
13

Fast and Flexible Top-k Similarity Search on Large Networks

JING ZHANG, Tsinghua University, Renmin University of China

JIE TANG and CONG MA, Tsinghua University

HANGHANG TONG, Arizona State University

YU JING and JUANZI LI, Tsinghua University

WALTER LUYTEN and MARIE-FRANCINE MOENS, KU Leuven

Similarity search is a fundamental problem in network analysis and can be applied in many applications,
such as collaborator recommendation in coauthor networks, friend recommendation in social networks, and
relation prediction in medical information networks. In this article, we propose a sampling-based method
using random paths to estimate the similarities based on both common neighbors and structural contexts
efficiently in very large homogeneous or heterogeneous information networks. We give a theoretical guar-
antee that the sampling size depends on the error-bound ε , the confidence level (1 − δ), and the path length
T of each random walk. We perform an extensive empirical study on a Tencent microblogging network of
1,000,000,000 edges. We show that our algorithm can return top-k similar vertices for any vertex in a net-
work 300× faster than the state-of-the-art methods. We develop a prototype system of recommending similar
authors to demonstrate the effectiveness of our method.

CCS Concepts: • Information systems → Data mining;

Additional Key Words and Pharses: Vertex similarity, similarity search, social network, random path, hetero-
geneous information network

ACM Reference Format:

Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong, Yu Jing, Juanzi Li, Walter Luyten, and Marie-Francine Moens.
2017. Fast and Flexible Top-k Similarity Search on Large Networks. ACM Trans. Inf. Syst. 36, 2, Article 13
(August 2017), 30 pages.
http://dx.doi.org/10.1145/3086695

1 INTRODUCTION

Similarity search is a fundamental problem in network analysis and can be applied in many ap-
plications, such as collaborator recommendation in coauthor networks, friend recommendation in
social networks, and drug-protein relation prediction in biological information networks.

Authors’ addresses: J. Zhang, Department of Computer Science and Technology, Tsinghua University, and Informa-
tion School, Renmin University of China; email: zhang-jing@ruc.edu.cn; J. Tang (corresponding author), C. Ma, Y. Jing,
and J. Li, Department of Computer Science and Technology, Tsinghua University, Beijing, China, 100084; emails: ma-
c11@mails.tsinghua.edu.cn, {jietang, yujing5b5d, lijuanzi}@tsinghua.edu.cn; H. Tong, School of Computing, Informatics,
and Decision Systems Engineering, ASU; email: hanghang.tong@asu.edu; W. Luyten and M.-F. Moens, Katholieke Univer-
siteit Leuven, Leuven, Belgium; emails: walter.luyten@med.kuleuven.be, sien.moens@cs.kuleuven.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax + 1 (212) 869-0481, or permissions@acm.org.
© 2017 ACM 1046-8188/2017/08-ART13 $15.00
http://dx.doi.org/10.1145/3086695

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

http://dx.doi.org/10.1145/3086695
http://dx.doi.org/10.1145/3086695

13:2 J. Zhang et al.

The problem has been extensively studied. In general, existing research work follows two basic
principles. The first one is that two vertices are considered similar if they have many direct or
indirect common neighbors in a network. For example, in a scientific coauthor network shown
in Figure 1(a), we can say that the authors in the red circle are similar to Barabási, because they
have more collaborations with Barabási than others. We category the methods following the first
principle into neighborhood similarity. The Jaccard index [23] and cosine similarity [4] are two
basic metrics of neighborhood similarity. However, they estimate the similarity in a local fashion.
Although some work, such as SimRank [24] and VertexSim [34], use the entire network to compute
similarity, they are essentially based on the transitivity of similarity in the network. Meanwhile,
some researchers extend the neighborhood similarity to multityped neighborhood similarity based
on different relation types in a heterogeneous information network [50]. The typed similarities
provide extra semantic explanations for similarities. For example, in a medical information net-
work shown in Figure 1(b), we can say that the drug named 5312137 is closely related with the
protein named MET because they are connected by many paths of different semantics. Here we
use “related” instead of “similar” because the type of the source vertex and the target vertex may
not be the same in a heterogeneous information network. The second principle is that two vertices
are considered equivalent if they play the same structural role—this can be further quantified by
degree, closeness centrality, betweenness, and other network centrality metrics [15]. For example,
in Figure 1(a), we can say that the authors denoted in green are similar to Barabási because they
are all in the center places of certain subnetworks. Similarly, the authors denoted in red are simi-
lar to Robert because they are all in some tight-knit groups, and those denoted in blue are similar
to Rinzel because they are in periphery places. We categorize the methods following the second
principle into structure similarity. For example, RoleSim calculates the similarity between discon-
nected vertices by changing the initialization of SimRank [27], and ReFeX [20] is a feature-based
method to calculate vertex similarity by defining a vector of features for each vertex.

When networks get larger, the efficiency issue has become one of the biggest challenges in simi-
larity search, as most existing similarity methods in networks are iterative and have a high compu-
tation cost. For example, SimRank results in a complexity ofO (I |V |2d̄2), where |V | is the number of
vertices in a network, d̄ is the average degree of all vertices, and I is the number of iterations to per-
form the SimRank algorithm. It is clearly infeasible to apply SimRank to large-scale networks. For
example, in our experiments, when dealing with a network with 500,000 edges, even the fast (top-
k) version of SimRank [33] requires more than 5 days to complete the computation for all vertices
(as shown later in Table 2). Although much effort has been made to improve the computational
efficiency, such as fast random walk with restart (RWR) [16, 52] and fast SimRank [32, 33], they
usually only focus on improving the efficiency of neighborhood similarity search in homogeneous
information networks while ignoring other kinds of similarity search. Thus, in this article, we aim
at designing a similarity method that is flexible enough to measure both neighborhood similarity
and structure similarity quickly in large homogeneous or heterogeneous information networks.

To achieve the goal of neighborhood similarity search, we define a new similarity metric referred
to as path similarity. The basic idea behind this is that two vertices have a high similarity if they
frequently appear on the same paths. Then we propose a sampling-based method, referred to as
Panther, based on a novel idea of random path to estimate path similarity. Specifically, given a
network, we perform R random walks, each starting from a randomly picked vertex and walkingT
steps. The path similarities are calculated efficiently based on the generated paths and the inverted
index from vertex to paths. We provide theoretical proof that the sample size, R = c

ε2 (log2

(
T+1

2

)
+

1 + ln 1
δ

), only depends on the path length T of each random walk for a given error-bound ε and
confidence level 1 − δ . Then we extend Panther to Pantherm and Pantherv . Specially, Pantherm

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:3

Fig. 1. Case studies of similar nodes in a homogeneous information network (a) and a heterogeneous infor-
mation network (b). We use a scientific coauthor network [38] as the case of a homogeneous information
network. In the network, authors who have close collaborations with a given author can be treated as authors
similar to the given author. In another viewpoint, similar authors can be also treated as those in positions
similar to that of the given author. For example, the authors in a position similar to Barabási are denoted in
green, those similar to Robert are in red, and those similar to Rinzel are in blue. We use a medical network as
the case of a heterogeneous information network. In the network, the proteins with many paths connected
with a drug can be treated as related proteins to the given drug. The prefix “Dr” in the vertex label denotes
drug, “Pr” denotes protein, and “Pa” denotes pathway.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:4 J. Zhang et al.

Fig. 2. Prototype system of similar expert recommendation in Aminer.org.

is used to estimate metapath-based path similarity in a heterogeneous information network, and
Pantherv is used to achieve the goal of structure similarity search.

We evaluate the efficiency of the proposed methods on a large microblogging “following” net-
work from Tencent1 and show the results later in Table 2. Clearly, our methods are much faster
than the comparison methods. Pantherv achieves a 300× speedup over the fastest comparison
method on a Tencent subnetwork of 443,070 vertices and 5,000,000 edges. Our methods are also
scalable. Panther is able to return top-k similar vertices for all vertices in a network with 51,640,620
vertices and 1,000,000,000 edges. On average, it only needs 0.0001 second to perform a top-k search
for each vertex.

We build a prototype system to demonstrate the effectiveness of the Panther method. Specifi-
cally, in the system Aminer.org, for each searched expert we recommend similar authors. Figure 2
shows that authors similar to Professor Jiawei Han are Professor Xifeng Yan, Professor Philip Yu,
and so on, all of whom share many direct or indirect coauthors with Professor Jiawei Han in the
coauthor network. All codes and datasets used in this article are publicly available.2

1http://t.qq.com.
2https://cn.aminer.org/billboard/panther.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

http://t.qq.com
https://cn.aminer.org/billboard/panther

Fast and Flexible Top-k Similarity Search on Large Networks 13:5

This article is an extension of prior work [59]. Compared to the prior work, we have the follow-
ing new contributions: (1) definition of a new similarity metric in a heterogeneous information
network, named metapath similarity (Section 3); (2) proposal of a sampling algorithm for calculat-
ing the new metric efficiently (Section 5); (3) empirical evaluation of effectiveness of the newly pro-
posed algorithm for top-k similarity search in a large medical information network (Section 8.4.3);
(4) development of a prototype system of similar expert recommendation in Aminer.org based on
the proposed sampling method (Figure 2); and (5) adding new motivation of similarity search in
heterogeneous information networks in Section 1, unified problem definition of three similarity
metrics in Section 3, including path similarity, metapath similarity, and vector similarity, and the
classified related work in Section 2.

Organization. This article is organized as follows. Section 2 reviews the related work. Section 3
formulates the problem and defines three similarity metrics. In Section 4, we detail the proposed
method for top-k path similarity search and provide a theoretical analysis. Sections 5 and 6 in-
troduce the extended methods for top-k metapath similarity search and vector similarity search,
respectively. Section 7 compares our proposed methods to existing methods. Section 8 presents
experimental results to validate the efficiency and effectiveness of our methods. Finally, Section 9
concludes the article.

2 RELATED WORK

In this section, we review the neighborhood similarity and structural similarity in homogeneous
information networks and heterogeneous information networks, respectively.

Neighborhood similarity in homogeneous information networks. Early neighborhood sim-
ilarity measures, including bibliographical coupling [30] and cocitation [49], are based on the as-
sumption that two vertices are similar if they have many common neighbors. However, they can-
not estimate similarity between vertices without common neighbors. A direct consequence is that
two nodes with no common neighbors will be treated as not similar at all. Thus, several measures
have been proposed to address this problem. For example, Katz [29] counts two vertices as similar
if there are more and shorter paths between them. RWR [39] measures the similarity between vi

and vj as the steady-state probability that vi will finally walk at vj . Tsourakakis [53] learns a low-
dimension vector for each vertex from the adjacent matrix and calculates similarities between the
vectors. Jeh and Widom [24] propose SimRank, which follows a basic recursive intuition that two
nodes are similar if they are referenced by similar nodes. Leicht et al. [34] develop an asymmet-
rical version of SimRank named vertex similarity. It is based on the assumption that two vertices
are similar if any pair of their neighbors are similar. However, all SimRank-based methods share a
common drawback: their computational complexities are too high. For example, SimRank requires
O (IN 2d2) time and O (N 2) space, where I is the number of iterations, N is the number of vertices,
and d is the average degree over all vertices. Further studies have been done to reduce the com-
putational complexity of SimRank [32, 33]. Fast random walk–based graph similarities, such as
in other works [16, 46, 52], have also been studied. However, the efficiency can still be improved
when the networks get larger.

Neighborhood similarity in heterogeneous information networks. Several researchers ex-
tend the neighborhood similarity to multityped neighborhood similarity in heterogeneous infor-
mation networks. The state-of-the-art work is proposed by Sun et al. [50], who measure the simi-
larities between vertices by enumerating all paths following a given metapath, where the metapath
is used to represent the semantics of a path. Yun et al. [58] solve the problem of similarity join in
a heterogeneous information network, whereas our work targets at solving the problem of top-k

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:6 J. Zhang et al.

similarity search. Shi et al. [48] propose HeteSim to conduct top-k similarity search in a hetero-
geneous information network. Their method also suffers from the efficiency issue, and thus the
experimental dataset is not big enough. We extend our sampling-based method to solve metapath-
based path similarity in a heterogeneous information network efficiently.

Structure similarity in homogeneous information networks. For structure similarity,
Blondel et al. [5] provide a HITS-based recursive method to measure similarity between vertices
across two different graphs. RoleSim [27] extends SimRank by allowing to calculate similarities
between disconnected vertices. Similar to SimRank, the computational complexity of the two
methods is very high. Feature-based methods can match vertices with similar structures. The basic
idea is to define several features for each vertex and then calculate the Euclidean distance between
feature vectors of two vertices as their structure similarity. For example, Burt [7] counts 36 kinds
of triangles in one’s ego network to represent a vertex’s structural characteristics. In the same way,
vertex centrality, closeness centrality, and betweenness centrality [14] of two different vertices
can be compared to produce a structure similarity measure. However, any of the preceding metrics
are too limited to explain the structural characteristic of a vertex. Aoyama et al. [3] present a fast
method to estimate similarity search between objects instead of vertices in networks. ReFeX [19,
20] defines basic features such as degree, the number of within/out-egonet edges, and recursive
features as the aggregated values of these features over neighbors. The computational complexity
of ReFeX depends on the recursive times. Although they use a pruning technique to reduce the
complexity, no theoretical proof is given to show how many recursive times is enough. More
references about feature-based similarity search in networks can be found in the survey of Rossi
and Ahmed [44]. Structure similarity in heterogeneous information networks cannot be directly
or easily extended from the sampling-based method and thus will be studied in the future.

Graph sampling. Our problem of estimating top-k similar vertices is related to estimating the
frequency of subgraph patterns in a network. Traditional research extensively studied how to enu-
merate the number of subgraph structures in a given graph, such as the number of triangles [25,
35, 41], the count of four-node subgraphs [26], and the macrofrequency and microfrequency of
two-, three-, and four-node connected and disconnected subgraphs [45]. A few studies can be gen-
eralized to any type of subgraphs. For example, Kashtan et al. [28] and Rahman et al. [42] propose
random edge enumeration algorithms to sample different kinds of subgraphs. Wernicke et al. [56]
propose a random node enumeration algorithm to uniformly sample different subgraphs. Ahmed
et al. [2] propose a general edge sampling framework to estimate the number of triangles, con-
nected paths of length 2, clustering coefficient, and so on. The methods that are used to estimate
frequency of any type of subgraphs can be used to solve our problem. However, the difference lies
in that the weight of a path is also considered when counting paths in our problem. Duffield et al.
[12] propose a weighted reservoir sampling method; however, they solve the problem of aggre-
gation from data streams, and the weight is defined for the probability that discards the keys of
aggregated data. The problem is totally different from the problem in this article—similarity search
in a graph—and thus it is not clear how to directly use the method proposed in the work of Duffield
et al. to solve our problem. Other work has been conducted on graph stream sampling. For exam-
ple, Sarma et al. [47] uniformly sample nodes from graph streams to estimate PageRank scores.
Buriol et al. [6] and Pavan et al. [40] estimate the number of triangles in graph streams. Cormode
and Muthukrishnan [10] use a min-wise hash function to sample edges nearly uniformly to main-
tain the cascaded summaries of the graph stream. Aggarwal et al. [1] propose a structural reser-
voir sampling method for structural summarization. Graph stream sampling methods assume the
edges arrive as a stream, and the target is to improve space and time complexity for fundamental

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:7

Fig. 3. Illustration of similarity metrics. The vertices in red are source vertices. Others are in white. (a) Path
similarity: the top two similar vertices ofv1 arev3 andv2. (b) Metapath similarity: following metapath DDP,
the similarity between v1 and v5 is 0.5 and is 1.0 following metapath DPDP, where D represents drug and P
represents protein. (c) Vector similarity: v3 is more similar to v1 than v2.

problems. The graph is assumed to be static in this article. We will study how to calculate the
proposed path similarity in graph streams in the future.

3 PROBLEM FORMULATION

In this section, we first define the problem of top-k similarity search and then define three similar-
ity metrics that will be used in solving the problem: path similarity and its two extended similarity
metrics, metapath similarity and vector similarity. Path similarity and metapath similarity are
both neighborhood similarity metrics, and vector similarity belongs to the category of structure
similarity.

Definition 3.1 (Information Network). LetG = (V ,E,W) denote a directed network, whereV is a
set of |V | vertices and E ⊂ V ×V is a set of |E | edges between vertices. We usevi ∈ V to represent
a vertex and ei j ∈ E to represent an edge from vertex vi to vertex vj . Let W be a weight matrix,
with each element wi j ∈W representing the weight associated with edge ei j .

If there exists an edge from vertex vi to vj , we also build an inverse edge from vj to vi . We
useN (vi) to indicate the set of neighboring vertices of vertex vi . Our purpose is to find the top-k
similar vertices for any vertex in the network. Precisely, the problem can be defined as follows:
given a network G = (V ,E,W) and a query vertex v ∈ V , how to find a set Xv,k of k vertices that
have the highest similarities to vertex v , where k is a positive integer and the similarity metric is
defined as any of the following three ones.

Path similarity. We define a new similarity metric, referred to as path similarity. The basic idea
of path similarity is that two vertices are similar if they frequently appear on the same paths. The
principle is similar to that in Katz [29]. To begin with, we first define T -path as a sequence of
vertices p = (v1, . . . ,vT+1), which consists ofT + 1 vertices andT edges.3 Let Π denote allT -paths
in G, and let w (p) be the weight of a path p. The weight can be defined in different ways. Given
this, the path similarity between vi and vj is defined as follows:

S (vi ,vj) =

∑
p∈P (vi ,vj) w (p)∑

p∈Π w (p)
, (1)

where P (vi ,vj) is a subset of Π that contain both vi and vj . Figure 3(a) shows an example
of path similarity. Considering vertex v1, the ranking of the similarities with other vertices is

3Vertices in the same path are not necessary to be distinct.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:8 J. Zhang et al.

S (v1,v3) > S (v1,v2) > S (v1,v4) > S (v1,v5) > S (v1,v6). If calculating by SimRank [24], the rank-
ing is S (v1,v5) > S (v1,v6) > S (v1,v3) > S (v1,v2) > S (v1,v4). We can see among the first-order
neighbors (i.e., v2, v3 and v4) that v1 is most similar to v3 by both path similarity and SimRank,
because according to path similarity, v3 shares most paths with v1, and according to SimRank, v3

shares most neighbors with v1. Among the second-order neighbors (i.e., v5 and v6), v1 is more
similar to v5 by both the similarity metrics, and the reason is the same as that of the first-order
neighbors. The difference is that SimRank ranks the second-order neighbors before the first-order
neighbors, because according to SimRank, two directly connected vertices always treat each other
as two different neighbors, and thus the similarity is weakened. However, path similarity counts
paths of all lengths and ranks the first-order neighbors before the second-order neighbors, because
first-order neighbors share more paths than the second-order neighbors.

Metapath similarity. The proposed path similarity is limited in homogeneous information net-
works, containing a single type of vertices and edges. Thus, path similarity cannot distinguish the
semantics among paths that connect two vertices. However, in the real world, many networks are
inherently heterogeneous, involving multiple types of vertices and edges, such as medical infor-
mation networks, bibliographic networks, and social networks [31]. In those networks, the paths
connecting two vertices present different semantics. In many cases, it is interesting to know the se-
mantics of the paths, which may help us understand the reasons two vertices are closely related to
each other. To distinguish the semantics among paths, we extend path similarity in homogeneous
information networks to metapath-based path similarity in heterogeneous information networks.
We first introduce the definitions of heterogeneous information network and metapath.

Definition 3.2 (Heterogeneous Information Network). A heterogeneous information network can
be defined as a multityped directed network G = (V ,E,W ;ϕ,A,R), where V , E, and W are the
same notations as those in the information network. There is a vertex type mapping function
ϕ : V → A with A as the set of vertex types—that is, each vertex v ∈ V belongs to a particular
vertex type in A. Similarly, there is also an edge type mapping functionψ : E → R with R as the
set of edge types—that is, each edge e ∈ E belongs to a particular edge type in R.

Note that when there is only one vertex type and one edge type (i.e., |A| = 1 and |R | = 1), the
network reduces to a homogeneous information network. If there exists an edge typeR from vertex
type Ai to Aj , we also build an inverse relation of R from Aj to Ai .

A typical example is a medical information network, with multiple types of vertices such as
compounds/drugs, disease, proteins, side effects, and pathways. Accordingly, multiple types of
directed edges can be defined between different types of vertices. For example, an express re-
lationship from a drug to a protein can be represented by edge (v1,v2) ∈ E, where v1,v2 ∈ V ,

ϕ (v1) = Druд, ϕ (v2) = Protein, and ψ (v1,v2) = Druд
expr ess
−−−−−−→ Protein; symmetrically, the edge

(v2,v1) represents that the protein v2 is expressed by the drug v1.
Because of the multiple types for vertices and edges, the paths from one vertex to another

can also be associated with multiple types. We use the concept of metapath [50] to represent the
type/semantics of a path.

Definition 3.3 (Metapath). In a heterogeneous network G, a T -length metapath is an ordered
sequence of T edge types connecting two vertices with type A1 and type AT+1, denoted by

M = (A1
R1−−→ A2

R2−−→ · · ·
RT−−→ AT+1), whereAi ∈ A and Ri ∈ R. An instantiation ofM is a path

in G, denoted by p = (v1v2 . . .vT+1), satisfying ϕ (vi) = Ai ,∀i = 1, 2, . . . ,T + 1 and ψ (vi ,vi+1) =
Ri ,∀i = 1, 2, . . . ,T . In addition, we represent a set of path instances following a metapath as
PM (vi ,vj).

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:9

For example, in a medical information network, M = (Druд
bind−−−−→ Protein

bind−−−−→ Druд
bind−−−−→

Protein) represents a metapath, where Druд, Protein ∈ A and Druд
bind−−−−→ Protein, Protein

bind−−−−→
Druд ∈ R. An instantiation of this metapath connects a drug and a protein by their directly con-
nected protein and drug.

Given a metapathM = (A1
R1−−→ A2

R2−−→ · · ·
RT−−→ AT+1), the path space is changed to theT -paths

instantiated by metapath M and can be denoted as ΠM . Then metapath-based path similarity,
abbreviated as metapath similarity, from vi to vj is defined as

SM (vi ,vj) =

∑
p∈PM (vi ,vj) w (p)∑

p∈ΠM w (p)
, (2)

where PM (vi ,vj) is a subset of paths instantiated by metapath M, between vi and vj .4 Fig-

ure 3(b) shows an example of metapath similarity. When considering Druд
bind−−−−→ Druд

bind−−−−→
Protein (DDP), the top similar vertices of v1 are v5 and v6, whereas only v5 is similar to v1 when

following the metapath Druд
bind−−−−→ Protein

bind−−−−→ Druд
bind−−−−→ Protein (DPDP). In the figure, the

paths with metapath DDP may be explained as drug v1 can bind to the proteins v5 or v6 of v1’s
similar drugsv3 orv4, and the paths with metapath DPDP may be explained as drugv1 can bind to
proteinv2,which shares another drugv3 with proteinv5. Note that actually the preceding problem
is to find the top-k related vertices instead of similar vertices, because the type of the source vertex
and the target vertex may not be the same in a heterogeneous information network.

Vector similarity. One limitation of path similarity is that the estimated top-k similar vertices
have a bias to close neighbors, although in principle it considers the structural information. We
therefore present an extension of path similarity, referred to as vector similarity. The idea is to
augment each vertex with a feature vector, which is expected to represent the structural charac-
teristic of the vertex (e.g., star network vs. chain network) as opposed to the identity of neighbors
of the vertex (e.g., connect to Bill Gates) [20]. To construct the feature vector, we follow the in-
tuition that the topology structures of two vertices are similar to each other if the probabilities
of the two vertices linking to all other vertices are similar to each other [21]. Given a vertex, the
probability distribution can be represented by the top-D ranked similarities between it and other
vertices, where D is an integer number:

θ (vi) = (S (vi ,v (1)), S (vi ,v (2)), . . . , S (vi ,v (D))), (3)

where S (vi ,v (d)) denotes the d-th largest similarity between vi and another vertex v (d) and the
similarity metric can be chosen as any kind of neighborhood similarities.

Naturally, the vector similarity between vi and vj can be calculated as the reciprocal Euclidean
distance between their feature vectors:

Sv (vi ,vj) =
1

‖θ (vi) − θ (vj)‖
. (4)

Figure 3(c) shows an example of vector similarity. Based on the definition of vector similarity,
we can see that v3 is more similar to v1 than v2 because the structural characteristics of v3 are
more similar to those of v1, even though the nodes are in two disconnected networks.

4Vertices in the same path are distinct to better present the semantics of a metapath.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:10 J. Zhang et al.

4 PANTHER

We propose Panther to quickly conduct top-k similarity search based on the defined path similar-
ity. A straightforward method to address the problem is to first calculate the similarity S (vi ,vj)
between vertex vi and any other vertex vj in the network, and then select a set Xv,k of k vertices
that have the highest similarities to vertex vi . However, it is generally difficult to scale up to large
networks. One important idea is to obtain an approximate set X ∗

v,k
for each vertex. From the ac-

curacy perspective, we aim to guarantee that the difference between the two sets X ∗
v,k

and Xv,k is
less than a threshold ε ∈ (0, 1)—that is,

Diff(X ∗v,k ,Xv,k) ≤ ε,

with a probability of at least 1 − δ .
The difference between X ∗

v,k
and Xv,k can be also viewed as the error bound of the approxima-

tion. We propose a sampling-based method to approximate the top-k vertex similarity. In statis-
tics, sampling is a widely used technique to estimate a target distribution [54]. Unlike traditional
sampling methods, we propose a random path sampling method, named Panther, to estimate the
predefined path similarity. We will explain in detail how the method can guarantee the error bound
and how it is able to efficiently achieve the goal.

Random sampling. To calculate Equation (1), we need to enumerate all T -paths in G. However,
the time complexity is exponentially proportional to the path lengthT and thus is inefficient when
T increases. Therefore, we propose a sampling-based method to estimate the path similarity. Since
path similarity between two vertices can be cast as estimating the probability that two vertices
appear on a same path, our goal is to estimate the probability based on the sampled paths from
the whole path space to guarantee a small error bound with a high probability. Specifically, we
randomly sample R paths from the network and recalculate Equation (1) as

S (vi ,vj) =

∑
p∈P (vi ,vj) w (p)∑

p∈P w (p)
, (5)

where P is the set of sampled paths.
To generate a path, we randomly select a vertex vi in G as the starting point and then conduct

random walks of T steps from vi using ti j as the transition probability from vertex vi to vj :

ti j =
wi j∑

vk ∈N (vi) wik
, (6)

where wi j is the weight between vi and vj . In a unweighted network, the transition probability
can be simplified as 1/|N (vi) |.

We define w (p) based on the random walk theory [13]:

w (p) =
T∏

i=1, j=i+1

ti j .

The path weight also represents the probability that a path p is sampled from Π; thus, w (p) in
Equation (5) is absorbed in the random walk process. Therefore, we can rewrite the equation as
follows:

S (vi ,vj) =
|P (vi ,vj) |

R
, (7)

where R is the number of the sampled paths.
Algorithm 1 presents the details of searching top-k vertices for a given vertex. Algorithm 1

invokes algorithm 2. Algorithm 2 summarizes the process for generating R random paths. To cal-
culate Equation (7), the time complexity is O (RT) because it has to enumerate all R paths. To

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:11

improve efficiency, we build an inverted index of vertex to path [4]. Using the index, we can re-
trieve all paths that contain a specific vertex v with a complexity of O (1). Then Equation (7) can
be calculated with a complexity of O (R̄T), where R̄ is the average number of paths that contain a
vertex and is proportional to the average degree d̄ . Details of the algorithm are presented in Al-
gorithm 1, where lines 1 through 5 represent the preprocessing steps and line 6 refers to the top-k
similarity searching for a vertex.

Theoretical analysis. We give a theoretical analysis for the random path sampling algorithm.
In general, the path similarity can be viewed as a probability measure defined over all paths Π.
Thus, we can adopt the results from Vapnik-Chernovenkis (VC) learning theory [54] to analyze
the proposed sampling-based algorithm. To begin with, we will introduce some basic definitions
and fundamental results from VC theory and then demonstrate how to utilize these concepts and
results to analyze our method.

Let (D,R) be a range space, where D denotes a domain and R is a range set on D. For any
set B ⊆ D, PR (B) = {B ∩A : A ∈ R} is the projection of R on B. If PR (B) = 2B , where 2B is the
powerset of B, we say that the set B is shattered by R. The following definitions and theorem are
derived from the work of Riondato and Kornaropoulos [43].

Definition 4.1. The Vapnik-Chervonenkis dimension of R, denoted as VC (R), is the maximum
cardinality of a subset of D that can be shattered by R.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:12 J. Zhang et al.

We give an example to explain the concept of VC dimension. For example, if a range set R is
collections of intervals on a line, where each interval classifies the points inside the interval as 1
and those outside the interval as 0, R can shatter two points in a line but not three, because no
interval can classify the three points on a line as “1 0 1.” Thus, VC (R) = 2.

Let S = {x1, . . . ,xn } be a set of independent and identically distributed random variables sam-
pled according to a distribution ϕ over domainD. For a setA ⊆ D, let ϕ (A) be the probability that
an element sampled from ϕ belongs to A, and let the empirical estimation of ϕ (A) on S be

ϕS (A) =
1

n

n∑
i=1

1A (xi),

where 1A is the indicator function with the value of 1A (x) that equals 1 if x ∈ A, and 0 otherwise.
The question of interest is that how well we can estimate ϕ (A) using its unbiased estimator,

the empirical estimation ϕS (A). We first give the goodness of approximation in the following
definition.

Definition 4.2. Let R be a range set onD and ϕ be a probability distribution onD. For ε ∈ (0, 1),
an ε-approximation to (R,ϕ) is a set S in D such that

supA∈R |ϕ (A) − ϕS (A) | ≤ ε .

One important result of VC theory is that if we can bound the VC dimension of R, it is possi-
ble to build an ε-approximation by randomly sampling points from the domain according to the
distribution ϕ. This is summarized in the following theorem.

Theorem 4.3. Let R be a range set on a domain D, with VC (R) ≤ d , and let ϕ be a distribution

on D. Given ε,δ ∈ (0, 1), let S be a set of |S | points sampled from D according to ϕ, with

|S | = c

ε2

(
d + ln

1

δ

)
,

where c is a universal positive constant. Then S is a ε-approximation to (R,ϕ) with probability of at

least 1 − δ .

According to the preceding theory, we set the domain in our problem to be Π—the set of all
paths with length T in the graph G. Accordingly, we define the range set RG on Π to be

RG = {P (vi ,vj) : vi ,vj ∈ V }.

This is a valid range set, as it is the collection of subsets Pvi ,vj
of domain Π. We first show an

upper bound of the VC dimension of RG in Lemma 4.4. The proof is inspired by Riondato and
Kornaropoulos [43].

Lemma 4.4. VC (RG) ≤ log2

(
T+1

2

)
+ 1

Proof. We prove the lemma by contradiction. Assume thatVC (RG) = l and l > log2

(
T+1

2

)
+ 1.

By the definition of VC dimension, there is a set Q ⊆ Π of size l that can be shattered by RG . In
other words, we have the following statement:

∀Si ⊆ Q , ∃Pi ∈ RG , s.t. Pi ∩Q = Si ,

where Pi is the i-th range. Since each subset Si ⊆ Q is different from the other subsets, the cor-
responding range Pi making Pi ∩Q = Si is also different from the other ranges. Moreover, the
set Q is shattered by RG if and only if {Pi ∩Q : Pi ∈ R} = 2Q . Thus, ∀p ∈ Q , and there are 2l−1

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:13

nonempty distinct subsets S1, . . . , S2l−1 of Q containing the path p. Therefore, there are also 2l−1

distinct ranges in RG that contain the path p—that is,

|{Pi |p ∈ Pi and Pi ∈ RG }| = 2l−1.

In addition, according to the definition of range set, RG = {P (vi ,vj) : vi ,vj ∈ V }, a path belongs
to the ranges corresponding to any pair of vertices in path p—that is, to the pairwise combinations
of the vertices in p. According to the definition, a T -path contains T + 1 vertices, and some paths
paths may contain a same vertex more than once. Thus, the number of ranges in RG that p belongs
to is no more than the combinatorial number

(
T+1

2

)
—that is,

|{Pi |p ∈ Pi and Pi ∈ RG }| ≤
(
T + 1

2

)
.

However, from our preliminary assumption, we have l > log2

(
T+1

2

)
+ 1, which is equal to(

T+1
2

)
< 2l−1. Thus,

|{Pi |p ∈ Pi and Pi ∈ RG }| ≤
(
T + 1

2

)
< 2l−1.

Hence, we reach a contradiction: it is impossible to have 2l−1 distinct ranges Pi ∈ RG containing
p. Since there is a one-to-one correspondence between Si and Pi , we get that it is also impossible
to have 2l−1 distinct subsets Si ⊆ Q containing p. Therefore, we prove that Q cannot be shattered
by RG and VC (RG) ≤ log2

(
T+1

2

)
+ 1.

We now provide a theoretical guarantee for the number of sampled paths. How many random
paths do we need to achieve an error-bound ε with probability 1 − δ? We define a probability
distribution on the domain Π, where Π denote all T-paths in G. ∀p ∈ Π, we define

ϕ (p) = prob(p) =
w (p)∑

p∈Π w (p)
.

We can see that the definition of S (vi ,vj) in Equation (1) is equivalent to ϕ (P (vi ,vj)). This
observation enables us to use a sampling-based method (empirical average) to estimate the original
path similarity (true probability measure).

Plugging Lemma (4.4) into Theorem (4.3), we obtain

R =
c

ε2
(log2

(
T + 1

2

)
+ 1 + ln

1

δ
).

In other words, with at least R random paths, we can estimate the path similarity between any two
vertices with the desired error bound and confidence level. The preceding equation also implies
that R only depends on the path length T , given an error-bound ε and a confidence level 1 − δ .

5 PANTHERM

Top-k metapath similarity search can be explained as follows: given a heterogeneous information

network G = (V ,E,W ;ϕ,A,R), a metapathM = (A1
R1−−→ A2

R2−−→ · · ·
RT−−→ AT+1), a positive inte-

ger k , any vertex v ∈ V with type ϕ (v) = A1, how to retrieve the top-k related vertices of v based
on metapath similarity, (i.e., the type of the retrieved vertices isAT+1) and the path instances from
v to the retrieved vertices are instantiated byM.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:14 J. Zhang et al.

Similarly, in large-scale networks, we need to obtain an approximate set of the related vertices
that can guarantee an error bound with a confidence interval. We will introduce how the sampling-
based method can efficiently estimate metapath similarity and guarantee the error bound.

Random sampling for metapath similarity. To calculate Equation (2), we need to enumerate
all paths instantiated by metapathM from vi to vj , which is also inefficient. Thus, we estimate
metapath similarity approximately by sampling metapath-based paths:

SM (vi ,vj) =

∑
p∈PM (vi ,vj) w (p)∑

p∈PM w (p)
, (8)

where PM is the sampled paths instantiated byM.
To generate a path instantiated byM, we randomly select a vertex vi in G with the type A1

as the starting point and then conduct random walks of T steps from vi using ti j as the transition
probability from node vi to vj :

t (Ri)
i,i+1 =

wi,i+1∑
vk ∈N (vi)∩ψ (vi ,vk)=Ri

wik
, (9)

where we restrict the neighbors of vi into those associated with edge type Ri in metapath M.
Accordingly, the weight of a pathw (pM) =

∏T
i=1 t

Ri

i,i+1. Becausew (pM) is absorbed in the random
walk process, Equation (8) can be rewritten as follows:

SM (vi ,vj) =
|PM (vi ,vj) |

R
. (10)

Pantherm only considers the paths between two vertices initialized by a given metapath M.
Thus, we only count the source and target vertices in a path rather than each distinct vertex in a
path. Therefore, we do not need to record the paths and the vertex-to-path index. Instead, when
generating random paths, we directly update the similarities between source and target vertices
in a same random path. Thus, the space complexity is reduced to O (|V |d̄). The updated algorithm
is presented in Algorithm 3.

Theoretical analysis. Theoretical proof is similar to that of Panther. For Pantherm , the domain
D is changed to the paths instantiated by a metapath M (i.e., ΠM). Range set R is changed to
RG = {PM (vi ,vj) : vi ,vj ∈ V }.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:15

Accordingly, we need to prove the lemmaVC (RG) ≤ 1. We also prove the lemma by contradic-
tion. Assume that VC (RG) = l and l > 1. Similar to the proof of Panther, we also know that there
are 2l−1 distinct ranges containing a path p. In addition, in Pantherm , each path only belongs to the
ranges corresponding to the source and target vertices in the path—that is, the number of ranges
in RG that p belongs to is equal to 1. However, from the preliminary l > 1, we know that 2l−1 � 1.
Hence, we reach a contradiction and prove the given lemma.

The definition of SM (vi ,vj) in Equation (2) is exactly a probability distribution on the domain
ΠM . Thus, we can plug VC (RG) ≤ 1 into Theorem 4.3 and obtain R = c

ε2 (1 + ln 1
δ

).

6 PANTHERV

According to the definition of vector similarity, for each vertex we construct a vector by top-D
ranked similarities between it and other vertices according to Equation (3). The similarity metric
can be chosen as any kind of neighborhood similarity. We determine to use our proposed path
similarity, which can be quickly estimated by Panther.

Specifically, for vertex vi in the network, we first calculate the similarity between vi and all
other vertices using Panther. Then we construct a feature vector for vi by taking the largest D
similarity scores as feature values.

Finally, the similarity between vi and vj is calculated as the reciprocal Euclidean distance be-
tween their feature vectors according to Equation (3).

Index of feature vectors. Again, we use the indexing techniques to improve the algorithm’s
efficiency. We build a memory based kd-tree [55] index for feature vectors of all vertices. Then
given a vertex, we can retrieve top-k vertices in the kd-tree with the least Euclidean distance to
the query vertex efficiently. At a high level, a kd-tree is a generalization of a binary search tree that
stores points in D-dimensional space. In level h of a kd-tree, given a node v , the h%D-th element
in the vector of each node in its left subtree is less than the h%D-th element in the vector of v ,
whereas the h%D-th element of every node in the right subtree is no less than the h%D-th element
of v . Figure 4 shows the data structure of the index built in Pantherv . Based on the index, we can
query whether a given point is stored in the index very fast. Specifically, given a vertex v , if the
root node isv , return the root node. If the first element ofv is strictly less than the first element of
the root node, look forv in the left subtree, then compare it to the second element ofv . Otherwise,
check the right subtree. It is worth noting that we can easily replace the kd-tree with any other

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:16 J. Zhang et al.

Fig. 4. Data structure of the index built in Pantherv .

Fig. 5. Trade-off between accuracy (i.e., Precision@Top-5 at the y-axis) and efficiency (i.e., Sampling-time/
Exact-time at the x-axis) performance by varying error-bound ε of Panther, edge sampling probability p of
the edge sampling method, and node sampling probability q of the node sampling method on the coauthor
networks.

index methods, such as an r-tree. The algorithms for calculating feature vectors of all vertices and
the similarity between vertices are shown in Algorithm 4, where lines 1 through 8 represent the
preprocessing steps and line 9 refers to the top-k similarity searching for a vertex.

7 COMPARISON WITH EXISTING METHODS

In general, most of the existing methods result in high complexities. For example, the time com-
plexities of SimRank [24], RWR [39], and RoleSim [27] are all proportional to |V |2. TopSim, the
top-k version of SimRank, is more efficient but is still exponentially proportional to the number
of random walk steps. Like our method Pantherv , ReFeX [19, 20] also constructs a feature vector
for each vertex and then calculates the Euclidean distance between vectors as their similarities.
However, the complexity of constructing features is determined by the iteration times and is also

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:17

Fig. 6. Trade-off between accuracy (i.e., Precision@Top-10 at the y-axis) and efficiency (i.e., Sampling-time/
Exact-time at the x-axis) performance by varying error-bound ε of Panther, edge sampling probability p of
the edge sampling method, and node sampling probability q of the node sampling method on the coauthor
networks.

Table 1. Time and Space Complexity for Calculating Top-k Similar Vertices for All Vertices in a Network

Method Equation Time Complexity Space Complexity

SimRank [24] S (vi , vj) =
β

|Ni | |Nj |
∑

vk ∈Ni

∑
vh ∈Nj

S (vk , vh) O (I |V |2d̄2) O (|V |2)

TopSim [33] S (vi, vj) =
∑T

l=1

∑
p∈S Pl (vi ,vj) β l w (p) O (|V |T d̄T) O (|V | + |E |)

RWR [39] �ui = (1 − β)A�ui + β�Ii O (I |V |2d̄) O (|V |2)

RoleSim [27] S (vi, vj) = (1 − β) max
Mi, j

∑
(vk ,vh)∈Mi, j

S (vk ,vh)

Ni+Nj−|Mi, j | + β O (I |V |2d̄2) O (|V |2)

ReFeX [20] Sv (vi , vj) = 1
‖θ (vi)−θ (vj)‖ O (|V | + I (f |E | + |V |f 2)) O (|V | + |E |f)

Panther S (vi, vj) =
∑

p∈P (vi ,vj) w (p)∑
p∈P w (p) O (RT c + |V |d̄T) O (RT + |V |d̄)

Pantherm SM (vi , vj) =
∑

p∈PM (vi ,vj) w (p)∑
p∈PM w (p) O (RT c + |V |d̄T) O (|V |d̄)

Pantherv Sv (vi , vj) = 1
‖θ (vi)−θ (vj)‖ O (RT c + |V |d̄T + |V |c) O (RT + |V |d̄ + |V |D)

I , number of iterations; d̄ , average degree; f , feature number; D , vector dimension; T , maximal path length; l , path length;
SPl (u, v), set of random walk paths on G ×G of length l ending at the target vertex uv ; β , decay factor; �uq , steady

state probability vector with vi as the start vertex; �Ii , restart vector; A, adjacency matrix of the network; Mi, j , matching
between Ni and Nj .

exponentially proportional to the iteration times. Table 1 shows the time and space complexity of
different methods and our methods.

For our method Panther, its time complexity is determined by two main steps. The first step is
a random path sampling process. The time complexity of generating random paths isO (RT log d̄),
where log d̄ is for randomly sampling a neighbor and can be simplified as a small constant c . Hence,
the time complexity is O (RTc). The second step is the top-k similarity search process. The time

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:18 J. Zhang et al.

complexity of calculating top-k similar vertices for all vertices is O (|V |R̄T + |V |M̄). The first part
O (|V |R̄T) is the time complexity of calculating Equation (7) for all pairs of vertices, where R̄ is the
average number of paths that contain a vertex and is proportional to the average degree d̄ . The
second part O (|V |M̄) is the time complexity of searching top-k similar vertices based on a heap
structure, where M̄ represents the average number of co-occurred vertices with a vertex and is
proportional to d̄ . Hence, the time complexity isO (|V |d̄T). The space complexity for storing paths
and vertex-to-path index is O (RT) and O (|V |d̄), respectively. The time and space complexity of
Pantherm is the same as that of Panther.

Pantherv requires additional computation to build the kd-tree. The time complexity of building a
kd-tree isO (|V | log |V |) and querying top-k similar vertices for any vertex isO (|V | log |V |), where
log |V | is small and can be viewed as a small constant c . Additional space (with a complexity of
O (|V |D)) is required to store |V | D-dimension vectors.

8 EXPERIMENTS

8.1 Experimental Setup

In this section, we conduct various experiments to evaluate the proposed methods for top-k simi-
larity search.

Datasets. We evaluate the proposed method on four different networks: Tencent, Twitter, Mobile,
and Medicine:

—Coauthor [51]: The dataset is from AMiner.org5 and contains 2,092,356 papers. We extracted
a weighted coauthor graph from each of the following conferences from 2005 to 2013: KDD,
ICDM, SIGIR, CIKM, SIGMOD, and ICDE.6 The weight associated with each edge is the num-
ber of works collaborated by the two connected authors. We use the dataset to evaluate the
sampling performance (i.e., the trade-off between the accuracy and efficiency performance)
of Panther compared to alternative sampling algorithms.

—Tencent [57]: The dataset is from Tencent Weibo,1 a popular Twitter-like microblogging
service in China, and consists of more than 355,591,065 users and 5,958,853,072 “following”
relationships. The weight associated with each edge is set as 1.0 uniformly. This is the largest
network in our experiments. We use it to evaluate the efficiency performance of Panther
and Pantherv compared to alternative similarity metrics.

—Twitter [18, 22]: We collect the dataset by first selecting the most popular user on Twitter
(i.e., Lady Gaga) and randomly selecting 10,000 of her followers, then collecting all followers
of these users. In the end, we have 113,044 users and 468,238 following relationships in total.
The weight associated with each edge is also set as 1.0 uniformly. We use this dataset to
evaluate the accuracy of Panther and Pantherv compared to alternative similarity metrics.

—Mobile [11]: We build the mobile network using call records from a mobile communication
company within 2 weeks by treating each user as a vertex and the communication between
users as an edge. The resultant network consists of 194,526 vertices and 206,934 edges, with
the weight associated with each edge as the number of calls. We also use this dataset to
evaluate the accuracy of Panther and Pantherv compared to alternative similarity metrics.

—Medicine [9]: The dataset is a heterogeneous medical information network that consists of
295,897 nodes and 727,931 edges. There are 9 types of vertices in the networks, including
258,030 drugs and 22,056 proteins. Then 12 types of edges are built between these vertex

5https://cn.aminer.org/citation.
6The numbers of vertices/edges of different conferences are as follows: KDD, 2,867/7,637; ICDM, 2,607/4,774; SIGIR,
2,851/6,354; CIKM, 3,548/7,076; SIGMOD, 2,616/8,304; and ICDE, 2,559/6,668.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

https://cn.aminer.org/citation

Fast and Flexible Top-k Similarity Search on Large Networks 13:19

types. Please refer to Chen et al. [9] for details on the dataset. We use the dataset to evaluate
the efficiency and accuracy of Pantherm .

Evaluation aspects. To quantitatively evaluate the proposed methods, we consider the following
performance measurements:

—Sampling performance: We apply our method Panther to the coauthor networks to eval-
uate the sampling performance—that is, the trade-off between accuracy and efficiency
performance.

—Efficiency performance: We apply our methods to the Tencent network to evaluate the com-
putational time.

—Accuracy performance: We use the number of common neighbors as ground truth to evaluate
Panther on Twitter and Mobile networks. We apply Pantherv to find top-k structural hole
spanners in Twitter and Mobile networks. We evaluate Pantherm using the task of link
prediction on a medical information network.

—Parameter sensitivity analysis: We analyze the sensitivity of different parameters in our
methods: path length T , vector dimension D, and error-bound ε .

All codes are implemented in C++ and compiled using GCC 4.8.2 with –O3 flag. The experiments
were conducted on a Ubuntu server with four Intel Xeon CPU E5-4650s (2.70GHz) and 1T RAM.

Comparison methods. We compare to the following methods:

—Edge sampling [2]: This samples a subnetwork by selecting each edge in the original network
by probability p and then enumerates all theT -paths in the sampled subnetwork. Based on
the sampled paths, we calculate path similarity according to Equation (7).

—Node sampling [56]: This samples a path by iteratively selecting a neighbor of each vertex
by probability q until the length of a path is T . Based on the sampled paths, we calculate
path similarity according to Equation (7).

—RWR [39]: RWR starts from vi , iteratively walking to its neighbors with the probability
proportional to their edge weights. At each step, it also has some probability to walk back
to vi (set as 0.1). The similarity between vi and vj is defined as the steady-state probability
thatvi will finally reach vj . We calculate RWR scores between all pairs and then search the
top-k similar vertices for each vertex.

—TopSim [33]: TopSim extends SimRank [24] on one graph G to find top-k authoritative ver-
tices on the product graph G ×G efficiently.

—RoleSim [27]: RoleSim refines SimRank [24] by changing the average similarity of all neigh-
bor pairs to all matched neighbor pairs. We estimate RoleSim scores between all pairs and
select the top-k similar vertices for each vertex.

—ReFeX [20]: ReFeX defines local, egonet, and recursive features to capture structural char-
acteristics. The local feature is the vertex degree. Egonet features include the number of
within-egonet edges and the number of out-egonet edges. For weighted networks, they
contain weighted versions of each feature. Recursive features are defined as the mean and
sum value of each local or egonet feature among all neighbors of a vertex. In our experi-
ments, we only extract recursive features once and construct a vector for each vertex by a
total of 18 features. For fair comparison, to search top-k similar vertices, we also build the
same kd-tree as that used in our method.

—SLAP [9]: SLAP is proposed to predict links in a medical information network. Given a
pair of source and target vertices in a network, it employs a heap-based Dijkstra algorithm
to find all paths between the two vertices and sums up the scores of all paths together.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:20 J. Zhang et al.

The score for each path is a combination of the path weight (i.e., the multiplication of the
transition probabilities in the path) and the significance score of the metapath to which the
path belongs (i.e., the expected mean and standard deviation of the weights of the paths
that belong to the metapath).

The codes of TopSim, RoleSim, ReFeX, and SLAP are provided by their authors. We used the fast
versions of TopSim and RoleSim mentioned in their work.

Implementation notes. In our experiments, we empirically set the parameters as follows: c = 0.5,
δ = 0.1, T = 4, D = 50, and ε =

√
1/|E |. The optimal values of T , D, and ε are discussed in Section

8.5. We build the kd-tree using the toolkit ANN.7

8.2 Sampling Performance

We use Precision@Top-k , where we vary k as 5 and 10, as the metric to measure how far the
approximate estimation by Panther is from the exact estimation, Equation (1). Specifically, for
each vertex vi , given an approximate estimation of the top-k similar vertices, T̃Si , and the exact
estimation of the top-k similar vertices, TSi , Precision@Top-k is defined as follows:

Precision@Top-k =

∑ |V |
i=1 |T̃Si ∩ TSi |

k |V | . (11)

To quantitatively evaluate the sampling performance of Panther, we compare Panther to two
alternative sampling methods: edge sampling and node sampling. The comparison methods use
the same method as Panther to calculate path similarity except different methods sample paths
in different ways. We show how Precision@Top-k and speed vary by varying the parameters in
different methods. The experimental setting is as follows:

—We tune the parameters. For Panther, we try the error-bound ε as all possible val-
ues in the range {0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6}; for the edge sam-
pling method, we try the edge sampling probability p as all possible values in the range
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; and for the node sampling method, we try the node
sampling probability q with the same values of p.

—For each configuration of the parameters ε , p, and q, we calculate Precision@Top-k over 10
independent sampling results.

—For each configuration of the parameters ε , p, and q, we record the average CPU time of 10
independent sampling processes and divide them by the CPU time of the exact estimation
(i.e., Sampling-time/Exact-time).

Figures 5 and 6 plot all (Precision@Top-k , Sampling-time/Exact-time) pairs when varying the
parameters ε , p, and q on six different coauthor networks. From the results, we can see that for all
three sampling methods, Precision@Top-k increases quickly at the beginning and then becomes
almost stable. Precision@Top-k of Panther increases dramatically at the beginning and takes much
shorter time to obtain a higher accuracy than the other two methods and thus performs best.
This is because Panther actually absorbs the path weight (Equation (6)) in the random sampling
process, which exactly reserves the effect of path weight defined in path similarity (Equation (1)),
whereas edge sampling and node sampling methods do not consider path weight in their sampling
processes. The experimental results demonstrate the superiority of the proposed sampling method.

7http://www.cs.umd.edu/∼mount/ANN/.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

http://www.cs.umd.edu/{char '176}mount/ANN/

Fast and Flexible Top-k Similarity Search on Large Networks 13:21

8.3 Efficiency and Scalability Performance

In this section, we first fixk = 5, and evaluate the efficiency and scalability performance of different
comparison methods using the Tencent dataset. We randomly extract different (large and small)
versions of the Tencent networks. For TopSim and RoleSim, we only show the computational time
for similarity search. For ReFex, edge sampling, node sampling, Panther, and Pantherv , we also
show the computational time used for preprocessing. Since Tencent is a homogeneous network,
we show the time efficiency of Pantherm on a heterogeneous medical information network in
Section 8.4. Sampling probability p for edge sampling is set as 0.6, and q for node sampling is set
as 0.3 according to the experimental results on coauthor, Twitter, and Mobile datasets.

Table 2 lists statistics of the different Tencent subnetworks and the efficiency performance of
the comparison methods. Clearly, our methods (both Panther and Pantherv) are much faster than
the comparison methods. For example, on the Tencent6 subnetwork, which consists of 443,070
vertices and 5,000,000 edges, Pantherv achieves a 390× speedup compared to the fastest (ReFeX)
of all comparative methods.

We can also see that RWR, TopSim, and RoleSim cannot complete top-k similarity search for all
vertices within a reasonable time when the number of edges increases to 500,000. ReFeX can deal
with larger networks but also fails when the edge number increases to 10,000,000. According to
the results shown in Figures 5 through 7, when setting sampling probability p for edge sampling
as 0.6 and q for node sampling as 0.3, the accuracy performance can approach that of ; however,
according to the results in Table 2, Panther is much more efficient than the two baseline sampling
methods. Our methods can scale up to handle very large networks with more than 10,000,000
edges. On average, Panther only needs 0.0001 second to perform top-k similarity search for each
vertex in a large network.

8.4 Accuracy Performance

8.4.1 Performance of Panther.. We evaluate how Panther can approximate the similarity based
on common neighbors. The evaluation procedure is described as follows:

(1) For each vertex u in the seed set S , generate top k vertices TopA,k (u) that are the most
similar to u by algorithm A.

(2) For each vertex v ∈ TopA,k (u), calculate д(u,v), where д is a coarse similarity measure
defined as the ground truth. Define fA,k =

∑
u

∑
v д(u,v).

(3) Let fR,k denotes the result of a random algorithm.

(4) Finally, we define the score for algorithm A as score(A,k) =
fA,k−fR,k

|S |×k
, which represents

the improvement of algorithm A over a random method.

Specifically, we define д(u,v) as the number of common neighbors between u and v on each
dataset.

Figure 7 shows the performance of Panther evaluated on the ground truth of common neighbors
on Twitter and Mobile networks. Some baselines, such as RWR and RoleSim, are ignored on the
datasets because they cannot complete top-k similarity search for all vertices within a reasonable
time. It can be seen that Panther performs better than any other methods on both datasets. Panther
and ReFeX perform worst, as they are not devised to address the similarity between near vertices.
Our method Panther performs as good as TopSim, the top-k version of SimRank, and the two
baseline sampling methods, edge sampling (q = 0.6) and node sampling (p = 0.3), because they
are all based on the principle that two vertices are considered structurally equivalent if they have
many common neighbors in a network. However, according to our previous analysis, TopSim, edge
sampling, and node sampling perform much slower than Panther.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:22 J. Zhang et al.

Ta
b

le
2.

E
ff

ic
ie

n
cy

P
er

fo
rm

an
ce

(C
P

U
T

im
e)

o
f

C
o
m

p
ar

is
o
n

M
et

h
o

d
s

o
n

D
iff

er
en

t
S

iz
es

o
f

th
e

Te
n

ce
n

t
S

u
b

n
et

w
o
rk

s

Su
bn

et
w

or
k

|V
|

|E
|

R
W

R
T

op
Si

m
R

ol
eS

im
R

eF
eX

E
dg

e
Sa

m
pl

in
g

N
od

e
Sa

m
pl

in
g

P
an

th
er

P
an

th
er

v

T
en

ce
n

t1
6,

52
3

10
,0

00
+

7.
79

h
r

+
28

.5
8m

+
37

.2
6s

3.
85

s+
0.

07
s

14
.1

6m
+

1.
68

h
r

58
.8

2s
+

1.
12

m
0.

07
s+

0.
26

s
0.

99
s+

0.
21

s

T
en

ce
n

t2
25

,8
44

50
,0

00
+
>

15
0h

r
+

11
.2

0h
r

+
12

.9
8m

26
.0

9s
+

0.
40

s
—

14
.2

2m
+

26
.1

4m
0.

28
s+

1.
53

s
2.

45
s+

4.
21

s

T
en

ce
n

t3
48

,8
37

10
0,

00
0

—
+

30
.9

4h
r

+
1.

06
h

r
2.

02
m

+
0.

57
s

—
1.

50
h

r+
1.

67
h

r
0.

58
s+

3.
48

s
5.

30
s+

5.
96

s

T
en

ce
n

t4
16

9,
20

9
50

0,
00

0
—

+
>

12
0h

r
+
>

72
h

r
17

.1
8m

+
2.

51
s

—
—

8.
19

s+
16

.0
8s

27
.9

4s
+

24
.1

7s

T
en

ce
n

t5
23

0,
10

3
1,

00
0,

00
0

—
—

—
31

.5
0m

+
3.

29
s

—
—

15
.3

1s
+

30
.6

3s
49

.8
3s

+
22

.8
6s

T
en

ce
n

t6
44

3,
07

0
5,

00
0,

00
0

—
—

—
24

.1
5h

r+
8.

55
s

—
—

50
.9

1s
+

2.
82

m
4.

01
m

+
1.

29
m

T
en

ce
n

t7
70

2,
04

9
10

,0
00

,0
00

—
—

—
>

48
h

r
—

—
2.

21
m

+
6.

24
m

8.
60

m
+

6.
58

m

T
en

ce
n

t8
2,

76
7,

34
4

50
,0

00
,0

00
—

—
—

—
—

—
15

.7
8m

+
1.

36
h

r
1.

60
h

r+
2.

17
h

r

T
en

ce
n

t9
5,

35
5,

50
7

10
0,

00
0,

00
0

—
—

—
—

—
—

44
.0

9m
+

4.
50

h
r

5.
61

h
r

+
6.

47
h

r

T
en

ce
n

t1
0

26
,0

33
,9

69
50

0,
00

0,
00

0
—

—
—

—
—

—
4.

82
h

r
+

25
.0

1h
r

32
.9

0h
r

+
47

.3
4h

r

T
en

ce
n

t1
1

51
,6

40
,6

20
1,

00
0,

00
0,

00
0

—
—

—
—

—
—

13
.3

2h
r

+
80

.3
8h

r
98

.1
5h

r
+

12
0.

01
h

r

N
ot

e:
T

h
e

ti
m

e
be

fo
re

th
e

pl
u

s
si

gn
(+

)
de

n
ot

es
th

e
ti

m
e

u
se

d
fo

r
pr

oc
es

si
n

g
an

d
th

e
ti

m
e

af
te

r
th

e
pl

u
s

si
gn

de
n

ot
es

th
at

u
se

d
fo

r
to

p-
k

si
m

il
ar

it
y

se
ar

ch
.T

h
e

da
sh

(—
)

in
di

ca
te

s
th

at
th

e
co

rr
es

po
n

di
n

g
al

go
ri

th
m

ca
n

n
ot

fi
n

is
h

th
e

co
m

pu
ta

ti
on

w
it

h
in

a
re

as
on

ab
le

ti
m

e.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:23

Fig. 7. Performance of approximating common neighbors on the Twitter and Mobile networks.

Fig. 8. Performance of mining structural hole spanners on the Twitter and Mobile networks.

8.4.2 Performance of Pantherv .. We consider an application of the top-k structural hole spanner
finding to evaluate the performance of Pantherv . The theory of structural holes [8] suggests that in
social networks, individuals would benefit from filling the “holes” between people or groups that
are otherwise disconnected. The problem of finding top-k structural hole spanners was proposed
in the work of Lou and Tang [36], which also shows that 1% of users who span structural holes
control 25% of the information diffusion (retweeting) in Twitter.

Structural hole spanners are not necessarily connected, but they share the same structural pat-
terns (e.g., local clustering coefficient and centrality). Thus, the idea here is to feed a few seed
users to Pantherv and use it to find other structural hole spanners. For evaluation, we use net-
work constraint [8] to obtain the structural hole spanners in Twitter and Mobile, and use this
as the ground truth. Then we apply different methods—Pantherv , ReFeX, Panther, TopSim, edge
sampling (p = 0.6), and node sampling (q = 0.3)—to retrieve top-k similar users for each seed. If an
algorithm can find another structural hole spanner in the top-k returned results, it makes a correct
search. We defineд(u,v) = 1 if bothu andv are structural hole spanners, andд(u,v) = 0 otherwise.

Figure 8 shows the performance of comparison methods for finding structural hole spanners
in different networks. Pantherv achieves consistently better performance than the comparison
methods by varying the value of k . TopSim, Panther, and the two baseline sampling methods seem

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:24 J. Zhang et al.

inapplicable to this task. This is reasonable, as the underlying principle of them is to find vertices
with more connections to the query vertex.

8.4.3 Performance of Pantherm .. We use the same task and dataset in the work of Chen et al. [9]
to evaluate the efficiency and effectiveness performance of Pantherm . The task is to predict links
between drugs and proteins. In a medical information network, due to the investigation difficulty
and latency in clinical field experiments, few reliable links are constructed, and thus the existing
links in the network are usually quite sparse. For example, the OMIM dataset used in the work of
Natarajan and Dhillon [37] contains 3,209 diseases and 8,755 genes, but only 3,954 gene-disease
associations. Therefore, automatically mining and discovering the potential associations between
medical entities can effectively enrich the links between medical entities and meanwhile provide
a useful hypothesis for new clinical experiments.

Predicting links in a medical information network has been extensively studied. Some research
builds links between two entities two-hops away from each other based on the number of their
common neighbors [17]. Other research work further extends the two-hop away associations to
more distant associations. For example, Chen et al. [9] consider the paths with different lengths
between two entities and restrict the maximal length of paths to 3. However, their method is
inefficient, taking several days to finish on such a dataset.

Setting. We collect the ground truth from the public database PubChem BioAssay,8 which contains
bioactivity screens of chemical substances described in PubChem Substance. For example, there are
active or inactive bioactivities between some drugs and proteins in the database. We first choose the
pairs of drugs and proteins with activity records as candidate links, then treat the active interactive
pairs as positive links and the inactive ones as negative links. Finally, we remove the links existing
in the medical information network. The resulting ground truth contains a total of 36,254 positive
links and 343,043 negative links.

For each drug in the ground truth, we use Pantherm to estimate top-k similar vertices and treat
the links between the drug and its top-k similar proteins as the predicted positive links and others
as negative links. Specifically, we first enumerate all kinds of metapaths with length no longer
than 4. The paths longer than 4 are considered too long to predict significant links. Then for each
drug, we estimate top-k similar vertices following each selected metapath and aggregate the simi-
larities of different metapaths together. Please refer to the work of Chen et al. [9] for details of the
metapaths. We compare to the baseline SLAP [9] and our method Panther.

Results. Figure 9 shows the ROC curves and AUC of comparison methods for predicting links
in a medical information network. In the result, k is set as 500 and error-bound ϵ is set as
1 × 10−4. We see that SLAP performs better than Pantherm . The results are reasonable, because
SLAP is an exact solution, which enumerate all possible paths between two vertices, whereas
Pantherm only samples a subset in the whole path space. However, Pantherm takes only 1 hour,
whereas SLAP takes about 58 hours. Pantherm achieves a more than 50x speedup compared to
SLAP. We also conduct Panther in the network. The results show that Panther performs much
worse than Pantherm , as Panther ignores the type of paths, which may introduce additional
noises.

We then reduce the value of error-bound ϵ to investigate whether the performance of Pantherm

can be improved. The results are shown in Figure 10(a). We see that with the decreasing of the
error bound, the performance of Pantherm approaches that of SLAP. When the error bound is

8http://www.ncbi.nlm.nih.gov/pcassay/.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

http://www.ncbi.nlm.nih.gov/pcassay/

Fast and Flexible Top-k Similarity Search on Large Networks 13:25

Fig. 9. ROC curve and AUC of Pantherm .

Fig. 10. AUC of Pantherm by varying ε (a) and k (b).

reduced to 6 × 10−5, AUC is improved to 0.66, with a time cost of 2.5 hours, which still achieves
20x speedup compared to SLAP.

Furthermore, we change the value of k to see whether the performance is sensitive to k . In
this experiment, we fix ε as 1 × 10−4. Figure 10(b) shows AUC when changing the value of k
from 1 to 1,000. We can see that AUC increases and then becomes stable when k is 500. This
indicates that some positive instances in the ground truth are not ranked quite high in the top
similar list. Thus, more positive instances can be recalled when increasing k . We further study
several vertices ranked before the positive instances in the ground truth. Figure 11 shows a
case study of the paths between protein AURKB and drug 5312137, where AURKB is ranked
46th by our algorithm and is included in the ground truth. Figure 1(b) presents the paths be-
tween protein MET and drug 5312137, where MET is ranked 8th by our algorithm but is not
in the ground truth. We plot the paths with length no longer than 3 from drug 5312137 to
the predicted proteins. The number of paths from drug 5312137 to protein MET is 42, which
is more than the 24 paths from drug 5312137 to protein AURKB. Moreover, from the figure, we

can see that there are three metapaths, Druд
bind−−−−→ Protein

bind−−−−→ Druд
bind−−−−→ Protein, Druд

bind−−−−→

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:26 J. Zhang et al.

Fig. 11. Paths between drug 5312137 and protein AURKB. The vertices in red are source and target vertices.
The prefix “Dr” in the vertex label denotes drug, “Pr” denotes protein, and “Pa” denotes pathway..

Table 3. AUC of Different Metapaths

Metapath AUC

Druд
bind−−−−→ Protein

bind−−−−→ Druд
bind−−−−→ Protein 0.64

Druд
bind−−−−→ Protein

bind−−−−→ GeneOntoloдy
bind−−−−→ Protein 0.57

Druд
bind−−−−→ Protein

bind−−−−→ Protein
bind−−−−→ Protein 0.56

Druд
bind−−−−→ Protein

bind−−−−→ Pathway
bind−−−−→ Protein 0.53

Druд
bind−−−−→ Substructure

bind−−−−→ Druд
bind−−−−→ Protein 0.51

Druд
bind−−−−→ Substructure

bind−−−−→ Druд
bind−−−−→ Protein 0.51

Druд
bind−−−−→ Substructure

bind−−−−→ Druд
bind−−−−→ Protein 0.51

Druд
bind−−−−→ Protein

bind−−−−→ Tissue
bind−−−−→ Protein 0.50

Druд
bind−−−−→ Protein

bind−−−−→ Tissue
bind−−−−→ Protein 0.50

Druд
bind−−−−→ ChemicalOntoloдy

bind−−−−→ Druд
bind−−−−→ Protein 0.50

Protein
bind−−−−→ Protein

bind−−−−→ Protein, and Druд
bind−−−−→ Protein

bind−−−−→ Pathway
bind−−−−→ Protein from

drug 5312137 to protein MET, whereas there is only one metapath, Druд
bind−−−−→ Protein

bind−−−−→
Druд

bind−−−−→ Protein, from drug 5312137 to protein AURKB. The metapaths from drug 5312137 to
protein MET are richer than those to protein AURKB. The results indicate that the proteins ranked
before the positive instances in the ground truth are more closely related to the source drug, al-
though many top-ranked proteins are not included in the ground truth.

Finally, we compare the performance of different metapaths. Specifically, we set ε as 1 × 10−4.
For each metapath, we evaluate its top-k (k = 500) similar vertices based on the ground truth.
Table 3 shows 10 metapath examples, with the evaluated scores of AUC no less than 0.5. We can

see that metapath Druд
bind−−−−→ Protein

bind−−−−→ Druд
bind−−−−→ Protein is the most significant compared

to all other metapaths. The metapath may be explained as a drug can bind to a protein that shares
another compound/drug with another protein. Most of the metapaths are actually insignificant
and can be ignored when predicting links.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:27

Fig. 12. Effect of T on the performance of Panther.

Fig. 13. Effect of D on the performance of Pantherv .

8.5 Parameter Sensitivity Analysis

We now discuss how different parameters influence the accuracy performance of our methods.

Effect of path length T . Figure 12 shows the accuracy performance of Panther evaluated by
common neighbors by varying T as 1, 4, 9, 19 , 49, and 99 (i.e., varying the number vertices in a
path as 2, 5, 10, 20, 50, and 100). A too smallT (<5) would result in inferior performance, and when
increasing its value up to 5, it almost becomes stable.

Effect of vector dimensionD. Figure 13 shows the accuracy performance of Pantherv for mining
structural hole spanners by varying the vector dimension D as 2, 5, 10, 20, 50, and 100. Generally
speaking, the performance gets better when D increases, and it remains the same after D gets
larger than 50. This is reasonable, as Pantherv reflects the distribution of a vertex linking to the
other vertices. Thus, the higher the vector dimension is, the better the representation will be. The
performance will be stable when the dimension exceeds a threshold.

Effect of error-bound ε . Figure 14 shows the accuracy performance of Panther evaluated by
common neighbors and that of Pantherv for mining structural hole spanners on the Tencent net-
works with different scales by varying error-bound ε from 0.06 to 0.0001. We see that when the
ratio |E |

(1/ε)2 ranges from 5 to 20, scores of Panther are almost convergent on all datasets. And when

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:28 J. Zhang et al.

Fig. 14. Effect of ε on the performance of Panther and Pantherv on different sizes of Tencent networks.

the ratio |E |
(1/ε)2 ranges from 0.2 to 5, the scores of Pantherv are almost convergent on all datasets.

Thus, we can reach the conclusion that the value of (1/ε)2 is almost linearly positively correlated
with the number of edges in a network. Therefore, we can empirically set ε =

√
1/|E |.

9 CONCLUSION

In this article, we propose a sampling method to quickly conduct top-k similarity search on large
networks. The algorithm is based on the idea of random path and solving neighborhood similarity
in homogeneous networks. One extended method is to solve neighborhood similarity in hetero-
geneous networks, and another extended method is presented to enhance the structure similarity
when two vertices are completely disconnected. We provide theoretical proofs for the error bound
and confidence of the proposed algorithm. We perform an extensive empirical study and show that
our algorithm can obtain top-k similar vertices for any vertex in a network approximately 300×
faster than state-of-the-art methods. We also build a prototype system of recommending similar
authors to demonstrate the effectiveness of our proposed method.

ACKNOWLEDGMENTS

The authors thank Pei Lee, Laks V. S. Lakshmanan, Jeffrey Xu Yu, Ruoming Jin, Victor E. Lee, Hui
Xiong, Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, and Christos
Faloutsos for sharing codes of the comparison methods. We thank Tina Eliassi-Rad for sharing
the datasets. We thank Gang Fu, Bin Chen, Ying Ding, and Abhik Seal for sharing the
datasets and baseline results. This work was supported by the National Basic Research Pro-
gram of China (2014CB340506, 2014CB340402), the National Natural Science Foundation of China
(61631013,61561130160, 61532021), the National Social Science Foundation of China (13&ZD190),
the National Key Research and Develop Plan (2016YFB1000702), a research fund supported by
MSRA, the Royal Society-Newton Advanced Fellowship Award, the Fundamental Research Funds
for the Central Universities, and the Research Funds of Renmin University of China (15XNLQ06,
17XNLF09).

REFERENCES

[1] Charu C. Aggarwal, Yuchen Zhao, and S. Yu Philip. 2011. Outlier detection in graph streams. In Proceedings of the

2011 ICDE Conference (ICDE’11). 399–409.
[2] Nesreen K. Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014. Graph sample and hold: A framework

for big-graph analytics. In Proceedings of the 2014 KDD Conference (IDD’14). 1446–1455.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

Fast and Flexible Top-k Similarity Search on Large Networks 13:29

[3] Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, and Naonori Ueda. 2011. Fast approximate similarity search based on
degree-reduced neighborhood graphs. In Proceedings of the 2011 KDD Conference (KDD’11). 1055–1063.

[4] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. Vol. 463. ACM, New York, NY.
[5] Vincent D. Blondel, Anahí Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van Dooren. 2004. A measure

of similarity between graph vertices: Applications to synonym extraction and Web searching. SIAM Review 46, 4,
647–666.

[6] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Christian Sohler. 2006.
Counting triangles in data streams. In Proceedings of the 2006 PODS Conference (PODS’06). 253–262.

[7] Ronald S. Burt. 1990. Detecting role equivalence. Social Networks 12, 1, 83–97.
[8] Ronald S. Burt. 2009. Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge, MA.
[9] Bin Chen, Ying Ding, and David J. Wild. 2012. Assessing drug target association using semantic linked data. PLoS

Computational Biology 8, 7, e1002574.
[10] G. Cormode and S. Muthukrishnan. 2005. Space efficient mining of multigraph streams. In Proceedings of the 2005

PODS Conference (PODS’05). 271–282.
[11] Yuxiao Dong, Yang Yang, Jie Tang, Yang Yang, and Nitesh V. Chawla. 2014. Inferring user demographics and social

strategies in mobile social networks. In Proceedings of the 2014 KDD Conference (KDD’14). 15–24.
[12] Nick Duffield, Yunhong Xu, Liangzhen Xia, Nesreen Ahmed, and Minlan Yu. 2017. Stream aggregation through order

samplingarXiv:1703.02693.
[13] William Feller. 2008. An Introduction to Probability Theory and its Applications. Vol. 2. John Wiley & Sons.
[14] Linton C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1, 35–41.
[15] Linton C. Freeman. 1979. Centrality in social networks conceptual clarification. Social Networks 1, 3, 215–239.
[16] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and Makoto Onizuka. 2013. Efficient ad-

hoc search for personalized PageRank. In Proceedings of the 2013 SIGMOD Conference (SIGMOD’13). 445–456.
[17] Kwang-Il Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-László Barabási. 2007. The

human disease network. Proceedings of the National Academy of Sciences of the United States of America 104, 21, 8685–
8690.

[18] Wentao Han, Xiaowei Zhu, Ziyan Zhu, Wenguang Chen, Weimin Zheng, and Jianguo Lu. 2016. A comparative analysis
on Weibo and Twitter. Tsinghua Science and Technology 21, 1, 1–16.

[19] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu, Danai Koutra,
Christos Faloutsos, and Lei Li. 2012. RolX: Structural role extraction and mining in large graphs. In Proceedings of the

2012 KDD Conference (KDD’12). 1231–1239.
[20] Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, and Christos Faloutsos.

2011. It’s who you know: Graph mining using recursive structural features. In Proceedings of the 2011 KDD Conference

(KDD’11). 663–671.
[21] Paul W. Holland and Samuel Leinhardt. 1981. An exponential family of probability distributions for directed graphs.

Journal of the American Statistical Association 76, 373, 33–50.
[22] John Hopcroft, Tiancheng Lou, and Jie Tang. 2011. Who will follow you back? Reciprocal relationship prediction. In

Proceedings of the 2011 CIKM Conference (CIKM’11). 1137–1146.
[23] Paul Jaccard. 1901. Étude comparative de le distribution florale dans une portion de alpes et du jura. Bulletin de la

Société Vaudoise des Sciences Naturelles 37, 547–579.
[24] Glen Jeh and Jennifer Widom. 2002. SimRank: A measure of structural-context similarity. In Proceedings of the 2002

KDD Conference (KDD’02). 538–543.
[25] M. Jha, C. Seshadhri, and A. Pinar. 2013. A space efficient streaming algorithm for triangle counting using the birthday

paradox. In Proceedings of the 2013 KDD Conference (KDD’13). 589–597.
[26] M. Jha, C. Seshadhri, and A. Pinar. 2015. Path sampling: A fast and provable method for estimating 4-vertex subgraph

counts. In Proceedings of the 2015 WWW Conference (WWW’15). 495–505.
[27] Ruoming Jin, Victor E. Lee, and Hui Hong. 2011. Axiomatic ranking of network role similarity. In Proceedings of the

2011 KDD Conference (KDD’11). 922–930.
[28] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. 2004. Efficient sampling algorithm for estimating subgraph

concentrations and detecting network motifs. Bioinformatics 20, 11, 1746–1758.
[29] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 1, 39–43.
[30] M. M. Kessler. 1963. Bibliographic coupling between scientific papers. American Documentation 14, 1, 10–25.
[31] Angelos Kremyzas, Norman Jaklin, and Roland Geraerts. 2016. Towards social behavior in virtual-agent navigation.

Science China Information Sciences 59, 11, 112102.
[32] Mitsuru Kusumoto, Takanori Maehara, and Ken-Ichi Kawarabayashi. 2014. Scalable similarity search for SimRank. In

Proceedings of the 2014 SIGMOD Conference (SIGMOD’14). 325–336.

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

13:30 J. Zhang et al.

[33] Pei Lee, Laks V. S. Lakshmanan, and Jeffrey Xu Yu. 2012. On top-k structural similarity search. In Proceedings of the

2012 ICDE Conference (ICDE’12). 774–785.
[34] E. A. Leicht, P. Holme, and M. E. J. Newman. 2006. Vertex similarity in networks. Physical Review E 73, 2, 026120.
[35] Y. Lim and U. Kang. 2015. Mascot: Memory-efficient and accurate sampling for counting local triangles in graph

streams. In Proceedings of the 2015 SIGKDD Conference (SIGKDD’15). 685–694.
[36] Tiancheng Lou and Jie Tang. 2013. Mining structural hole spanners through information diffusion in social networks.

In Proceedings of the 2013 WWW Conference (WWW’13). 837–848.
[37] Nagarajan Natarajan and Inderjit S. Dhillon. 2014. Inductive matrix completion for predicting gene–disease associa-

tions. Bioinformatics 30, 12, i60–i68.
[38] Mark E. J. Newman. 2006. Finding community structure in networks using the eigenvectors of matrices. Physical

Review E 74, 3, 036104.
[39] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. 2004. Automatic multimedia cross-modal

correlation discovery. In Proceedings of the 2004 KDD Conference (KDD’04). 653–658.
[40] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. 2013. Counting and sampling triangles

from a graph stream. Proceedings of the VLDB Endowment 6, 14, 1870–1881.
[41] Mahmudur Rahman and Mohammad Al Hasan. 2013. Approximate triangle counting algorithms on multi-cores. In

Proceedings of the 2013 IEEE International Conference on Big Data. 127–133.
[42] Mahmudur Rahman, Mansurul Bhuiyan, and Mohammad Al Hasan. 2012. Graft: An approximate graphlet counting

algorithm for large graph analysis. In Proceedings of the 2012 CIKM Conference (CIKM’12). 1467–1471.
[43] Matteo Riondato and Evgenios M. Kornaropoulos. 2014. Fast approximation of betweenness centrality through sam-

pling. In Proceedings of the 2014 WSDM Conference (WSDM’14). 413–422.
[44] Ryan A. Rossi and Nesreen K. Ahmed. 2015. Role discovery in networks. IEEE Transactions on Knowledge and Data

Engineering 27, 4, 1112–1131.
[45] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. 2017. Estimation of graphlet statisticsarXiv:1701.01772.
[46] Purnamrita Sarkar and Andrew W. Moore. 2010. Fast nearest-neighbor search in disk-resident graphs. In Proceedings

of the 2010 KDD Conference (KDD’10). 513–522.
[47] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. 2011. Estimating PageRank on graph streams. Journal of

the ACM 58, 3, 13.
[48] Chuan Shi, Xiangnan Kong, Yue Huang, and Philip S. Yu. 2014. HeteSim: A general framework for relevance measure

in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering 26, 10, 2479–2492.
[49] Henry Small. 1973. Co-citation in the scientific literature: A new measure of the relationship between two documents.

Journal of the American Society for Information Science 24, 4, 265–269.
[50] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. PathSim: Meta path-based top-k similarity

search in heterogeneous information networks. In Proceedings of the 2011 VLDB Conference (VLDB’11). 992–1003.
[51] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. ArnetMiner: Extraction and mining of

academic social networks. In Proceedings of the 2008 KDD Conference (KDD’08). 990–998.
[52] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk with restart and its applications. In

Proceedings of the 2006 ICDM Conference (ICDM’06). 613–622.
[53] Charalampos E. Tsourakakis. 2014. Toward quantifying vertex similarity in networks. Internet Mathematics 10, 3–4,

263–286.
[54] Vladimir N. Vapnik and A. Ya Chervonenkis. 1971. On the uniform convergence of relative frequencies of events to

their probabilities. Theory of Probability and Its Applications 16, 2, 264–280.
[55] Ingo Wald and Vlastimil Havran. 2006. On building fast kd-trees for ray tracing, and on doing that in O(N log N). In

Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing. 61–69.
[56] Sebastian Wernicke. 2006. Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology

and Bioinformatics 3, 4, 347–359.
[57] Yang Yang, Jie Tang, Cane Wing-Ki Leung, Yizhou Sun, Qicong Chen, Juanzi Li, and Qiang Yang. 2014. RAIN: Social

role-aware information diffusion. In Proceedings of the 2014 AAAI Conference (AAAI’14). 367–373.
[58] Xiong Yun, Yangyong Zhu, and S. Yu Philip. 2015. Top-k similarity join in heterogeneous information networks. IEEE

Transactions on Knowledge and Data Engineering 27, 6, 1710–1723.
[59] Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong, Yu Jing, and Juanzi Li. 2015. Panther: Fast top-k similarity search

on large networks. In Proceedings of the 2015 KDD Conference (KDD’15). 1445–1454.

Received August 2016; revised March 2017; accepted March 2017

ACM Transactions on Information Systems, Vol. 36, No. 2, Article 13. Publication date: August 2017.

