Top-K Ranking with a Monotone Adversary

Cong Ma Department of Statistics, UChicago

School of Statistics Seminar, University of Minnesota, Feb. 2024

Yuepeng Yang UChicago Stat

Antares Chen UChicago CS

Lorenzo Orecchia UChicago CS

A fundamental problem in a wide range of contexts

• voting, web search, recommendation systems, admissions, sports competitions, ...

figure credit: Dzenan Hamzic

Rank aggregation from pairwise comparisons

pairwise comparisons for ranking top tennis players figure credit: Bozóki, Csató, Temesi

5/39

Typical ranking procedures

Estimate latent scores

 \rightarrow rank items based on score estimates

Top-K ranking

Estimate latent scores

 \longrightarrow rank items based on score estimates

Goal: identify the set of top-K items under minimal sample size

Sampling model

Sampling on comparison graph $\mathcal{G} = ([n], \mathcal{E})$: i, j are compared iff $(i, j) \in \mathcal{E}$

Sampling model

Sampling on comparison graph $\mathcal{G} = ([n], \mathcal{E})$: i, j are compared iff $(i, j) \in \mathcal{E}$

• For each $(i,j) \in \mathcal{E}$, obtain L paired comparisons

$$y_{i,j}^{(l)} \stackrel{\text{ind.}}{=} \begin{cases} 1, & \text{with prob.} \ \frac{e^{\theta_{j}^{\star}}}{e^{\theta_{i}^{\star}} + e^{\theta_{j}^{\star}}} \\ 0, & \text{else} \end{cases} \quad 1 \leq l \leq L$$

7/39

Define $y_{i,j} \coloneqq \frac{1}{L} \sum_{l=1}^{L} y_{i,j}^{(l)}$. Negative log-likelihood is given by

$$\mathcal{L}(\boldsymbol{\theta}) \coloneqq -\frac{1}{L} \sum_{(i,j)\in\mathcal{E}} \sum_{l=1}^{L} \log\left(y_{ji}^{(l)} \frac{e^{\theta_i}}{e^{\theta_i} + e^{\theta_j}} + (1 - y_{ji}^{(l)}) \frac{e^{\theta_j}}{e^{\theta_i} + e^{\theta_j}}\right)$$
$$= \sum_{(i,j)\in\mathcal{E}} \left(-y_{ji}(\theta_i - \theta_j) + \log(1 + e^{\theta_i - \theta_j})\right)$$

Maximum likelihood estimator (MLE)

$$\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}} \coloneqq \arg\min_{\boldsymbol{\theta}:\mathbf{1}_{n}^{\top}\boldsymbol{\theta}=0} \quad \mathcal{L}\left(\boldsymbol{\theta}\right)$$

• Comparison graph: Erdős–Rényi graph $\mathcal{G}_{\mathrm{ER}} \sim \mathcal{G}(n,p)$

MLE is optimal

comparison graph $\mathcal{G}(n,p)$; sample size $\asymp n^2 pL$

Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)

When $p\gtrsim \frac{\log n}{n},$ regularized MLE achieves optimal sample complexity for top-K ranking

MLE is optimal

comparison graph $\mathcal{G}(n,p)$; sample size $\asymp n^2 pL$

Theorem 1 (Chen, Fan, Ma, Wang, AoS 2019)

When $p\gtrsim \frac{\log n}{n}$, regularized MLE achieves optimal sample complexity for top-K ranking

vanilla MLE works; see Chen, Gao, Zhang, AoS 2022 $_{10/\ 39}$

Optimal sample complexity of MLE

• $\Delta_K := \theta_K^\star - \theta_{K+1}^\star$: score separation (assuming items are ordered)

• General comparison graph $\mathcal{G} = ([n], \mathcal{E})$

• General comparison graph $\mathcal{G} = ([n], \mathcal{E})$

• General performance guarantees for MLE in ranking

• General comparison graph $\mathcal{G} = ([n], \mathcal{E})$

- General performance guarantees for MLE in ranking
- $\bullet\,$ Far from satisfactory: gaurantees are loose even when $\mathcal{G}=\mathcal{G}_{\rm ER}$

Theorem 2 (Li, Shrotriya, Rinaldo, ICML 2022)

For uniform sampling, when $p \gtrsim \frac{\log n}{n}$, MLE achieves exact recovery when $n^2 pL \geq \frac{1}{p} \cdot \frac{n \log n}{\Delta_K^2}$

- Exceeds optimal sample complexity by factor $\frac{1}{n}$
- Extremely large when comparison graph is sparse, i.e., $p \simeq \frac{\log n}{n}$

A middle ground?

$\operatorname{Top}\nolimits\operatorname{-}\!K$ ranking with a monotone adversary

 $\mathcal{G}_{\mathrm{ER}} = ([n], \mathcal{E}_{\mathrm{ER}})$

Top-K ranking with a monotone adversary

—aka semi-random adversary

Top-K ranking with a monotone adversary

-aka semi-random adversary

Can we identify top-K items under monotone adversary?

• Blum and Spencer 1995 introduced it as intermediary between average-case and worst-case analysis

A detour: semi-random models

- Blum and Spencer 1995 introduced it as intermediary between average-case and worst-case analysis
- Since then, it has been popular for many statistical problems
 - Community detection
 - Clustering via Gaussian mixture models
 - Compressed sensing
 - Matrix completion
 - Dueling optimization
 - o ...

A detour: semi-random models

- Blum and Spencer 1995 introduced it as intermediary between average-case and worst-case analysis
- Since then, it has been popular for many statistical problems
 - Community detection
 - Clustering via Gaussian mixture models
 - Compressed sensing
 - Matrix completion
 - Dueling optimization
 - o ...
- Poses serious algorithmic and analytical challenges

How to tackle monotone adversary in ranking?

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

Intuition: mimicking oracle

If we have oracle knowledge of $\mathcal{E}_{\mathrm{ER}}$

We would run MLE using edges in $\mathcal{E}_{\mathrm{ER}}$

Equivalent to weighted MLE with unit weight on $\mathcal{E}_{\mathrm{ER}}$

We don't know $\mathcal{E}_{\mathrm{ER}}$

Can we find weights that mimic the above?

Given weights $\{w_{ij}\}$ supported on $\mathcal{E}_{\rm SR}$, weighted negative log-likelihood is

$$\mathcal{L}_w(\boldsymbol{\theta}) \coloneqq \sum_{(i,j):i>j} w_{ij} \left(-y_{ji}(\theta_i - \theta_j) + \log(1 + e^{\theta_i - \theta_j}) \right)$$

Weighted MLE:

$$\widehat{\boldsymbol{\theta}}_w \coloneqq \arg\min_{\boldsymbol{\theta}:\mathbf{1}_n^\top \boldsymbol{\theta}=0} \quad \mathcal{L}_w(\boldsymbol{\theta})$$

Given weights $\{w_{ij}\}$, weighted graph Laplacian is

$$oldsymbol{L}_w\coloneqq\sum_{(i,j):i>j}w_{ij}(oldsymbol{e}_i-oldsymbol{e}_j)(oldsymbol{e}_i-oldsymbol{e}_j)^ op$$

Weight finding via optimization:

$$\begin{array}{ll} \max_{\boldsymbol{w}} & \lambda_{n-1}(\boldsymbol{L}_w) \\ \text{s.t.} & \sum_{i} w_{ij} \leq 2np \quad \text{for all } j \\ & 0 \leq w_{ij} \leq 1 \quad \text{for all } i, j \end{array}$$

Given weights $\{w_{ij}\}$, weighted graph Laplacian is

$$\boldsymbol{L}_w \coloneqq \sum_{(i,j):i>j} w_{ij}(\boldsymbol{e}_i - \boldsymbol{e}_j)(\boldsymbol{e}_i - \boldsymbol{e}_j)^{ op}$$

Weight finding via optimization:

$$\begin{array}{ll} \max_{\boldsymbol{w}} & \lambda_{n-1}(\boldsymbol{L}_w) \\ \text{s.t.} & \sum_{i} w_{ij} \leq 2np \quad \text{for all } j \\ & 0 \leq w_{ij} \leq 1 \quad \text{for all } i, j \end{array}$$

- come back to this later...

Optimal control of entrywise error

Theorem 3 (Yang, Chen, Oreccia, Ma, 2024) When $p \gtrsim \frac{\log(n)}{n}$ and $npL \gtrsim \log^3(n)$, weighted MLE $\hat{\theta}_w$ obeys $\|\hat{\theta}_w - \theta^\star\|_{\infty} \lesssim \sqrt{\frac{\log(n)}{npL}}$

Optimal control of entrywise error

A little analysis

Top 3 : {15, 11, 2}

Top 3 : {15, 11, 2}

Top 3: {1, 2, 3}

Top 3: {15, 11, 2}

Top 3: {1, 2, 3}

These two estimates have same ℓ_2 loss, but output different rankings

Top 3: {15, 11, 2}

Top 3: {1, 2, 3}

These two estimates have same ℓ_2 loss, but output different rankings

Need to control entrywise error

Prior art: Leave-one-out analysis

For each $1 \leq m \leq n$, introduce leave-one-out estimate $\boldsymbol{\theta}^{(m)}$

Simple triangle inequality tells us that

 $\ell_\infty\text{-}Bounds$ of the MLE in the BTL Model under General Comparison Graphs

In this case our derived ℓ_{∞} -bound cannot achieve the rate established in Chen et al. (2019), Chen et al. (2020), though our ℓ_2 -bound exhibits the optimal rate proved in Negahban et al. (2017). The reason why our bound does not imply the optimal ℓ_{∞} -rate under a Erdös-Rényi comparison graph is that our bound is a sample-wise bound and thus cannot leverage some regular property of Erdös-Rényi graph beyond algebraic connectivity and degree homogeneity that is exhibited with high probability. $\ell_\infty\text{-}\textsc{Bounds}$ of the MLE in the BTL Model under General Comparison Graphs

In this case our derived ℓ_{∞} -bound cannot achieve the rate established in Chen et al. (2019), Chen et al. (2020), though our ℓ_2 -bound exhibits the optimal rate proved in Negahban et al. (2017). The reason why our bound does not imply the optimal ℓ_{∞} -rate under a Erdös-Rényi comparison graph is that our bound is a sample-wise bound and thus cannot leverage some regular property of Erdös-Rényi graph beyond algebraic connectivity and degree homogeneity that is exhibited with high probability.

Calls for new analysis beyond LOO

Recall our goal is to analyze

$$\widehat{\boldsymbol{\theta}}_w \coloneqq \arg\min_{\boldsymbol{\theta}: \mathbf{1}_n^\top \boldsymbol{\theta} = 0} \quad \mathcal{L}_w(\boldsymbol{\theta})$$

Recall our goal is to analyze

$$\widehat{oldsymbol{ heta}}_w\coloneqq rg\min_{oldsymbol{ heta}: \mathbf{1}_n^ op oldsymbol{ heta}=0} \quad \mathcal{L}_w(oldsymbol{ heta})$$

Instead of directly analyzing minimizer, we analyze sequence of iterates given by *preconditioned* gradient descent

-inspired by recent work of Chen 2023

Setting $\theta^0 = \theta^*$, we run $\theta^{t+1} = \theta^t - \eta \nabla^2 \mathcal{L}_w(\theta^*)^{\dagger} \nabla \mathcal{L}_w(\theta^t),$

Define error vector $\delta^t \coloneqq \theta^t - \theta^*$. Preconditioned gradient descent yields recursive relation

$$\boldsymbol{\delta}^{t+1} = (1-\eta)\,\boldsymbol{\delta}^t - \frac{\eta}{L} \left(\nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{B} \widehat{\boldsymbol{\epsilon}} - L \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{r}^t \right)$$

Define error vector $\delta^t \coloneqq \theta^t - \theta^*$. *Preconditioned* gradient descent yields recursive relation

$$\boldsymbol{\delta}^{t+1} = (1-\eta)\,\boldsymbol{\delta}^t - \frac{\eta}{L} \left(\nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{B} \widehat{\boldsymbol{\epsilon}} - L \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{r}^t \right)$$

• $(1 - \eta) \, \boldsymbol{\delta}^t$: approximate contraction in each coordinate

Define error vector $\delta^t \coloneqq \theta^t - \theta^*$. Preconditioned gradient descent yields recursive relation

$$\boldsymbol{\delta}^{t+1} = (1-\eta)\,\boldsymbol{\delta}^t - \frac{\eta}{L} \left(\nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{B} \widehat{\boldsymbol{\epsilon}} - L \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{r}^t \right)$$

- $(1-\eta) \, \boldsymbol{\delta}^t$: approximate contraction in each coordinate
- $\nabla^2 \mathcal{L}_w(\pmb{\theta}^\star)^\dagger \pmb{B} \widehat{\pmb{\epsilon}}$: sampling error due to noisy comparisons

Define error vector $\delta^t \coloneqq \theta^t - \theta^*$. Preconditioned gradient descent yields recursive relation

$$\boldsymbol{\delta}^{t+1} = (1-\eta)\,\boldsymbol{\delta}^t - \frac{\eta}{L} \left(\nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{B} \widehat{\boldsymbol{\epsilon}} - \boldsymbol{L} \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{r}^t \right)$$

- $(1-\eta)\, \pmb{\delta}^t$: approximate contraction in each coordinate
- $\nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{B} \widehat{\boldsymbol{\epsilon}}$: sampling error due to noisy comparisons
- $L \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^{\star})^{\dagger} \boldsymbol{r}^t$: Taylor expansion error

Define error vector $\delta^t \coloneqq \theta^t - \theta^*$. Preconditioned gradient descent yields recursive relation

$$\boldsymbol{\delta}^{t+1} = (1-\eta)\,\boldsymbol{\delta}^t - \frac{\eta}{L} \left(\nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{B} \widehat{\boldsymbol{\epsilon}} - \boldsymbol{L} \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^\star)^\dagger \boldsymbol{r}^t \right)$$

- $(1 \eta) \, \boldsymbol{\delta}^t$: approximate contraction in each coordinate
- $\nabla^2 \mathcal{L}_w(\theta^\star)^\dagger B \widehat{\epsilon}$: sampling error due to noisy comparisons
- $L \cdot \nabla^2 \mathcal{L}_w(\boldsymbol{\theta}^{\star})^{\dagger} \boldsymbol{r}^t$: Taylor expansion error

Key contribution:

relate the latter two to spectral properties of weighted graph

Notation:

- $w_{\max} \coloneqq \max_{i,j} w_{ij}$ be the maximum weight
- $d_{\max} \coloneqq \max_{i \in [n]} \sum_{j: j \neq i} w_{ij}$ be the maximum (weighted) degree
- Weighted graph Laplacian

$$oldsymbol{L}_w\coloneqq\sum_{(i,j):i>j}w_{ij}(oldsymbol{e}_i-oldsymbol{e}_j)(oldsymbol{e}_i-oldsymbol{e}_j)^ op$$

Theorem 4 (Yang, Chen, Oreccia, Ma, 2024)

When graph is connected, as long as

$$L \gg \frac{w_{\max}(d_{\max})^4 \log^3(n)}{(\lambda_{n-1}(L_w))^5},$$

with high probability, we have

$$\|\widehat{\boldsymbol{\theta}}_w - \boldsymbol{\theta}^\star\|_\infty \lesssim \sqrt{rac{w_{\max}\log(n)}{\lambda_{n-1}(\boldsymbol{L}_w)L}}$$

- LOO-free analysis
- Depends explicitly only on graph properties
- A by-product: optimality of MLE under uniform sampling

Optimality of MLE under uniform sampling

Corollary 5

When $p \gtrsim \log(n)/n$, and $npL \gtrsim \log^3(n)$, vanilla MLE achieves

$$\|\widehat{oldsymbol{ heta}}_{ ext{MLE}} - oldsymbol{ heta}^{\star}\|_{\infty} \lesssim \sqrt{rac{\log(n)}{npL}}$$

Optimality of MLE under uniform sampling

Corollary 5

When $p \gtrsim \log(n)/n$, and $npL \gtrsim \log^3(n)$, vanilla MLE achieves

$$\|\widehat{\boldsymbol{\theta}}_{\mathrm{MLE}} - \boldsymbol{\theta}^{\star}\|_{\infty} \lesssim \sqrt{\frac{\log(n)}{npL}}$$

A three-line proof:

• vanilla MLE = weighted MLE with weight 1

λ

• Compute graph properties

$$w_{\max} \le 1$$

 $d_{\max} \le 2np$
 $_{n-1}(\boldsymbol{L}_w) \ge np/2$

• Apply master theorem

Master theorem motivates us to consider following optimization problem

$$\begin{array}{ll} \max_{\boldsymbol{w}} & \lambda_{n-1}(\boldsymbol{L}_{w}) \\ \text{s.t.} & \sum_{i} w_{ij} \leq 2np \quad \text{ for all } j \\ & 0 \leq w_{ij} \leq 1 \quad \text{for all } i, j \end{array}$$

Since unit weights on $\mathcal{E}_{\rm ER}$ is feasible, we know the maximizer is at least as good as that for Erdős–Rényi graph

Master theorem motivates us to consider following optimization problem

$$\begin{array}{ll} \max_{\boldsymbol{w}} & \lambda_{n-1}(\boldsymbol{L}_{w}) \\ \text{s.t.} & \sum_{i} w_{ij} \leq 2np \quad \text{ for all } j \\ & 0 \leq w_{ij} \leq 1 \quad \text{for all } i, j \end{array}$$

Since unit weights on $\mathcal{E}_{\rm ER}$ is feasible, we know the maximizer is at least as good as that for Erdős–Rényi graph

Is this computationally friendly?

In view of $\lambda_{n-1}({m L}_w)=\min_{{m X}\in\Delta}\langle {m L}_{m w},{m X}
angle$ with

$$\Delta \coloneqq \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq 0 \land \langle \Pi_{\perp 1}, \boldsymbol{X} \rangle = 1 \},\$$

In view of $\lambda_{n-1}({m L}_w) = \min_{{m X} \in \Delta} \langle {m L}_{m w}, {m X}
angle$ with

$$\Delta \coloneqq \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq 0 \land \langle \Pi_{\perp 1}, \boldsymbol{X} \rangle = 1 \},\$$

reweighting is equivalent to saddle-point semi-definite program (SDP)

$$\max_{\boldsymbol{w}\in\mathcal{F}}\min_{\boldsymbol{X}\in\Delta} \quad \langle \boldsymbol{L}_{\boldsymbol{w}},\boldsymbol{X}\rangle,$$

where ${\cal F}$ is feasible set

$$\mathcal{F} \coloneqq \{ w_{ij} \mid \forall i, \sum_{j:(i,j) \in \mathcal{E}_{SR}} w_{ij} \le 2np \land \forall (i,j) \in \mathcal{E}_{SR}, w_{ij} \le 1 \}$$

In view of $\lambda_{n-1}({m L}_w) = \min_{{m X} \in \Delta} \langle {m L}_{m w}, {m X}
angle$ with

$$\Delta \coloneqq \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} \mid \boldsymbol{X} \succeq 0 \land \langle \Pi_{\perp 1}, \boldsymbol{X} \rangle = 1 \},$$

reweighting is equivalent to saddle-point semi-definite program (SDP)

$$\max_{\boldsymbol{w}\in\mathcal{F}}\min_{\boldsymbol{X}\in\Delta} \quad \langle \boldsymbol{L}_{\boldsymbol{w}},\boldsymbol{X}\rangle,$$

where ${\mathcal F}$ is feasible set

$$\mathcal{F} \coloneqq \{ w_{ij} \mid \forall i, \sum_{j:(i,j) \in \mathcal{E}_{SR}} w_{ij} \le 2np \land \forall (i,j) \in \mathcal{E}_{SR}, w_{ij} \le 1 \}$$

Key observation: it is a zero-sum game between w and X

Matrix multiplicative weight update

-Arora and Kale, JACM 2016

Initialization $\boldsymbol{w}^{(0)} = \boldsymbol{0}$; For $t = 1, 2, \dots, T$ do

• Update $oldsymbol{X}^{(t)}$:

$$\boldsymbol{Z}^{(t)} = \exp\left\{-\eta \sum_{s=0}^{t-1} \boldsymbol{L}_{\boldsymbol{w}^{(s)}}\right\}, \quad \text{ and } \quad \boldsymbol{X}^{(t)} = \frac{\boldsymbol{Z}^{(t)}}{\langle \boldsymbol{\Pi}_{\perp 1}, \boldsymbol{Z}^{(t)} \rangle}$$

• Update $w^{(t)}$:

$$oldsymbol{w}^{(t)}\coloneqqrg\max_{oldsymbol{w}\in\mathcal{F}}\langleoldsymbol{L}_{oldsymbol{w}},oldsymbol{X}^{(t)}
angle$$

Matrix multiplicative weight update

-Arora and Kale, JACM 2016

Initialization $\boldsymbol{w}^{(0)} = \boldsymbol{0}$; For $t = 1, 2, \dots, T$ do

• Update $oldsymbol{X}^{(t)}$:

$$\boldsymbol{Z}^{(t)} = \exp\left\{-\eta \sum_{s=0}^{t-1} \boldsymbol{L}_{\boldsymbol{w}^{(s)}}\right\}, \quad \text{ and } \quad \boldsymbol{X}^{(t)} = \frac{\boldsymbol{Z}^{(t)}}{\langle \boldsymbol{\Pi}_{\perp \mathbf{1}}, \boldsymbol{Z}^{(t)} \rangle}$$

• Update $oldsymbol{w}^{(t)}$:

$$oldsymbol{w}^{(t)}\coloneqqrg\max_{oldsymbol{w}\in\mathcal{F}}\langleoldsymbol{L}_{oldsymbol{w}},oldsymbol{X}^{(t)}
angle$$

Converge even if updates are approximately computed \implies near-linear time computation

Summary on computational guarantee

- Reweighting is saddle-point SDP
- We leverage matrix multiplicative weight update framework developed by Arora and Kale 2016
- It suffices to approximately compute updates
- These lead to near-linear-time computational complexity

• Comparison graph

 $\mathcal{G}_{\mathrm{ER}} = ([n], \mathcal{E}_{\mathrm{ER}})$ $\mathcal{G}_{\mathrm{SR}} = ([n], \mathcal{E}_{\mathrm{SR}})$ with added edges

• Score vector $\theta_{1:K}^{\star} = \Delta_K$, and $\theta_{K+1:n}^{\star} = 0$

Concluding remarks

Weighted MLE is statistically and computationally efficient for top-K ranking with monotone adversary

- A novel analysis of weighted MLE with general weights
- An efficient algorithm to approximately solve SDP-based reweighting

Concluding remarks

Weighted MLE is statistically and computationally efficient for top-K ranking with monotone adversary

- A novel analysis of weighted MLE with general weights
- An efficient algorithm to approximately solve SDP-based reweighting

Future directions:

- Is weighted MLE necessary?
- Stronger adversary?

Weighted MLE is statistically and computationally efficient for top-K ranking with monotone adversary

- A novel analysis of weighted MLE with general weights
- An efficient algorithm to approximately solve SDP-based reweighting

Future directions:

- Is weighted MLE necessary?
- Stronger adversary?

Papers:

- Y. Yang, A. Chen, L. Orecchia, C. Ma, "Top-*K* ranking with a monotone adversary," arXiv:2402.07445, 2024
- Y. Chen, J. Fan, C. Ma, K. Wang, "Spectral method and regularized MLE are both optimal for top-*K* ranking," Annals of Statistics, 2019