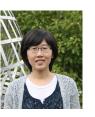
Random Initialization and Implicit Regularization in Nonconvex Statistical Estimation

Cong Ma
ORFE, Princeton University

Yuxin Chen Princeton EE

Kaizheng Wang Princeton ORFE



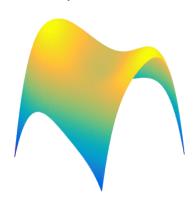
Yuejie Chi CMU ECE

Jianqing Fan Princeton ORFE

Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

 $\mathsf{minimize}_{m{x}} \qquad f(m{x};m{y}) \quad o \quad \mathsf{loss} \; \mathsf{function} \; \mathsf{may} \; \mathsf{be} \; \mathsf{nonconvex}$

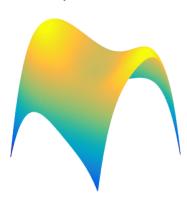


Nonconvex estimation problems are everywhere

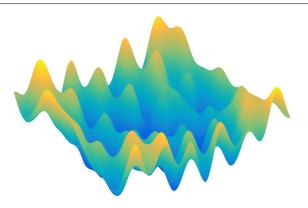
Empirical risk minimization is usually nonconvex

$$\mathsf{minimize}_{m{x}} \qquad f(m{x};m{y}) \quad o \quad \mathsf{loss} \; \mathsf{function} \; \mathsf{may} \; \mathsf{be} \; \mathsf{nonconvex}$$

- low-rank matrix completion
- blind deconvolution
- dictionary learning
- mixture models
- deep learning
- ...



Nonconvex optimization may be super scary



There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)

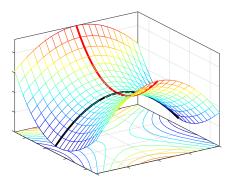
Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

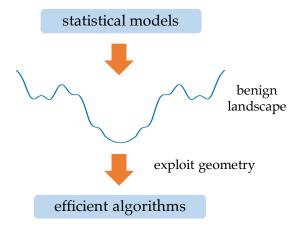
e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)

... but is sometimes much nicer than we think

Under certain statistical models, we see benign global geometry: no spurious local optima



... but is sometimes much nicer than we think



Even simplest possible nonconvex methods might be remarkably efficient under suitable statistical models

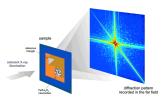
This talk: a case study — phase retrieval

Missing phase problem

Detectors record intensities of diffracted rays

• electric field $x(t_1,t_2) \longrightarrow \text{Fourier transform } \widehat{x}(f_1,f_2)$

Fig credit: Stanford SLAC



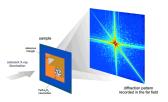
intensity of electrical field:
$$\left|\widehat{x}(f_1,f_2)\right|^2 = \left|\int x(t_1,t_2)e^{-i2\pi(f_1t_1+f_2t_2)}\mathrm{d}t_1\mathrm{d}t_2\right|^2$$

Missing phase problem

Detectors record intensities of diffracted rays

• electric field $x(t_1,t_2) \longrightarrow \text{Fourier transform } \widehat{x}(f_1,f_2)$

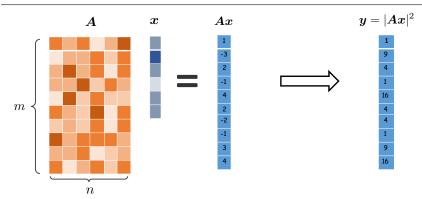
Fig credit: Stanford SLAC



intensity of electrical field:
$$\left|\widehat{x}(f_1, f_2)\right|^2 = \left|\int x(t_1, t_2)e^{-i2\pi(f_1t_1+f_2t_2)}\mathrm{d}t_1\mathrm{d}t_2\right|^2$$

Phase retrieval: recover signal $x(t_1, t_2)$ from intensity $|\hat{x}(f_1, f_2)|^2$

Solving quadratic systems of equations



Recover $oldsymbol{x}^{
atural} \in \mathbb{R}^n$ from m random quadratic measurements

$$y_k = \|m{a}_k^ op m{x}^
atural^2, \qquad k=1,\ldots,m$$
 assume w.l.o.g. $\|m{x}^
atural\|_2 = 1$

A natural least squares formulation

given:
$$y_k = |\boldsymbol{a}_k^{ op} \boldsymbol{x}^{\natural}|^2, \quad 1 \leq k \leq m$$

$$\Downarrow$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^{ op} \boldsymbol{x} \right)^2 - y_k \right]^2$$

A natural least squares formulation

given:
$$y_k = |\boldsymbol{a}_k^{ op} \boldsymbol{x}^{\natural}|^2, \quad 1 \leq k \leq m$$

$$\Downarrow$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^{ op} \boldsymbol{x} \right)^2 - y_k \right]^2$$

• pros: often exact as long as sample size is sufficiently large

A natural least squares formulation

given:
$$y_k = |\boldsymbol{a}_k^{ op} \boldsymbol{x}^{\natural}|^2, \quad 1 \leq k \leq m$$

$$\Downarrow$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^{ op} \boldsymbol{x} \right)^2 - y_k \right]^2$$

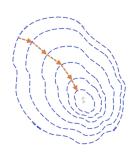
- pros: often exact as long as sample size is sufficiently large
- ullet cons: $f(\cdot)$ is highly nonconvex \longrightarrow computationally challenging!

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\mathsf{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

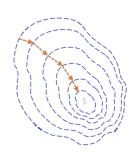
$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^{m} \left[\left(\boldsymbol{a}_k^{\top} \boldsymbol{x} \right)^2 - y_k \right]^2$$



ullet spectral initialization: $x^0 \leftarrow {\sf leading}$ eigenvector of certain data matrix

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

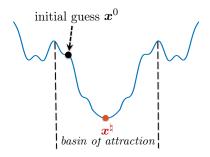
$$\mathrm{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{k=1}^{m} \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$



- ullet spectral initialization: $x^0 \leftarrow ext{leading}$ eigenvector of certain data matrix
- gradient descent:

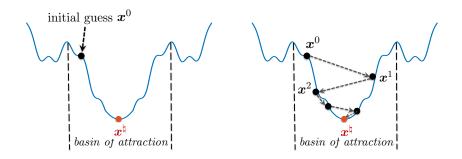
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \, \nabla f(\boldsymbol{x}^t), \qquad t = 0, 1, \cdots$$

Rationale of two-stage approach



1. find an initial point within a local basin sufficiently close to x^{\natural}

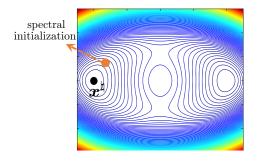
Rationale of two-stage approach



- 1. find an initial point within a local basin sufficiently close to $x^{
 atural}$
- 2. careful iterative refinement without leaving this local basin

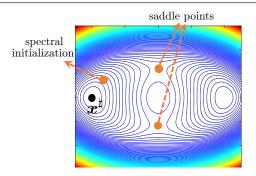
Is carefully-designed initialization necessary for fast convergence?

Initialization



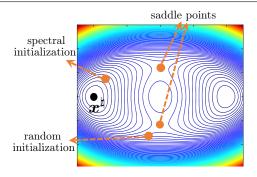
• spectral initialization gets us reasonably close to truth

Initialization



- spectral initialization gets us reasonably close to truth
- cannot initialize GD from anywhere, e.g. it might get stucked at local stationary points (e.g. saddle points)

Initialization

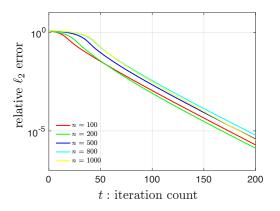


- spectral initialization gets us reasonably close to truth
- cannot initialize GD from anywhere, e.g. it might get stucked at local stationary points (e.g. saddle points)

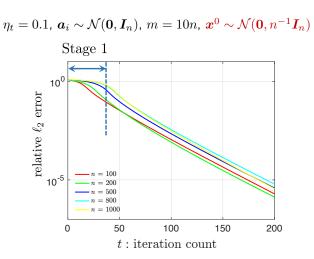
Can we initialize GD randomly, which is simpler and model-agnostic?

Numerical efficiency of randomly initialized GD

$$\eta_t = 0.1, \ a_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \ m = 10n, \ \mathbf{x}^0 \sim \mathcal{N}(\mathbf{0}, n^{-1}\mathbf{I}_n)$$

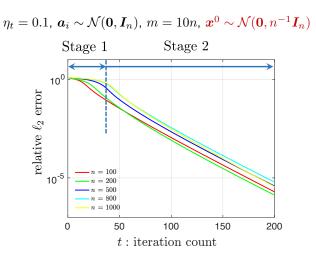


Numerical efficiency of randomly initialized GD



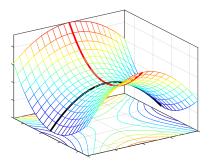
Randomly initialized GD enters local basin within a few iterations

Numerical efficiency of randomly initialized GD



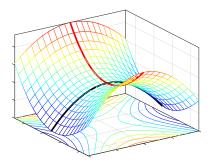
Randomly initialized GD enters local basin within a few iterations

What does prior theory say?



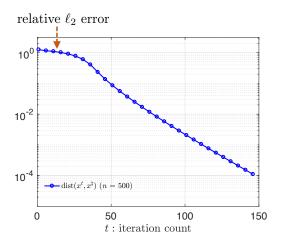
• no spurious local mins (Sun et al. '16)

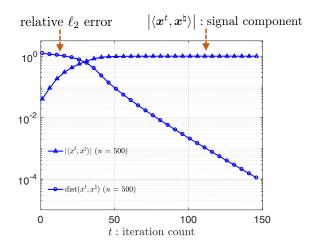
What does prior theory say?

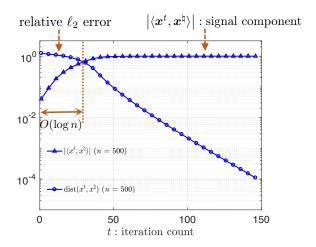


- no spurious local mins (Sun et al. '16)
- GD with random initialization converges to global min almost surely (Lee et al. '16)

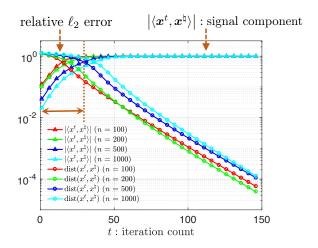
No convergence rate guarantees for vanilla GD!





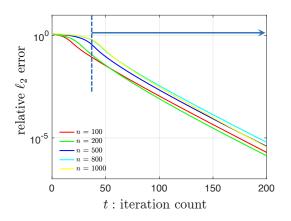


Numerically, $O(\log n)$ iterations are enough to enter local region

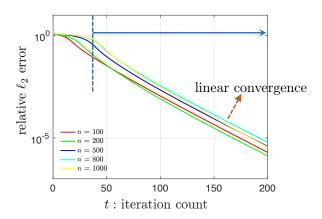


Numerically, $O(\log n)$ iterations are enough to enter local region

Linear / geometric convergence in Stage 2



Linear / geometric convergence in Stage 2



Numerically, GD converges linearly within local region

Experiments on images

- coded diffraction patterns
- $\boldsymbol{x}^{\natural} \in \mathbb{R}^{256 \times 256}$
- m/n = 12

GD with random initialization

$$oldsymbol{x}^t$$
 GD iterate

$$\langle oldsymbol{x}^t, oldsymbol{x}^{
atural}
angle oldsymbol{x}^{
atural}$$
 signal component

$$oldsymbol{x}^t - \langle oldsymbol{x}^t, oldsymbol{x}^
atural}{\mathsf{perpendicular}}$$
 perpendicular component

use Adobe to view the animation

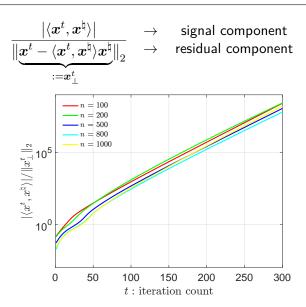
Exponential growth of "signal-to-noise" ratio

 $oxed{\left|\left\langle oldsymbol{x}^t,oldsymbol{x}^{
atural}
ight
angle}
ightarrow
ight.}
ightarrow
ight. ext{signal component}$

Exponential growth of "signal-to-noise" ratio

$$\frac{\left\| \langle \boldsymbol{x}^t, \boldsymbol{x}^{\natural} \rangle \right\|}{\left\| \underbrace{\boldsymbol{x}^t - \langle \boldsymbol{x}^t, \boldsymbol{x}^{\natural} \rangle \boldsymbol{x}^{\natural}}_{:=\boldsymbol{x}_{\perp}^t} \right\|_2} \quad \xrightarrow{\text{signal component}} \quad \text{residual component}$$

Exponential growth of "signal-to-noise" ratio



These numerical findings can be formalized when $oldsymbol{a}_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(oldsymbol{0}, oldsymbol{I}_n)$:

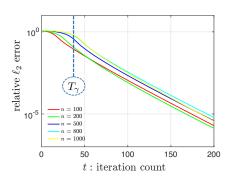
Theorem 1 (Chen, Chi, Fan, Ma'18)

Under i.i.d. Gaussian design, GD with $x^0 \sim \mathcal{N}(\mathbf{0}, n^{-1}\mathbf{I}_n)$ achieves

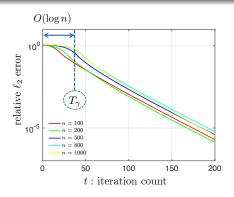
$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \qquad t \geq T_{\gamma}$$

for $T_{\gamma} \lesssim \log n$ and some constants $\gamma, \rho > 0$, provided that step size $\eta \asymp 1$ and sample size $m \gtrsim n$ poly $\log m$

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$

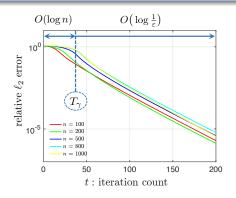


$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$



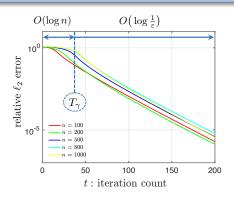
• Stage 1: takes $O(\log n)$ iterations to reach $\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\natural) \leq \gamma$

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$



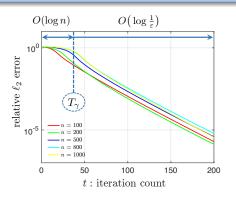
- Stage 1: takes $O(\log n)$ iterations to reach $\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma$
- Stage 2: linear convergence

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$



- near-optimal compututational cost:
 - $O(\log n + \log \frac{1}{\varepsilon})$ iterations to yield ε accuracy

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$



- near-optimal compututational cost:
 - $O(\log n + \log \frac{1}{\varepsilon})$ iterations to yield ε accuracy
- near-optimal sample size: $m \gtrsim n$ poly $\log m$

Comparison with prior theory

Iteration complexity:

	prior theory	our theory
Stage 1:	almost surely	$O(\log n)$
random init $ ightarrow$ local region	(Lee et al. '16)	
Stage 2:		
local refinement		

Comparison with prior theory

Iteration complexity:

	prior theory	our theory
Stage 1:	almost surely	$O(\log n)$
random init $ ightarrow$ local region	(Lee et al. '16)	
Stage 2:	$O(rac{n}{n}\lograc{1}{arepsilon})$ (Candes et al. '14)	$O(\log \frac{1}{\varepsilon})$
local refinement	(Candes et al. '14)	$O(\log \frac{1}{\varepsilon})$

Stage 1: random initialization \rightarrow local region

What if we have infinite samples?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

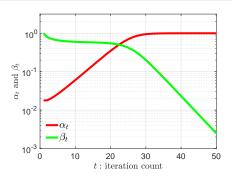
Population level (infinite samples)

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla F(\boldsymbol{x}^t),$$

where

$$\nabla F(\boldsymbol{x}) := \mathbb{E}[\nabla f(\boldsymbol{x})] = (3\|\boldsymbol{x}\|_2^2 - 1)\boldsymbol{x} - 2(\boldsymbol{x}^{\natural \top}\boldsymbol{x})\boldsymbol{x}^{\natural}$$

Population-level state evolution



Let
$$\alpha_t := \underbrace{\left| \langle \boldsymbol{x}^t, \boldsymbol{x}^{\natural} \rangle \right|}_{\text{signal strength}} \ \ \text{and} \ \ \beta_t = \underbrace{\left\| \boldsymbol{x}^t - \langle \boldsymbol{x}^t, \boldsymbol{x}^{\natural} \rangle \boldsymbol{x}^{\natural} \right\|_2}_{\text{size of residual component}}$$
, then

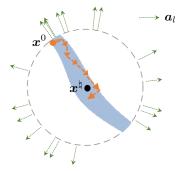
$$\alpha_{t+1} = \{1 + 3\eta[1 - (\alpha_t^2 + \beta_t^2)]\}\alpha_t$$
$$\beta_{t+1} = \{1 + \eta[1 - 3(\alpha_t^2 + \beta_t^2)]\}\beta_t$$

2-parameter dynamics

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t)$$

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t) = \boldsymbol{x}^t - \eta \nabla F(\boldsymbol{x}^t) - \eta \underbrace{\left(\nabla f(\boldsymbol{x}^t) - \nabla F(\boldsymbol{x}^t)\right)}_{:=\boldsymbol{r}(\boldsymbol{x}^t)}$$

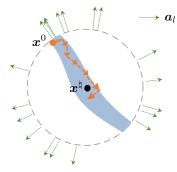
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t) = \boldsymbol{x}^t - \eta \nabla F(\boldsymbol{x}^t) - \eta \underbrace{\left(\nabla f(\boldsymbol{x}^t) - \nabla F(\boldsymbol{x}^t)\right)}_{:=\boldsymbol{r}(\boldsymbol{x}^t)}$$



a region with well-controlled $oldsymbol{r}(oldsymbol{x})$

• population-level analysis holds approximately if $r({m x}^t) \ll {m x}^t - \eta \nabla F({m x}^t)$

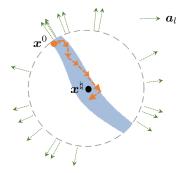
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t) = \boldsymbol{x}^t - \eta \nabla F(\boldsymbol{x}^t) - \eta \underbrace{\left(\nabla f(\boldsymbol{x}^t) - \nabla F(\boldsymbol{x}^t)\right)}_{:=\boldsymbol{r}(\boldsymbol{x}^t)}$$



a region with well-controlled $m{r}(m{x})$

- population-level analysis holds approximately if ${m r}({m x}^t) \ll {m x}^t \eta \nabla F({m x}^t)$
- $oldsymbol{r}(oldsymbol{x}^t)$ is well-controlled if $oldsymbol{x}^t$ is independent of $\{oldsymbol{a}_k\}$

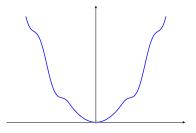
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t) = \boldsymbol{x}^t - \eta \nabla F(\boldsymbol{x}^t) - \eta \underbrace{\left(\nabla f(\boldsymbol{x}^t) - \nabla F(\boldsymbol{x}^t)\right)}_{:=\boldsymbol{r}(\boldsymbol{x}^t)}$$



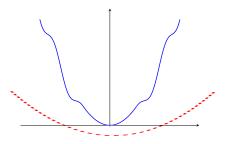
a region with well-controlled $m{r}(m{x})$

- population-level analysis holds approximately if ${m r}({m x}^t) \ll {m x}^t \eta \nabla F({m x}^t)$
- $oldsymbol{\cdot} oldsymbol{r}(oldsymbol{x}^t)$ is well-controlled if $oldsymbol{x}^t$ is independent of $\{oldsymbol{a}_k\}$
- ullet key analysis ingredient: show $oldsymbol{x}^t$ is "nearly-independent" of each $oldsymbol{a}_k$

Stage 2: local refinement

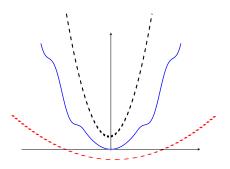


Two standard conditions that enable geometric convergence of GD



Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)



Two standard conditions that enable geometric convergence of GD

- (local) restricted strong convexity (or regularity condition)
- (local) smoothness

$$abla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 and is well-conditioned

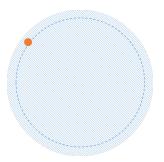
f is said to be lpha-strongly convex and eta-smooth if

$$\mathbf{0} \leq \alpha \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq \beta \mathbf{I}, \quad \forall \mathbf{x}$$

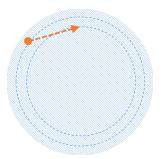
 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

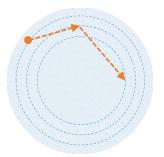
$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \leq (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



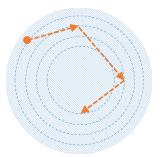
$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le (1 - \alpha/\beta) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$



$$\mathbf{0} \ \preceq \ \alpha \mathbf{I} \ \preceq \ \nabla^2 f(\mathbf{x}) \ \preceq \ \beta \mathbf{I}, \qquad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

• Condition number β/α determines rate of convergence

$$\mathbf{0} \ \leq \ \alpha \mathbf{I} \ \leq \ \nabla^2 f(\mathbf{x}) \ \leq \ \beta \mathbf{I}, \qquad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \leq \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

- Condition number β/α determines rate of convergence
- Attains ε -accuracy within $O(\frac{\beta}{\alpha}\log\frac{1}{\varepsilon})$ iterations

Gaussian designs: $a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

Population level (infinite samples)

$$\mathbb{E}\left[\nabla^2 f(\boldsymbol{x})\right] = \underbrace{3\left(\left\|\boldsymbol{x}\right\|_2^2 \boldsymbol{I} + 2\boldsymbol{x}\boldsymbol{x}^\top\right) - \left(\left\|\boldsymbol{x}^{\natural}\right\|_2^2 \boldsymbol{I} + 2\boldsymbol{x}^{\natural}\boldsymbol{x}^{\natural\top}\right)}_{\text{locally positive definite and well-conditioned}}$$

Consequence: Given good initialization, WF converges within $O(\log \frac{1}{\epsilon})$ iterations if $m \to \infty$

Gaussian designs:
$$a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs:
$$a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

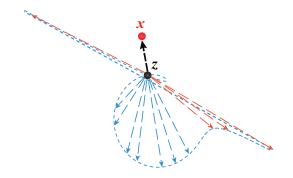
$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

Too slow ... can we accelerate it?

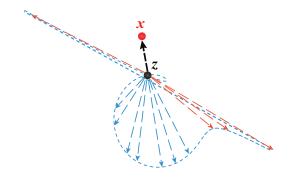
Improvement: truncated WF (Chen, Candès '15)

Regularize / trim gradient components to accelerate convergence



Improvement: truncated WF (Chen, Candès '15)

Regularize / trim gradient components to accelerate convergence



But it still needs certain spectral initialization ...

WF converges in O(n) iterations

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by generic optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?

Which region enjoys both strong convexity and smoothness?

$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[3 oldsymbol{(a_k^ op oldsymbol{x})}^2 - oldsymbol{(a_k^ op oldsymbol{x})}^2
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

Which region enjoys both strong convexity and smoothness?

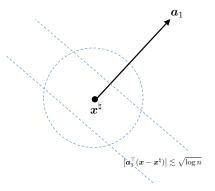
$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[3 (oldsymbol{a}_k^ op oldsymbol{x})^2 - (oldsymbol{a}_k^ op oldsymbol{x}^\dagger)^2
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

ullet Not smooth if $oldsymbol{x}$ and $oldsymbol{a}_k$ are too close (coherent)

Which region enjoys both strong convexity and smoothness?

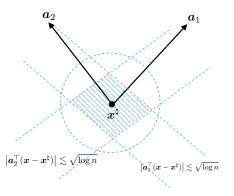
ullet x is not far away from $x^{
atural}$

Which region enjoys both strong convexity and smoothness?

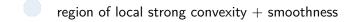


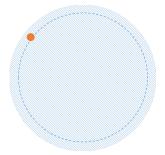
- ullet x is not far away from $x^{
 atural}$
- x is incoherent w.r.t. sampling vectors (incoherence region)

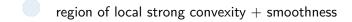
Which region enjoys both strong convexity and smoothness?

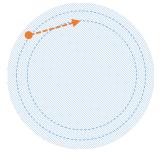


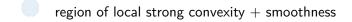
- ullet x is not far away from $x^{
 atural}$
- x is incoherent w.r.t. sampling vectors (incoherence region)

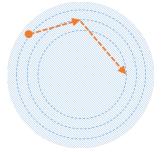


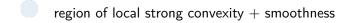


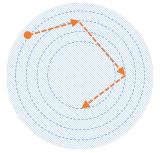


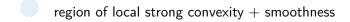


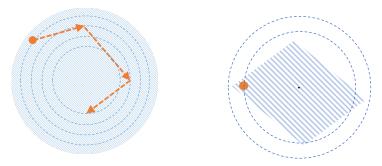


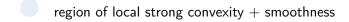


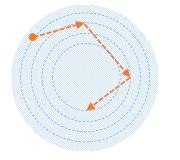


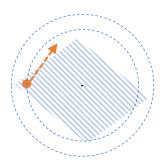


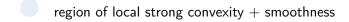


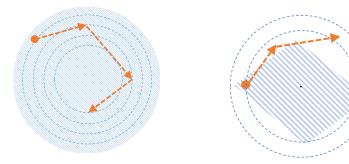


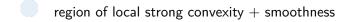


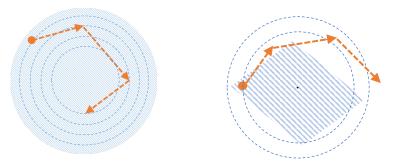


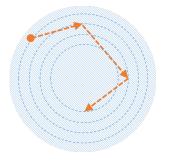


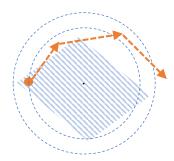




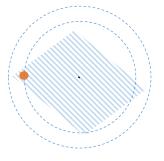


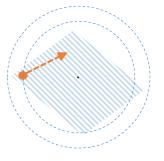


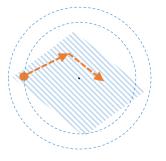


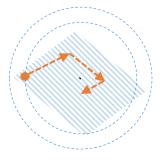


- ullet Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
- Prior theory enforces regularization to promote incoherence

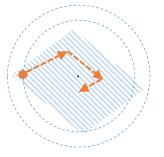








region of local strong convexity + smoothness



GD implicitly forces iterates to remain incoherent

Theoretical guarantees for Stage 2

Theorem 2 (Phase retrieval)

Under i.i.d. Gaussian design, GD with random initialization achieves for $t \geq T_{\gamma} + 1$

 $ullet \max_k ig| oldsymbol{a}_k^ op (oldsymbol{x}^t - oldsymbol{x}^ au) ig| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^ au\|_2 \quad ext{(incoherence)}$

Theoretical guarantees for Stage 2

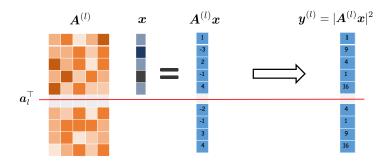
Theorem 2 (Phase retrieval)

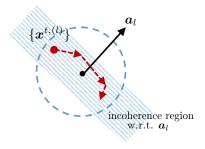
Under i.i.d. Gaussian design, GD with random initialization achieves for $t \geq T_{\gamma} + 1$

- $\max_k |\boldsymbol{a}_k^{ op}(\boldsymbol{x}^t \boldsymbol{x}^{
 atural})| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{
 atural}\|_2$ (incoherence)
- $\operatorname{dist}({m x}^t,{m x}^{
 atural}) \lesssim (1-\frac{\eta}{2})^{t-T_{\gamma}} \cdot \gamma \|{m x}^{
 atural}\|_2$ (linear convergence)

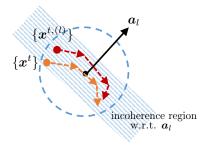
provided that step size $\eta \approx c$ and sample size $m \gtrsim n$ poly $\log m$.

For each $1 \leq l \leq m$, introduce leave-one-out iterates $\boldsymbol{x}^{t,(l)}$ by dropping lth measurement

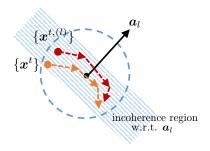




ullet Leave-one-out iterates $\{m{x}^{t,(l)}\}$ are independent of $m{a}_l$, and are hence **incoherent** w.r.t. $m{a}_l$ with high prob.



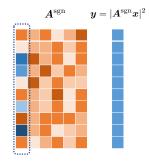
- Leave-one-out iterates $\{x^{t,(l)}\}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.
- ullet Leave-one-out iterates $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterates $oldsymbol{x}^t$



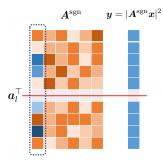
- Leave-one-out iterates $\{x^{t,(l)}\}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.
- ullet Leave-one-out iterates $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterates $oldsymbol{x}^t$

$$\bullet \ \left| \boldsymbol{a}_l^\top (\boldsymbol{x}^t - \boldsymbol{x}^\natural) \right| \leq \left| \boldsymbol{a}_l^\top (\boldsymbol{x}^{t,(l)} - \boldsymbol{x}^\natural) \right| + \left| \boldsymbol{a}_l^\top (\boldsymbol{x}^t - \boldsymbol{x}^{t,(l)}) \right|$$

Other leave-one-out sequences

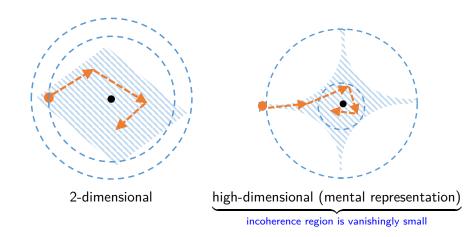


 $oldsymbol{x}^{t, \mathsf{sgn}}$: indep. of sign info of $\{a_{i,1}\}$

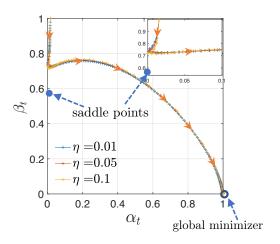


 $oldsymbol{x}^{t, \mathsf{sgn}, (l)} \colon$ indep. of both sign info of $\{a_{i,1}\}$ and $oldsymbol{a}_l$

Incoherence region in high dimensions



Saddle-escaping schemes?



Randomly initialized GD never hits saddle points in phase retrieval!

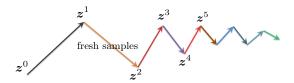
Other saddle-escaping schemes

	iteration complexity	num of iterations needed to escape saddles	local iteration complexity
Trust-region (Sun et al. '16)	$n^7 + \log \log \frac{1}{\varepsilon}$	n^7	$\log \log \frac{1}{\varepsilon}$
Perturbed GD (Jin et al. '17)	$n^3 + n \log \frac{1}{\varepsilon}$	n^3	$n\log\frac{1}{\varepsilon}$
Perturbed accelerated GD	$n^{2.5} + \sqrt{n} \log \frac{1}{\varepsilon}$	$n^{2.5}$	$\sqrt{n}\log\frac{1}{\varepsilon}$
(Jin et al. '17) GD (ours) (Chen et al. '18)	$\log n + \log \frac{1}{\varepsilon}$	$\log n$	$\log \frac{1}{\varepsilon}$

Generic optimization theory yields highly suboptimal convergence guarantees

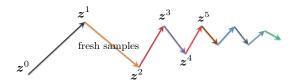
No need of sample splitting

• Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis

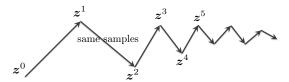


No need of sample splitting

• Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis



• This work: reuses all samples in all iterations



Summary

- Blessings of statistical models: GD with random initialization converges fast
- Implict regularization: vanilla gradient descent automatically foces iterates to stay *incoherent*

Paper:

"Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion, and blind deconvolution", Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467

"Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval", Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma arXiv:XXXXXX