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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;  f(x;y) — loss function may be nonconvex
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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize,  f(xz;y) — loss function may be nonconvex

low-rank matrix completion

blind deconvolution

dictionary learning

e mixture models

deep learning
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Nonconvex optimization may be super scary

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima)

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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. but is sometimes much nicer than we think

Under certain statistical models,
we see benign global geometry: no spurious local optima
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... but is sometimes much nicer than we think

statistical models

benign
landscape

exploit geometry

efficient algorithms



This talk: a case study — phase retrieval



Missing phase problem

Detectors record intensities of diffracted rays
e electric field x(¢1,t2) — Fourier transform Z( f1, f2)

Fig credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)eﬂz“(fltl+f2t2)dt1dt2
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Missing phase problem

Detectors record intensities of diffracted rays
e electric field x(¢1,t2) — Fourier transform Z( f1, f2)

Fig credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)e*ﬁ“(fltl+f2t2)dt1dt2’

Phase retrieval: recover signal z(t1,t2) from intensity |Z(f1, f2)|2 J
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Solving quadratic systems of equations
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Recover z € R” from m random quadratic measurements
T.512
Y = |akmb|, k=1,....m

assume w.l.o.g. ||x?||y = 1
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A natural least squares formulation

1 & 2
minimizezcgrn — Z { — yk}
4m
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A natural least squares formulation

L 1 & 2
minimizegcrn - Z { - yk}
dm =

e pros: often exact as long as sample size is sufficiently large
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A natural least squares formulation

L 1 & 2
minimizegcrn - Z { - yk}
dm =

e pros: often exact as long as sample size is sufficiently large

e cons: f(-) is highly nonconvex
— computationally challenging!
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

m 2
minimize, Z [ aka: — yk}

1
dm =
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

1 & 2
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

minimize,
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e spectral initialization: ° < leading

eigenvector of certain data matrix
e gradient descent:

! =t — nVf(xh), t=0,1,---

11/ 48



Rationale of two-stage approach

0

initial guess

basin of attraction

1. find an initial point within a local basin sufficiently close to "
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Rationale of two-stage approach

0

initial guess
1

~.
~—
>

basin of attraction basin of attraction

1. find an initial point within a local basin sufficiently close to "

2. careful iterative refinement without leaving this local basin
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Is carefully-designed initialization necessary
for fast convergence?



Initialization

spectral
initialization|

e spectral initialization gets us reasonably close to truth
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Initialization

saddle points

spectral
initialization|

e spectral initialization gets us reasonably close to truth

e cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)
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Initialization

saddle points

spectral
initialization|

initialization

e spectral initialization gets us reasonably close to truth

e cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)

Can we initialize GD randomly, which is simpler and model-agnostic? J
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Numerical efficiency of randomly initialized GD

ny = 0.1, a; ~ N(0,1I,,), m = 10n, z° ~ N (0,n"'1,)

” \

relative ¢y error

——n =100
105t n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count
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Numerical efficiency of randomly initialized GD

m =0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"'1,)
Stage 1

100~

W)

relative ¢y error

——n =100
105t n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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Numerical efficiency of randomly initialized GD

m =0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"'1,)
Stage 1 Stage 2
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——n =100
105t n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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What does prior theory say?

e no spurious local mins (Sun et al. '16)
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What does prior theory say?

e no spurious local mins (Sun et al. '16)

e GD with random initialization converges to global min almost
surely (Lee et al.'16)

No convergence rate guarantees for vanilla GD!
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Exponential growth of signal strength in Stage 1

relative /5 error
1

o/
100 P o=
1072
104 ¢
—o—dist(z!, %) (n = 500)

0 50 100 150
t : iteration count
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Exponential growth of signal strength in Stage 1

relative /5 error
1

100 F22e

|(x!, mh>| : signal component
1

v ‘ v

—a—|(z!, 2% (n = 500)

—e—dist(z',2%) (n = 500)

0 50 100

t : iteration count

150
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Exponential growth of signal strength in Stage 1

relative £y error |(x!, m“>| : signal component
1 1
1 1

Y

1007 D4

1070 @1og ny

—a—|(z!, 2% (n = 500)

—e—dist(z', 2%) (n = 500)

0 50 100 150
t : iteration count

Numerically, O(logn) iterations are enough to enter local region

J
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Exponential growth of signal strength in Stage 1

relative £5 error |(x!, m“>| : signal component
1 1

b —o—dist(z!, 2% (n = 200)
—o—dist(z, 2%) (n = 500)
dist(z', 2% (n = 1000)

0 50 100 150
t : iteration count

Numerically, O(logn) iterations are enough to enter local region J
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Linear / geometric convergence in Stage 2
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t : iteration count
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Linear / geometric convergence in Stage 2

A

linear (;onvergence

relative ¢y error

5 n = 100
107 [ —n =200
—n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

Numerically, GD converges linearly within local region
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Experiments on images

e coded diffraction patterns
o xi ¢ R256x256

o m/n =12
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GD with random initialization

T (xt, 2" 2" xt — (xt, )"
GD iterate signal component perpendicular component

use Adobe to view the animation
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Exponential growth of “signal-to-noise” ratio

[(xt, z7)]| —  signal component
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Exponential growth of “signal-to-noise” ratio

(!, :c”>| —  signal component
b (ot o) h” —  residual component

=" —

—mpt
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Exponential growth of “signal-to-noise” ratio

|<$t $h>| —  signal component
|2t — (2!, x") h” —  residual component
—mt
.—ml_
n = 100
n = 200
—n = 500
n = 800
o n = 1000
—=10°t Z ]
B
=~
&
5 ,
100,

0 50 100 150 200 250 300
t : iteration count
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Theoretical guarantees

These numerical findings can be formalized when a; "<

N(0,I,,):

Theorem 1 (Chen, Chi, Fan, Ma’18)

Under i.i.d. Gaussian design, GD with " ~ N'(0,n~1I,,) achieves
dist(z’,2%) < y(1 - p) (|2, ¢t >T,

for T’y < logn and some constants -y, p > 0, provided that step size
n =< 1 and sample size m 2 n polylogm
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Theoretical guarantees

dist(z!, 2%) < y(1 — p) D ||&f||a, t > T, <logn J

relative ¢y error

n = 1000

0 50 100 150 200
t : iteration count
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Theoretical guarantees

dist(at, %) < y(1 — p)t D |j&f||a, t > T, =logn |

O(logn)

100\

relative ¢y error

n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(x!, x%) < v
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Theoretical guarantees

dist(at, %) < y(1 — p) =D ||&f||a, ¢ > T, <logn |
O(logn) O(log 1)
100
S
&
T 08t

n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(x!, x%) < v
e Stage 2: linear convergence
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Theoretical guarantees

dist(z!, 2%) < y(1 — p) D ||&f||a, t > T, <logn J
O(logn) O(log 1)
100
g
£
&
T 10°

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
1\ - . .
— O(logn + log g) iterations to yield € accuracy
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Theoretical guarantees

dist(z!, 2%) < y(1 — p) D ||&f||a, t > T, <logn |
O(logn) O(log 1)
100
S
&
T 10°

n = 1000

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
1N - . .
— O(logn + log g) iterations to yield € accuracy

e near-optimal sample size: m 2 npoly logm
23/ 48



Comparison with prior theory

Iteration complexity:

prior theory our theory
.S.tage 1: . almost su’rely O(log n)
random init — local region (Lee et al. '16)
Stage 2:

local refinement
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Comparison with prior theory

Iteration complexity:

prior theory our theory
.S.tage 1: . almost su’rely O(log n)
random init — local region (Lee et al. '16)
Stage 2: O(nlog?) 1
local refinement O(log g)

(Candes et al. '14)
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Stage 1: random initialization — local region



What if we have infinite samples?

Gaussian designs: ay N N, I,), 1<k<m
Population level (infinite samples)
! = ! — nVF(x!),
where

VF(z) :=E[Vf(z)] = B|[} - Dz - 2(* z)2*
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Population-level state evolution

10%¢ o —
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0 10 20 30 40 50
t @ iteration count
Let ap := [(x!,&")| and B; = |z' — (&', 2%)x"||s , then
——

signal strength size of residual component

apr1 = {14 3n[L — (o + B7)] o .
9 9 2-parameter dynamics
Bt+1 = {1 +n[l = 3(ay + B )]}ﬁt
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Back to finite-sample analysis

thrl — mt _ ﬁVf(iL't)
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Back to finite-sample analysis

et = 2! — V(') = 2! — VF(2!) — n(Vf(z') — VF ("))

=r(xt)
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Back to finite-sample analysis

et = 2! — V(') = 2! — VF(2!) — n(Vf(z') — VF ("))

i=r(x)
A/’A ,,,,,, > a
- . e population-level analysis holds
/ approximately if r(z') < ! — nVF(z!)
‘ z'e [

¥y

a region with well-controlled
r(x)
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Back to finite-sample analysis

et = 2! — V(') = 2! — VF(2!) — n(Vf(z') — VF ("))

=r(xt)
AA 777777 . a
' e population-level analysis holds
approximately if r(z') < ! — nVF(z!)
‘ z'e J o r(x!) is well-controlled if ! is
“A S independent of {a;}

¥y

a region with well-controlled
r(x)
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Back to finite-sample analysis

it = gl — VU f(z') = 2’ — VF(2') — n(V (') — VF(a"))

=r(xt)
AA 777777 . a
' e population-level analysis holds
S approximately if r(x!) < ' — nVF(z?!)
‘e J o r(x!) is well-controlled if ! is
“ S independent of {a}
- »,,f’,,',f el B ¢ key analysis ingredient: show z! is
" “nearly-independent” of each ay,

a region with well-controlled
r(x)
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Stage 2: local refinement



Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)
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Gradient descent theory revisited

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)

e (local) smoothness
V2f(z) = 0 and is well-conditioned
30/ 48



Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V%f(x) < BI, Va
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Gradient descent theory revisited

lz"*! — @il < (1 —a/B) &' —afla |

region of local strong convexity 4+ smoothness
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Gradient descent theory revisited

lz"*! — @il < (1 —a/B) &' —afla |

region of local strong convexity 4+ smoothness
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Gradient descent theory revisited

0 < ol = V3f(x) < BI, Ve

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

0 < ol < V3f(x) =< BI, Va

{5 error contraction: GD with n = 1//3 obeys

«
o~ ol < (1- 5 ) o' 2l

e Condition number 3/« determines rate of convergence

e Attains s-accuracy within O(Z log 1) iterations

33/ 48



What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Population level (infinite samples)

E[VQf(w)] =3 (HngI + 2$$T) — (kuH;I—F 2:8%“)

locally positive definite and well-conditioned

Consequence: Given good initialization, WF converges within
O(log 1) iterations if m — oo \
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

Vif(x) =0
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candeés et al '14): WEF attains e-accuracy within
O(nlog 1) iterations if m < nlogn
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What does this optimization theory say about WF?

Gaussian designs: aj, iLd. N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candeés et al '14): WEF attains e-accuracy within
O(nlog 1) iterations if m < nlogn

Too slow ... can we accelerate it?

34/ 48



Improvement: truncated WF (Chen, Candes '15)

Regularize / trim gradient components to accelerate convergence
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Improvement: truncated WF (Chen, Candes '15)

Regularize / trim gradient components to accelerate convergence

But it still needs certain spectral initialization ...

35/ 48



Recall

WEF converges in O(n) iterations
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Recall

WEF converges in O(n) iterations

i}

Step size taken to be 7, = O(1/n)
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Recall

WEF converges in O(n) iterations

i}

Step size taken to be 7, = O(1/n)

i}

This choice is suggested by generic optimization theory
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Step size taken to be 7, = O(1/n)
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Recall

WEF converges in O(n) iterations

i}

Step size taken to be 7, = O(1/n)

i}

This choice is suggested by worst-case optimization theory

i}

Does it capture what really happens?

36/ 48



A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

V(@)= " [3(a]2)” - (a]2%)’] ara]

k=1

e Not smooth if  and a;, are too close (coherent)

37/ 48



A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

e x is not far away from "
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

ay

[a] (z — 2| < logn

e x is not far away from "
e x is incoherent w.r.t. sampling vectors (incoherence region)
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

az a|

3 (z —2°)| < Viegn .
lay (z — 2| < logn o] (= — )| < v/iogT

e x is not far away from "
e x is incoherent w.r.t. sampling vectors (incoherence region)

37/ 48



A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region

e Prior theory enforces regularization to promote incoherence
38/ 48



Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent J

39/ 48



Theoretical guarantees for Stage 2

Theorem 2 (Phase retrieval)

Under i.i.d. Gaussian design, GD with random initialization achieves
fort > T, +1

e maxy |a; (! — )| < logn ||x%||2 (incoherence
k S
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Theoretical guarantees for Stage 2

Theorem 2 (Phase retrieval)

Under i.i.d. Gaussian design, GD with random initialization achieves
fort > T, +1
o maxy |a] (z! — z%)| < Vlogn |||z (incoherence)

o dist(x!, 2%) < (1 - g)t*T7 -||z8||2 (linear convergence)

provided that step size n < ¢ and sample size m 2 n polylogm.

40/ 48




Key ingredient: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates b0
by dropping Ith measurement

AW

EEEEN s

ADg

y© = |AOg)?

41/ 48



Key ingredient: leave-one-out analysis

a
oty |
(N

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterates {x"()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.
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Key ingredient: leave-one-out analysis

a;
(e
(oo

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterates {x"()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.

e Leave-one-out iterates z©() ~~ true iterates x!
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Key ingredient: leave-one-out analysis

a;
(et
oo

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterates {x"()} are independent of a;, and are
hence incoherent w.r.t. a; with high prob.

e Leave-one-out iterates zb(!) ~ true iterates !
o |a] (zt —2h)| < ]alT(wt,(l) — 2|+ |a) (z — wt,(l))’

42/ 48



Other leave-one-out sequences

Assn y= |A5gnm‘2 Asen y= |Asgnm|2
AN B B HEE R =N
H'E N i ANETE B
A E E B B R B
HE | L |
N | | N B |
e E N B a ——
By EE N hEE B
L [ | H: BN [ |
[ [ | || [ |
A o O EE B
x'*8": indep. of sign info of 2" indep. of both sign
{ai 1} info of {a; 1} and q
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Incoherence region in high dimensions
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\‘—_._f’ \‘—_—’/
2-dimensional

high-dimensional (mental representation)

incoherence region is vanishingly small
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Saddle-escaping schemes?

E H
8 0.7 [ o aama

. ;eﬁinwﬂm\oi‘
0.6L ; 0 0.05 0,

4
- V~\\~ / \
QU saddle points %

0.4t \
—1 =0.01
027 . 5 =0.05 Y
n =0.1 3
o]
0 02 04 06 08 1 k\
&7

WV
global minimizer

Randomly initialized GD never hits saddle points in phase retrieval! J

45/ 48



Other saddle-escaping schemes

iteration num of iterations needed | local iteration
complexity to escape saddles complexity
Trust-region
(Sun et al.g '16) n" + log logé n’ log log%
Perturbed GD - .
(Jin et al. '17) n®+n 1ogé n? n logé
Perturbed accelerated
GD n2? 4+ /nlog % n%o Vnlog %
(Jin et al. '17)
GD (ours) logn + log 1 logn log %

(Chen et al. '18)

€

Generic optimization theory yields highly suboptimal convergence

guarantees
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

2! 3 5

N\
fresh samples
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5

N\
fresh samples

z
22

e This work: reuses all samples in all iterations
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Summary

e Blessings of statistical models: GD with random initialization
converges fast

e Implict regularization: vanilla gradient descent automatically
foces iterates to stay incoherent

Paper:

“Implicit regularization in nonconvex statistical estimation: Gradient descent
converges linearly for phase retrieval, matrix completion, and blind deconvolution”,
Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467

“Gradient Descent with Random Initialization: Fast Global Convergence for
Nonconvex Phase Retrieval”, Yuxin Chen, Yuejie Chi, Jianqging Fan, Cong Ma
arXiv: XXXXXX
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