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Ranking
A fundamental problem in a wide range of contexts

• voting, web search, recommendation systems, admissions, sports
competitions, ...

PageRank
figure credit: Dzenan Hamzic

3/ 39



Rank aggregation from pairwise comparisons

pairwise comparisons for ranking top tennis players
figure credit: Bozóki, Csató, Temesi
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Bradley-Terry-Luce model
Assign latent score to each of n items θ⋆ = [θ⋆

1, · · · , θ⋆
n]

i: rank wi: preference score
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• Bradley-Terry-Luce (logistic) model assumes
P {item j beats item i} = eθ⋆

i

eθ⋆
i + eθ⋆

j

WLOG, assume 1⊤
n θ⋆ = 0
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Typical ranking procedures

Estimate latent scores
−→ rank items based on score estimates

Goal: identify the set of top-K items under minimal sample size
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Top-K ranking

Estimate latent scores
−→ rank items based on score estimates

Goal: identify the set of top-K items under minimal sample size
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Sampling model
Sampling on comparison graph G = ([n], E): i, j are compared iff
(i, j) ∈ E
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• For each (i, j) ∈ E , obtain L paired comparisons

y
(l)
i,j

ind.=





1, with prob. e
θ⋆

j

e
θ⋆

i +e
θ⋆

j

0, else
1 ≤ l ≤ L
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Maximum likelihood estimator

Define yi,j := 1
L

∑L
l=1 y

(l)
i,j . Negative log-likelihood is given by

L(θ) := − 1
L

∑

(i,j)∈E

L∑

l=1
log

(
y

(l)
ji

eθi

eθi + eθj
+ (1 − y

(l)
ji ) eθj

eθi + eθj

)

=
∑

(i,j)∈E

(
−yji(θi − θj) + log(1 + eθi−θj )

)

Maximum likelihood estimator (MLE)

θ̂MLE := arg min
θ:1⊤

n θ=0
L (θ)
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Prior art: Uniform sampling

• Comparison graph: Erdős–Rényi graph GER ∼ G(n, p)
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MLE is optimal
comparison graph G(n, p); sample size ≍ n2pL
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Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)

When p ≳ log n
n , regularized MLE achieves optimal sample complexity

for top-K ranking

vanilla MLE works; see Chen, Gao, Zhang, AoS 2022
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Optimal sample complexity of MLE
comparison graph G(n, p); sample size ≍ n2pL

infeasible feasible sample size

1

infeasible feasible sample size

1

Comparison with Jang et al’16

Jang et al’16: spectral method controls entrywise error if p &
Û

logn
n¸ ˚˙ ˝

relatively dense

Our work / optimal sample size Jang et al ’16 �K

�
log n

n

�1/4
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Our work / optimal sample size Jang et al ’16 �K

�
log n
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score
separation: �K : score separation

1

Top-K Ranking 14/ 21

✓?i : preference score
achievable by MLE

1

• ∆K := θ⋆
K − θ⋆

K+1: score separation (assuming items are ordered)
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Prior art: General sampling

• General comparison graph G = ([n], E)
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• General performance guarantees for MLE in ranking
• Far from satisfactory: gaurantees are loose even when G = GER
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Loose guarantees for MLE

Theorem 2 (Li, Shrotriya, Rinaldo, ICML 2022)

For uniform sampling, when p ≳ log n
n , MLE achieves exact recovery

when n2pL ≥ 1
p · n log n

∆2
K

• Exceeds optimal sample complexity by factor 1
p

• Extremely large when comparison graph is sparse, i.e., p ≍ log n
n
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A middle ground?

General

good
guarantee

unsatisfactory
guarantee

unrealistic realistic

good guarantee
+ more realistic?

Uniform ？？？
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Top-K ranking with a monotone adversary

—aka semi-random adversary

GER = ([n], EER)

GSR = ([n], ESR) with added edges

Can we identify top-K items under monotone adversary?
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A detour: semi-random models

• Blum and Spencer 1995 introduced it as intermediary between
average-case and worst-case analysis

• Since then, it has been popular for many statistical problems
◦ Community detection
◦ Clustering via Gaussian mixture models
◦ Compressed sensing
◦ Matrix completion
◦ Dueling optimization
◦ ...

• Poses serious algorithmic and analytical challenges
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How to tackle monotone adversary in ranking?



Intuition: mimicking oracle

If we have oracle knowledge of EER

We would run MLE using edges in EER

Equivalent to weighted MLE with unit weight on EER

We don’t know EER

Can we find weights that mimic the above?
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Our approach: Weighted MLE

Given weights {wij} supported on ESR, weighted negative
log-likelihood is

Lw(θ) :=
∑

(i,j):i>j

wij

(
−yji(θi − θj) + log(1 + eθi−θj )

)

Weighted MLE:
θ̂w := arg min

θ:1⊤
n θ=0

Lw(θ)
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Optimization-based reweighting

Given weights {wij}, weighted graph Laplacian is

Lw :=
∑

(i,j):i>j

wij(ei − ej)(ei − ej)⊤

Weight finding via optimization:

max
w

λn−1(Lw)

s.t.
∑

i

wij ≤ 2np for all j

0 ≤ wij ≤ 1 for all i, j

— come back to this later...
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Optimal control of entrywise error

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)

When p ≳ log(n)
n and npL ≳ log3(n), weighted MLE θ̂w obeys

∥θ̂w − θ⋆∥∞ ≲
√

log(n)
npL
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i : preference score
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Near-optimal sample complexity
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A little analysis



Challenge: Small ℓ2 loss ̸= high ranking accuracy

These two estimates have same ℓ2 loss, but output different rankings

Need to control entrywise error
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Prior art: Leave-one-out analysis

For each 1 ≤ m ≤ n, introduce leave-one-out estimate θ(m)

1

2

3

𝑚

𝑛

1 2 3 𝑚 𝑛…

…
…

…

infeasible feasible sample size statistical independence stability y = [yi,j ]1i,jn =)

1

infeasible feasible sample size statistical independence stability y = [yi,j ]1i,jn =)

1

✓?i : preference score
achievable by MLE

✓?1

✓?2

✓?3

✓?K

✓(m)

✓?K+1

b✓1

b✓2

b✓3

b✓K

b✓K+1

1
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Prior art: Leave-one-out analysis

Simple triangle inequality tells us that

infeasible feasible sample size statistical independence stability

1

infeasible feasible sample size statistical independence stability

1

✓?i : preference score
achievable by MLE

✓?1

✓?2

✓?3

✓?K

✓(m)

✓?K+1

b✓1

b✓2

b✓3

b✓K

b✓K+1

|✓m � ✓?m| 
���✓(m)

m � ✓?m

���
| {z }

Leave-one-out estimation error

+
���✓(m)

m � ✓m

���
2| {z }

Leave-one-out perturbation

1
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Leave-one-out analysis is loose for general sampling

Calls for new analysis beyond LOO
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Trajectory-based analysis

Recall our goal is to analyze

θ̂w := arg min
θ:1⊤

n θ=0
Lw(θ)

Instead of directly analyzing minimizer, we analyze sequence of
iterates given by preconditioned gradient descent

—inspired by recent work of Chen 2023

Setting θ0 = θ⋆, we run

θt+1 = θt − η∇2Lw(θ⋆)†∇Lw(θt),
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Preconditioning decouples coordinates

Define error vector δt := θt − θ⋆. Preconditioned gradient descent
yields recursive relation

δt+1 = (1 − η) δt − η

L

(
∇2Lw(θ⋆)†Bϵ̂ − L · ∇2Lw(θ⋆)†rt

)

• (1 − η) δt: approximate contraction in each coordinate
• ∇2Lw(θ⋆)†Bϵ̂: sampling error due to noisy comparisons
• L · ∇2Lw(θ⋆)†rt: Taylor expansion error

Key contribution:
relate the latter two to spectral properties of weighted graph
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Master theorem for weighted MLE

Notation:
• wmax := maxi,j wij be the maximum weight
• dmax := maxi∈[n]

∑
j:j ̸=i wij be the maximum (weighted) degree

• Weighted graph Laplacian

Lw :=
∑

(i,j):i>j

wij(ei − ej)(ei − ej)⊤
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Master theorem for weighted MLE

Theorem 4 (Yang, Chen, Oreccia, Ma, 2024)
When graph is connected, as long as

L ≫ wmax(dmax)4 log3(n)
(λn−1(Lw))5 ,

with high probability, we have

∥θ̂w − θ⋆∥∞ ≲
√

wmax log(n)
λn−1(Lw)L

• LOO-free analysis
• Depends explicitly only on graph properties
• A by-product: optimality of MLE under uniform sampling
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Optimality of MLE under uniform sampling

Corollary 5

When p ≳ log(n)/n, and npL ≳ log3(n), vanilla MLE achieves

∥θ̂MLE − θ⋆∥∞ ≲
√

log(n)
npL

A three-line proof:
• vanilla MLE = weighted MLE with weight 1
• Compute graph properties

wmax ≤ 1
dmax ≤ 2np

λn−1(Lw) ≥ np/2

• Apply master theorem
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Optimization-based reweighting

Master theorem motivates us to consider following optimization
problem

max
w

λn−1(Lw)

s.t.
∑

i

wij ≤ 2np for all j

0 ≤ wij ≤ 1 for all i, j

Since unit weights on EER is feasible, we know the maximizer is at
least as good as that for Erdős–Rényi graph

Is this computationally friendly?
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Efficient computation

In view of λn−1(Lw) = minX∈∆⟨Lw,X⟩ with

∆ := {X ∈ Rn×n | X ⪰ 0 ∧ ⟨Π⊥1,X⟩ = 1},

reweighting is equivalent to saddle-point semi-definite program (SDP)

max
w∈F

min
X∈∆

⟨Lw,X⟩,

where F is feasible set

F := {wij | ∀i,
∑

j:(i,j)∈ESR

wij ≤ 2np ∧ ∀(i, j) ∈ ESR, wij ≤ 1}

Key observation: it is a zero-sum game between w and X
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Matrix multiplicative weight update

—Arora and Kale, JACM 2016
Initialization w(0) = 0;
For t = 1, 2, . . . , T do

• Update X(t):

Z(t) = exp
{

−η
t−1∑

s=0
Lw(s)

}
, and X(t) = Z(t)

⟨Π⊥1,Z(t)⟩

• Update w(t):
w(t) := arg max

w∈F
⟨Lw,X(t)⟩

Converge even if updates are approximately computed
=⇒ near-linear time computation
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Summary on computational guarantee

• Reweighting is saddle-point SDP
• We leverage matrix multiplicative weight update framework

developed by Arora and Kale 2016
• It suffices to approximately compute updates
• These lead to near-linear-time computational complexity
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Numerical experiment

• Comparison graph

GER = ([n], EER) GSR = ([n], ESR) with added edges

• Score vector θ⋆
1:K = ∆K , and θ⋆

K+1:n = 0
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Numerical experiment
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Concluding remarks

Weighted MLE is statistically and computationally efficient for top-K
ranking with monotone adversary

• A novel analysis of weighted MLE with general weights
• An efficient algorithm to approximately solve SDP-based

reweighting

Future directions:
• Is weighted MLE necessary?
• Stronger adversary?

Papers:
• Y. Yang, A. Chen, L. Orecchia, C. Ma, “Top-K ranking with a monotone

adversary,” arXiv:2402.07445, 2024
• Y. Chen, J. Fan, C. Ma, K. Wang, “Spectral method and regularized MLE

are both optimal for top-K ranking,” Annals of Statistics, 2019
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