!

Preconditioning

—

Preconditioning can dramatically increase the computational efficiency
of vanilla gradient methods without hurting statistical efficiency J
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Preconditioning helps!

Preconditioning

—

Preconditioning can dramatically increase the computational efficiency
of vanilla gradient methods without hurting statistical efficiency

Future directions:

e streaming/stochastic variants of ScaledGD

e generalizing the idea of ScaledGD to other learning problems

34/ 35



Papers:

“The power of preconditioning in overparameterized low-rank matrix sensing,’
X. Xu, Y. Shen, Y. Chi, and C. Ma, ICML 2023

“Accelerating ill-conditioned low-rank matrix estimation via scaled gradient
descent,” T. Tong, C. Ma, and Y. Chi, JMLR 2021



