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Ranking

A fundamental problem in a wide range of contexts
e voting, web search, recommendation systems, admissions, sports
competitions, ...
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Rank aggregation from pairwise comparisons
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pairwise comparisons for ranking top tennis players

figure credit: Bozdki, Csatd, Temesi
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Bradley-Terry-Luce model

items 0* = [07,--- ,0%]
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Bradley-Terry-Luce model

Assign latent score to each of n items 6* = [07,--- , 0%]
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e Bradley-Terry-Luce (logistic) model assumes
L L el
P{item j beats item i} = ———
e’ +e’d

WLOG, assume 1, 0* =
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Typical ranking procedures

Estimate latent scores
— rank items based on score estimates
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Top- K ranking

Estimate latent scores
— rank items based on score estimates
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v

Score

%

Goal: identify the set of top-K items under minimal sample size J
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Sampling model

Sampling on comparison graph G = ([n],&): ¢,j are compared iff
(1,5) €€
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Sampling model

Sampling on comparison graph G = ([n],&): ¢,j are compared iff
(1,j) € €

e For each (i,j) € £, obtain L paired comparisons

*
e J

; 1 ith prob. —&—~
yz(l]) ”2' W Pr el +eej 1 < { < L

0, else
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Maximum likelihood estimator

Define y; ; :== T Zl 1Y j 0 Negative log-likelihood is given by

_ 1 NI
=77 Z Zog yﬂ 9+69 +(1- yﬂ)m

( J)eE 1=1

= > (—yjz‘(@—9j)+10g(1+€9179j))

(1,5)€E

Maximum likelihood estimator (MLE)

0, = L(0
MLE * argelﬂglglo ( )
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Prior art: Uniform sampling

e Comparison graph: Erd6és—Rényi graph Ggr ~ G(n,p)
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MLE is optimal

comparison graph G(n, p); sample size < n*pL

Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)

When p 2 1"%, regularized MLE achieves optimal sample complexity
for top-K ranking
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MLE is optimal

comparison graph G(n, p); sample size < n*pL

“

Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)

When p 2 1"%, regularized MLE achieves optimal sample complexity
for top-K ranking

vanilla MLE works; see Chen, Gao, Zhang, AoS 2022
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Optimal sample complexity of MLE

comparison graph G(n, p); sample size < n*pL
A

sample size

achievable by MLE

infeasible

nlogn
o(5)
>\ A%

A : score separation

o Ak =0} — 0}, score separation (assuming items are ordered)
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Prior art: General sampling

e General comparison graph G = ([n],€)
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Prior art: General sampling

e General comparison graph G = ([n],€)

e General performance guarantees for MLE in ranking
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Prior art: General sampling

e General comparison graph G = ([n],€)

o @

e General performance guarantees for MLE in ranking

e Far from satisfactory: gaurantees are loose even when G = Ggr
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Loose guarantees for MLE

Theorem 2 (Li, Shrotriya, Rinaldo, ICML 2022)

For uniform sampling, when p 2, 10%, MLE achieves exact recovery
nlogn

2 1
WhenanZ;~ AL

e Exceeds optimal sample complexity by factor %

logn

o Extremely large when comparison graph is sparse, i.e., p < ==
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A middle ground?

good guarantee
good + more realistic?
guarantee

unsatisfactory
guarantee

General

-~

unrealistic realistic
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Ger = ([n], Eer)

Top- K ranking with a monotone adversary
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Top- K ranking with a monotone adversary

—aka semi-random adversary
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—aka semi-random adversary

([n], Esr) with added edges

Gsr =

J
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Top- K ranking with a monotone adversary
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Can we identify top-K items under monotone adversary?
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A detour: semi-random models

e Blum and Spencer 1995 introduced it as intermediary between
average-case and worst-case analysis
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A detour: semi-random models

e Blum and Spencer 1995 introduced it as intermediary between
average-case and worst-case analysis

e Since then, it has been popular for many statistical problems
Community detection

Clustering via Gaussian mixture models

Compressed sensing

Matrix completion

Dueling optimization

O O O O o o
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A detour: semi-random models

e Blum and Spencer 1995 introduced it as intermediary between
average-case and worst-case analysis

e Since then, it has been popular for many statistical problems

Community detection

Clustering via Gaussian mixture models
Compressed sensing

Matrix completion

Dueling optimization

O O O O o o

e Poses serious algorithmic and analytical challenges
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How to tackle monotone adversary in ranking?



Intuition: mimicking oracle

If we have oracle knowledge of Eggr
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{

We would run MLE using edges in Egr

18/ 39



Intuition: mimicking oracle

If we have oracle knowledge of Eggr

{

We would run MLE using edges in Egr

{4

Equivalent to weighted MLE with unit weight on Egr

18/ 39
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We would run MLE using edges in Egr
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Equivalent to weighted MLE with unit weight on Egr
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We don't know Egr
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Intuition: mimicking oracle

If we have oracle knowledge of Eggr

{

We would run MLE using edges in Egr

{4

Equivalent to weighted MLE with unit weight on Egr

4
4

Can we find weights that mimic the above?

We don't know Egr
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Our approach: Weighted MLE

Given weights {w;;} supported on £sgr, weighted negative
log-likelihood is

Lo(0) = D wij (~ysi(0i — 05) +log(1 + "))
(4,7):9>7

Weighted MLE:

0, — i L.,(0
wisarg min - Loy(6)
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Optimization-based reweighting

Given weights {w;;}, weighted graph Laplacian is

Ly= Y wjlei—ej)(ei—e))’
(i,):1>]
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Optimization-based reweighting

Given weights {w;;}, weighted graph Laplacian is

Ly= Y wjlei—ej)(ei—e))’
(i,):1>]

— come back to this later...
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Optimal control of entrywise error

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)
When p 2 % and npL > log3(n), weighted MLE 6. obeys

< [log(n)

0, — 0*
16 oo "

~
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Optimal control of entrywise error

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)

When p 2 % and npL > log3(n), weighted MLE 6. obeys

Hé\w - O*HOO < log(n)

~

npL
Ak

—f—

o 05 03 O i
» true score

| I I — score estimates
0 0. e Ok Oxia
1 Oy O3 ' +

1
< QAK < %A]\*
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Near-optimal sample complexity

A

>§ .
7 > weighted MLE
=
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log(n) 1

Ak : score gap
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A little analysis



Challenge: Small /5 loss # high ranking accuracy
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These two estimates have same ¢ loss, but output different rankings
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These two estimates have same ¢ loss, but output different rankings

Need to control entrywise error
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Prior art: Leave-one-out analysis

For each 1 < m < m, introduce leave-one-out estimate (™)

Y= [yi,j]lgi,jgn
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Prior art: Leave-one-out analysis

Simple triangle inequality tells us that

O — 03] < o — o, + e 6
| S — 2

Leave-one-out estimation error  Leave-one-out perturbation

\ g \ g

statistical independence stability
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Leave-one-out analysis is loose for general sampling

{~.-Bounds of the MLE in the BTL Model under General Comparison Graphs

In this case our derived /.,-bound cannot achieve the rate
established in Chen et al.|(2019), Chen et al. (2020), though
our #5-bound exhibits the optimal rate proved in Negahban
et al.| (2017). The reason why our bound does not imply
the optimal /. -rate under a Erdos-Rényi comparison graph
is that our bound is a sample-wise bound and thus cannot
leverage some regular property of Erdos-Rényi graph be-
yond algebraic connectivity and degree homogeneity that is
exhibited with high probability.
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Leave-one-out analysis is loose for general sampling

{~.-Bounds of the MLE in the BTL Model under General Comparison Graphs

In this case our derived /.,-bound cannot achieve the rate
established in Chen et al.|(2019), Chen et al. (2020), though
our #5-bound exhibits the optimal rate proved in Negahban
et al.| (2017). The reason why our bound does not imply
the optimal /. -rate under a Erdos-Rényi comparison graph
is that our bound is a sample-wise bound and thus cannot
leverage some regular property of Erdos-Rényi graph be-
yond algebraic connectivity and degree homogeneity that is
exhibited with high probability.

Calls for new analysis beyond LOO J
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Trajectory-based analysis

Recall our goal is to analyze

0, = arg min L.,(0
v 8 .17 00 w(6)
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Trajectory-based analysis

Recall our goal is to analyze

0, = arg min L.,(0
v 8 .17 00 w(6)

Instead of directly analyzing minimizer, we analyze sequence of
iterates given by preconditioned gradient descent
—inspired by recent work of Chen 2023

Setting #° = 6*, we run

0" = 0" — V2L, (6%)1VL,(8Y),
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Preconditioning decouples coordinates

Define error vector &' := @' — 0*. Preconditioned gradient descent
yields recursive relation

Sl = (1—n)d - % (V2Lw(0) Be— L V2L,(6")r")
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8 = (1—m)o' — L (V2L (09 Be— L VL, (6)'r")
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Preconditioning decouples coordinates

Define error vector &' := @' — 0*. Preconditioned gradient descent
yields recursive relation

S = (1—n)d' — % (V2Lu(6") Be— L-V2L,(6")r")
e (1 —n)é": approximate contraction in each coordinate

e V2L, (6%) Be: sampling error due to noisy comparisons

o L-V2L,(6%)rt: Taylor expansion error

Key contribution:

relate the latter two to spectral properties of weighted graph
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Master theorem for weighted MLE

Notation:
® Wnax = Max; ; w;; be the maximum weight
® dmax = MaXc[y) ;.2 Wij be the maximum (weighted) degree

e Weighted graph Laplacian

Ly= ) wiyjlei—ej)ei—ej)’

(6,5):i>37
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Master theorem for weighted MLE

Theorem 4 (Yang, Chen, Oreccia, Ma, 2024)

When graph is connected, as long as

Wmax (dmax)4 10g3 (TL)

b @y

with high probability, we have

Wmax 10g(n)

0, — 0" <

e LOO-free analysis
e Depends explicitly only on graph properties
e A by-product: optimality of MLE under uniform sampling
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Optimality of MLE under uniform sampling

Corollary 5

When p > log(n)/n, and npL > log3(n), vanilla MLE achieves

~ log(n
[OMLE — 6|0 S log(n)
npL
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Optimality of MLE under uniform sampling

Corollary 5

When p > log(n)/n, and npL > log3(n), vanilla MLE achieves

~ log(n
[OMLE — 6|0 S log(n)
npL

A three-line proof:
e vanilla MLE = weighted MLE with weight 1
e Compute graph properties
Wmax < 1
dmax < 2np
)\nfl(Lw) Z np/2

e Apply master theorem
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Optimization-based reweighting

Master theorem motivates us to consider following optimization
problem

max An—1(Ly)

s.t. Zwii <2np forall j

)

0<w; <1 foralli,j

Since unit weights on &g is feasible, we know the maximizer is at
least as good as that for Erdés—Rényi graph
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Optimization-based reweighting

Master theorem motivates us to consider following optimization
problem

max An—1(Ly)

s.t. Zwii <2np forall j
i

0<w; <1 foralli,j

Since unit weights on &g is feasible, we know the maximizer is at
least as good as that for Erdés—Rényi graph

Is this computationally friendly? J

33/ 39



Efficient computation

In view of A\,,—1(Ly) = minxea Ly, X) with

A={XeR™ | X >0 A (IL11,X) =1},
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Efficient computation

In view of A\,,—1(Ly) = minxea Ly, X) with
A={XeR"|X=0A (II,1,X) =1},
reweighting is equivalent to saddle-point semi-definite program (SDP)

i Ly, X
eIy (e X0,

where F is feasible set

Fo=Awij | Vi, > wiy < 2np A V(i,5) € Esp,wyy < 1}
j:(ivj)egSR
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Efficient computation

In view of A\,,—1(Ly) = minxea Ly, X) with
A={XeR"|X=0A (II,1,X) =1},
reweighting is equivalent to saddle-point semi-definite program (SDP)

i Ly, X
eIy (e X0,

where F is feasible set

F = {wij | Vi, Z wij < 2np A V(i,7) € Esr,wij < 1}
j:(ivj)egSR

Key observation: it is a zero-sum game between w and X |
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Matrix multiplicative weight update

—Arora and Kale, JACM 2016
Initialization w(® = 0;
Fort=1,2,...,T do

e Update X ®:

Z(@)
Z = exp { T]Z Lw(s } and X(t) = m

e Update w®:
w® = arg max (L, X®)
weF
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Matrix multiplicative weight update

—Arora and Kale, JACM 2016
Initialization w(® = 0;
Fort=1,2,...,T do

e Update X ®:

Z(@)
Z = exp { T]Z Lw(s } and X(t) = m

e Update w®:
w® = arg max (L, X®)
weF

Converge even if updates are approximately computed
= near-linear time computation
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Summary on computational guarantee

Reweighting is saddle-point SDP

We leverage matrix multiplicative weight update framework
developed by Arora and Kale 2016

It suffices to approximately compute updates

These lead to near-linear-time computational complexity
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Numerical experiment

e Comparison graph

Ger = ([n}, EERr) Gsr = ([n

* _ * —
e Score vector 0.z - = Ak, and 0%, ., =0
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Numerical experiment
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Concluding remarks

Weighted MLE is statistically and computationally efficient for top-K
ranking with monotone adversary

e A novel analysis of weighted MLE with general weights

e An efficient algorithm to approximately solve SDP-based
reweighting
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