Top- K Ranking with a Monotone Adversary

Department of Statistics, UChicago

School of Statistics Seminar, University of Minnesota, Feb. 2024

Yuepeng Yang UChicago Stat

Antares Chen UChicago CS

Lorenzo Orecchia UChicago CS

Ranking

A fundamental problem in a wide range of contexts

- voting, web search, recommendation systems, admissions, sports competitions, ...

figure credit: Dzenan Hamzic

Rank aggregation from pairwise comparisons

pairwise comparisons for ranking top tennis players
figure credit: Bozóki, Csató, Temesi

Bradley-Terry-Luce model

Assign latent score to each of n items $\boldsymbol{\theta}^{\star}=\left[\theta_{1}^{\star}, \cdots, \theta_{n}^{\star}\right]$

Bradley-Terry-Luce model

Assign latent score to each of n items $\boldsymbol{\theta}^{\star}=\left[\theta_{1}^{\star}, \cdots, \theta_{n}^{\star}\right]$

- Bradley-Terry-Luce (logistic) model assumes

$$
\mathbb{P}\{\text { item } j \text { beats item } i\}=\frac{e^{\theta_{i}^{\star}}}{e^{\theta_{i}^{\star}}+e^{\theta_{j}^{\star}}}
$$

$$
\text { WLOG, assume } \mathbf{1}_{n}^{\top} \boldsymbol{\theta}^{\star}=0
$$

Typical ranking procedures

Estimate latent scores

$\longrightarrow \quad$ rank items based on score estimates

Top- K ranking

Estimate latent scores

$\longrightarrow \quad$ rank items based on score estimates

Goal: identify the set of top- K items under minimal sample size

Sampling model

Sampling on comparison graph $\mathcal{G}=([n], \mathcal{E}): i, j$ are compared iff $(i, j) \in \mathcal{E}$

Sampling model

Sampling on comparison graph $\mathcal{G}=([n], \mathcal{E}): i, j$ are compared iff $(i, j) \in \mathcal{E}$

- For each $(i, j) \in \mathcal{E}$, obtain L paired comparisons

$$
y_{i, j}^{(l)} \stackrel{\text { ind. }}{=}\left\{\begin{array}{ll}
1, & \text { with prob. } \frac{e^{\theta_{j}^{\star}}}{e^{\theta_{i}^{*}}+e^{\theta_{j}^{\star}}} \\
0, & \text { else }
\end{array} \quad 1 \leq l \leq L\right.
$$

Maximum likelihood estimator

Define $y_{i, j}:=\frac{1}{L} \sum_{l=1}^{L} y_{i, j}^{(l)}$. Negative log-likelihood is given by

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta}) & :=-\frac{1}{L} \sum_{(i, j) \in \mathcal{E}} \sum_{l=1}^{L} \log \left(y_{j i}^{(l)} \frac{e^{\theta_{i}}}{e^{\theta_{i}}+e^{\theta_{j}}}+\left(1-y_{j i}^{(l)}\right) \frac{e^{\theta_{j}}}{e^{\theta_{i}}+e^{\theta_{j}}}\right) \\
& =\sum_{(i, j) \in \mathcal{E}}\left(-y_{j i}\left(\theta_{i}-\theta_{j}\right)+\log \left(1+e^{\theta_{i}-\theta_{j}}\right)\right)
\end{aligned}
$$

Maximum likelihood estimator (MLE)

$$
\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}}:=\arg \min _{\boldsymbol{\theta}: 1_{n}^{\top} \boldsymbol{\theta}=0} \mathcal{L}(\boldsymbol{\theta})
$$

Prior art: Uniform sampling

- Comparison graph: Erdős-Rényi graph $\mathcal{G}_{\mathrm{ER}} \sim \mathcal{G}(n, p)$

MLE is optimal

comparison graph $\mathcal{G}(n, p)$; sample size $\asymp n^{2} p L$

Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)
When $p \gtrsim \frac{\log n}{n}$, regularized MLE achieves optimal sample complexity for top-K ranking

MLE is optimal

comparison graph $\mathcal{G}(n, p)$; sample size $\asymp n^{2} p L$

Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)
When $p \gtrsim \frac{\log n}{n}$, regularized MLE achieves optimal sample complexity for top-K ranking

Optimal sample complexity of MLE

comparison graph $\mathcal{G}(n, p)$; sample size $\asymp n^{2} p L$

- $\Delta_{K}:=\theta_{K}^{\star}-\theta_{K+1}^{\star}$: score separation (assuming items are ordered)

Prior art: General sampling

- General comparison graph $\mathcal{G}=([n], \mathcal{E})$

Prior art: General sampling

- General comparison graph $\mathcal{G}=([n], \mathcal{E})$

- General performance guarantees for MLE in ranking

Prior art: General sampling

- General comparison graph $\mathcal{G}=([n], \mathcal{E})$

- General performance guarantees for MLE in ranking
- Far from satisfactory: gaurantees are loose even when $\mathcal{G}=\mathcal{G}_{\mathrm{ER}}$

Loose guarantees for MLE

Theorem 2 (Li, Shrotriya, Rinaldo, ICML 2022)

For uniform sampling, when $p \gtrsim \frac{\log n}{n}$, MLE achieves exact recovery when $n^{2} p L \geq \frac{1}{p} \cdot \frac{n \log n}{\Delta_{K}^{2}}$

- Exceeds optimal sample complexity by factor $\frac{1}{p}$
- Extremely large when comparison graph is sparse, i.e., $p \asymp \frac{\log n}{n}$

A middle ground?

Top- K ranking with a monotone adversary

$$
\mathcal{G}_{\mathrm{ER}}=\left([n], \mathcal{E}_{\mathrm{ER}}\right)
$$

Top- K ranking with a monotone adversary

—aka semi-random adversary

$$
\mathcal{G}_{\mathrm{ER}}=\left([n], \mathcal{E}_{\mathrm{ER}}\right)
$$

$\mathcal{G}_{\mathrm{SR}}=\left([n], \mathcal{E}_{\mathrm{SR}}\right)$ with added edges

Top- K ranking with a monotone adversary

—aka semi-random adversary

$$
\mathcal{G}_{\mathrm{ER}}=\left([n], \mathcal{E}_{\mathrm{ER}}\right)
$$

$\mathcal{G}_{\mathrm{SR}}=\left([n], \mathcal{E}_{\mathrm{SR}}\right)$ with added edges

Can we identify top- K items under monotone adversary?

A detour: semi-random models

- Blum and Spencer 1995 introduced it as intermediary between average-case and worst-case analysis

A detour: semi-random models

- Blum and Spencer 1995 introduced it as intermediary between average-case and worst-case analysis
- Since then, it has been popular for many statistical problems
- Community detection
- Clustering via Gaussian mixture models
- Compressed sensing
- Matrix completion
- Dueling optimization
- ...

A detour: semi-random models

- Blum and Spencer 1995 introduced it as intermediary between average-case and worst-case analysis
- Since then, it has been popular for many statistical problems
- Community detection
- Clustering via Gaussian mixture models
- Compressed sensing
- Matrix completion
- Dueling optimization
- ...
- Poses serious algorithmic and analytical challenges

How to tackle monotone adversary in ranking?

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

We would run MLE using edges in $\mathcal{E}_{\text {ER }}$

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

We would run MLE using edges in $\mathcal{E}_{\text {ER }}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\mathrm{ER}}$

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

We would run MLE using edges in $\mathcal{E}_{\text {ER }}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\mathrm{ER}}$

We don't know $\mathcal{E}_{\mathrm{ER}}$

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

We would run MLE using edges in $\mathcal{E}_{\text {ER }}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\text {ER }}$

We don't know $\mathcal{E}_{\text {ER }}$

Can we find weights that mimic the above?

Our approach: Weighted MLE

Given weights $\left\{w_{i j}\right\}$ supported on $\mathcal{E}_{\text {SR }}$, weighted negative log-likelihood is

$$
\mathcal{L}_{w}(\boldsymbol{\theta}):=\sum_{(i, j): i>j} w_{i j}\left(-y_{j i}\left(\theta_{i}-\theta_{j}\right)+\log \left(1+e^{\theta_{i}-\theta_{j}}\right)\right)
$$

Weighted MLE:

$$
\widehat{\boldsymbol{\theta}}_{w}:=\arg \min _{\boldsymbol{\theta}: 1_{n}^{\top} \boldsymbol{\theta}=0} \mathcal{L}_{w}(\boldsymbol{\theta})
$$

Optimization-based reweighting

Given weights $\left\{w_{i j}\right\}$, weighted graph Laplacian is

$$
\boldsymbol{L}_{w}:=\sum_{(i, j): i>j} w_{i j}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)^{\top}
$$

Weight finding via optimization:

$$
\begin{array}{cl}
\underset{\boldsymbol{w}}{\max } & \lambda_{n-1}\left(\boldsymbol{L}_{w}\right) \\
\text { s.t. } & \sum_{i} w_{i j} \leq 2 n p \quad \text { for all } j \\
& 0 \leq w_{i j} \leq 1 \quad \text { for all } i, j
\end{array}
$$

Optimization-based reweighting

Given weights $\left\{w_{i j}\right\}$, weighted graph Laplacian is

$$
\boldsymbol{L}_{w}:=\sum_{(i, j): i>j} w_{i j}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)^{\top}
$$

Weight finding via optimization:

$$
\begin{array}{cl}
\underset{\boldsymbol{w}}{\max } & \lambda_{n-1}\left(\boldsymbol{L}_{w}\right) \\
\text { s.t. } & \sum_{i} w_{i j} \leq 2 n p \quad \text { for all } j \\
& 0 \leq w_{i j} \leq 1 \quad \text { for all } i, j
\end{array}
$$

- come back to this later...

Optimal control of entrywise error

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)
When $p \gtrsim \frac{\log (n)}{n}$ and $n p L \gtrsim \log ^{3}(n)$, weighted MLE $\widehat{\boldsymbol{\theta}}_{w}$ obeys

$$
\left\|\hat{\boldsymbol{\theta}}_{w}-\boldsymbol{\theta}^{\star}\right\|_{\infty} \lesssim \sqrt{\frac{\log (n)}{n p L}}
$$

Optimal control of entrywise error

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024)
When $p \gtrsim \frac{\log (n)}{n}$ and $n p L \gtrsim \log ^{3}(n)$, weighted MLE $\widehat{\boldsymbol{\theta}}_{w}$ obeys

$$
\left\|\hat{\boldsymbol{\theta}}_{w}-\boldsymbol{\theta}^{\star}\right\|_{\infty} \lesssim \sqrt{\frac{\log (n)}{n p L}}
$$

Near-optimal sample complexity

A little analysis

Challenge: Small ℓ_{2} loss \neq high ranking accuracy

Top 3 : $\{15,11,2\}$

Challenge: Small ℓ_{2} loss \neq high ranking accuracy

Top 3 : $\{15,11,2\}$

Top 3: $\{1,2,3\}$

Challenge: Small ℓ_{2} loss \neq high ranking accuracy

Top 3 : $\{15,11,2\}$

Top 3: $\{1,2,3\}$

These two estimates have same ℓ_{2} loss, but output different rankings

Challenge: Small ℓ_{2} loss \neq high ranking accuracy

Top 3 : $\{15,11,2\}$

Top 3: $\{1,2,3\}$

These two estimates have same ℓ_{2} loss, but output different rankings

Need to control entrywise error

Prior art: Leave-one-out analysis

For each $1 \leq m \leq n$, introduce leave-one-out estimate $\boldsymbol{\theta}^{(m)}$

Prior art: Leave-one-out analysis

Simple triangle inequality tells us that

$$
\left|\theta_{m}-\theta_{m}^{\star}\right| \leq \underbrace{\left|\theta_{m}^{(m)}-\theta_{m}^{\star}\right|}_{\text {Leave-one-out estimation error }}+\underbrace{\left\|\theta_{m}^{(m)}-\theta_{m}\right\|_{2}}_{\text {Leave-one-out perturbation }}
$$

statistical independence

Leave-one-out analysis is loose for general sampling

ℓ_{∞}-Bounds of the MLE in the BTL Model under General Comparison Graphs

In this case our derived ℓ_{∞}-bound cannot achieve the rate established in Chen et al. (2019), Chen et al. (2020), though our ℓ_{2}-bound exhibits the optimal rate proved in Negahban et al. (2017). The reason why our bound does not imply the optimal ℓ_{∞}-rate under a Erdös-Rényi comparison graph is that our bound is a sample-wise bound and thus cannot leverage some regular property of Erdös-Rényi graph beyond algebraic connectivity and degree homogeneity that is exhibited with high probability.

Leave-one-out analysis is loose for general sampling

ℓ_{∞}-Bounds of the MLE in the BTL Model under General Comparison Graphs

In this case our derived ℓ_{∞}-bound cannot achieve the rate established in Chen et al. (2019), Chen et al. (2020), though our ℓ_{2}-bound exhibits the optimal rate proved in Negahban et al. (2017). The reason why our bound does not imply the optimal ℓ_{∞}-rate under a Erdös-Rényi comparison graph is that our bound is a sample-wise bound and thus cannot leverage some regular property of Erdös-Rényi graph beyond algebraic connectivity and degree homogeneity that is exhibited with high probability.

Calls for new analysis beyond LOO

Trajectory-based analysis

Recall our goal is to analyze

$$
\widehat{\boldsymbol{\theta}}_{w}:=\arg \min _{\boldsymbol{\theta}: 1_{n}^{\top} \boldsymbol{\theta}=0} \mathcal{L}_{w}(\boldsymbol{\theta})
$$

Trajectory-based analysis

Recall our goal is to analyze

$$
\widehat{\boldsymbol{\theta}}_{w}:=\arg \min _{\boldsymbol{\theta}: 1_{n}^{\top} \boldsymbol{\theta}=0} \mathcal{L}_{w}(\boldsymbol{\theta})
$$

Instead of directly analyzing minimizer, we analyze sequence of iterates given by preconditioned gradient descent
—inspired by recent work of Chen 2023

Setting $\theta^{0}=\boldsymbol{\theta}^{\star}$, we run

$$
\boldsymbol{\theta}^{t+1}=\boldsymbol{\theta}^{t}-\eta \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \nabla \mathcal{L}_{w}\left(\boldsymbol{\theta}^{t}\right)
$$

Preconditioning decouples coordinates

Define error vector $\boldsymbol{\delta}^{t}:=\boldsymbol{\theta}^{t}-\boldsymbol{\theta}^{\star}$. Preconditioned gradient descent yields recursive relation

$$
\boldsymbol{\delta}^{t+1}=(1-\eta) \boldsymbol{\delta}^{t}-\frac{\eta}{L}\left(\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}-L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}\right)
$$

Preconditioning decouples coordinates

Define error vector $\boldsymbol{\delta}^{t}:=\boldsymbol{\theta}^{t}-\boldsymbol{\theta}^{\star}$. Preconditioned gradient descent yields recursive relation

$$
\boldsymbol{\delta}^{t+1}=(1-\eta) \boldsymbol{\delta}^{t}-\frac{\eta}{L}\left(\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}-L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}\right)
$$

- $(1-\eta) \boldsymbol{\delta}^{t}$: approximate contraction in each coordinate

Preconditioning decouples coordinates

Define error vector $\boldsymbol{\delta}^{t}:=\boldsymbol{\theta}^{t}-\boldsymbol{\theta}^{\star}$. Preconditioned gradient descent yields recursive relation

$$
\boldsymbol{\delta}^{t+1}=(1-\eta) \boldsymbol{\delta}^{t}-\frac{\eta}{L}\left(\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}-L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}\right)
$$

- $(1-\eta) \boldsymbol{\delta}^{\boldsymbol{t}}$: approximate contraction in each coordinate
- $\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\epsilon}$: sampling error due to noisy comparisons

Preconditioning decouples coordinates

Define error vector $\boldsymbol{\delta}^{t}:=\boldsymbol{\theta}^{t}-\boldsymbol{\theta}^{\star}$. Preconditioned gradient descent yields recursive relation

$$
\boldsymbol{\delta}^{t+1}=(1-\eta) \boldsymbol{\delta}^{t}-\frac{\eta}{L}\left(\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}-L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}\right)
$$

- $(1-\eta) \boldsymbol{\delta}^{\boldsymbol{t}}$: approximate contraction in each coordinate
- $\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\epsilon}$: sampling error due to noisy comparisons
- $L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}$: Taylor expansion error

Preconditioning decouples coordinates

Define error vector $\boldsymbol{\delta}^{t}:=\boldsymbol{\theta}^{t}-\boldsymbol{\theta}^{\star}$. Preconditioned gradient descent yields recursive relation

$$
\boldsymbol{\delta}^{t+1}=(1-\eta) \boldsymbol{\delta}^{t}-\frac{\eta}{L}\left(\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}-L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}\right)
$$

- $(1-\eta) \boldsymbol{\delta}^{\boldsymbol{t}}$: approximate contraction in each coordinate
- $\nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}$: sampling error due to noisy comparisons
- $L \cdot \nabla^{2} \mathcal{L}_{w}\left(\boldsymbol{\theta}^{\star}\right)^{\dagger} \boldsymbol{r}^{t}$: Taylor expansion error

Key contribution:

relate the latter two to spectral properties of weighted graph

Master theorem for weighted MLE

Notation:

- $w_{\text {max }}:=\max _{i, j} w_{i j}$ be the maximum weight
- $d_{\text {max }}:=\max _{i \in[n]} \sum_{j: j \neq i} w_{i j}$ be the maximum (weighted) degree
- Weighted graph Laplacian

$$
\boldsymbol{L}_{w}:=\sum_{(i, j): i>j} w_{i j}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)^{\top}
$$

Master theorem for weighted MLE

Theorem 4 (Yang, Chen, Oreccia, Ma, 2024)
When graph is connected, as long as

$$
L \gg \frac{w_{\max }\left(d_{\max }\right)^{4} \log ^{3}(n)}{\left(\lambda_{n-1}\left(\boldsymbol{L}_{w}\right)\right)^{5}}
$$

with high probability, we have

$$
\left\|\hat{\boldsymbol{\theta}}_{w}-\boldsymbol{\theta}^{\star}\right\|_{\infty} \lesssim \sqrt{\frac{w_{\max } \log (n)}{\lambda_{n-1}\left(\boldsymbol{L}_{w}\right) L}}
$$

- LOO-free analysis
- Depends explicitly only on graph properties
- A by-product: optimality of MLE under uniform sampling

Optimality of MLE under uniform sampling

Corollary 5

When $p \gtrsim \log (n) / n$, and $n p L \gtrsim \log ^{3}(n)$, vanilla MLE achieves

$$
\left\|\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}}-\boldsymbol{\theta}^{\star}\right\|_{\infty} \lesssim \sqrt{\frac{\log (n)}{n p L}}
$$

Optimality of MLE under uniform sampling

Corollary 5

When $p \gtrsim \log (n) / n$, and $n p L \gtrsim \log ^{3}(n)$, vanilla MLE achieves

$$
\left\|\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}}-\boldsymbol{\theta}^{\star}\right\|_{\infty} \lesssim \sqrt{\frac{\log (n)}{n p L}}
$$

A three-line proof:

- vanilla MLE $=$ weighted MLE with weight 1
- Compute graph properties

$$
\begin{aligned}
w_{\max } & \leq 1 \\
d_{\max } & \leq 2 n p \\
\lambda_{n-1}\left(\boldsymbol{L}_{w}\right) & \geq n p / 2
\end{aligned}
$$

- Apply master theorem

Optimization-based reweighting

Master theorem motivates us to consider following optimization problem

$$
\begin{array}{cl}
\underset{\boldsymbol{w}}{\max ^{2}} & \lambda_{n-1}\left(\boldsymbol{L}_{w}\right) \\
\text { s.t. } & \sum_{i} w_{i j} \leq 2 n p \quad \text { for all } j \\
& 0 \leq w_{i j} \leq 1 \quad \text { for all } i, j
\end{array}
$$

Since unit weights on $\mathcal{E}_{\text {ER }}$ is feasible, we know the maximizer is at least as good as that for Erdős-Rényi graph

Optimization-based reweighting

Master theorem motivates us to consider following optimization problem

$$
\begin{array}{cl}
\underset{\boldsymbol{w}}{\max } & \lambda_{n-1}\left(\boldsymbol{L}_{w}\right) \\
\text { s.t. } & \sum_{i} w_{i j} \leq 2 n p \quad \text { for all } j \\
& 0 \leq w_{i j} \leq 1 \quad \text { for all } i, j
\end{array}
$$

Since unit weights on $\mathcal{E}_{\text {ER }}$ is feasible, we know the maximizer is at least as good as that for Erdős-Rényi graph

Is this computationally friendly?

Efficient computation

In view of $\lambda_{n-1}\left(\boldsymbol{L}_{w}\right)=\min _{\boldsymbol{X} \in \Delta}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}\right\rangle$ with

$$
\Delta:=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq 0 \wedge\left\langle\Pi_{\perp \mathbf{1}}, \boldsymbol{X}\right\rangle=1\right\}
$$

Efficient computation

In view of $\lambda_{n-1}\left(\boldsymbol{L}_{w}\right)=\min _{\boldsymbol{X} \in \Delta}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}\right\rangle$ with

$$
\Delta:=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq 0 \wedge\left\langle\Pi_{\perp \mathbf{1}}, \boldsymbol{X}\right\rangle=1\right\}
$$

reweighting is equivalent to saddle-point semi-definite program (SDP)

$$
\max _{\boldsymbol{w} \in \mathcal{F}} \min _{\boldsymbol{X} \in \Delta}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}\right\rangle,
$$

where \mathcal{F} is feasible set

$$
\mathcal{F}:=\left\{w_{i j} \mid \forall i, \sum_{j:(i, j) \in \mathcal{E}_{\mathrm{SR}}} w_{i j} \leq 2 n p \wedge \forall(i, j) \in \mathcal{E}_{\mathrm{SR}}, w_{i j} \leq 1\right\}
$$

Efficient computation

In view of $\lambda_{n-1}\left(\boldsymbol{L}_{w}\right)=\min _{\boldsymbol{X} \in \Delta}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}\right\rangle$ with

$$
\Delta:=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq 0 \wedge\left\langle\Pi_{\perp \mathbf{1}}, \boldsymbol{X}\right\rangle=1\right\}
$$

reweighting is equivalent to saddle-point semi-definite program (SDP)

$$
\max _{\boldsymbol{w} \in \mathcal{F}} \min _{\boldsymbol{X} \in \Delta}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}\right\rangle,
$$

where \mathcal{F} is feasible set

$$
\mathcal{F}:=\left\{w_{i j} \mid \forall i, \sum_{j:(i, j) \in \mathcal{E}_{\mathrm{SR}}} w_{i j} \leq 2 n p \wedge \forall(i, j) \in \mathcal{E}_{\mathrm{SR}}, w_{i j} \leq 1\right\}
$$

Key observation: it is a zero-sum game between \boldsymbol{w} and \boldsymbol{X}

Matrix multiplicative weight update

—Arora and Kale, JACM 2016

Initialization $\boldsymbol{w}^{(0)}=\mathbf{0}$;
For $t=1,2, \ldots, T$ do

- Update $\boldsymbol{X}^{(t)}$.

$$
\boldsymbol{Z}^{(t)}=\exp \left\{-\eta \sum_{s=0}^{t-1} \boldsymbol{L}_{\boldsymbol{w}^{(s)}}\right\}, \quad \text { and } \quad \boldsymbol{X}^{(t)}=\frac{\boldsymbol{Z}^{(t)}}{\left\langle\Pi_{\perp \mathbf{1}}, \boldsymbol{Z}^{(t)}\right\rangle}
$$

- Update $\boldsymbol{w}^{(t)}$:

$$
\boldsymbol{w}^{(t)}:=\arg \max _{\boldsymbol{w} \in \mathcal{F}}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}^{(t)}\right\rangle
$$

Matrix multiplicative weight update

—Arora and Kale, JACM 2016
Initialization $\boldsymbol{w}^{(0)}=\mathbf{0}$;
For $t=1,2, \ldots, T$ do

- Update $\boldsymbol{X}^{(t)}$:

$$
\boldsymbol{Z}^{(t)}=\exp \left\{-\eta \sum_{s=0}^{t-1} \boldsymbol{L}_{\boldsymbol{w}^{(s)}}\right\}, \quad \text { and } \quad \boldsymbol{X}^{(t)}=\frac{\boldsymbol{Z}^{(t)}}{\left\langle\Pi_{\perp \mathbf{1}}, \boldsymbol{Z}^{(t)}\right\rangle}
$$

- Update $\boldsymbol{w}^{(t)}$:

$$
\boldsymbol{w}^{(t)}:=\arg \max _{\boldsymbol{w} \in \mathcal{F}}\left\langle\boldsymbol{L}_{\boldsymbol{w}}, \boldsymbol{X}^{(t)}\right\rangle
$$

Converge even if updates are approximately computed
\Longrightarrow near-linear time computation

Summary on computational guarantee

- Reweighting is saddle-point SDP
- We leverage matrix multiplicative weight update framework developed by Arora and Kale 2016
- It suffices to approximately compute updates
- These lead to near-linear-time computational complexity

Numerical experiment

- Comparison graph

$$
\mathcal{G}_{\mathrm{ER}}=\left([n], \mathcal{E}_{\mathrm{ER}}\right)
$$

$\mathcal{G}_{\mathrm{SR}}=\left([n], \mathcal{E}_{\mathrm{SR}}\right)$ with added edges

- Score vector $\theta_{1: K}^{\star}=\Delta_{K}$, and $\theta_{K+1: n}^{\star}=0$

Numerical experiment

Concluding remarks

Weighted MLE is statistically and computationally efficient for top- K ranking with monotone adversary

- A novel analysis of weighted MLE with general weights
- An efficient algorithm to approximately solve SDP-based reweighting

Concluding remarks

Weighted MLE is statistically and computationally efficient for top- K ranking with monotone adversary

- A novel analysis of weighted MLE with general weights
- An efficient algorithm to approximately solve SDP-based reweighting
Future directions:
- Is weighted MLE necessary?
- Stronger adversary?

Concluding remarks

Weighted MLE is statistically and computationally efficient for top- K ranking with monotone adversary

- A novel analysis of weighted MLE with general weights
- An efficient algorithm to approximately solve SDP-based reweighting

Future directions:

- Is weighted MLE necessary?
- Stronger adversary?

Papers:

- Y. Yang, A. Chen, L. Orecchia, C. Ma, "Top- K ranking with a monotone adversary," arXiv:2402.07445, 2024
- Y. Chen, J. Fan, C. Ma, K. Wang, "Spectral method and regularized MLE are both optimal for top- K ranking," Annals of Statistics, 2019

