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Abstract

Low-rank matrix estimation is a canonical problem that finds numerous applications in signal pro-
cessing, machine learning and imaging science. A popular approach in practice is to factorize the matrix
into two compact low-rank factors, and then optimize these factors directly via simple iterative methods
such as gradient descent and alternating minimization. Despite nonconvexity, recent literatures have
shown that these simple heuristics in fact achieve linear convergence when initialized properly for a
growing number of problems of interest. However, upon closer examination, existing approaches can still
be computationally expensive especially for ill-conditioned matrices: the convergence rate of gradient
descent depends linearly on the condition number of the low-rank matrix, while the per-iteration cost of
alternating minimization is often prohibitive for large matrices.

The goal of this paper is to set forth a competitive algorithmic approach dubbed Scaled Gradient
Descent (ScaledGD) which can be viewed as pre-conditioned or diagonally-scaled gradient descent, where
the pre-conditioners are adaptive and iteration-varying with a minimal computational overhead. With
tailored variants for low-rank matrix sensing, robust principal component analysis and matrix completion,
we theoretically show that ScaledGD achieves the best of both worlds: it converges linearly at a rate
independent of the condition number of the low-rank matrix similar as alternating minimization, while
maintaining the low per-iteration cost of gradient descent. Our analysis is also applicable to general loss
functions that are restricted strongly convex and smooth over low-rank matrices. To the best of our
knowledge, ScaledGD is the first algorithm that provably has such properties over a wide range of low-
rank matrix estimation tasks. At the core of our analysis is the introduction of a new distance function
that takes account of the pre-conditioners when measuring the distance between the iterates and the
ground truth. Finally, numerical examples are provided to demonstrate the effectiveness of ScaledGD
in accelerating the convergence rate of ill-conditioned low-rank matrix estimation in a wide number of
applications.

Keywords: low-rank matrix factorization, scaled gradient descent, ill-conditioned matrix recovery, matrix
sensing, robust PCA, matrix completion.
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1 Introduction
Low-rank matrix estimation plays a critical role in fields such as machine learning, signal processing, imaging
science, and many others. Broadly speaking, one aims to recover a rank-r matrix X? ∈ Rn1×n2 from a set of
observations y = A(X?), where the operator A(·) models the measurement process. It is natural to minimize
the least-squares loss function subject to a rank constraint:

minimize
X∈Rn1×n2

f(X) := 1
2‖A(X)− y‖22 subject to rank(X) ≤ r, (1)

which is, however, computationally intractable in general due to the rank constraint. Moreover, as the size of
the matrix increases, the costs involved in optimizing over the full matrix space (i.e. Rn1×n2) are prohibitive
in terms of both memory and computation. To cope with these challenges, one popular approach is to
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parametrize X = LR> by two low-rank factors L ∈ Rn1×r and R ∈ Rn2×r that are more memory-efficient,
and then to optimize over the factors instead:

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR>). (2)

Although this leads to a nonconvex optimization problem over the factors, recent breakthroughs have shown
that simple algorithms (e.g. gradient descent, alternating minimization), when properly initialized (e.g. via
the spectral method), can provably converge to the true low-rank factors under mild statistical assumptions.
These benign convergence guarantees hold for a growing number of problems such as low-rank matrix sensing,
matrix completion, robust principal component analysis (robust PCA), phase synchronization, and so on.

However, upon closer examination, existing approaches such as gradient descent and alternating mini-
mization are still computationally expensive, especially for ill-conditioned matrices. Take low-rank matrix
sensing as an example: though the per-iteration cost is small, the iteration complexity of gradient descent
scales linearly with respect to the condition number of the low-rank matrix X? [TBS+16]; on the other end,
while the iteration complexity of alternating minimization [JNS13] is independent of the condition number,
each iteration requires inverting a linear system whose size is proportional to the dimension of the matrix
and thus the per-iteration cost is prohibitive for large-scale problems. These together raise an important
open question: can one design an algorithm with a comparable per-iteration cost as gradient descent, but
converges much faster at a rate that is independent of the condition number as alternating minimization in
a provable manner for a wide variety of low-rank matrix estimation tasks?

1.1 Preconditioning Helps: Scaled Gradient Descent
In this paper, we answer this question affirmatively by studying the following scaled gradient descent
(ScaledGD) algorithm to optimize (2). Given an initialization (L0,R0), ScaledGD proceeds as follows

Lt+1 = Lt − η∇LL(Lt,Rt)(R
>
t Rt)

−1,

Rt+1 = Rt − η∇RL(Lt,Rt)(L
>
t Lt)

−1,
(3)

where η > 0 is the step size and ∇LL(Lt,Rt) (resp. ∇RL(Lt,Rt)) is the gradient of the loss function L
with respect to the factor Lt (resp. Rt) at the t-th iteration. Comparing to vanilla gradient descent, the
search directions of the low-rank factors Lt,Rt in (3) are scaled by (R>t Rt)

−1 and (L>t Lt)
−1 respectively.

Intuitively, the scaling serves as a pre-conditioner as in quasi-Newton type algorithms, with the hope of
improving the quality of the search direction to allow larger step sizes. Since the computation of the
Hessian is extremely expensive, it is necessary to design pre-conditioners that are both theoretically sound
and practically cheap to compute. Such requirements are met by ScaledGD, where the pre-conditioners
are computed by inverting two r × r matrices, whose size is much smaller than the dimension of matrix
factors. Therefore, each iteration of ScaledGD adds minimal overhead to the gradient computation and has
the order-wise same per-iteration cost as gradient descent. Moreover, the pre-conditioners are adaptive and
iteration-varying. Another key property of ScaledGD is that it ensures the iterates are covariant with respect
to the parameterization of low-rank factors up to invertible transforms.

While ScaledGD and its alternating variants have been proposed in [MAS12,MS16,TW16], none of these
prior art provides any theoretical validations to the empirical success. In this work, we confirm theoretically
that ScaledGD achieves linear convergence at a rate independent of the condition number of the matrix when
initialized properly, e.g. using the standard spectral method, for several canonical problems: low-rank matrix
sensing, robust PCA, and matrix completion. Table 1 summarizes the performance guarantees of ScaledGD
in terms of both statistical and computational complexities with comparisons to prior algorithms using the
vanilla gradient method.

• Low-rank matrix sensing. As long as the measurement operator satisfies the standard restricted isometry
property (RIP) with an RIP constant δ2r . 1/(

√
rκ), where κ is the condition number of X?, ScaledGD

reaches ε-accuracy in O(log(1/ε)) iterations when initialized by the spectral method. This strictly improves
the iteration complexity O(κ log(1/ε)) of gradient descent in [TBS+16] under the same sample complexity
requirement.
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Matrix sensing Robust PCA Matrix completion

Algorithms sample iteration corruption iteration sample iteration
complexity complexity fraction complexity complexity complexity

GD nr2κ2 κ log 1
ε

1
µr3/2κ3/2∨µrκ2 κ log 1

ε (µ ∨ log n)µnr2κ2 κ log 1
ε

ScaledGD
nr2κ2 log 1

ε
1

µr3/2κ log 1
ε (µκ2 ∨ log n)µnr2κ2 log 1

ε(this paper)

Table 1: Comparisons of ScaledGD with gradient descent (GD) when tailored to various problems (with
spectral initialization) [TBS+16,YPCC16,ZL16], where they have comparable per-iteration costs. Here, we
say that the output X of an algorithm reaches ε-accuracy, if it satisfies ‖X − X?‖F ≤ εσr(X?). Here,
n := n1 ∨ n2 = max{n1, n2}, κ and µ are the condition number and incoherence parameter of X?.

• Robust PCA. Under the deterministic corruption model [CSPW11], as long as the fraction α of corruptions
per row / column satisfies α . 1/(µr3/2κ), where µ is the incoherence parameter of X?, ScaledGD in
conjunction with hard thresholding reaches ε-accuracy in O(log(1/ε)) iterations when initialized by the
spectral method. This strictly improves the iteration complexity of projected gradient descent [YPCC16].

• Matrix completion. Under the random Bernoulli observation model, as long as the sample complexity
satisfies n1n2p & (µκ2∨ log n)µnr2κ2 with n = n1∨n2, ScaledGD in conjunction with a properly designed
projection operator reaches ε-accuracy in O(log(1/ε)) iterations when initialized by the spectral method.
This improves the iteration complexity of projected gradient descent [ZL16] at the expense of requiring a
larger sample size.

In addition, ScaledGD does not require any explicit regularizations that balance the norms of two low-
rank factors as required in [TBS+16,YPCC16,ZL16], and removed the additional projection that maintains
the incoherence properties in robust PCA [YPCC16], thus unveiling the implicit regularization property of
ScaledGD. To the best of our knowledge, this is the first factored gradient descent algorithm that achieves
a fast convergence rate that is independent of the condition number of the low-rank matrix at near-optimal
sample complexities without increasing the per-iteration computational cost. Our analysis is also applicable
to general loss functions that are restricted strongly convex and smooth over low-rank matrices.

At the core of our analysis, we introduce a new distance metric (i.e. Lyapunov function) that accounts
for the pre-conditioners, and carefully show the contraction of the ScaledGD iterates under the new distance
metric. We expect that the ScaledGD algorithm can accelerate the convergence for other low-rank matrix
estimation problems, as well as facilitate the design and analysis of other quasi-Newton first-order algorithms.
As a teaser, Figure 1 illustrates the relative error of completing a 1000× 1000 incoherent matrix of rank 10
with varying condition numbers from 20% of its entries, using either ScaledGD or vanilla GD with spectral
initialization. Even for moderately ill-conditioned matrices, the convergence rate of vanilla GD slows down
dramatically, while it is evident that ScaledGD converges at a rate independent of the condition number and
therefore is much more efficient.

Remark 1 (ScaledGD for PSD matrices). When the low-rank matrix of interest is positive semi-definite
(PSD), we factorize the matrix X ∈ Rn×n as X = LL>, with L ∈ Rn×r. The update rule of ScaledGD
simplifies to

Lt+1 = Lt − η∇LL(Lt)(L
>
t Lt)

−1. (4)

We focus on the asymmetric case since the analysis is more involved with two factors. Our theory applies
to the PSD case without loss of generality.

1.2 Related Work
Our work contributes to the growing literature of design and analysis of provable nonconvex optimization
procedures for high-dimensional signal estimation; see e.g. [JK17, CC18, CLC19] for recent overviews. A
growing number of problems have been demonstrated to possess benign geometry that is amenable for
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Figure 1: Performance of ScaledGD and vanilla GD for completing a 1000×1000 incoherent matrix of rank 10
with different condition numbers κ = 2, 10, 50, where each entry is observed independently with probability
0.2. Here, both methods are initialized via the spectral method. It can be seen that ScaledGD converges
much faster than vanilla GD even for moderately large condition numbers.

optimization [MBM18] either globally or locally under appropriate statistical models. On one end, it is shown
that there do not exist spurious local minima in the optimization landscape of matrix sensing and completion
[GLM16, BNS16, PKCS17, GJZ17], phase retrieval [SQW18, DDP17], dictionary learning [SQW15], kernel
PCA [CL19] and linear neural networks [BH89,Kaw16]. Such landscape analysis facilitates the adoption of
generic saddle-point escaping algorithms [NP06,GHJY15,JGN+17] to ensure global convergence. However,
the resulting iteration complexity is typically high. On the other end, local refinements with carefully-
designed initializations often admit fast convergence, for example in phase retrieval [CLS15, MWCC19],
matrix sensing [JNS13,ZL15,WCCL16], matrix completion [SL16,CW15,MWCC19,CLL20,ZL16,CCF+19],
blind deconvolution [LLSW19,MWCC19], and robust PCA [NNS+14,YPCC16,CFMY20], to name a few.

Existing approaches for asymmetric low-rank matrix estimation often requires additional regulariza-
tion terms to balance the two factors, either in the form of 1

2‖L
>L − R>R‖2F [TBS+16, PKCS17] or

1
2‖L‖

2
F + 1

2‖R‖
2
F [ZLTW18,CCF+19,CFMY20], which ease the theoretical analysis but are often unnecessary

for the practical success, as long as the initialization is balanced. Some recent work studies the unregularized
gradient descent for low-rank matrix factorization and sensing including [CCD+19,DHL18,MLC19]. How-
ever, the iteration complexity of all these approaches scales at least linearly with respect to the condition
number κ of the low-rank matrix, e.g. O(κ log(1/ε)), to reach ε-accuracy, therefore they converge slowly
when the underlying matrix becomes ill-conditioned. In contrast, ScaledGD enjoys a local convergence rate
of O(log(1/ε)), therefore incurring a much smaller computational footprint when κ is large. Last but not
least, alternating minimization [JNS13,HW14] (which alternatively updates Lt and Rt) or singular value
projection [NNS+14,JMD10] (which operates in the matrix space) also converge at the rate O(log(1/ε)), but
the per-iteration cost is much higher than ScaledGD. Another notable algorithm is the Riemannian gradi-
ent descent algorithm in [WCCL16], which also converges at the rate O(log(1/ε)) under the same sample
complexity for low-rank matrix sensing.

From an algorithmic perspective, our approach is closely related to the alternating steepest descent (ASD)
method in [TW16] for low-rank matrix completion, which performs the proposed updates (3) for the low-
rank factors in an alternating manner. Furthermore, the scaled gradient updates were also introduced in
[MAS12,MS16] for low-rank matrix completion from the perspective of Riemannian optimization. However,
none of [TW16,MAS12,MS16] offered any statistical nor computational guarantees for global convergence.
Our analysis of ScaledGD can be viewed as providing justifications to these precursors. Moreover, we have
systematically extended the framework of ScaledGD to work in a large number of low-rank matrix estimation
tasks such as robust PCA.
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1.3 Paper Organization and Notation
The rest of this paper is organized as follows. Section 2 describes the proposed ScaledGD method and details
its application to low-rank matrix sensing, robust PCA and matrix completion with theoretical guarantees
in terms of both statistical and computational complexities, highlighting the role of a new distance metric.
The convergence guarantee of ScaledGD under the general loss function is also presented. In Section 3, we
outline the proof for our main results. Section 4 illustrates the excellent empirical performance of ScaledGD
in a variety of low-rank matrix estimation problems. Finally, we conclude in Section 5.

Before continuing, we introduce several notation used throughout the paper. First of all, we use boldfaced
symbols for vectors and matrices. For a vector v, we use ‖v‖0 to denote its `0 counting norm, and ‖v‖2
to denote the `2 norm. For any matrix A, we use σi(A) to denote its i-th largest singular value, and let
Ai,· and A·,j denote its i-th row and j-th column, respectively. In addition, ‖A‖op, ‖A‖F, ‖A‖1,∞, ‖A‖2,∞,
and ‖A‖∞ stand for the spectral norm (i.e. the largest singular value), the Frobenius norm, the `1,∞ norm
(i.e. the largest `1 norm of the rows), the `2,∞ norm (i.e. the largest `2 norm of the rows), and the entrywise
`∞ norm (the largest magnitude of all entries) of a matrix A. We denote

Pr(A) = min
Ā:rank(Ā)≤r

‖A− Ā‖2F (5)

as the rank-r approximation of A, which is given by the top-r SVD of A by the Eckart-Young-Mirsky
theorem. We also use vec(A) to denote the vectorization of a matrix A. For matrices A,B of the same size,
we use 〈A,B〉 =

∑
i,jAi,jBi,j = tr(A>B) to denote their inner product. The set of invertible matrices

in Rr×r is denoted by GL(r). Let a ∨ b = max{a, b} and a ∧ b = min{a, b}. Throughout, f(n) . g(n) or
f(n) = O(g(n)) means |f(n)|/|g(n)| ≤ C for some constant C > 0 when n is sufficiently large; f(n) & g(n)
means |f(n)|/|g(n)| ≥ C for some constant C > 0 when n is sufficiently large. Last but not least, we
use the terminology “with overwhelming probability” to denote the event happens with probability at least
1 − c1n−c2 , where c1, c2 > 0 are some universal constants, whose values we do not specify may vary from
line to line.

2 Scaled Gradient Descent for Low-Rank Matrix Estimation
This section is devoted to introducing ScaledGD and establishing its statistical and computational guarantees
for various low-rank matrix estimation problems. Before we instantiate tailored versions of ScaledGD on
concrete low-rank matrix estimation problems, we first pause to provide more insights of the update rule of
ScaledGD, by connecting it to the quasi-Newton method. Note that the update rule (3) for ScaledGD can
be equivalently written in a vectorization form as

vec(Ft+1) = vec(Ft)− η
[
(R>t Rt)

−1 ⊗ In1 0
0 (L>t Lt)

−1 ⊗ In2

]
vec(∇FL(Ft))

= vec(Ft)− ηH−1
t vec(∇FL(Ft)), (6)

where we denote Ft = [L>t ,R
>
t ]> ∈ R(n1+n2)×r, and by ⊗ the Kronecker product. Here, the block diagonal

matrix Ht is set to be

Ht :=

[
(R>t Rt)⊗ In1

0
0 (L>t Lt)⊗ In2

]
.

The form (6) makes it apparent that ScaledGD can be interpreted as a quasi-Newton algorithm, where the
inverse of Ht can be cheaply computed through inverting two rank-r matrices.

2.1 Assumptions and Error Metric
Denote by U?Σ?V

>
? the compact singular value decomposition (SVD) of the rank-r matrix X? ∈ Rn1×n2 .

Here U? ∈ Rn1×r and V? ∈ Rn2×r are composed of r left and right singular vectors, respectively, and
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Σ? ∈ Rr×r is a diagonal matrix consisting of r singular values of X? organized in a non-increasing order,
i.e. σ1(X?) ≥ · · · ≥ σr(X?) > 0. Define

κ := σ1(X?)/σr(X?) (7)

as the condition number of X?. Define the ground truth low-rank factors as

L? := U?Σ
1/2
? , and R? := V?Σ

1/2
? , (8)

so that X? = L?R
>
? . Correspondingly, denote the stacked factor matrix as

F? := [L>? ,R
>
? ]> ∈ R(n1+n2)×r. (9)

Next, we are in need of a right metric to measure the performance of the ScaledGD iterates Ft :=
[L>t ,R

>
t ]>. Obviously, the factored representation is not unique in that for any invertible matrix Q ∈ GL(r),

one has LR> = (LQ)(RQ−>)>. Therefore, the reconstruction error metric needs to take into account this
identifiability issue. More importantly, we need a diagonal scaling in the distance error metric to properly
account for the effect of pre-conditioning. To provide intuition, note that the update rule (3) can be viewed
as finding the best local quadratic approximation of L(·) in the following sense:

(Lt+1,Rt+1) = argmin
L,R

L(Lt,Rt) + 〈∇LL(Lt,Rt),L−Lt〉+ 〈∇RL(Lt,Rt),R−Rt〉

+
1

2η

(∥∥∥(L−Lt)(R
>
t Rt)

1/2
∥∥∥2

F
+
∥∥∥(R−Rt)(L

>
t Lt)

1/2
∥∥∥2

F

)
,

where it is different from the common interpretation of gradient descent in the way the quadratic approx-
imation is taken by a scaled norm. When Lt ≈ L? and Rt ≈ R? are approaching the ground truth, the
additional scaling factors can be approximated by L>t Lt ≈ Σ? and R>t Rt ≈ Σ?, leading to the following
error metric

dist2(F ,F?) := inf
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F
. (10)

Correspondingly, we define the optimal alignment matrix Q between F and F? as

Q := argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F
, (11)

whenever the minimum is achieved1. It turns out that for the ScaledGD iterates {Ft}, the optimal alignment
matrices {Qt} always exist (at least when properly initialized) and hence are well-defined. The design and
analysis of this new distance metric are of crucial importance in obtaining the improved rate of ScaledGD;
see Appendix A.1 for a collection of its properties. In comparison, the previously studied distance metrics
(proposed mainly for GD) either do not include the diagonal scaling [MLC19,TBS+16], or only consider the
ambiguity class up to orthonormal transforms [TBS+16], which fail to unveil the benefit of ScaledGD.

2.2 Low-Rank Matrix Sensing
Assume that we have collected a set of linear measurements about a rank-r matrix X? ∈ Rn1×n2 , given as

y = A(X?) ∈ Rm, (12)

where A(X) = {〈Ak,X〉}mk=1 : Rn1×n2 7→ Rm is the linear map modeling the measurement process. The
goal of low-rank matrix sensing is to recover X? from y, especially when the number of measurements
m � n1n2, by exploiting the low-rank property. This problem has wide applications in medical imaging,
signal processing, and data compression [CP11].

1If there are multiple minimizers, we can arbitrarily take one to be Q.
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Algorithm. Writing X ∈ Rn1×n2 into a factored form X = LR>, we consider the following optimization
problem:

minimize
F∈R(n1+n2)×r

L(F ) =
1

2

∥∥A(LR>)− y
∥∥2

2
. (13)

Here as before, F denotes the stacked factor matrix [L>,R>]>. We suggest running ScaledGD (3) with
the spectral initialization to solve (13), which performs the top-r SVD on A∗(y), where A∗(·) is the adjoint
operator of A(·). The full algorithm is stated in Algorithm 1. The low-rank matrix can be estimated as
XT = LTR

>
T after running T iterations of ScaledGD.

Algorithm 1 ScaledGD for low-rank matrix sensing with spectral initialization
Spectral initialization: Let U0Σ0V

>
0 be the top-r SVD of A∗(y), and set

L0 = U0Σ
1/2
0 , and R0 = V0Σ

1/2
0 . (14)

Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Lt+1 = Lt − ηA∗(A(LtR
>
t )− y)Rt(R

>
t Rt)

−1,

Rt+1 = Rt − ηA∗(A(LtR
>
t )− y)>Lt(L

>
t Lt)

−1.
(15)

Theoretical guarantees. To understand the performance of ScaledGD for low-rank matrix sensing, we
adopt a standard assumption on the sensing operator A(·), namely the Restricted Isometry Property (RIP).

Definition 1 (RIP [RFP10]). The linear map A(·) is said to obey the rank-r RIP with a constant δr ∈ [0, 1),
if for all matrices M ∈ Rn1×n2 of rank at most r, one has

(1− δr)‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δr)‖M‖2F.

It is well-known that many measurement ensembles satisfy the RIP property [RFP10,CP11]. For example,
if the entries ofAi’s are composed of i.i.d. Gaussian entries N (0, 1/m), then the RIP is satisfied for a constant
δr as long as m is on the order of (n1 + n2)r/δ2

r . With the RIP condition in place, the following theorem
demonstrates that ScaledGD converges linearly — in terms of the new distance metric (cf. (10)) — at a
constant rate as long as the sensing operator A(·) has a sufficiently small RIP constant.

Theorem 1. Suppose that A(·) obeys the 2r-RIP with δ2r ≤ 0.02/(
√
rκ). If the step size obeys 0 < η ≤ 2/3,

then for all t ≥ 0, the iterates of the ScaledGD method in Algorithm 1 satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.1σr(X?), and
∥∥LtR>t −X?

∥∥
F
≤ (1− 0.6η)t0.15σr(X?).

Theorem 1 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as long as the
sample size satisfies m = O(nr2κ2) with Gaussian random measurements [RFP10], where we recall that
n = n1 ∨ n2. To reach ε-accuracy, i.e. ‖LtR>t −X?‖F ≤ εσr(X?), ScaledGD takes at most T = O(log(1/ε))
iterations, which is independent of the condition number κ of X?. In comparison, alternating minimization
with spectral initialization (AltMinSense) converges in O(log(1/ε)) iterations as long as m = O(nr3κ4)
[JNS13], where the per-iteration cost is much higher requiring solving two linear systems of size O(mnr). On
the other end, gradient descent with spectral initialization in [TBS+16] converges in O(κ log(1/ε)) iterations
as long as m = O(nr2κ2). Therefore, ScaledGD converges at a much faster rate than GD at the same sample
complexity while requiring a significantly lower per-iteration cost than AltMinSense.
Remark 2. [TBS+16] suggested that one can employ a more expensive initialization scheme, e.g. performing
multiple projected gradient descent steps over the low-rank matrix, to reduce the sample complexity. By
seeding ScaledGD with the output of updates of the form Xτ+1 = Pr (Xτ −A∗(A(Xτ )− y)) after T0 &
max{log r, log κ} iterations, where Pr(·) is defined in (5), ScaledGD succeeds with the sample size O(nr)
which is information theoretically optimal.
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Algorithm 2 ScaledGD for robust PCA with spectral initialization
Spectral initialization: Let U0Σ0V

>
0 be the top-r SVD of Y − Tα[Y ], and set

L0 = U0Σ
1/2
0 , and R0 = V0Σ

1/2
0 . (19)

Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1 do

St = T2α[Y −LtR
>
t ],

Lt+1 = Lt − η(LtR
>
t + St − Y )Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η(LtR
>
t + St − Y )>Lt(L

>
t Lt)

−1.

(20)

2.3 Robust PCA
Assume that we have observed the data matrix

Y = X? + S?,

which is a superposition of a rank-r matrix X?, modeling the clean data, and a sparse matrix S?, modeling
the corruption or outliers. The goal of robust PCA [CLMW11,CSPW11] is to separate the two matrices
X? and S? from their mixture Y . This problem finds numerous applications in video surveillance, image
processing, and so on.

Following [CSPW11,NNS+14,YPCC16], we consider a deterministic sparsity model for S?, in which S?
contains at most α-fraction of nonzero entries per row and column for some α ∈ [0, 1), i.e. S? ∈ Sα, where
we denote

Sα := {S ∈ Rn1×n2 : ‖Si,·‖0 ≤ αn2 for all i, and ‖S·,j‖0 ≤ αn1 for all j}. (16)

Algorithm. WritingX ∈ Rn1×n2 into the factored formX = LR>, we consider the following optimization
problem:

minimize
F∈R(n1+n2)×r,S∈Sα

L(F ,S) =
1

2

∥∥LR> + S − Y
∥∥2

F
. (17)

It is thus natural to alternatively update F = [L>,R>]> and S, where F is updated via the proposed
ScaledGD algorithm, and S is updated by hard thresholding, which trims the small entries of the residual
matrix Y −LR>. More specifically, for some truncation level 0 ≤ ᾱ ≤ 1, we define the sparsification operator
that only keeps ᾱ fraction of largest entries in each row and column:

(Tᾱ[A])i,j =

{
Ai,j , if |A|i,j ≥ |A|i,(ᾱn2), and |A|i,j ≥ |A|(ᾱn1),j

0, otherwise
, (18)

where |A|i,(k) (resp. |A|(k),j) denote the k-th largest element in magnitude in the i-th row (resp. j-th column).
The ScaledGD algorithm with the spectral initialization for solving robust PCA is formally stated in

Algorithm 2. Note that, comparing with [YPCC16], we do not require a balancing term ‖L>L−R>R‖2F in
the loss function (17), nor the projection of the low-rank factors onto the `2,∞ ball in each iteration.

Theoretical guarantee. Before stating our main result for robust PCA, we introduce the incoherence con-
dition which is known to be crucial for reliable estimation of the low-rank matrix X? in robust PCA [Che15].

Definition 2 (Incoherence). A rank-r matrix X? ∈ Rn1×n2 with compact SVD as X? = U?Σ?V
>
? is said

to be µ-incoherent if

‖U?‖2,∞ ≤
√

µ

n1
‖U?‖F =

√
µr

n1
, and ‖V?‖2,∞ ≤

√
µ

n2
‖V?‖F =

√
µr

n2
.

9



The following theorem establishes that ScaledGD converges linearly at a constant rate as long as the
fraction α of corruptions is sufficiently small.

Theorem 2. Suppose that X? is µ-incoherent and that the corruption fraction α obeys α ≤ c/(µr3/2κ) for
some sufficiently small constant c > 0. If the step size obeys 0.1 ≤ η ≤ 2/3, then for all t ≥ 0, the iterates
of ScaledGD in Algorithm 2 satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.02σr(X?), and
∥∥LtR>t −X?

∥∥
F
≤ (1− 0.6η)t0.03σr(X?).

Theorem 2 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as long as
the fraction of corruptions satisfies α . 1/(µr3/2κ). To reach ε-accuracy, i.e.

∥∥LtR>t −X?

∥∥
F
≤ εσr(X?),

ScaledGD takes at most T = O(log(1/ε)) iterations, which is independent of κ. In comparison, the AltProj
algorithm2 with spectral initialization converges in O(log(1/ε)) iterations as long as α . 1/(µr) [NNS+14],
where the per-iteration cost is much higher both in terms of computation and memory as it requires the
computation of the low-rank SVD of the full matrix. On the other hand, projected gradient descent with
spectral initialization in [YPCC16] converges in O(κ log(1/ε)) iterations as long as α . 1/(µr3/2κ3/2∨µrκ2).
Therefore, ScaledGD converges at a much faster rate than GD while requesting a significantly lower per-
iteration cost than AltProj. In addition, our theory suggests that ScaledGD maintains the incoherence
and balancedness of the low-rank factors without imposing explicit regularizations, which is not captured in
previous analysis [YPCC16].

2.4 Matrix Completion
Assume that we have observed a subset Ω of entries of X? given as PΩ(X?), where PΩ : Rn1×n2 7→ Rn1×n2

is a projection such that

(PΩ(X))i,j =

{
Xi,j , if (i, j) ∈ Ω

0, otherwise
. (21)

Here Ω is generated according to the Bernoulli model in the sense that each (i, j) ∈ Ω independent with
probability p. The goal of matrix completion is to recover the matrix X? from its partial observation
PΩ(X?). This problem has many applications in recommendation systems, signal processing, sensor network
localization, and so on [CR09].

Algorithm. Again, writing X ∈ Rn1×n2 into the factored form X = LR>, F = [L>,R>]>, we consider
the following optimization problem:

minimize
F∈R(n1+n2)×r

L(F ) :=
1

2p

∥∥PΩ(LR> −X?)
∥∥2

F
. (22)

Similarly to robust PCA, the underlying low-rank matrix X? needs to be incoherent (c.f. Definition 2)
to avoid ill-posedness. One typical strategy to ensure the incoherence condition is to perform projection
after the gradient update, by projecting the iterates to maintain small `2,∞ norms of the factor matrices.
However, the standard projection operator [CW15] is not covariant with respect to invertible transforms,
and consequently, needs to be modified when using scaled gradient updates. To that end, we introduce the
following new projection operator: for every F̃ ∈ R(n1+n2)×r = [L̃>, R̃>]>,

PB(F̃ ) = argmin
F∈R(n1+n2)×r

∥∥∥(L− L̃)(R̃>R̃)1/2
∥∥∥2

F
+
∥∥∥(R− R̃)(L̃>L̃)1/2

∥∥∥2

F

s.t.
√
n1

∥∥∥L(R̃>R̃)1/2
∥∥∥

2,∞
∨
√
n2

∥∥∥R(L̃>L̃)1/2
∥∥∥

2,∞
≤ B

, (23)

which finds a factored matrix that is closest to F̃ and stays incoherent in a weighted sense. Luckily, the
solution to the above scaled projection admits a simple closed-form solution, as stated below.

2AltProj employs a multi-stage strategy to remove the dependence on κ in α, which we do not consider here. The same
strategy might also improve the dependence on κ for ScaledGD, which we leave for future work.
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Algorithm 3 ScaledPGD for matrix completion with spectral initialization
Spectral initialization: Let U0Σ0V

>
0 be the top-r SVD of 1

pPΩ(X?), and set

[
L0

R0

]
= PB

([
U0Σ

1/2
0

V0Σ
1/2
0

])
. (25)

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do[
Lt+1

Rt+1

]
= PB

([
Lt − η

pPΩ(LtR
>
t −X?)Rt(R

>
t Rt)

−1

Rt − η
pPΩ(LtR

>
t −X?)

>Lt(L
>
t Lt)

−1

])
. (26)

Proposition 1. The solution to (23) is given by

PB(F̃ ) :=

[
L
R

]
, where Li,· :=

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)
L̃i,·, 1 ≤ i ≤ n1,

Rj,· :=

(
1 ∧ B
√
n2‖R̃j,·L̃>‖2

)
R̃j,·, 1 ≤ j ≤ n2.

(24)

Proof. See Appendix E.1.1.

With the new projection operator in place, we propose the scaled projected gradient descent (ScaledPGD)
method with the spectral initialization for solving matrix completion, formally stated in Algorithm 3.

Theoretical guarantee. Consider a random observation model, where each index (i, j) belongs to the
index set Ω independently with probability 0 < p ≤ 1. The following theorem establishes that ScaledPGD
converges linearly at a constant rate as long as the number of observations is sufficiently large.

Theorem 3. Suppose that X? is µ-incoherent, and that p satisfies p ≥ C(µκ2∨ log(n1∨n2))µr2κ2/(n1∧n2)
for some sufficiently large constant C. Set the projection radius as B = CB

√
µrσ1(X?) for some constant

CB ≥ 1.02. If the step size obeys 0 < η ≤ 2/3, then with probability at least 1− c1(n1 ∨ n2)−c2 , for all t ≥ 0,
the iterates of ScaledPGD in (26) satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.02σr(X?), and
∥∥LtR>t −X?

∥∥
F
≤ (1− 0.6η)t0.03σr(X?).

Here c1, c2 > 0 are two universal constants.

Theorem 3 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as long as
the probability of observation satisfies p & (µκ2 ∨ log(n1 ∨ n2))µr2κ2/(n1 ∧ n2). To reach ε-accuracy,
i.e.

∥∥LtR>t −X?

∥∥
F
≤ εσr(X?), ScaledPGD takes at most T = O(log(1/ε)) iterations, which is independent

of κ. In comparison, projected gradient descent [ZL16] with spectral initialization converges in O(κ log(1/ε))
iterations as long as p & (µ ∨ log(n1 ∨ n2))µr2κ2/(n1 ∧ n2). Therefore, ScaledPGD achieves much faster
convergence than its unscaled counterpart, at an expense of higher sample complexity. We believe this higher
sample complexity is an artifact of our proof techniques, as numerically we do not observe a degradation in
terms of sample complexity.

2.5 Optimizing General Loss Functions
Last but not least, we generalize our analysis of ScaledGD to minimize a general loss function in the form
of (2), where the update rule of ScaledGD is given by

Lt+1 = Lt − η∇f(LtR
>
t )Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η∇f(LtR
>
t )>Lt(L

>
t Lt)

−1.
(27)

Two important properties of the loss function f(·) : Rn1×n2 7→ R play a key role in the analysis.
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Definition 3 (Restricted smoothness). A differentiable function f(·) : Rn1×n2 7→ R is said to be rank-r
restricted L-smooth for some L > 0 if

f(X2) ≤ f(X1) + 〈∇f(X1),X2 −X1〉+
L

2
‖X2 −X1‖2F,

for any X1,X2 ∈ Rn1×n2 with rank at most r.

Definition 4 (Restricted strong convexity). A differentiable function f(·) : Rn1×n2 7→ R is said to be rank-r
restricted µ-strongly convex for some µ ≥ 0 if

f(X2) ≥ f(X1) + 〈∇f(X1),X2 −X1〉+
µ

2
‖X2 −X1‖2F,

for any X1,X2 ∈ Rn1×n2 with rank at most r. When µ = 0, we simply say f(·) is rank-r restricted convex.

Further, when µ > 0, define the condition number of the loss function f(·) over rank-r matrices as

κf := L/µ, (28)

which plays an important role in the convergence analysis. Encouragingly, many problems can be viewed as
a special case of optimizing this general loss (27), including but not limited to:

• low-rank matrix factorization, where the loss function f(X) = 1
2‖X −X?‖2F in (29) satisfies κf = 1;

• low-rank matrix sensing, where the loss function f(X) = 1
2‖A(X −X?)‖22 in (13) satisfies κf ≈ 1 when

A obeys the rank-r RIP with a sufficiently small RIP constant;

• quadratic sampling, where the loss function f(X) = 1
2

∑m
i=1 |〈aia>i ,X −X?〉|2 satisfies restricted strong

convexity and smoothness when ai’s are i.i.d. Gaussian vectors for sufficiently largem [SWW17,LMCC18];

• exponential-family PCA, where the loss function f(X) = −
∑

(i,j) log p(Yi,j |Xi,j), where p(Yi,j |Xi,j) is
the probability density function of Yi,j conditional on Xi,j , following an exponential-family distribution
such as Bernoulli and Poisson distributions. The resulting loss function satisfies restricted strong convexity
and smoothness with a condition number κf > 1 depending on the property of the specific distribution
[GRG14,Laf15].

Indeed, the treatment of a general loss function brings the condition number of f(·) under the spotlight,
since in our earlier case studies κf ≈ 1. Our purpose is thus to understand the interplay of two types
of conditioning numbers in the convergence of first-order methods. For simplicity, we assume that f(·) is
minimized at the ground truth rank-r matrixX?.3 The following theorem establishes that as long as properly
initialized, then ScaledGD converges linearly at a constant rate.

Theorem 4. Suppose that f(·) : Rn1×n2 7→ R is rank-2r restricted L-smooth and µ-strongly convex, of which
X? is a minimizer, and that the initialization F0 satisfies dist(F0,F?) ≤ 0.1σr(X?)/

√
κf . If the step size

obeys 0 < η ≤ 0.4/L, then for all t ≥ 0, the iterates of ScaledGD in (27) satisfy

dist(Ft,F?) ≤ (1− 0.7ηµ)t0.1σr(X?)/
√
κf , and

∥∥LtR>t −X?

∥∥
F
≤ (1− 0.7ηµ)t0.15σr(X?)/

√
κf .

Theorem 4 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as long as the
initialization F0 is sufficiently close to F?. To reach ε-accuracy, i.e. ‖LtR>t −X?‖F ≤ εσr(X?), ScaledGD
takes at most T = O(κf log(1/ε)) iterations, which depends only on the condition number κf of f(·), but
is independent of the condition number κ of the matrix X?. In contrast, prior theory of vanilla gradient
descent [PKCS18,BKS16] requires O(κfκ log(1/ε)) iterations, which is worse than our rate by a factor of κ.

3 Proof Sketch
In this section, we sketch the proof of the main theorems, highlighting the role of the scaled distance
metric (cf. (10)) in these analyses.

3In practice, due to the presence of statistical noise, the minimizer of f(·) might be only approximately low-rank, to which
our analysis can be extended in a straightforward fashion.
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3.1 A Warm-Up Analysis: Matrix Factorization
Let us consider the problem of factorizing a matrix X? into two low-rank factors:

minimize
F∈R(n1+n2)×r

L(F ) =
1

2

∥∥LR> −X?

∥∥2

F
. (29)

For this toy problem, the update rule of ScaledGD is given as

Lt+1 = Lt − η(LtR
>
t −X?)Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η(LtR
>
t −X?)

>Lt(L
>
t Lt)

−1.
(30)

To shed light on why ScaledGD is robust to ill-conditioning, it is worthwhile to pause and provide two
interpretations of (30):

• ScaledGD as a quasi-Newton algorithm: The following proposition (proven in Appendix B.1) reveals that
ScaledGD is equivalent to approximating the Hessian of the loss function in (29) by only keeping its
diagonal blocks.

Proposition 2. For the matrix factorization problem (29), ScaledGD is equivalent to the following update
rule

vec(Ft+1) = vec(Ft)− η
[
∇2

L,LL(Ft) 0

0 ∇2
R,RL(Ft)

]−1

vec(∇FL(Ft)).

Here, ∇2
L,LL(Ft) (resp. ∇2

R,RL(Ft)) denotes the second order derivative w.r.t. L (resp. R) at Ft.

• ScaledGD as a convex combination of GD and least-squares: Perhaps more interestingly, it is also worth
noting that (30) can be rewritten as[

Lt+1

Rt+1

]
= (1− η)

[
Lt
Rt

]
+ η

[
X?Rt(R

>
t Rt)

−1

X>? Lt(L
>
t Lt)

−1

]
, (31)

where the second term is the least-squares update of the factors when fixing the other:

X?Rt(R
>
t Rt)

−1 = argmin
L

L(L,Rt), and X>? Lt(L
>
t Lt)

−1 = argmin
R

L(Lt,R). (32)

Therefore, (31) shows that with η ∈ [0, 1], the next iterate of ScaledGD can be interpreted as a convex
combination of the current iterate and the least-squares update (32), where the latter is robust to ill-
conditioning.

The following theorem, whose proof can be found in Appendix B.2, formally establishes that as long as
ScaledGD is initialized close to the ground truth, dist(Ft,F?) will contract at a constant linear rate for the
matrix factorization problem.

Theorem 5. Suppose that the initialization F0 satisfies dist(F0,F?) ≤ 0.1σr(X?). If the step size obeys
0 < η ≤ 2/3, then for all t ≥ 0, the iterates of the ScaledGD method in (30) satisfy

dist(Ft,F?) ≤ (1− 0.7η)t0.1σr(X?), and
∥∥LtR>t −X?

∥∥
F
≤ (1− 0.7η)t0.15σr(X?).

Comparing to the rate of contraction (1 − 1/κ) of gradient descent for matrix factorization [MLC19,
CLC19], Theorem 5 demonstrates that the pre-conditioners indeed allow better search directions in the local
neighborhood of the ground truth, and hence a faster convergence rate.
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3.2 Proof Outline for Matrix Sensing
It can be seen that the update rule (15) of ScaledGD in Algorithm 1 closely mimics (30) whenA(·) satisfies the
RIP. Therefore, leveraging the RIP of A(·) and Theorem 5, we can establish the following local convergence
guarantee of Algorithm 1, which has a weaker requirement on δ2r than the main theorem (cf. Theorem 1).

Lemma 1. Suppose that A(·) obeys the 2r-RIP with δ2r ≤ 0.02. If the t-th iterate satisfies dist(Ft,F?) ≤
0.1σr(X?), then ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0 < η ≤ 2/3, then the
(t+ 1)-th iterate Ft+1 of the ScaledGD method in (15) of Algorithm 1 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

It then boils to down to finding a good initialization, for which we have the following lemma on the
quality of the spectral initialization.

Lemma 2. Suppose that A(·) obeys the 2r-RIP with a constant δ2r. Then the spectral initialization in (14)
for low-rank matrix sensing satisfies

dist(F0,F?) ≤ 5δ2r
√
rκσr(X?).

Therefore, as long as δ2r is small enough, say δ2r ≤ 0.02/(
√
rκ) as specified in Theorem 1, the initial dis-

tance satisfies dist(F0,F?) ≤ 0.1σr(X?), allowing us to invoke Lemma 1 recursively. The proof of Theorem 1
is then complete. The proofs of Lemmas 1-2 can be found in Appendix C.

3.3 Proof Outline for Robust PCA
As before, we begin with the following local convergence guarantee of Algorithm 2, which has a weaker
requirement on α than the main theorem (cf. Theorem 2). The difference with low-rank matrix sensing is
that local convergence for robust PCA requires a further incoherence condition on the iterates (cf. (33)),
where we recall from (11) that Qt is the optimal alignment matrix between Ft and F?.

Lemma 3. Suppose that X? is µ-incoherent and α ≤ 10−4/(µr). If the t-th iterate satisfies dist(Ft,F?) ≤
0.02σr(X?) and the incoherence condition

√
n1

∥∥∥(LtQt −L?)Σ
1/2
?

∥∥∥
2,∞
∨
√
n2

∥∥∥(RtQ
−>
t −R?)Σ

1/2
?

∥∥∥
2,∞
≤ √µrσr(X?), (33)

then ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0.1 ≤ η ≤ 2/3, then the (t+ 1)-th
iterate Ft+1 of the ScaledGD method in (20) of Algorithm 2 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition
√
n1

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
∨
√
n2

∥∥∥(Rt+1Q
−>
t+1 −R?)Σ

1/2
?

∥∥∥
2,∞
≤ √µrσr(X?).

As long as the initialization is close to the ground truth and satisfies the incoherence condition, Lemma 3
ensures that the iterates of ScaledGD remain incoherent and converge linearly. This allows us to remove the
unnecessary projection step in [YPCC16], whose main objective is to ensure the incoherence of the iterates.

We are left with checking the initial conditions. The following lemma ensures that the spectral initial-
ization in (19) is close to the ground truth as long as α is sufficiently small.

Lemma 4. Suppose that X? is µ-incoherent. Then the spectral initialization (19) for robust PCA satisfies

dist(F0,F?) ≤ 20αµr3/2κσr(X?).

As a result, setting α ≤ 10−3/(µr3/2κ), the spectral initialization satisfies dist(F0,F?) ≤ 0.02σr(X?). In
addition, we need to make sure that the spectral initialization satisfies the incoherence condition, which is
provided in the following lemma.
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Lemma 5. Suppose that X? is µ-incoherent and α ≤ 0.1/(µrκ), and that dist(F0,F?) ≤ 0.02σr(X?). Then
the spectral initialization (19) satisfies the incoherence condition

√
n1

∥∥∥(L0Q0 −L?)Σ
1/2
?

∥∥∥
2,∞
∨
√
n2

∥∥∥(R0Q
−>
0 −R?)Σ

1/2
?

∥∥∥
2,∞
≤ √µrσr(X?).

Combining Lemmas 3-5 finishes the proof of Theorem 2. The proofs of the the three supporting lemmas
can be found in Section D.

3.4 Proof Outline for Matrix Completion
A key property of the new projection operator. We start with the following lemma that entails a key
property of the scaled projection (24), which ensures the scaled projection satisfies both non-expansiveness
and incoherence under the scaled metric.

Lemma 6. Suppose that X? is µ-incoherent, and dist(F̃ ,F?) ≤ εσr(X?) for some ε < 1. Set B ≥ (1 +

ε)
√
µrσ1(X?), then PB(F̃ ) satisfies the non-expansiveness

dist(PB(F̃ ),F?) ≤ dist(F̃ ,F?),

and the incoherence condition
√
n1‖LR>‖2,∞ ∨

√
n2‖RL>‖2,∞ ≤ B.

It is worth noting that the incoherence condition adopts a slightly different form than that of robust PCA,
which is more convenient for matrix completion. The next lemma guarantees the fast local convergence of
Algorithm 3 as long as the sample complexity is large enough and the parameter B is set properly.

Lemma 7. Suppose that X? is µ-incoherent, and p ≥ C(µrκ4∨log(n1∨n2))µr/(n1∧n2) for some sufficiently
large constant C. Set the projection radius as B = CB

√
µrσ1(X?) for some constant CB ≥ 1.02. Under an

event E which happens with overwhelming probability, if the t-th iterate satisfies dist(Ft,F?) ≤ 0.02σr(X?),
and the incoherence condition

√
n1‖LtR>t ‖2,∞ ∨

√
n1‖RtL

>
t ‖2,∞ ≤ B,

then ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0 < η ≤ 2/3, then the (t + 1)-th
iterate Ft+1 of the ScaledPGD method in (26) of Algorithm 3 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition
√
n1‖Lt+1R

>
t+1‖2,∞ ∨

√
n2‖Rt+1L

>
t+1‖2,∞ ≤ B.

As long as we can find an initialization that is close to the ground truth and satisfies the incoherence
condition, Lemma 7 ensures that the iterates of ScaledPGD remain incoherent and converge linearly. The
follow lemma ensures that such an initialization can be ensured via the spectral method.

Lemma 8. Suppose that X? is µ-incoherent, then with overwhelming probability, the spectral initialization

before projection F̃0 :=

[
U0Σ

1/2
0

V0Σ
1/2
0

]
in (25) satisfies

dist(F̃0,F?) ≤ C0

(
µr log(n1 ∨ n2)

p
√
n1n2

+

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

)
5
√
rκσr(X?).

Therefore, as long as p ≥ Cµr2κ2 log(n1 ∨n2)/(n1 ∧n2) for some sufficiently large constant C, the initial
distance satisfies dist(F̃0,F?) ≤ 0.02σr(X?). One can then invoke Lemma 6 to see that F0 = PB(F̃0) meets
the requirements of Lemma 7 due to the non-expansiveness and incoherence properties of the projection
operator. The proofs of the the the supporting lemmas can be found in Section E.
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4 Numerical Experiments
In this section, we provide numerical experiments to corroborate our theoretical findings, with the codes
available at

https://github.com/Titan-Tong/ScaledGD.

We compare ScaledGD with vanilla gradient descent (GD). The update rule of vanilla GD for solving (2) is
given as

Lt+1 = Lt − ηGD∇LL(Lt,Rt),

Rt+1 = Rt − ηGD∇RL(Lt,Rt),
(34)

where ηGD > 0 stands for the step size for gradient descent. To make a fair comparison, we fix the step size
as η = 0.5 for ScaledGD, and set ηGD = η/σ1(X?) for vanilla GD. This choice is often recommended by the
theory of vanilla GD [TBS+16,YPCC16,MWCC19] and the scaling by σ1(X?) is needed for its convergence.
Both algorithms start from the same spectral initialization. To avoid notational clutter, we work on square
asymmetric matrices with n1 = n2 = n. We consider four low-rank matrix estimation tasks:

• Low-rank matrix sensing. The problem formulation is detailed in Section 2.2. Here, we collect m = 5nr
measurements in the form of yk = 〈Ak,X?〉+ wk, in which the measurement matrices Ak are generated
with i.i.d. Gaussian entries with zero mean and variance 1/m, and wk ∼ N (0, σ2

w) are i.i.d. Gaussian
noises.

• Robust PCA. The problem formulation is stated in Section 2.3. We generate the corruption with a sparse
matrix S? ∈ Sα with α = 0.1. More specifically, we generate a matrix with standard Gaussian entries and
pass it through Tα[·] to obtain S?. The observation is Y = X? + S? + W , where Wi,j ∼ N (0, σ2

w) are
i.i.d. Gaussian noises.

• Matrix completion. The problem formulation is stated in Section 2.4. We assume random Bernoulli
observations, where each entry of X? is observed with probability p = 0.2 independently. The observation
is Y = PΩ(X? + W ), where Wi,j ∼ N (0, σ2

w) are i.i.d. Gaussian noises. Moreover, we perform the scaled
gradient updates without projections.

• Hankel matrix completion. Briefly speaking, a Hankel matrix shares the same value along each skew-
diagonal, and we aim at recovering a low-rank Hankel matrix from observing a few skew-diagonals [CC14,
CWW18]. We assume random Bernoulli observations, where each skew-diagonal of X? is observed with
probability p = 0.2 independently. The loss function is

L(L,R) =
1

2p

∥∥HΩ(LR> − Y )
∥∥2

F
+

1

2

∥∥(I −H)(LR>)
∥∥2

F
, (35)

where I(·) denotes the identity operator, and the Hankel projection is defined asH(X) :=
∑2n−1
k=1 〈Hk,X〉Hk,

which maps X to its closest Hankel matrix. Here, the Hankel basis matrix Hk is the n×n matrix with the
entries in the k-th skew diagonal as 1√

ωk
, and all other entries as 0, where ωk is the length of the k-th skew

diagonal. Note that X is a Hankel matrix if and only if (I − H)(X) = 0. The Hankel projection on the
observation index set Ω is defined as HΩ(X) :=

∑
k∈Ω〈Hk,X〉Hk. The observation is Y = HΩ(X?+W ),

where W is a Hankel matrix whose entries along each skew-diagonal are i.i.d. Gaussian noises N (0, σ2
w).

For the first three problems, we generate the ground truth matrix X? ∈ Rn×n in the following way. We
first generate an n×r matrix with i.i.d. random signs, and take its r left singular vectors as U?, and similarly
for V?. The singular values are set to be linearly distributed from 1 to κ. The ground truth is then defined
as X? = U?Σ?V

>
? which has the specified condition number κ and rank r. For Hankel matrix completion,

we generate X? as an n× n Hankel matrix with entries given as

(X?)i,j =

r∑
`=1

σ`
n
e2πı(i+j−2)f` , i, j = 1, . . . , n,
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(a) Matrix sensing (b) Robust PCA
n = 200, r = 10,m = 5nr n = 1000, r = 10, α = 0.1
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(c) Matrix completion (d) Hankel matrix completion
n = 1000, r = 10, p = 0.2 n = 1000, r = 10, p = 0.2

Figure 2: The relative errors of ScaledGD and vanilla GD with respect to iteration count under different
condition numbers κ = 1, 5, 10, 20 for (a) matrix sensing, (b) robust PCA, (c) matrix completion, and (d)
Hankel matrix completion.

where f`, ` = 1, . . . , r are randomly chosen from 1/n, 2/n, . . . , 1, and σ` are linearly distributed from 1 to κ.
The Vandermonde decomposition lemma tells that X? has rank r and singular values σ`, ` = 1, . . . , r.

First, we illustrate the convergence performance under noise-free observations, i.e. σw = 0. We plot
the relative reconstruction error ‖Xt −X?‖F/‖X?‖F with respect to the iteration count t in Figure 2 for
the four problems under different condition numbers κ = 1, 5, 10, 20. For all these models, we can see that
ScaledGD has a convergence rate independent of κ, with all curves almost overlay on each other. Under good
conditioning κ = 1, ScaledGD converges at the same rate as vanilla GD; under ill conditioning, i.e. when κ
is large, ScaledGD converges much faster than vanilla GD and leads to significant computational savings.

Second, we illustrate that ScaledGD is robust to small additive noises. Denote the signal-to-noise ratio
as SNR := 10 log10

‖X?‖2F
n2σ2

w
in dB. We plot the reconstruction error ‖Xt −X?‖F/‖X?‖F with respect to the

iteration count t in Figure 3 under the condition number κ = 10 and various SNR = 40, 60, 80dB. We can see
that ScaledGD and vanilla GD achieve the same statistical error eventually, but ScaledGD converges much
faster. In addition, the convergence speeds are not influenced by the noise levels.
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(a) Matrix Sensing (b) Robust PCA
n = 200, r = 10,m = 5nr n = 1000, r = 10, α = 0.1
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(c) Matrix completion (d) Hankel matrix completion
n = 1000, r = 10, p = 0.2 n = 1000, r = 10, p = 0.2

Figure 3: The relative errors of ScaledGD and vanilla GD with respect to iteration count under the condition
number κ = 10 and signal-to-noise ratios SNR = 40, 60, 80dB for (a) matrix sensing, (b) robust PCA, (c)
matrix completion, and (d) Hankel matrix completion.

5 Conclusions
This paper proposes scaled gradient descent (ScaledGD) for factored low-rank matrix estimation, which
maintains the low per-iteration computational complexity of vanilla gradient descent, but offers significant
speed-up in terms of the convergence rate with respect to the condition number κ of the low-rank matrix.
In particular, we rigorously establish that for low-rank matrix sensing, robust PCA, and matrix completion,
to reach ε-accuracy, ScaledGD only takes O(log(1/ε)) iterations without the dependency on the condition
number when initialized via the spectral method, under standard assumptions. The key to our analysis is
the introduction of a new distance metric that takes into account the preconditioning and unbalancedness
of the low-rank factors, and we have developed new tools to analyze the trajectory of ScaledGD under this
new metric. This work opens up many venues for future research, as we discuss below.

• Improved analysis. In this paper, we have focused on establishing the fast local convergence rate. It
is interesting to study if the theory developed herein can be further strengthened in terms of sample
complexity and the size of basin of attraction. For matrix completion, it will be interesting to see if a
similar guarantee continues to hold in the absence of the projection, which will generalize recent works
[MWCC19,CLL20] that successfully removed these projections for vanilla gradient descent.
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• Other low-rank recovery problems. Besides the problems studied herein, there are many other applications
involving the recovery of an ill-conditioned low-rank matrix, such as robust PCA with missing data,
quadratic sampling, and so on. It is of interest to establish fast convergence rates of ScaledGD that are
independent of the condition number for these problems as well. In addition, it is worthwhile to explore
if a similar preconditioning trick can be useful to problems beyond low-rank matrix estimation.

• Acceleration schemes? As it is evident from our analysis of the general loss case, ScaledGD may still
converge slowly when the loss function is ill-conditioned over low-rank matrices, i.e. κf is large. In this case,
it might be of interest to combine techniques such as momentum [KC12] from the optimization literature
to further accelerate the convergence. In our companion paper [TMC20], we have extended ScaledGD to
nonsmooth formulations, which may possess better curvatures than their smooth counterparts for certain
problems.
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A Technical Lemmas
This section gathers several useful lemmas that will be used in the appendix. Throughout all lemmas, we
use X? to denote the ground truth low-rank matrix, with its compact SVD as X? = U?Σ?V

>
? , and the

stacked factor matrix is defined as F? =

[
L?
R?

]
=

[
U?Σ

1/2
?

V?Σ
1/2
?

]
.

A.1 New Distance Metric
We begin with the investigation of the new distance metric (10), where the matrix Q that attains the
infimum, if exists, is called the optimal alignment matrix between F and F?; see (11). Notice that (10)
involves a minimization problem over an open set (the set of invertible matrices). Hence the minimizer,
i.e. the optimal alignment matrix between F and F? is not guaranteed to be attained. Fortunately, a simple
sufficient condition guarantees the existence of the minimizer; see the lemma below.

Lemma 9. Fix any factor matrix F :=

[
L
R

]
∈ R(n1+n2)×r. Suppose that

dist(F ,F?) =

√
inf

Q∈GL(r)

∥∥∥(LQ−L?) Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?) Σ

1/2
?

∥∥∥2

F
< σr(X?), (36)

then the minimizer of the above minimization problem is attained at some Q ∈ GL(r), i.e. the optimal
alignment matrix Q between F and F? exists.
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Proof. In view of the condition (36) and the definition of infimum, one knows that there must exist a matrix
Q̄ ∈ GL(r) such that √∥∥∥(LQ̄−L?

)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−> −R?

)
Σ

1/2
?

∥∥∥2

F
≤ εσr(X?),

for some ε obeying 0 < ε < 1. It further implies that∥∥∥(LQ̄−L?
)
Σ
−1/2
?

∥∥∥
op
∨
∥∥∥(RQ̄−> −R?

)
Σ
−1/2
?

∥∥∥
op
≤ ε.

Invoke Weyl’s inequality |σr(A)− σr(B)| ≤ ‖A−B‖op, and use that σr(L?Σ
−1/2
? ) = σr(U?) = 1 to obtain

σr(LQ̄Σ
−1/2
? ) ≥ σr(L?Σ−1/2

? )−
∥∥∥(LQ̄−L?

)
Σ
−1/2
?

∥∥∥
op
≥ 1− ε. (37)

In addition, it is straightforward to verify that

inf
Q∈GL(r)

∥∥∥(LQ−L?) Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?

)
Σ

1/2
?

∥∥∥2

F
(38)

= inf
H∈GL(r)

∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F
. (39)

Indeed, if the minimizer of the second optimization problem (cf. (39)) is attained at some H, then Q̄H must
be the minimizer of the first problem (38). Therefore, from now on, we focus on proving that the minimizer
of the second problem (39) is attained at some H. In view of (38) and (39), one has

inf
H∈GL(r)

∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F

≤
∥∥∥(LQ̄−L?

)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−> −R?

)
Σ

1/2
?

∥∥∥2

F
,

Clearly, for any Q̄H to yield a smaller distance than Q̄, H must obey√∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F
≤ εσr(X?).

It further implies that∥∥∥(LQ̄H −L?
)
Σ
−1/2
?

∥∥∥
op
∨
∥∥∥(RQ̄−>H−> −R?

)
Σ
−1/2
?

∥∥∥
op
≤ ε.

Invoke Weyl’s inequality |σ1(A)− σ1(B)| ≤ ‖A−B‖op, and use that σ1(L?Σ
−1/2
? ) = σ1(U?) = 1 to obtain

σ1(LQ̄HΣ
−1/2
? ) ≤ σ1(L?Σ

−1/2
? ) +

∥∥∥(LQ̄H −L?
)
Σ
−1/2
?

∥∥∥
op
≤ 1 + ε. (40)

Combine (37) and (40), and use the relation σr(A)σ1(B) ≤ σ1(AB) to obtain

σr(LQ̄Σ
−1/2
? )σ1(Σ

1/2
? HΣ

−1/2
? ) ≤ σ1(LQ̄HΣ

−1/2
? ) ≤ 1 + ε

1− ε
σr(LQ̄Σ

−1/2
? ).

As a result, one has σ1(Σ
1/2
? HΣ

−1/2
? ) ≤ 1+ε

1−ε .

Similarly, one can show that σ1(Σ
1/2
? H−>Σ

−1/2
? ) ≤ 1+ε

1−ε , equivalently, σr(Σ
1/2
? HΣ

−1/2
? ) ≥ 1−ε

1+ε . Com-
bining the above two arguments reveals that the minimization problem (39) is equivalent to the constrained
problem:

minimize
H∈GL(r)

∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F

subject to
1− ε
1 + ε

≤ σr(Σ1/2
? HΣ

−1/2
? ) ≤ σ1(Σ

1/2
? HΣ

−1/2
? ) ≤ 1 + ε

1− ε
.

Notice that this is a continuous optimization problem over a compact set. Apply the Weierstrass extreme
value theorem to finish the proof.
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With the existence of the optimal alignment matrix in place, the following lemma provides the first-order
necessary condition for the minimizer.

Lemma 10. For any factor matrix F :=

[
L
R

]
∈ R(n1+n2)×r, suppose that the optimal alignment matrix

Q = argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F

between F and F? exists, then Q obeys

(LQ)>(LQ−L?)Σ? = Σ?(RQ−> −R?)
>RQ−>. (41)

Proof. Expand the squares in the definition of Q to obtain

Q = argmin
Q∈GL(r)

tr
(
(LQ−L?)

>(LQ−L?)Σ?

)
+ tr

(
(RQ−> −R?)

>(RQ−> −R?)Σ?

)
.

Clearly, the first order necessary condition (i.e. the gradient is zero) yields

2L>(LQ−L?)Σ? − 2Q−>Σ?(RQ−> −R?)
>RQ−> = 0,

which implies the optimal alignment criterion (41).

Last but not least, we connect the newly proposed distance to the usual Frobenius norm in Lemma 11,
the proof of which is a slight modification to [TBS+16, Lemma 5.4] and [GJZ17, Lemma 41].

Lemma 11. For any factor matrix F :=

[
L
R

]
∈ R(n1+n2)×r, the distance between F and F? satisfies

dist(F ,F?) ≤
√√

2 + 1‖LR> −X?‖F.

Proof. Suppose that X := LR> has compact SVD as X = UΣV >. Without loss of generality, we can

assume that F =

[
UΣ1/2

V Σ1/2

]
, since any factorization of X yields the same distance. Introduce two auxiliary

matrices F̄ :=

[
UΣ1/2

−V Σ1/2

]
and F̄? :=

[
U?Σ

1/2
?

−V?Σ1/2
?

]
. Apply the dilation trick to obtain

2

[
0 X

X> 0

]
= FF> − F̄ F̄>, 2

[
0 X?

X>? 0

]
= F?F

>
? − F̄?F̄

>
? .

As a result, the squared Frobenius norm of X −X? is given by

8‖X −X?‖2F =
∥∥FF> − F̄ F̄> − F?F

>
? + F̄?F̄

>
?

∥∥2

F

=
∥∥FF> − F?F

>
?

∥∥2

F
+
∥∥F̄ F̄> − F̄?F̄

>
?

∥∥2

F
− 2 tr

(
(FF> − F?F

>
? )(F̄ F̄> − F̄?F̄

>
? )
)

= 2
∥∥FF> − F?F

>
?

∥∥2

F
+ 2‖F>F̄?‖2F + 2‖F>? F̄ ‖2F

≥ 2
∥∥FF> − F?F

>
?

∥∥2

F
,

where we use the facts that
∥∥FF> − F?F

>
?

∥∥2

F
=
∥∥F̄ F̄> − F̄?F̄

>
?

∥∥2

F
and F>F̄ = F>? F̄? = 0.

Let O := sgn(F>F?)
4 be the optimal orthonormal alignment matrix between F and F?. Denote ∆ :=

FO − F?. Follow the same argument as [TBS+16, Lemma 5.14] and [GJZ17, Lemma 41] to obtain

4‖X −X?‖2F ≥
∥∥F?∆> + ∆F>? + ∆∆>

∥∥2

F

4Let ASB> be the SVD of F>F?, then the matrix sign is sgn(F>F?) := AB>.
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= tr
(
2F>? F?∆

>∆ + (∆>∆)2 + 2(F>? ∆)2 + 4F>? ∆∆>∆
)

= tr
(

2F>? F?∆
>∆ + (∆>∆ +

√
2F>? ∆)2 + (4− 2

√
2)F>? ∆∆>∆

)
= tr

(
2(
√

2− 1)F>? F?∆
>∆ + (∆>∆ +

√
2F>? ∆)2 + (4− 2

√
2)F>? FO∆>∆

)
≥ tr

(
4(
√

2− 1)Σ?∆
>∆

)
= 4(
√

2− 1)
∥∥∥(FO − F?)Σ

1/2
?

∥∥∥2

F
,

where the last inequality follows from the facts that F>? F? = 2Σ? and that F>? FO is a positive semi-definite
matrix. Therefore we obtain ∥∥∥(FO − F?)Σ

1/2
?

∥∥∥
F
≤
√√

2 + 1‖X −X?‖F.

This in conjunction with dist(F ,F?) ≤ ‖(FO − F?)Σ
1/2
? ‖F yields the claimed result.

A.2 Matrix Perturbation Bounds
Lemma 12. For any L ∈ Rn1×r,R ∈ Rn2×r, denote ∆L := L − L? and ∆R := R − R?. Suppose that
‖∆LΣ

−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op < 1, then one has∥∥∥L(L>L)−1Σ

1/2
?

∥∥∥
op
≤ 1

1− ‖∆LΣ
−1/2
? ‖op

; (42a)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
≤ 1

1− ‖∆RΣ
−1/2
? ‖op

; (42b)

∥∥∥L(L>L)−1Σ
1/2
? −U?

∥∥∥
op
≤
√

2‖∆LΣ
−1/2
? ‖op

1− ‖∆LΣ
−1/2
? ‖op

; (42c)

∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥
op
≤
√

2‖∆RΣ
−1/2
? ‖op

1− ‖∆RΣ
−1/2
? ‖op

. (42d)

Proof. We only prove claims (42a) and (42c) on the factor L, while the claims on the factor R follow from
a similar argument. We start to prove (42a). Notice that∥∥∥L(L>L)−1Σ

1/2
?

∥∥∥
op

=
1

σr(LΣ
−1/2
? )

.

In addition, invoke Weyl’s inequality to obtain

σr(LΣ
−1/2
? ) ≥ σr(L?Σ−1/2

? )− ‖∆LΣ
−1/2
? ‖op = 1− ‖∆LΣ

−1/2
? ‖op,

where we have used the fact that U? = L?Σ
−1/2
? is an orthonormal matrix. Combine the preceding two

relations to prove (42a).
We proceed to prove (42c). Combine U? = L?Σ

−1/2
? and (In1 − L(L>L)−1L>)L = 0 to obtain the

decomposition

U? = L(L>L)−1L>U? + (In1
−L(L>L)−1L>)L?Σ

−1/2
?

= L(L>L)−1L>U? − (In1
−L(L>L)−1L>)∆LΣ

−1/2
? .

Subtract it by L(L>L)−1Σ
1/2
? and write Σ

1/2
? = L>? U? to obtain

L(L>L)−1Σ
1/2
? −U? = −L(L>L)−1∆>LU? + (In1

−L(L>L)−1L>)∆LΣ
−1/2
? .

For any ṽ ∈ Rn2 with ‖ṽ‖2 ≤ 1, the fact that L(L>L)−1∆>LU?ṽ and (In1
−L(L>L)−1L>)∆LΣ

−1/2
? ṽ are

orthogonal implies∥∥∥(L(L>L)−1Σ
1/2
? −U?

)
ṽ
∥∥∥2

2
=
∥∥L(L>L)−1∆>LU?ṽ

∥∥2

2
+
∥∥∥(In1

−L(L>L)−1L>)∆LΣ
−1/2
? ṽ

∥∥∥2

2
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≤
∥∥∥L(L>L)−1Σ

1/2
?

∥∥∥2

op
‖∆LΣ

−1/2
? ‖2op +

∥∥In1
−L(L>L)−1L>

∥∥2

op
‖∆LΣ

−1/2
? ‖2op

≤
‖∆LΣ

−1/2
? ‖2op

(1− ‖∆LΣ
−1/2
? ‖op)2

+ ‖∆LΣ
−1/2
? ‖2op

≤
2‖∆LΣ

−1/2
? ‖2op

(1− ‖∆LΣ
−1/2
? ‖op)2

,

where we have used (42a) and the fact that ‖In1 − L(L>L)−1L>‖op ≤ 1 in the third line. Utilize the
variational representation of the operator norm to obtain∥∥∥L(L>L)−1Σ

1/2
? −U?

∥∥∥
op

= max
ṽ∈Rn2 :‖ṽ‖2≤1

∥∥∥(L(L>L)−1Σ
1/2
? −U?

)
ṽ
∥∥∥

2

≤
√

2‖∆LΣ
−1/2
? ‖op

1− ‖∆LΣ
−1/2
? ‖op

.

Lemma 13. For any L ∈ Rn1×r,R ∈ Rn2×r, denote ∆L := L−L? and ∆R := R−R?, then one has

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

≤
(

1 +
1

2
(‖∆LΣ

−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op)

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Proof. In light of the decomposition LR> −X? = ∆LR
>
? + L?∆

>
R + ∆L∆>R and the triangle inequality,

one has

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

= ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F + ‖∆L∆>R‖F,

where we have used the facts that

‖∆LR
>
? ‖F = ‖∆LΣ

1/2
? V >? ‖F = ‖∆LΣ

1/2
? ‖F, and ‖L?∆>R‖F = ‖U?Σ

1/2
? ∆>R‖F = ‖∆RΣ

1/2
? ‖F.

This together with the simple upper bound

‖∆L∆>R‖F =
1

2
‖∆LΣ

1/2
? (∆RΣ

−1/2
? )>‖F +

1

2
‖∆LΣ

−1/2
? (∆RΣ

1/2
? )>‖F

≤ 1

2
‖∆LΣ

1/2
? ‖F‖∆RΣ

−1/2
? ‖op +

1

2
‖∆LΣ

−1/2
? ‖op‖∆RΣ

1/2
? ‖F

≤ 1

2
(‖∆LΣ

−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
finishes the proof.

Lemma 14. For any L ∈ Rn1×r,R ∈ Rn2×r and any invertible matrices Q, Q̄ ∈ GL(r), suppose that
‖(LQ−L?)Σ

−1/2
? ‖op ∨ ‖(RQ−> −R?)Σ

−1/2
? ‖op < 1, then one has

∥∥∥Σ1/2
? Q̄−1QΣ

1/2
? −Σ?

∥∥∥
op
≤ ‖R(Q̄−> −Q−>)Σ

1/2
? ‖op

1− ‖(RQ−> −R?)Σ
−1/2
? ‖op

, and

∥∥∥Σ1/2
? Q̄>Q−>Σ

1/2
? −Σ?

∥∥∥
op
≤ ‖L(Q̄−Q)Σ

1/2
? ‖op

1− ‖(LQ−L?)Σ
−1/2
? ‖op

.

26



Proof. Insert R>R(R>R)−1, and use the relation ‖AB‖op ≤ ‖A‖op‖B‖op to obtain∥∥∥Σ1/2
? Q̄−1QΣ

1/2
? −Σ?

∥∥∥
op

=
∥∥∥Σ1/2

? (Q̄−1 −Q−1)R>R(R>R)−1QΣ
1/2
?

∥∥∥
op

≤
∥∥∥R(Q̄−> −Q−>)Σ

1/2
?

∥∥∥
op

∥∥∥R(R>R)−1QΣ
1/2
?

∥∥∥
op

=
∥∥∥R(Q̄−> −Q−>)Σ

1/2
?

∥∥∥
op

∥∥∥RQ−>((RQ−>)>RQ−>)−1Σ
1/2
?

∥∥∥
op

≤ ‖R(Q̄−> −Q−>)Σ
1/2
? ‖op

1− ‖(RQ−> −R?)Σ
−1/2
? ‖op

,

where the last line uses Lemma 12.
Similarly, insert L>L(L>L)−1, and use the relation ‖AB‖op ≤ ‖A‖op‖B‖op to obtain∥∥∥Σ1/2

? Q̄>Q−>Σ
1/2
? −Σ?

∥∥∥
op

=
∥∥∥Σ1/2

? (Q̄> −Q>)L>L(L>L)−1Q−>Σ
1/2
?

∥∥∥
op

≤
∥∥∥L(Q̄−Q)Σ

1/2
?

∥∥∥
op

∥∥∥L(L>L)−1Q−>Σ
1/2
?

∥∥∥
op

=
∥∥∥L(Q̄−Q)Σ

1/2
?

∥∥∥
op

∥∥∥LQ((LQ)>LQ)−1Σ
1/2
?

∥∥∥
op

≤ ‖L(Q̄−Q)Σ
1/2
? ‖op

1− ‖(LQ−L?)Σ
−1/2
? ‖op

,

where the last line uses Lemma 12.

A.3 Partial Frobenius Norm
We introduce the partial Frobenius norm

‖X‖F,r :=

√√√√ r∑
i=1

σ2
i (X) = ‖Pr(X)‖F (43)

as the `2 norm of the vector composed of the top-r singular values of a matrix X, or equivalently as the
Frobenius norm of the rank-r approximation Pr(X) defined in (5). It is straightforward to verify that ‖ ·‖F,r
is a norm; see also [Maz16]. The following lemma provides several equivalent and useful characterizations of
this partial Frobenius norm.

Lemma 15. For any X ∈ Rn1×n2 , one has

‖X‖F,r = max
Ṽ ∈Rn2×r:Ṽ >Ṽ =Ir

‖XṼ ‖F (44a)

= max
X̃∈Rn1×n2 :‖X̃‖F≤1,rank(X̃)≤r

〈X, X̃〉 (44b)

= max
R̃∈Rn2×r:‖R̃‖op≤1

‖XR̃‖F. (44c)

Proof. The first representation (44a) follows immediately from the extremal partial trace identity; see [Maz16,
Proposition 4.4], by noticing the following relation

r∑
i=1

σ2
i (X) = max

V⊆Rn2 :dim(V)=r
tr
(
X>X | V

)
= max

Ṽ ∈Rn2×r:Ṽ >Ṽ =Ir

‖XṼ ‖2F.

Here the partial trace over a vector space V is defined as

tr(X>X | V) :=

r∑
i=1

ṽ>i X
>Xṽi,
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where {ṽi}1≤i≤r is any orthonormal basis of V. The partial trace is invariant to the choice of orthonormal
basis and therefore well-defined.

To prove the second representation (44b), for any X̃ ∈ Rn1×n2 obeying rank(X̃) ≤ r and ‖X̃‖F ≤ 1,
denoting X̃ = ŨΣ̃Ṽ > as its compact SVD, one has

〈X, X̃〉 = 〈X, ŨΣ̃Ṽ >〉 = 〈XṼ , ŨΣ̃〉 ≤ ‖XṼ ‖F‖ŨΣ̃‖F ≤ ‖X‖F,r,

where the last inequality follows from (44a). In addition, the maximum in (44b) is attained at X̃ =
Pr(X)/‖Pr(X)‖F.

To prove the third representation (44c), for any R̃ ∈ Rn2×r obeying ‖R̃‖op ≤ 1, combine the variational
representation of the Frobenius norm and (44b) to obtain

‖XR̃‖F = max
L̃∈Rn1×n2 :‖L̃‖F≤1

〈XR̃, L̃〉

= max
L̃∈Rn1×n2 :‖L̃‖F≤1

〈X, L̃R̃>〉 ≤ ‖X‖F,r,

where the last inequality follows from (44b). In addition, the maximum in (44c) is attained at R̃ = V , where
V denotes the top-r right singular vectors of X.

Remark 3. For self-completeness, we also provide a detailed proof of the first representation (44a). This
proof is inductive on r. When r = 1, we have

σ1(X) = ‖Xv1‖2 = max
ṽ∈Rn2 :‖ṽ‖2=1

‖Xṽ‖2,

where v1 denotes the top right singular vector of X. Assume that the statement holds for ‖ · ‖F,r−1. Now
consider ‖·‖F,r. For any Ṽ ∈ Rn2×r such that Ṽ >Ṽ = Ir, we can first pick ṽ2, . . . , ṽr as a set of orthonormal
vectors in the column space of Ṽ that are orthogonal to v1, and then pick ṽ1 via the Gram-Schmidt process,
so that {ṽi}ri=1 provides an orthonormal basis of the column space of Ṽ . Further, by the orthogonality of
Ṽ , there exists an orthonormal matrix O such that

Ṽ = [ṽ1, . . . , ṽr]O.

Combining this formula with the induction hypothesis yields

‖XṼ ‖2F = ‖X[ṽ1, . . . , ṽr]‖2F
= ‖Xṽ1‖22 + ‖X[ṽ2, . . . , ṽr]‖2F
= ‖Xṽ1‖22 + ‖(X − P1(X))[ṽ2, . . . , ṽr]‖2F
≤ σ2

1(X) + ‖X − P1(X)‖2F,r−1

=

r∑
i=1

σ2
i (X) = ‖X‖2F,r,

where the first line holds since O is orthonormal, the third line holds since P1(X)[ṽ2, . . . , ṽr] = 0, the fourth
line follows from the induction hypothesis, and the last line follows from the definition (43). In addition,
the maximum in (44a) is attained at Ṽ = V , where V denotes the top-r right singular vectors of X. This
finishes the proof.

Recall that Pr(X) denotes the best rank-r approximation of X under the Frobenius norm. It turns out
that Pr(X) is also the best rank-r approximation of X under the partial Frobenius norm ‖ · ‖F,r. This claim
is formally stated below; see also [Maz16, Theorem 4.21].

Lemma 16. Fix any X ∈ Rn1×n2 and recall the definition of Pr(X) in (5). One has

Pr(X) = argmin
X̄∈Rn1×n2 :rank(X̄)≤r

‖X −X‖F,r.
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Proof. For any X of rank at most r, invoke Weyl’s inequality to obtain σr+i(X) ≤ σi(X−X) +σr+1(X) =
σi(X −X), for i = 1, . . . , r. Thus one has

‖X − Pr(X)‖2F,r =

r∑
i=1

σ2
r+i(X) ≤

r∑
i=1

σ2
i (X −X) = ‖X −X‖2F,r.

The proof is finished by observing that the rank of Pr(X) is at most r.

B Proof for Low-Rank Matrix Factorization

B.1 Proof of Proposition 2
The gradients of L(F ) in (29) with respect to L and R are given as

∇LL(F ) = (LR> −X?)R, ∇RL(F ) = (LR> −X?)
>L,

which can be used to compute the Hessian with respect to L and R. Writing for the vectorized variables,
the Hessians are given as

∇2
L,LL(F ) = (R>R)⊗ In1

, ∇2
R,RL(F ) = (L>L)⊗ In2

.

Viewed in the vectorized form, the ScaledGD method in (3) can be rewritten as

vec(Lt+1) = vec(Lt)− η((R>t Rt)
−1 ⊗ In1

) vec((LtR
>
t −X?)Rt)

= vec(Lt)− η(∇2
L,LL(Ft))

−1 vec(∇LL(Ft)),

vec(Rt+1) = vec(Rt)− η((L>t Lt)
−1 ⊗ In2

) vec((LtR
>
t −X?)

>Lt)

= vec(Rt)− η(∇2
R,RL(Ft))

−1 vec(∇RL(Ft)).

B.2 Proof of Theorem 5
The proof is inductive in nature. More specifically, we intend to show that for all t ≥ 0,

1. dist(Ft,F?) ≤ (1− 0.7η)t dist(F0,F?) ≤ 0.1(1− 0.7η)tσr(X?), and

2. the optimal alignment matrix Qt between Ft and F? exists.

For the base case, i.e. t = 0, the first induction hypothesis trivially holds, while the second also holds true
in view of Lemma 9 and the assumption that dist(F0,F?) ≤ 0.1σr(X?). We therefore concentrate on the
induction step. Suppose that the t-th iterate Ft obeys the aforementioned induction hypotheses. Our goal
is to show that Ft+1 continues to satisfy those.

For notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L−L?,∆R := R−R?, and ε := 0.1.

By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
, (45)

where we recall that Qt is the optimal alignment matrix between Ft and F?. Utilize the ScaledGD update
rule (30) and the decomposition LR> −X? = ∆LR

> + L?∆
>
R to obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(∆LR

> + L?∆
>
R)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? .

As a result, one can expand the first square in (45) as∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
= (1− η)2 tr

(
∆LΣ?∆

>
L

)
− 2η(1− η) tr

(
L?∆

>
RR(R>R)−1Σ?∆

>
L

)︸ ︷︷ ︸
M1
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+ η2
∥∥∥L?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
M2

. (46)

The first term tr(∆LΣ?∆
>
L ) is closely related to dist(Ft,F?), and hence our focus will be on relating M1

and M2 to dist(Ft,F?). We start with the term M1. Since L and R are aligned with L? and R?, Lemma 10
tells that Σ?∆

>
LL = R>∆RΣ?. This together with L? = L−∆L allows us to rewrite M1 as

M1 = tr
(
R(R>R)−1Σ?∆

>
LL?∆

>
R

)
= tr

(
R(R>R)−1Σ?∆

>
LL∆>R

)
− tr

(
R(R>R)−1Σ?∆

>
L∆L∆>R

)
= tr

(
R(R>R)−1R>∆RΣ?∆

>
R

)
− tr

(
R(R>R)−1Σ?∆

>
L∆L∆>R

)
.

Moving on to M2, we can utilize the fact L>? L? = Σ? and the decomposition Σ? = R>R− (R>R−Σ?) to
obtain

M2 = tr
(
R(R>R)−1Σ?(R

>R)−1R>∆RΣ?∆
>
R

)
= tr

(
R(R>R)−1R>∆RΣ?∆

>
R

)
− tr

(
R(R>R)−1(R>R−Σ?)(R

>R)−1R>∆RΣ?∆
>
R

)
.

Putting M1 and M2 back to (46) yields∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
= (1− η)2 tr

(
∆LΣ?∆

>
L

)
− η(2− 3η) tr

(
R(R>R)−1R>∆RΣ?∆

>
R

)︸ ︷︷ ︸
F1

+ 2η(1− η) tr
(
R(R>R)−1Σ?∆

>
L∆L∆>R

)︸ ︷︷ ︸
F2

− η2 tr
(
R(R>R)−1(R>R−Σ?)(R

>R)−1R>∆RΣ?∆
>
R

)︸ ︷︷ ︸
F3

.

In what follows, we will control the three terms F1,F2 and F3 separately.

1. Notice that F1 is the inner product of two positive semi-definite matrices R(R>R)−1R> and ∆RΣ?∆
>
R.

Consequently we have F1 ≥ 0.

2. To control F2, we need certain control on ‖∆LΣ
−1/2
? ‖op and ‖∆RΣ

−1/2
? ‖op. The first induction hypothesis

dist(Ft,F?) =

√
‖∆LΣ

−1/2
? Σ?‖2F + ‖∆RΣ

−1/2
? Σ?‖2F ≤ εσr(X?)

together with the relation ‖AB‖F ≥ σr(B)‖A‖F tells that√
‖∆LΣ

−1/2
? ‖2F + ‖∆RΣ

−1/2
? ‖2F σr(X?) ≤ εσr(X?).

In light of the relation ‖A‖op ≤ ‖A‖F, this further implies

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (47)

Invoke Lemma 12 to see ∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
≤ 1

1− ε
.

With these consequences, one can bound F2| by

|F2| =
∣∣∣ tr(Σ

−1/2
? ∆>RR(R>R)−1Σ?∆

>
L∆LΣ

1/2
?

) ∣∣∣
≤
∥∥∥Σ−1/2

? ∆>RR(R>R)−1Σ
1/2
?

∥∥∥
op

tr
(
Σ

1/2
? ∆>L∆LΣ

1/2
?

)
≤ ‖∆RΣ

−1/2
? ‖op

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op

tr
(
∆LΣ?∆

>
L

)
≤ ε

1− ε
tr
(
∆LΣ?∆

>
L

)
.
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3. Similarly, one can bound |F3| by

|F3| ≤
∥∥R(R>R)−1(R>R−Σ?)(R

>R)−1R>
∥∥
op

tr
(
∆RΣ?∆

>
R

)
≤
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2

op

∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥
op

tr
(
∆RΣ?∆

>
R

)
≤ 1

(1− ε)2

∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥
op

tr
(
∆RΣ?∆

>
R

)
.

Further notice that∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥
op

=
∥∥∥Σ−1/2

? (R>? ∆R + ∆>RR? + ∆>R∆R)Σ
−1/2
?

∥∥∥
op

≤ 2‖∆RΣ
−1/2
? ‖op + ‖∆RΣ

−1/2
? ‖2op

≤ 2ε+ ε2.

Take the preceding two bounds together to arrive at

|F3| ≤
2ε+ ε2

(1− ε)2
tr
(
∆RΣ?∆

>
R

)
.

Combining the bounds for F1,F2,F3, one has∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F

≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
tr
(
∆LΣ?∆

>
L

)
+

2ε+ ε2

(1− ε)2
η2 tr

(
∆RΣ?∆

>
R

)
. (48)

A similarly bound holds for the second square ‖(Rt+1Qt −R?)Σ
1/2
? ‖2F in (45). Therefore we obtain∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε) dist2(Ft,F?),

where we identify

dist2(Ft,F?) = tr(∆LΣ?∆
>
L ) + tr(∆RΣ?∆

>
R) (49)

and the contraction rate ρ2(η; ε) is given by

ρ2(η; ε) := (1− η)2 +
2ε

1− ε
η(1− η) +

2ε+ ε2

(1− ε)2
η2.

With ε = 0.1 and 0 < η ≤ 2/3, one has ρ(η; ε) ≤ 1− 0.7η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.7η) dist(Ft,F?)

≤ (1− 0.7η)t+1 dist(F0,F?) ≤ (1− 0.7η)t+10.1σr(X?).

This proves the first induction hypothesis. The existence of the optimal alignment matrix Qt+1 between
Ft+1 and F? is assured by Lemma 9, which finishes the proof for the second hypothesis.

So far, we have demonstrated the first conclusion in the theorem. The second conclusion is an easy
consequence of Lemma 13 as∥∥LtR>t −X?

∥∥
F
≤
(

1 +
ε

2

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤
(

1 +
ε

2

)√
2 dist(Ft,F?)

≤ 1.5 dist(Ft,F?).

(50)

Here, the second line follows from the elementary inequality a + b ≤
√

2(a2 + b2) and the expression of
dist(Ft,F?) in (49). The proof is now completed.
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C Proof for Low-Rank Matrix Sensing
We start by recording a useful lemma.

Lemma 17 ( [CP11]). Suppose that A(·) obeys the 2r-RIP with a constant δ2r. Then for any X1,X2 ∈
Rn1×n2 of rank at most r, one has

|〈A(X1),A(X2)〉 − 〈X1,X2〉| ≤ δ2r‖X1‖F‖X2‖F,

which can be stated equivalently as∣∣tr ((A∗A− I)(X1)X>2
)∣∣ ≤ δ2r‖X1‖F‖X2‖F. (51)

As a simple corollary, one has that for any matrix R ∈ Rn2×r:

‖(A∗A− I)(X1)R‖F ≤ δ2r‖X1‖F‖R‖op. (52)

This is due to the fact that

‖(A∗A− I)(X1)R‖F = max
L̃:‖L̃‖F≤1

tr
(

(A∗A− I)(X1)RL̃>
)

≤ max
L̃:‖L̃‖F≤1

δ2r‖X1‖F‖RL̃>‖F

≤ max
L̃:‖L̃‖F≤1

δ2r‖X1‖F‖R‖op‖L̃>‖F

= δ2r‖X1‖F‖R‖op.

Here, the first line follows from the variational representation of the Frobenius norm, the second line follows
from (51), and the third line follows from the relation ‖AB‖F ≤ ‖A‖op‖B‖F.

C.1 Proof of Lemma 1
The proof mostly mirrors that in Section B.2. First, in view of the condition dist(Ft,F?) ≤ 0.1σr(X?)
and Lemma 9, one knows that Qt, the optimal alignment matrix between Ft and F? exists. Therefore, for
notational convenience, denote L := LtQt, R := RtQ

−>
t , ∆L := L − L?, ∆R := R − R?, and ε := 0.1.

Similar to the derivation in (47), we have

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (53)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 13; see (50) for a detailed
argument. From now on, we focus on proving the distance contraction.

With these notations in place, we have by the definition of dist(Ft+1,F?) that

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (54)

Apply the update rule (15) and the decomposition LR> −X? = ∆LR
> + L?∆

>
R to obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− ηA∗A(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(LR> −X?)R(R>R)−1 − η(A∗A− I)(LR> −X?)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(A∗A− I)(LR> −X?)R(R>R)−1Σ

1/2
? .

This allows us to expand the first square in (54) as∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
S1

32



− 2η(1− η) tr
(
(A∗A− I)(LR> −X?)R(R>R)−1Σ?∆

>
L

)︸ ︷︷ ︸
S2

+ 2η2 tr
(
(A∗A− I)(LR> −X?)R(R>R)−1Σ?(R

>R)−1R>∆RL
>
?

)︸ ︷︷ ︸
S3

+ η2
∥∥∥(A∗A− I)(LR> −X?)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
S4

.

In what follows, we shall control the four terms separately, of which S1 is the main term, and S2,S3 and
S4 are perturbation terms.

1. Notice that the main term S1 has already been controlled in (48) under the condition (53). It obeys

S1 ≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term S2, decompose LR> − X? = ∆LR
>
? + L?∆

>
R + ∆L∆>R and apply the triangle

inequality to obtain

|S2| =
∣∣∣ tr ((A∗A− I)(∆LR

>
? + L?∆

>
R + ∆L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣
≤
∣∣∣ tr ((A∗A− I)(∆LR

>
? )R(R>R)−1Σ?∆

>
L

) ∣∣∣
+
∣∣∣ tr ((A∗A− I)(L?∆

>
R)R(R>R)−1Σ?∆

>
L

) ∣∣∣
+
∣∣∣ tr ((A∗A− I)(∆L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣.
Invoke Lemma 17 to further obtain

|S2| ≤ δ2r
(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

) ∥∥R(R>R)−1Σ?∆
>
L

∥∥
F

≤ δ2r
(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

) ∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
‖∆LΣ

1/2
? ‖F,

where the second line follows from the relation ‖AB‖F ≤ ‖A‖op‖B‖F. Take the condition (53) and
Lemmas 12 and 13 together to obtain∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
op
≤ 1

1− ε
;

‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F ≤ (1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

These consequences further imply that

|S2| ≤
δ2r(2 + ε)

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

=
δ2r(2 + ε)

2(1− ε)

(
‖∆LΣ

1/2
? ‖2F + ‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

)
.

For the term ‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F, we can apply the elementary inequality 2ab ≤ a2 + b2 to see

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F ≤

1

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F.

The preceding two bounds taken collectively yield

|S2| ≤
δ2r(2 + ε)

2 (1− ε)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆LΣ

1/2
? ‖2F

)
.
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3. The third term S3 can be similarly bounded as

|S3| ≤ δ2r
(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

) ∥∥R(R>R)−1Σ?(R
>R)−1R>∆RL

>
?

∥∥
F

≤ δ2r
(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

) ∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

op
‖∆RL

>
? ‖F

≤ δ2r(2 + ε)

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

≤ δ2r(2 + ε)

2(1− ε)2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
.

4. We are then left with the last term S4, for which we have√
S4 =

∥∥∥(A∗A− I)(LR> −X?)R(R>R)−1Σ
1/2
?

∥∥∥
F

≤
∥∥∥(A∗A− I)(∆LR

>
? )R(R>R)−1Σ

1/2
?

∥∥∥
F

+
∥∥∥(A∗A− I)(L?∆

>
R)R(R>R)−1Σ

1/2
?

∥∥∥
F

+
∥∥∥(A∗A− I)(∆L∆>R)R(R>R)−1Σ

1/2
?

∥∥∥
F
,

where once again we use the decomposition LR>−X? = ∆LR
>
? +L?∆

>
R + ∆L∆>R. Use (52) to see that√

S4 ≤ δ2r
(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

) ∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
.

Repeating the same argument in bounding S2 yields√
S4 ≤

δ2r (2 + ε)

2 (1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

We can then take the squares of both sides and use (a+ b)2 ≤ 2a2 + 2b2 to reach

S4 ≤
δ2
2r(2 + ε)2

2(1− ε)2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Taking the bounds for S1,S2,S3,S4 collectively yields∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+
δ2r(2 + ε)

1− ε
η(1− η)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
+
δ2r(2 + ε)

(1− ε)2
η2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
+
δ2
2r(2 + ε)2

2(1− ε)2
η2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Similarly, we can expand the second square in (54) and obtain a similar bound. Combine both to obtain∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, δ2r) dist2(Ft,F?),

where the contraction rate is given by

ρ2(η; ε, δ2r) := (1− η)2 +
2ε+ δ2r(4 + 2ε)

1− ε
η(1− η) +

2ε+ ε2 + δ2r(4 + 2ε) + δ2
2r(2 + ε)2

(1− ε)2
η2.

With ε = 0.1, δ2r ≤ 0.02, and 0 < η ≤ 2/3, one has ρ(η; ε, δ2r) ≤ 1− 0.6η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.6η) dist(Ft,F?).
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C.2 Proof of Lemma 2
With the knowledge of ‖ · ‖F,r, we are ready to establish the claimed result. Invoke Lemma 11 to relate
dist(F0,F?) to ‖L0R

>
0 −X?‖F, and use that L0R

>
0 −X? has rank at most 2r to obtain

dist(F0,F?) ≤
√√

2 + 1
∥∥L0R

>
0 −X?

∥∥
F
≤
√

2(
√

2 + 1)
∥∥L0R

>
0 −X?

∥∥
F,r
.

Note that L0R
>
0 is the best rank-r approximation of A∗A(X?), and apply the triangle inequality combined

with Lemma 16 to obtain∥∥L0R
>
0 −X?

∥∥
F,r
≤
∥∥A∗A(X?)−L0R

>
0

∥∥
F,r

+ ‖A∗A(X?)−X?‖F,r
≤ 2 ‖(A∗A− I)(X?)‖F,r ≤ 2δ2r‖X?‖F.

Here, the last inequality follows from combining Lemma 15 and (52) as

‖(A∗A− I)(X?)‖F,r = max
R̃∈Rn2×r:‖R̃‖op≤1

∥∥∥(A∗A− I)(X?)R̃
∥∥∥
F
≤ δ2r‖X?‖F.

As a result, one has

dist(F0,F?) ≤ 2

√
2(
√

2 + 1)δ2r‖X?‖F ≤ 5δ2r
√
rκσr(X?).

D Proof for Robust PCA
We first establish a useful property regarding the truncation operator T2α[·].

Lemma 18. Given S? ∈ Sα and S = T2α[X? + S? −LR>], one has

‖S − S?‖∞ ≤ 2‖LR> −X?‖∞. (55)

In addition, for any low-rank matrix M = LMR>M ∈ Rn1×n2 with LM ∈ Rn1×r,RM ∈ Rn2×r, one has

|〈S − S?,M〉| ≤
√

3αν
(
‖(L−L?)Σ

1/2
? ‖F + ‖(R−R?)Σ

1/2
? ‖F

)
‖M‖F

+ 2
√
α (
√
n1‖LM‖2,∞‖RM‖F ∧

√
n2‖LM‖F‖RM‖2,∞) ‖LR> −X?‖F,

(56)

where ν obeys

ν ≥
√
n1

2

(
‖LΣ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞
)
∨
√
n2

2

(
‖RΣ

−1/2
? ‖2,∞ + ‖R?Σ

−1/2
? ‖2,∞

)
.

Proof. Denote ∆L := L− L?, ∆R := R −R?, and ∆X := LR> −X?. Let Ω,Ω? be the support of S and
S?, respectively. As a result, S − S? is supported on Ω ∪ Ω?.

We start with proving the first claim, i.e. (55). For (i, j) ∈ Ω, by the definition of T2α[·], we have
(S−S?)i,j = (−∆X)i,j . For (i, j) ∈ Ω?\Ω, one necessarily has Si,j = 0 and therefore (S−S?)i,j = (−S?)i,j .
Again by the definition of the operator T2α[·], we know |S?−∆X |i,j is either smaller than |S?−∆X |i,(2αn2)

or |S?−∆X |(2αn1),j . Furthermore, we know that S? contains at most α-fraction nonzero entries per row and
column. Consequently, one has |S? −∆X |i,j ≤ |∆X |i,(αn2) ∨ |∆X |(αn1),j . Combining the two cases above,
we conclude that

|S − S?|i,j ≤

{
|∆X |i,j , (i, j) ∈ Ω

|∆X |i,j +
(
|∆X |i,(αn2) ∨ |∆X |(αn1),j

)
, (i, j) ∈ Ω? \ Ω

. (57)

This immediately implies the `∞ norm bound (55).
Next, we prove the second claim (56). Recall that S − S? is supported on Ω ∪ Ω?. We then have

|〈S − S?,M〉| ≤
∑

(i,j)∈Ω

|S − S?|i,j |M |i,j +
∑

(i,j)∈Ω?\Ω

|S − S?|i,j |M |i,j
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≤
∑

(i,j)∈Ω∪Ω?

|∆X |i,j |M |i,j +
∑

(i,j)∈Ω?\Ω

(
|∆X |i,(αn2) + |∆X |(αn1),j

)
|M |i,j ,

where the second line follows from (57). Let β > 0 be some positive number, whose value will be determined
later. Use 2ab ≤ β−1a2 + βb2 to further obtain

|〈S − S?,M〉| ≤
∑

(i,j)∈Ω∪Ω?

|∆X |i,j |M |i,j︸ ︷︷ ︸
A1

+
1

2β

∑
(i,j)∈Ω?\Ω

(
|∆X |2i,(αn2) + |∆X |2(αn1),j

)
︸ ︷︷ ︸

A2

+β
∑

(i,j)∈Ω?\Ω

|M |2i,j︸ ︷︷ ︸
A3

.

In regard to the three terms A1,A2 and A3, we have the following claims, whose proofs are deferred to the
end.

Claim 1. The first term A1 satisfies

A1 ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F.

Claim 2. The second term A2 satisfies

A2 ≤ 2‖∆X‖2F.

Claim 3. The third term A3 satisfies

A3 ≤ α
(
n1‖LM‖22,∞‖RM‖2F ∧ n2‖LM‖2F‖RM‖22,∞

)
.

Combine the pieces to reach

|〈S − S?,M〉| ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F

+
‖∆X‖2F
β

+ βα
(
n1‖LM‖22,∞‖RM‖2F ∧ n2‖LM‖2F‖RM‖22,∞

)
.

One can then choose β optimally to yield

|〈S − S?,M〉| ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F

+ 2
√
α (
√
n1‖LM‖2,∞‖RM‖F ∧

√
n2‖LM‖F‖RM‖2,∞) ‖∆X‖F.

This finishes the proof.

Proof of Claim 1. Use the decomposition ∆X = ∆LR
> + L?∆

>
R = ∆LR

>
? + L∆>R to obtain

|∆X |i,j ≤ ‖(∆LΣ
1/2
? )i,·‖2‖RΣ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞‖(∆RΣ
1/2
? )j,·‖2, and

|∆X |i,j ≤ ‖(∆LΣ
1/2
? )i,·‖2‖R?Σ

−1/2
? ‖2,∞ + ‖LΣ

−1/2
? ‖2,∞‖(∆RΣ

1/2
? )j,·‖2.

Take the average to yield

|∆X |i,j ≤
ν
√
n2
‖(∆LΣ

1/2
? )i,·‖2 +

ν
√
n1
‖(∆RΣ

1/2
? )j,·‖2,

where we have used the assumption on ν. With this upper bound on |∆X |i,j in place, we can further control
A1 as

A1 ≤
∑

(i,j)∈Ω∪Ω?

ν
√
n2
‖(∆LΣ

1/2
? )i,·‖2|M |i,j +

∑
(i,j)∈Ω∪Ω?

ν
√
n1
‖(∆RΣ

1/2
? )j,·‖2|M |i,j

≤

√ ∑
(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22/n2 +

√ ∑
(i,j)∈Ω∪Ω?

‖(∆RΣ
1/2
? )j,·‖22/n1

 ν‖M‖F.
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Regarding the first term, one has

∑
(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22 =

n1∑
i=1

∑
j:(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22

≤ 3αn2

n1∑
i=1

‖(∆LΣ
1/2
? )i,·‖22

= 3αn2‖∆LΣ
1/2
? ‖2F,

where the second line follows from the fact that Ω∪Ω? contains at most 3αn2 non-zero entries in each row.
Similarly, we can show that ∑

(i,j)∈Ω∪Ω?

‖(∆RΣ
1/2
? )j,·‖22 ≤ 3αn1‖∆RΣ

1/2
? ‖2F.

In all, we arrive at

A1 ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F,

which is the desired claim.

Proof of Claim 2. Recall that (∆X)i,(αn2) denotes the (αn2)-th largest entry in the i-th row of ∆X . One
necessarily has

αn2|∆X |2i,(αn2) ≤ ‖(∆X)i,·‖22.

As a result, we obtain ∑
(i,j)∈Ω?\Ω

|∆X |2i,(αn2) ≤
∑

(i,j)∈Ω?

|∆X |2i,(αn2)

≤
n1∑
i=1

∑
j:(i,j)∈Ω?

‖(∆X)i,·‖22
αn2

≤
n1∑
i=1

‖(∆X)i,·‖22 = ‖∆X‖2F,

where the last line follows from the fact that Ω? contains at most αn2 nonzero entries in each row. Similarly
one can show that ∑

(i,j)∈Ω?\Ω

|∆X |2(αn1),j ≤ ‖∆X‖2F.

Combining the above two bounds with the definition of A2 completes the proof.

Proof of Claim 3. By definition, M = LMR>M , and hence one has

A3 =
∑

(i,j)∈Ω?\Ω

|(LM )i,·(RM )>j,·|2 ≤
∑

(i,j)∈Ω?

|(LM )i,·(RM )>j,·|2.

We can further upper bound A3 as

A3 ≤
∑

(i,j)∈Ω?

‖(LM )i,·‖22‖(RM )j,·‖22

≤
n1∑
i=1

∑
j:(i,j)∈Ω?

‖(LM )i,·‖22‖RM‖22,∞
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≤
n1∑
i=1

αn2‖(LM )i,·‖22‖RM‖22,∞ = αn2‖LM‖2F‖RM‖22,∞,

where the last line follows from the fact that Ω? contains at most αn2 non-zero entries in each row. Similarly,
one can obtain

A3 ≤ αn1‖LM‖22,∞‖RM‖2F,

which completes the proof.

D.1 Proof of Lemma 3
We begin with introducing several useful notations and facts. In view of the condition dist(Ft,F?) ≤
0.02σr(X?) and Lemma 9, one knows that Qt, the optimal alignment matrix between Ft and F? exists.
Therefore, for notational convenience, denote L := LtQt, R := RtQ

−>
t , ∆L := L − L?, ∆R := R −R?,

S := St = T2α[X? + S? −LR>], and ε := 0.02. Similar to the derivation in (47), we have

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (58)

Moreover, the incoherence condition
√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

√
µrσr(X?) (59)

implies
√
n1‖∆LΣ

−1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

−1/2
? ‖2,∞ ≤

√
µr, (60)

which combined with the triangle inequality further implies
√
n1‖LΣ

−1/2
? ‖2,∞ ∨

√
n2‖RΣ

−1/2
? ‖2,∞ ≤ 2

√
µr. (61)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 13; see (50) for a detailed
argument. In what follows, we shall prove the distance contraction and the incoherence condition separately.

D.1.1 Distance Contraction

By the definition of dist2(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (62)

From now on, we focus on controlling the first square ‖(Lt+1Qt − L?)Σ
1/2
? ‖2F. In view of the update rule

(20), one has

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η(LR> + S −X? − S?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(LR> −X?)R(R>R)−1 − η(S − S?)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(S − S?)R(R>R)−1Σ

1/2
? . (63)

Here, we use the notation introduced above and the decomposition LR>−X? = ∆LR
>+L?∆

>
R. Take the

squared Frobenius norm of both sides of (63) to obtain∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
R1

− 2η(1− η) tr
(
(S − S?)R(R>R)−1Σ?∆

>
L

)︸ ︷︷ ︸
R2
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+ 2η2 tr
(
(S − S?)R(R>R)−1Σ?(R

>R)−1R>∆RL
>
?

)︸ ︷︷ ︸
R3

+ η2
∥∥∥(S − S?)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
R4

.

In the sequel, we shall bound the four terms separately, of which R1 is the main term, and R2,R3 and R4

are perturbation terms.

1. Notice that the main term R1 has already been controlled in (48) under the condition (58). It obeys

R1 ≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second termR2, setM := ∆LΣ?(R
>R)−1R> with LM := ∆LΣ?(R

>R)−1Σ
1/2
? , RM := RΣ

−1/2
? ,

and then invoke Lemma 18 with ν := 3
√
µr/2 to see

|R2| ≤
3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∆LΣ?(R
>R)−1R>

∥∥
F

+ 2
√
αn2

∥∥∥∆LΣ?(R
>R)−1Σ

1/2
?

∥∥∥
F
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op

+ 2
√
αn2‖∆LΣ

1/2
? ‖F

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥
op
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F.

Take the condition (58) and Lemmas 12 and 13 together to obtain∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
≤ 1

1− ε
;∥∥∥Σ1/2

? (R>R)−1Σ
1/2
?

∥∥∥
op

=
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2

op
≤ 1

(1− ε)2
;

‖LR> −X?‖F ≤ (1 +
ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

(64)

These consequences combined with the condition (61) yield

|R2| ≤
3
√

3αµr

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

+
4
√
αµr

(1− ε)2
‖∆LΣ

1/2
? ‖F(1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤ √αµr

3
√

3 + 4(2+ε)
1−ε

2(1− ε)

(
‖∆LΣ

1/2
? ‖2F + ‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

)
≤ √αµr

3
√

3 + 4(2+ε)
1−ε

2(1− ε)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
,

where the last inequality holds since 2ab ≤ a2 + b2.

3. The third term R3 can be controlled similarly. Set M := L?∆
>
RR(R>R)−1Σ?(R

>R)−1R> with LM :=

L?Σ
−1/2
? and RM := R(R>R)−1Σ?(R

>R)−1R>∆RΣ
1/2
? , and invoke Lemma 18 with ν := 3

√
µr/2 to

arrive at

|R3| ≤
3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥L?∆>RR(R>R)−1Σ?(R
>R)−1R>

∥∥
F

+ 2
√
αn1‖L?Σ−1/2

? ‖2,∞
∥∥∥R(R>R)−1Σ?(R

>R)−1R>∆RΣ
1/2
?

∥∥∥
F
‖LR> −X?‖F
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≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

op

+ 2
√
αn1‖L?Σ−1/2

? ‖2,∞
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2

op
‖∆RΣ

1/2
? ‖F‖LR> −X?‖F.

Use the consequences (64) again to obtain

|R3| ≤
3
√

3αµr

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

+
2
√
αµr

(1− ε)2
‖∆RΣ

1/2
? ‖F(1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤ √αµr3

√
3 + 2(2 + ε)

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖2F

)
≤ √αµr3

√
3 + 2(2 + ε)

2(1− ε)2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
.

4. For the last term R4, utilize the variational representation of the Frobenius norm to see√
R4 = tr

(
(S − S?)R(R>R)−1Σ

1/2
? L̃>

)
for some L̃ ∈ Rn1×r obeying ‖L̃‖F = 1. Setting M := L̃Σ

1/2
? (R>R)−1R> = LMR>M with LM :=

L̃Σ
1/2
? (R>R)−1Σ

1/2
? and RM := RΣ

−1/2
? , we are ready to apply Lemma 18 again with ν := 3

√
µr/2 to

see √
R4 ≤

3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥L̃Σ
1/2
? (R>R)−1R>

∥∥∥
F

+ 2
√
αn2

∥∥∥L̃Σ
1/2
? (R>R)−1Σ

1/2
?

∥∥∥
F
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op

+ 2
√
αn2

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥
op
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F.

This combined with the consequences (64) and condition (61) yields

√
R4 ≤

√
αµr

3
√

3 + 4(2+ε)
1−ε

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Take the square, and use the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 to reach

R4 ≤ αµr
(3
√

3 + 4(2+ε)
1−ε )2

2(1− ε)2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Taking collectively the bounds for R1,R2,R3 and R4 yields the control of ‖(Lt+1Qt −L?)Σ
1/2
? ‖2F as∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+
√
αµr

3
√

3 + 4(2+ε)
1−ε

1− ε
η(1− η)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
+
√
αµr

3
√

3 + 2(2 + ε)

(1− ε)2
η2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
+ αµr

(3
√

3 + 4(2+ε)
1−ε )2

2(1− ε)2
η2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.
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Similarly, we can obtain the control of ‖(Rt+1Q
−>
t − R?)Σ

1/2
? ‖2F. Combine them together and identify

dist2(Ft,F?) = ‖∆LΣ
1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F to reach∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, αµr) dist2(Ft,F?),

where the contraction rate ρ2(η; ε, αµr) is given by

ρ2(η; ε, αµr) := (1− η)2 +
2ε+

√
αµr(6

√
3 + 8(2+ε)

1−ε )

1− ε
η(1− η)

+
2ε+ ε2 +

√
αµr(6

√
3 + 4(2 + ε)) + αµr(3

√
3 + 4(2+ε)

1−ε )2

(1− ε)2
η2.

With ε = 0.02, αµr ≤ 10−4, and 0 < η ≤ 2/3, one has ρ(η; ε, αµr) ≤ 1− 0.6η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.6η) dist(Ft,F?). (65)

D.1.2 Incoherence Condition

We start by controlling the term ‖(Lt+1Qt −L?)Σ
1/2
? ‖2,∞. We know from (63) that

(Lt+1Qt −L?)Σ
1/2
? = (1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(S − S?)R(R>R)−1Σ

1/2
? .

Apply the triangle inequality to obtain∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2,∞
≤ (1− η)‖∆LΣ

1/2
? ‖2,∞ + η

∥∥∥L?∆>RR(R>R)−1Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

T1

+ η
∥∥∥(S − S?)R(R>R)−1Σ

1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

T2

.

The first term ‖∆LΣ
1/2
? ‖2,∞ follows from the incoherence condition (59) as

‖∆LΣ
1/2
? ‖2,∞ ≤

√
µr

n1
σr(X?).

In the sequel, we shall bound the terms T1 and T2.

1. For the term T1, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op, and combine the condition (58) with the
consequences (64) to obtain

T1 ≤ ‖L?Σ−1/2
? ‖2,∞

∥∥∥Σ1/2
? ∆>RR(R>R)−1Σ

1/2
?

∥∥∥
op

≤ ‖L?Σ−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖op

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op

≤ ε

1− ε

√
µr

n1
σr(X?),

2. For the term T2, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op to obtain

T2 ≤ ‖S − S?‖2,∞
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
op
.

41



We know from Lemma 18 that S − S? has at most 3αn2 non-zero entries in each row, and ‖S − S?‖∞ ≤
2‖LR> −X?‖∞. Upper bound the `2,∞ norm by the `∞ norm as

‖S − S?‖2,∞ ≤
√

3αn2‖S − S?‖∞ ≤ 2
√

3αn2‖LR> −X?‖∞.

Split LR> −X? = ∆LR
> + L?∆

>
R, and take the conditions (59) and (61) to obtain

‖LR> −X?‖∞ ≤ ‖∆LR
>‖∞ + ‖L?∆>R‖∞

≤ ‖∆LΣ
1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞‖∆RΣ
1/2
? ‖2,∞

≤
√
µr

n1
σr(X?)2

√
µr

n2
+

√
µr

n1

√
µr

n2
σr(X?)

=
3µr
√
n1n2

σr(X?).

This combined with the consequences (64) yields

T2 ≤
6
√

3αµr

1− ε

√
µr

n1
σr(X?).

Taking collectively the bounds for T1,T2 yields the control∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2,∞
≤
(

1− η +
ε+ 6

√
3αµr

1− ε
η

)√
µr

n1
σr(X?). (66)

The last step is to switch the alignment matrix from Qt to Qt+1. (65) together with Lemma 9 demon-
strates the existence of Qt+1. Apply the triangle inequality to obtain∥∥∥(Lt+1Qt+1 −L?)Σ

1/2
?

∥∥∥
2,∞
≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

+
∥∥∥(Lt+1Qt+1 −Lt+1Qt)Σ

1/2
?

∥∥∥
2,∞

≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

+ ‖Lt+1QtΣ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? Q−1

t Qt+1Σ
1/2
? −Σ?

∥∥∥
op
.

We deduct from (66) that

‖Lt+1QtΣ
−1/2
? ‖2,∞ ≤ ‖L?Σ−1/2

? ‖2,∞ +
∥∥∥(Lt+1Qt −L?)Σ

−1/2
?

∥∥∥
2,∞
≤
(

2− η +
ε+ 6

√
3αµr

1− ε
η

)√
µr

n1
.

Regarding the alignment matrix term, invoke Lemma 14 to obtain∥∥∥Σ1/2
? Q−1

t Qt+1Σ
1/2
? −Σ?

∥∥∥
op
≤
‖(Rt+1(Q−>t −Q−>t+1)Σ

1/2
? ‖op

1− ‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖op

≤
‖(Rt+1Q

−>
t −R?)Σ

1/2
? ‖op + ‖(Rt+1Q

−>
t+1 −R?)Σ

1/2
? ‖op

1− ‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖op

≤ 2ε

1− ε
σr(X?),

where we deduct from (65) that the distances using either Qt or Qt+1 are bounded by

‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖op ≤ εσr(X?);

‖(Rt+1Q
−>
t+1 −R?)Σ

1/2
? ‖op ≤ εσr(X?);

‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖op ≤ ε.

Combine all pieces to reach∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
≤
(

1 + ε

1− ε

(
1− η +

ε+ 6
√

3αµr

1− ε
η

)
+

2ε

1− ε

)√
µr

n1
σr(X?).
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With ε = 0.02, αµr ≤ 10−4, and 0.1 ≤ η ≤ 2/3, we get the desired incoherence condition∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
≤
√
µr

n1
σr(X?).

Similarly, we can prove the other part∥∥∥(Rt+1Q
−>
t+1 −R?)Σ

1/2
?

∥∥∥
2,∞
≤
√
µr

n2
σr(X?).

D.2 Proof of Lemma 4
We first record two lemmas from [YPCC16], which are useful for studying the properties of the initialization.

Lemma 19 ( [YPCC16, Section 6.1]). Given S? ∈ Sα, one has ‖S? − Tα[X? + S?]‖∞ ≤ 2‖X?‖∞.

Lemma 20 ( [YPCC16, Lemma 1]). For any matrix M ∈ Sα, one has ‖M‖op ≤ α
√
n1n2‖M‖∞.

With these two lemmas in place, we are ready to establish the claimed result. Invoke Lemma 11 to obtain

dist(F0,F?) ≤
√√

2 + 1
∥∥L0R

>
0 −X?

∥∥
F
≤
√

(
√

2 + 1)2r
∥∥L0R

>
0 −X?

∥∥
op
,

where the last relation uses the fact that L0R
>
0 −X? has rank at most 2r. We can further apply the triangle

inequality to see ∥∥L0R
>
0 −X?

∥∥
op
≤
∥∥Y − Tα[Y ]−L0R

>
0

∥∥
op

+ ‖Y − Tα[Y ]−X?‖op
≤ 2 ‖Y − Tα[Y ]−X?‖op = 2 ‖S? − Tα[X? + S?]‖op .

Here the second inequality hinges on the fact that L0R
>
0 is the best rank-r approximation of Y −Tα[Y ], and

the last identity arises from Y = X? + S?. Follow the same argument as [YPCC16, Section 6.1], combining
Lemmas 19 and 20 to reach

‖S? − Tα[X? + S?]‖op ≤ 2α
√
n1n2 ‖S? − Tα[X? + S?]‖∞

≤ 4α
√
n1n2‖X?‖∞ ≤ 4αµrκσr(X?),

where the last inequality follows from the incoherence assumption

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖op‖V?‖2,∞ ≤
µr
√
n1n2

κσr(X?). (67)

Take the above inequalities together to arrive at

dist(F0,F?) ≤ 8

√
2(
√

2 + 1)αµr3/2κσr(X?) ≤ 20αµr3/2κσr(X?).

D.3 Proof of Lemma 5
In view of the condition dist(F0,F?) ≤ 0.02σr(X?) and Lemma 9, one knows that Q0, the optimal alignment
matrix between F0 and F? exists. Therefore, for notational convenience, denote L := L0Q0, R := R0Q

−>
0 ,

∆L := L−L?, ∆R := R−R?, and ε := 0.02. Our objective is then translated to demonstrate
√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

√
µrσr(X?).

From now on, we focus on bounding ‖∆LΣ
1/2
? ‖2,∞. Since U0Σ0V

>
0 is the top-r SVD of Y − Tα[Y ], and

recall that Y = X? + S?, we have the relation

(X? + S? − Tα[X? + S?])V0 = U0Σ0,

which further implies the following decomposition of ∆LΣ
1/2
? .

43



Claim 4. One has

∆LΣ
1/2
? = (S? − Tα[X? + S?])R(R>R)−1Σ

1/2
? −L?∆

>
RR(R>R)−1Σ

1/2
? .

Combining Claim 4 with the triangle inequality yields

‖∆LΣ
1/2
? ‖2,∞ ≤

∥∥∥L?∆>RR(R>R)−1Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

I1

+
∥∥∥(S? − Tα[X? + S?])R(R>R)−1Σ

1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

I2

.

In what follows, we shall control I1 and I2 in turn.

1. For the term I1, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op to obtain

I1 ≤ ‖L?Σ−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖op

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
.

The incoherence assumption tells ‖L?Σ−1/2
? ‖2,∞ = ‖U?‖2,∞ ≤

√
µr/n1. In addition, the assumption

dist(F0,F?) ≤ εσr(X?) entails the bound ‖∆RΣ
1/2
? ‖op ≤ εσr(X?). Finally, repeating the argument for

obtaining (58) yields ‖∆RΣ
−1/2
? ‖op ≤ ε, which together with Lemma 12 reveals∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
op
≤ 1

1− ε
.

In all, we arrive at

I1 ≤
ε

1− ε

√
µr

n1
σr(X?).

2. Proceeding to the term I2, use the relations ‖AB‖2,∞ ≤ ‖A‖1,∞‖B‖2,∞ and ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖op
to obtain

I2 ≤ ‖S? − Tα[X? + S?]‖1,∞
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
2,∞

≤ ‖S? − Tα[X? + S?]‖1,∞ ‖RΣ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥
op
.

Regarding S? − Tα[X? + S?], Lemma 19 tells that S? − Tα[X? + S?] has at most 2αn2 non-zero entries
in each row, and ‖S? −Tα[X? +S?]‖∞ ≤ 2‖X?‖∞. Consequently, we can upper bound the `1,∞ norm by
the `∞ norm as

‖S? − Tα[X? + S?]‖1,∞ ≤ 2αn2 ‖S? − Tα[X? + S?]‖∞
≤ 4αn2‖X?‖∞

≤ 4αn2
µr
√
n1n2

κσr(X?).

Here the last inequality follows from the incoherence assumption (67). For the term ‖RΣ
−1/2
? ‖2,∞, one

can apply the triangle inequality to see

‖RΣ
−1/2
? ‖2,∞ ≤ ‖R?Σ

−1/2
? ‖2,∞ + ‖∆RΣ

−1/2
? ‖2,∞ ≤

√
µr

n2
+
‖∆RΣ

1/2
? ‖2,∞

σr(X?)
.

Last but not least, repeat the argument for (64) to obtain∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥
op

=
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2

op
≤ 1

(1− ε)2
.

Taking together the above bounds yields

I2 ≤
4αµrκ

(1− ε)2

√
µr

n1
σr(X?) +

4αµrκ

(1− ε)2

√
n2

n1
‖∆RΣ

1/2
? ‖2,∞.
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Combine the bounds on I1 and I2 to reach

√
n1‖∆LΣ

1/2
? ‖2,∞ ≤

(
ε

1− ε
+

4αµrκ

(1− ε)2

)
√
µrσr(X?) +

4αµrκ

(1− ε)2

√
n2‖∆RΣ

1/2
? ‖2,∞.

Similarly, we have

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

(
ε

1− ε
+

4αµrκ

(1− ε)2

)
√
µrσr(X?) +

4αµrκ

(1− ε)2

√
n1‖∆LΣ

1/2
? ‖2,∞.

Taking the maximum and solving for
√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆LΣ

1/2
? ‖2,∞ yield the relation

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆LΣ

1/2
? ‖2,∞ ≤

ε(1− ε) + 4αµrκ

(1− ε)2 − 4αµrκ

√
µrσr(X?).

With ε = 0.02 and αµrκ ≤ 0.1, we get the desired conclusion
√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆LΣ

1/2
? ‖2,∞ ≤

√
µrσr(X?).

Proof of Claim 4. Identify U0 (resp. V0) with L0Σ
−1/2
0 (resp. R0Σ

−1/2
0 ) to yield

(X? + S? − Tα[X? + S?])R0Σ
−1
0 = L0,

which is equivalent to (X? + S? − Tα[X? + S?])R0(R>0 R0)−1 = L0 since Σ0 = R>0 R0. Multiply both sides
by Q0Σ

1/2
? to obtain

(X? + S? − Tα[X? + S?])R(R>R)−1Σ
1/2
? = LΣ

1/2
? ,

where we recall that L = L0Q0 and R = R0Q
−>
0 . In the end, subtract X?R(R>R)−1Σ

1/2
? from both sides

to reach

(S? − Tα[X? + S?])R(R>R)−1Σ
1/2
? = LΣ

1/2
? −L?R

>
? R(R>R)−1Σ

1/2
?

= (L−L?)Σ
1/2
? + L?(R−R?)

>R(R>R)−1Σ
1/2
?

= ∆LΣ
1/2
? + L?∆

>
RR(R>R)−1Σ

1/2
? .

This finishes the proof.

E Proof for Matrix Completion

E.1 Properties of the new projection operator
E.1.1 Proof of Proposition 1

First, notice that the optimization of L and R in (23) can be decomposed and done in parallel, hence we
focus on the optimization of L below:

L = argmin
L∈Rn1×r

∥∥∥(L− L̃)(R̃>R̃)1/2
∥∥∥2

F
s.t.

√
n1

∥∥∥L(R̃>R̃)1/2
∥∥∥

2,∞
≤ B.

By a change of variables as G := L(R̃>R̃)1/2 and G̃ := L̃(R̃>R̃)1/2, we rewrite the above problem equiva-
lently as

G = argmin
G∈Rn1×r

‖G− G̃‖2F s.t.
√
n1 ‖G‖2,∞ ≤ B,

whose solution is given as [CW15]

Gi,· =

(
1 ∧ B
√
n1‖G̃i,·‖2

)
G̃i,·. 1 ≤ i ≤ n1,

By applying again the change of variable L = G(R̃>R̃)−1/2 and L̃ = G̃(R̃>R̃)−1/2, we obtain the claimed
solution.
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E.1.2 Proof of Lemma 6

We begin with proving the non-expansiveness property. Denote the optimal alignment matrix between F̃
and F? as Q̃, whose existence is guaranteed by Lemma 9. Denoting PB(F̃ ) = [L>,R>]>, by the definition
of dist(PB(F̃ ),F?), we know that

dist2(PB(F̃ ),F?) ≤
n1∑
i=1

∥∥∥Li,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
+

n2∑
j=1

∥∥∥Rj,·Q̃
−>Σ

1/2
? − (R?Σ

1/2
? )j,·

∥∥∥2

2
. (68)

Recall that the condition dist(F̃ ,F?) ≤ εσr(X?) implies∥∥∥(L̃Q̃−L?)Σ
−1/2
?

∥∥∥
op
∨
∥∥∥(R̃Q̃−> −R?)Σ

−1/2
?

∥∥∥
op
≤ ε,

which, together with R?Σ
−1/2
? = V?, further implies that∥∥∥L̃i,·R̃>∥∥∥

2
≤
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

∥∥∥R̃Q̃−>Σ
−1/2
?

∥∥∥
op

≤
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

(∥∥∥(R̃Q̃−> −R?)Σ
−1/2
?

∥∥∥
op

+ ‖V?‖op

)
≤ (1 + ε)

∥∥∥L̃i,·Q̃Σ
1/2
?

∥∥∥
2
.

In addition, the µ-incoherence of X? yields

√
n1

∥∥∥(L?Σ
1/2
? )i,·

∥∥∥
2
≤
√
n1‖U?‖2,∞‖Σ?‖op ≤

√
µrσ1(X?) ≤

B

1 + ε
,

where the last inequality follows from the choice of B. Take the above two relations collectively to reach

B
√
n1‖L̃i,·R̃>‖2

≥

∥∥∥(L?Σ
1/2
? )i,·

∥∥∥
2∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

.

We claim that performing the following projection yields a contraction on each row; see also [ZL16, Lemma 11].

Claim 5. For vectors u,u? ∈ Rn and λ ≥ ‖u?‖2/‖u‖2, it holds that

‖(1 ∧ λ)u− u?‖2 ≤ ‖u− u?‖2.

Apply Claim 5 with u := L̃i,·Q̃Σ
1/2
? , u? := (L?Σ

1/2
? )i,·, and λ := B/(

√
n1‖L̃i,·R̃>‖2) to obtain

∥∥∥Li,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
=

∥∥∥∥∥
(

1 ∧ B
√
n1‖L̃i,·R̃>‖2

)
L̃i,·Q̃Σ

1/2
? − (L?Σ

1/2
? )i,·

∥∥∥∥∥
2

2

≤
∥∥∥L̃i,·Q̃Σ

1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
.

Following a similar argument for R, and plugging them back to (68), we conclude that

dist2(PB(F̃ ),F?) ≤
n1∑
i=1

∥∥∥L̃i,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
+

n2∑
j=1

∥∥∥R̃j,·Q̃
−>Σ

1/2
? − (R?Σ

1/2
? )j,·

∥∥∥2

2
= dist2(F̃ ,F?).

We move on to the incoherence condition. For any 1 ≤ i ≤ n1, one has

‖Li,·R>‖22 =

n2∑
j=1

〈Li,·,Rj,·〉2 =

n2∑
j=1

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)2

〈L̃i,·, R̃j,·〉2
(

1 ∧ B
√
n2‖R̃j,·L̃>‖2

)2

(i)

≤

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)2 n2∑
j=1

〈L̃i,·, R̃j,·〉2 =

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)2

‖L̃i,·R̃>‖22
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(ii)

≤ B2

n1
.

where (i) follows from 1∧ B√
n2‖R̃j,·L̃>‖2

≤ 1, and (ii) follows from 1∧ B√
n1‖L̃i,·R̃>‖2

≤ B√
n1‖L̃i,·R̃>‖2

. Similarly,

one has ‖Rj,·L
>‖22 ≤ B2/n2. Combining these two bounds completes the proof.

Proof of Claim 5. When λ > 1, the claim holds as an identity. Otherwise λ ≤ 1. Denote h(λ̄) := ‖λ̄u−u?‖22.
Calculate its derivative to conclude that h(λ̄) is monotonically increasing when λ̄ ≥ λ? := 〈u,u?〉/‖u‖22. Note
that λ ≥ ‖u?‖2/‖u‖2 ≥ λ?, thus h(λ) ≤ h(1) and the claim holds.

E.2 Proof of Lemma 7
We first record two useful lemmas regarding the projector PΩ(·).

Lemma 21 ( [ZL16, Lemma 10]). Suppose that X? is µ-incoherent, and p & µr log(n1∨n2)/(n1∧n2). With
overwhelming probability, one has∣∣〈(p−1PΩ − I)(L?R

>
A + LAR

>
? ),L?R

>
B + LBR

>
?

〉∣∣
≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖L?R>A + LAR

>
? ‖F‖L?R>B + LBR

>
? ‖F,

simultaneously for all LA,LB ∈ Rn1×r and RA,RB ∈ Rn2×r, where C1 > 0 is some universal constant.

Lemma 22 ( [CL19, Lemma 4.4], [CLL20, Lemma A.1]). Suppose that p & log(n1 ∨ n2)/(n1 ∧ n2). With
overwhelming probability, one has∣∣〈(p−1PΩ − I)(LAR

>
A),LBR

>
B

〉∣∣
≤ C2

√
n1 ∧ n2

p
(‖LA‖F‖LB‖2,∞ ∧ ‖LA‖2,∞‖LB‖F) (‖RA‖F‖RB‖2,∞ ∧ ‖RA‖2,∞‖RB‖F) ,

simultaneously for all LA,LB ∈ Rn1×r and RA,RB ∈ Rn2×r, where C2 > 0 is some universal constant.

In view of the above two lemmas, define the event E as the intersection of the events that the bounds in
Lemma 21 and Lemma 22 hold, which happens with overwhelming probability. The rest of the proof is then
performed under the event that E holds.

By the condition dist(Ft,F?) ≤ 0.02σr(X?) and Lemma 9, one knows that Qt, the optimal alignment
matrix between Ft and F? exists. Therefore, for notational convenience, we denote L := LtQt, R := RtQ

−>
t ,

∆L := L−L?, ∆R := R−R?, and ε := 0.02. In addition, denote F̃t+1 as the update before projection as

F̃t+1 :=

[
L̃t+1

R̃t+1

]
=

[
Lt − ηp−1PΩ(LtR

>
t −X?)Rt(R

>
t Rt)

−1

Rt − ηp−1PΩ(LtR
>
t −X?)

>Lt(L
>
t Lt)

−1

]
,

and therefore Ft+1 = PB(F̃t+1).
Note that in view of Lemma 6, it suffices to prove the following relation

dist(F̃t+1,F?) ≤ (1− 0.6η) dist(Ft,F?). (69)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 13; see (50) for a detailed
argument. In what follows, we concentrate on proving (69).

To begin with, we list a few easy consequences under the assumed conditions.

Claim 6. Under conditions dist(Ft,F?) ≤ εσr(X?) and
√
n1‖LR>‖2,∞∨

√
n2‖RL>‖2,∞ ≤ CB

√
µrσ1(X?),

one has

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε; (70a)
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∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
≤ 1

1− ε
; (70b)∥∥∥Σ1/2

? (R>R)−1Σ
1/2
?

∥∥∥
op
≤ 1

(1− ε)2
; (70c)

√
n1‖LΣ

1/2
? ‖2,∞ ∨

√
n2‖RΣ

1/2
? ‖2,∞ ≤

CB
1− ε

√
µrσ1(X?); (70d)

√
n1‖LΣ

−1/2
? ‖2,∞ ∨

√
n2‖RΣ

−1/2
? ‖2,∞ ≤

CBκ

1− ε
√
µr; (70e)

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

(
1 +

CB
1− ε

)
√
µrσ1(X?); (70f)

√
n1‖∆LΣ

−1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

−1/2
? ‖2,∞ ≤

(
1 +

CBκ

1− ε

)
√
µr. (70g)

Now we are ready to embark on the proof of (69). By the definition of dist(F̃t+1,F?), one has

dist2(F̃t+1,F?) ≤
∥∥∥(L̃t+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
, (71)

where we recall that Qt is the optimal alignment matrix between Ft and F?. Plug in the update rule (26)
and the decomposition LR> −X? = ∆LR

> + L?∆
>
R to obtain

(L̃t+1Qt −L?)Σ
1/2
? =

(
L− ηp−1PΩ(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

= ∆LΣ
1/2
? − η(LR> −X?)R(R>R)−1Σ

1/2
? − η(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ

1/2
? .

This allows us to expand the first square in (71) as∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
P1

− 2η(1− η) tr
(
(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ?∆

>
L

)︸ ︷︷ ︸
P2

+ 2η2 tr
(
(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ?(R

>R)−1R>∆RL
>
?

)︸ ︷︷ ︸
P3

+ η2
∥∥∥(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
P4

.

In the sequel, we shall control the four terms separately, of which P1 is the main term, and P2,P3 and P4

are perturbation terms.

1. Notice that the main term P1 has already been controlled in (48) under the condition (70a). It obeys

P1 ≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term P2, decompose LR> − X? = ∆LR
>
? + L?∆

>
R + ∆L∆>R and apply the triangle

inequality to obtain

|P2| =
∣∣∣ tr ((p−1PΩ − I)(∆LR

>
? + L?∆

>
R + ∆L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣
≤
∣∣∣ tr ((p−1PΩ − I)(∆LR

>
? + L?∆

>
R)R?(R

>R)−1Σ?∆
>
L

) ∣∣∣︸ ︷︷ ︸
P2,1
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+
∣∣∣ tr ((p−1PΩ − I)(∆LR

>
? )∆R(R>R)−1Σ?∆

>
L

) ∣∣∣︸ ︷︷ ︸
P2,2

+
∣∣∣ tr ((p−1PΩ − I)(L?∆

>
R)∆R(R>R)−1Σ?∆

>
L

) ∣∣∣︸ ︷︷ ︸
P2,3

+
∣∣∣ tr ((p−1PΩ − I)(∆L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣︸ ︷︷ ︸
P2,4

.

For the first term P2,1, under the event E , we can invoke Lemma 21 to obtain

P2,1 ≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

∥∥∆LR
>
? + L?∆

>
R

∥∥
F

∥∥∆LΣ?(R
>R)−1R>?

∥∥
F

≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥
op
,

where the second line follows from the relation ‖AB‖F ≤ ‖A‖op‖B‖F. Use the condition (70c) to obtain

P2,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F.

Regarding the remaining three terms P2,2,P2,3 and P2,4, our main hammer is Lemma 22. For instance,
invoking Lemma 22 under the event E with LA := ∆LΣ

1/2
? , RA := R?Σ

−1/2
? , LB := ∆LΣ

1/2
? , and

RB := ∆R(R>R)−1Σ
1/2
? , we arrive at

P2,2 ≤ C2

√
n1 ∧ n2

p
‖∆LΣ

1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖R?Σ

−1/2
? ‖2,∞‖∆R(R>R)−1Σ

1/2
? ‖F

≤ C2

√
n1 ∧ n2

p
‖∆LΣ

1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖R?Σ

−1/2
? ‖2,∞‖∆RΣ

−1/2
? ‖F‖Σ1/2

? (R>R)−1Σ
1/2
? ‖op,

Similarly, with the help of Lemma 22, one has

P2,3 ≤ C2

√
n1 ∧ n2

p
‖L?Σ−1/2

? ‖2,∞‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F‖∆RΣ

−1/2
? ‖2,∞‖Σ1/2

? (R>R)−1Σ
1/2
? ‖op;

P2,4 ≤ C2

√
n1 ∧ n2

p
‖∆LΣ

−1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F‖RΣ

−1/2
? ‖2,∞‖Σ1/2

? (R>R)−1Σ
1/2
? ‖op

Utilizing the consequences in Claim 6, we arrive at

P2,2 ≤
C2κ

(1− ε)2

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F;

P2,3 ≤
C2

(1− ε)2

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F;

P2,4 ≤
C2CBκ

(1− ε)3

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F.

We then combine the bounds for P2,1,P2,2,P2,3 and P2,4 to see

P2 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

+
C2

(1− ε)2

(
1 +

CBκ

1− ε

)(
κ+ 1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F
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= δ1‖∆LΣ
1/2
? ‖2F + (δ1 + δ2)‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ (3δ1 + δ2)

2
‖∆LΣ

1/2
? ‖2F +

(δ1 + δ2)

2
‖∆RΣ

1/2
? ‖2F,

where we denote

δ1 :=
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
, and δ2 :=

C2

(1− ε)2

(
1 +

CBκ

1− ε

)(
κ+ 1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

.

3. Following a similar argument for controlling P2 (i.e. repeatedly using Lemmas 21 and 22), we can obtain
the following bounds for P3 and P4, whose proof are deferred to the end of this section.

Claim 7. Under the event E, one has

P3 ≤
(δ1 + δ2)

2
‖∆LΣ

1/2
? ‖2F +

(3δ1 + δ2)

2
‖∆RΣ

1/2
? ‖2F;

P4 ≤ δ1(2δ1 + δ2)‖∆LΣ
1/2
? ‖2F + (δ1 + δ2)(2δ1 + δ2)‖∆RΣ

1/2
? ‖2F.

Taking the bounds for P1,P2,P3,P4 collectively yields∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+ η(1− η)
(

(3δ1 + δ2)‖∆LΣ
1/2
? ‖2F + (δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)
+ η2

(
(δ1 + δ2)‖∆LΣ

1/2
? ‖2F + (3δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)
+ η2

(
δ1(2δ1 + δ2)‖∆LΣ

1/2
? ‖2F + (δ1 + δ2)(2δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)
.

A similar upper bound holds for the second square in (71). As a result, we reach the conclusion that∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, δ1, δ2) dist2(Ft,F?),

where the contraction rate ρ2(η; ε, δ1, δ2) is given by

ρ2(η; ε, δ1, δ2) := (1− η)2 +

(
2ε

1− ε
+ 4δ1 + 2δ2

)
η(1− η) +

(
2ε+ ε2

(1− ε)2
+ 4δ1 + 2δ2 + (2δ1 + δ2)2

)
η2.

As long as p ≥ (µrκ4 ∨ log(n1 ∨ n2))µr/(n1 ∧ n2) for some sufficiently large constant C, one has δ1 ≤ 0.05
and δ2 ≤ 0.05 under the setting ε = 0.02. When 0 < η ≤ 2/3, one further has ρ(η; ε, δ1, δ2) ≤ 1− 0.6η. Thus
we conclude that

dist(F̃t+1,F?) ≤
√∥∥∥(L̃t+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.6η) dist(Ft,F?),

which is exactly the upper bound we are after; see (69). This finishes the proof.

Proof of Claim 6. First, repeating the derivation for (47) obtains (70a). Second, take the condition (70a)
and Lemma 12 together to obtain (70b) and (70c). Third, take the incoherence condition

√
n1‖LR>‖2,∞ ∨√

n2‖RL>‖2,∞ ≤ CB
√
µrσ1(X?) together with the relations

‖LR>‖2,∞ ≥ σr(RΣ
−1/2
? )‖LΣ

1/2
? ‖2,∞

≥
(
σr(R?Σ

−1/2
? )− ‖∆RΣ

−1/2
? ‖op

)
‖LΣ

1/2
? ‖2,∞

≥ (1− ε)‖LΣ
1/2
? ‖2,∞;
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‖RL>‖2,∞ ≥ σr(LΣ
−1/2
? )‖RΣ

1/2
? ‖2,∞

≥
(
σr(L?Σ

−1/2
? )− ‖∆LΣ

−1/2
? ‖op

)
‖RΣ

1/2
? ‖2,∞

≥ (1− ε)‖RΣ
1/2
? ‖2,∞

to obtain (70d) and (70e). Finally, apply the triangle inequality together with incoherence assumption to
obtain (70f) and (70g).

Proof of Claim 7. We start with the term P3, for which we have

|P3| ≤
∣∣∣ tr ((p−1PΩ − I)(∆LR

>
? + L?∆

>
R)R(R>R)−1Σ?(R

>R)−1R>∆RL
>
?

) ∣∣∣︸ ︷︷ ︸
P3,1

+
∣∣∣ tr ((p−1PΩ − I)(∆L∆>R)R(R>R)−1Σ?(R

>R)−1R>∆RL
>
?

) ∣∣∣︸ ︷︷ ︸
P3,2

.

Invoke Lemma 21 to bound P3,1 as

P3,1 ≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

∥∥∆LR
>
? + L?∆

>
R

∥∥
F

∥∥L?∆>RR(R>R)−1Σ?(R
>R)−1R>

∥∥
F

≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

op
.

The consequences (70c) allows us to obtain a simplified bound

P3,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F.

In regard to P3,2, we apply Lemma 22 with LA := ∆LΣ
1/2
? , RA := ∆RΣ

−1/2
? , LB := L?Σ

−1/2
? , and

RB := R(R>R)−1Σ?(R
>R)−1R>∆RΣ

1/2
? to see

P3,2 ≤ C2

√
n1 ∧ n2

p
‖∆LΣ

1/2
? ‖F‖L?Σ−1/2

? ‖2,∞‖∆RΣ
−1/2
? ‖2,∞

∥∥∥R(R>R)−1Σ?(R
>R)−1R>∆RΣ

1/2
?

∥∥∥
F

≤ C2

√
n1 ∧ n2

p
‖∆LΣ

1/2
? ‖F‖L?Σ−1/2

? ‖2,∞‖∆RΣ
−1/2
? ‖2,∞

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

op
‖∆RΣ

1/2
? ‖F.

Again, use the consequences in Claim 6 to reach

P3,2 ≤ C2

√
n1 ∧ n2

p
‖∆LΣ

1/2
? ‖F

√
µr

n1

(
1 +

CBκ

1− ε

)√
µr

n2

1

(1− ε)2
‖∆RΣ

1/2
? ‖F

=
C2

(1− ε)2

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F.

Combine the bounds of P3,1 and P3,2 to reach

P3 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

+
C2

(1− ε)2

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ δ1‖∆RΣ
1/2
? ‖2F + (δ1 + δ2)‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ (δ1 + δ2)

2
‖∆LΣ

1/2
? ‖2F +

(3δ1 + δ2)

2
‖∆RΣ

1/2
? ‖2F.
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Moving on to the term P4, we have√
P4 =

∥∥∥(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ
1/2
?

∥∥∥
F

≤
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? + L?∆

>
R)R?(R

>R)−1Σ
1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,1

+
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? )∆R(R>R)−1Σ

1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,2

+
∣∣∣ tr((p−1PΩ − I)(L?∆

>
R)∆R(R>R)−1Σ

1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,3

+
∣∣∣ tr((p−1PΩ − I)(∆L∆>R)R(R>R)−1Σ

1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,4

,

where we have used the variational representation of the Frobenius norm for some L̃ ∈ Rn1×r obeying
‖L̃‖F = 1. Note that the decomposition of

√
P4 is extremely similar to that of P2. Therefore we can follow

a similar argument (i.e. applying Lemma 21 and 22) to control these terms as

P4,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
;

P4,2 ≤
C2κ

(1− ε)2

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆RΣ
1/2
? ‖F;

P4,3 ≤
C2

(1− ε)2

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆RΣ
1/2
? ‖F;

P4,4 ≤
C2CBκ

(1− ε)3

(
1 +

CBκ

1− ε

)√
n1 ∧ n2

p

µr
√
n1n2

‖∆RΣ
1/2
? ‖F.

For conciseness, we omit the details for bounding each term. Combine them to reach√
P4 ≤ δ1‖∆LΣ

1/2
? ‖F + (δ1 + δ2)‖∆RΣ

1/2
? ‖F.

Finally take the square on both sides and use 2ab ≤ a2 + b2 to obtain an upper bound for P4.

P4 ≤ δ1(2δ1 + δ2)‖∆LΣ
1/2
? ‖2F + (δ1 + δ2)(2δ1 + δ2)‖∆RΣ

1/2
? ‖2F.

E.3 Proof of Lemma 8
We start by recording a useful lemma below.

Lemma 23 ( [CLL20, Lemma 3.3] [Che15, Lemma 2]). For any fixed X ∈ Rn1×n2 , with overwhelming
probability, one has

∥∥(p−1PΩ − I)(X)
∥∥
op
≤ C0

log(n1 ∨ n2)

p
‖X‖∞ + C0

√
log(n1 ∨ n2)

p
(‖X‖2,∞ ∨ ‖X>‖2,∞),

where C0 > 0 is some universal constant that does not depend on X.

In view of Lemma 11, one has

dist(F̃0,F?) ≤
√√

2 + 1
∥∥U0Σ0V

>
0 −X?

∥∥
F
≤
√

(
√

2 + 1)2r
∥∥U0Σ0V

>
0 −X?

∥∥
op
, (72)
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where the last relation uses the fact thatU0Σ0V
>

0 −X? has rank at most 2r. Applying the triangle inequality,
we obtain ∥∥U0Σ0V

>
0 −X?

∥∥
op
≤
∥∥p−1PΩ(X?)−U0Σ0V

>
0

∥∥
op

+
∥∥p−1PΩ(X?)−X?

∥∥
op

≤ 2
∥∥(p−1PΩ − I)(X?)

∥∥
op
. (73)

Here the second inequality hinges on the fact that U0Σ0V
>

0 is the best rank-r approximation to p−1PΩ(X?),
i.e. ∥∥p−1PΩ(X?)−U0Σ0V

>
0

∥∥
op
≤
∥∥p−1PΩ(X?)−X?

∥∥
op
.

Combining (72) and (73) yields

dist(F̃0,F?) ≤ 2

√
(
√

2 + 1)2r
∥∥(p−1PΩ − I)(X?)

∥∥
op
≤ 5
√
r
∥∥(p−1PΩ − I)(X?)

∥∥
op
.

It then boils down to controlling
∥∥p−1PΩ(X?)−X?

∥∥
op
, which is readily supplied by Lemma 23 as

∥∥(p−1PΩ − I)(X?)
∥∥
op
≤ C0

log(n1 ∨ n2)

p
‖X?‖∞ + C0

√
log(n1 ∨ n2)

p
(‖X?‖2,∞ ∨ ‖X>? ‖2,∞),

which holds with overwhelming probability. The proof is finished by plugging the following bounds from
incoherence assumption of X?:

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖op‖V?‖2,∞ ≤
µr

n1n2
κσr(X?);

‖X?‖2,∞ ≤ ‖U?‖2,∞‖Σ?‖op‖V?‖op ≤
√
µr

n1
κσr(X?);

‖X>? ‖2,∞ ≤ ‖U?‖op‖Σ?‖op‖V?‖2,∞ ≤
√
µr

n2
κσr(X?).

F Proof for General Loss Functions
We first present a useful property of restricted smooth and convex functions.

Lemma 24. Suppose that f(·) : Rn1×n2 7→ R is rank-2r restricted L-smooth and rank-2r restricted convex.
Then for any X1,X2 ∈ Rn1×n2 of rank at most r, one has

〈∇f(X1)−∇f(X2),X1 −X2〉 ≥
1

L
‖∇f(X1)−∇f(X2)‖2F,r.

Proof. Since f(·) is rank-2r restricted L-smooth and convex, it holds for any X̄ ∈ Rn1×n2 with rank at most
2r that

f(X1) + 〈∇f(X1), X̄ −X1〉 ≤ f(X̄) ≤ f(X2) + 〈∇f(X2), X̄ −X2〉+
L

2
‖X̄ −X2‖2F.

Reorganize the terms to yield

f(X1) + 〈∇f(X1),X2 −X1〉 ≤ f(X2) + 〈∇f(X2)−∇f(X1), X̄ −X2〉+
L

2
‖X̄ −X2‖2F.

Take X̄ = X2 − 1
LPr(∇f(X2)−∇f(X1)), whose rank is at most 2r, to see

f(X1) + 〈∇f(X1),X2 −X1〉+
1

2L
‖∇f(X2)−∇f(X1)‖2F,r ≤ f(X2).

We can further switch the roles of X1 and X2 to obtain

f(X2) + 〈∇f(X2),X1 −X2〉+
1

2L
‖∇f(X2)−∇f(X1)‖2F,r ≤ f(X1).

Adding the above two inequalities yields the desired bound.
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F.1 Proof of Theorem 4
Suppose that the t-th iterate Ft obeys the condition dist(Ft,F?) ≤ 0.1σr(X?)/

√
κf . In view of Lemma 9,

one knows that Qt, the optimal alignment matrix between Ft and F? exists. Therefore, for notational
convenience, denote L := LtQt, R := RtQ

−>
t , ∆L := L − L?, ∆R := R −R?, and ε := 0.1/

√
κf . Similar

to the derivation in (47), we have

‖∆LΣ
−1/2
? ‖op ∨ ‖∆RΣ

−1/2
? ‖op ≤ ε. (74)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 13; see (50) for a detailed
argument. From now on, we focus on proving the distance contraction.

By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (75)

Introduce an auxiliary function

fµ(X) = f(X)− µ

2
‖X −X?‖2F,

which is rank-2r restricted (L− µ)-smooth and rank-2r restricted convex. Using the ScaledGD update rule
(27) and the decomposition LR> −X? = ∆LR

> + L?∆
>
R, we obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η∇f(LR>)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
L− ηµ(LR> −X?)R(R>R)−1 − η∇fµ(LR>)R(R>R)−1 −L?

)
Σ

1/2
?

= (1− ηµ)∆LΣ
1/2
? − ηµL?∆>RR(R>R)−1Σ

1/2
? − η∇fµ(LR>)R(R>R)−1Σ

1/2
? .

As a result, one can expand the first square in (75) as∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− ηµ)∆LΣ

1/2
? − ηµL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
G1

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LΣ?(R

>R)−1R> −∆LR
>
? −

1

2
∆L∆>R

〉
︸ ︷︷ ︸

G2

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? +

1

2
∆L∆>R

〉
+ 2η2µ

〈
∇fµ(LR>),L?∆

>
RR(R>R)−1Σ?(R

>R)−1R>
〉︸ ︷︷ ︸

G3

+ η2
∥∥∥∇fµ(LR>)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
G4

.

In the sequel, we shall bound the four terms separately.

1. Notice that the main term G1 has already been controlled in (48) under the condition (74). It obeys

G1 ≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2µ2‖∆RΣ

1/2
? ‖2F,

as long as ηµ ≤ 2/3.

2. For the second term G2, note that ∆LΣ?(R
>R)−1R> −∆LR

>
? − 1

2∆L∆>R has rank at most r. Hence
we can invoke Lemma 15 to obtain

|G2| ≤ ‖∇fµ(LR>)‖F,r
∥∥∥∥∆LΣ?(R

>R)−1R> −∆LR
>
? −

1

2
∆L∆>R

∥∥∥∥
F
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≤ ‖∇fµ(LR>)‖F,r‖∆LΣ
1/2
? ‖F

(∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥
op

+
1

2
‖∆RΣ

−1/2
? ‖op

)
,

where the second line uses R? = V?Σ
1/2
? . Take the condition (74) and Lemma 12 together to obtain∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
op
≤ 1

1− ε
;∥∥∥R(R>R)−1Σ

1/2
? − V?

∥∥∥
op
≤
√

2ε

1− ε
.

These consequences further imply that

|G2| ≤ (

√
2ε

1− ε
+
ε

2
)‖∇fµ(LR>)‖F,r‖∆LΣ

1/2
? ‖F.

3. As above, the third term G3 can be similarly bounded as

|G3| ≤ ‖∇fµ(LR>)‖F,r
∥∥L?∆>RR(R>R)−1Σ?(R

>R)−1R>
∥∥
F

≤ ‖∇fµ(LR>)‖F,r‖∆RΣ
1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

op

≤ 1

(1− ε)2
‖∇fµ(LR>)‖F,r‖∆RΣ

1/2
? ‖F.

4. For the last term G4, invoke Lemma 15 to obtain

G4 ≤ ‖∇fµ(LR>)‖2F,r
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2

op
≤ 1

(1− ε)2
‖∇fµ(LR>)‖2F,r.

Taking collectively the bounds for G1,G2,G3 and G4 yields∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2µ2‖∆RΣ

1/2
? ‖2F

+ 2η(

√
2ε

1− ε
+
ε

2
)(1− ηµ)‖∇fµ(LR>)‖F,r‖∆LΣ

1/2
? ‖F

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? +

1

2
∆L∆>R

〉
+

2η2µ

(1− ε)2
‖∇fµ(LR>)‖F,r‖∆RΣ

1/2
? ‖F +

η2

(1− ε)2
‖∇fµ(LR>)‖2F,r.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖2F. Combine them together to reach∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2

)(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
+ 2η

(
(

√
2ε

1− ε
+
ε

2
)(1− ηµ) +

ηµ

(1− ε)2

)
‖∇fµ(LR>)‖F,r

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? + L?∆

>
R + ∆L∆>R

〉
+

2η2

(1− ε)2
‖∇fµ(LR>)‖2F,r

≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2

)(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
+ 2η

(
(

√
2ε

1− ε
+
ε

2
)(1− ηµ) +

ηµ

(1− ε)2

)
︸ ︷︷ ︸

C1

‖∇fµ(LR>)‖F,r
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
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− 2η

(
1− ηµ
L− µ

− η

(1− ε)2

)
︸ ︷︷ ︸

C2

‖∇fµ(LR>)‖2F,r,

where the last line follows from Lemma 24 (notice that ∇fµ(X?) = 0) as

〈∇fµ(LR>),∆LR
>
? + L?∆

>
R + ∆L∆>R〉 = 〈∇fµ(LR>),LR> −X?〉 ≥

1

L− µ
‖∇fµ(LR>)‖2F,r.

Notice that C2 > 0 as long as η ≤ (1− ε)2/L. Maximizing the quadratic function of ‖∇fµ(LR>)‖F,r yields

C1‖∇fµ(LR>)‖F,r
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
− C2‖∇fµ(LR>)‖2F,r ≤

C2
1

4C2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)2

≤ C2
1

2C2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
,

where the last inequality holds since (a+b)2 ≤ 2(a2 +b2). Identify dist2(Ft,F?) = ‖∆LΣ
1/2
? ‖2F +‖∆RΣ

1/2
? ‖2F

to obtain ∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, µ, L) dist2(Ft,F?),

where the contraction rate is given by

ρ2(η; ε, µ, L) := (1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2 +

(
(
√

2ε
1−ε + ε

2 )(1− ηµ) + ηµ
(1−ε)2

)2

1− ηµ− η(L−µ)
(1−ε)2

η(L− µ).

With ε = 0.1/
√
κf and 0 < η ≤ 0.4/L, one has ρ(η; ε, µ, L) ≤ 1− 0.7ηµ. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.7ηµ) dist(Ft,F?),

which is the desired claim.

Remark 4. We provide numerical details for the contraction rate. For simplicity, we shall prove ρ(η; ε, µ, L) ≤
1 − 0.7ηµ under a stricter condition ε = 0.02/

√
κf . The stronger result under the condition ε = 0.1/

√
κf

can be verified through a subtler analysis.
With ε = 0.02/

√
κf and 0 < η ≤ 0.4/L, one can bound the terms in ρ2(η; ε, µ, L) as

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2 ≤ 1− 1.959ηµ+ 1.002η2µ2; (76)(

(
√

2ε
1−ε + ε

2 )(1− ηµ) + ηµ
(1−ε)2

)2

1− ηµ− η(L−µ)
(1−ε)2

η(L− µ) ≤
0.0016
κf

+ 0.078ηµ+ 1.005η2µ2

1− 1.042ηL
ηL

≤
0.0016η L

κf
+ 0.4× (0.078ηµ+ 1.005η2µ2)

1− 0.4× 1.042

≤ 0.057ηµ+ 0.69η2µ2, (77)

where the last line uses the definition (28) of κf . Putting (76) and (77) together further implies

ρ2(η; ε, µ, L) ≤ 1− 1.9ηµ+ 1.7η2µ2 ≤ (1− 0.7ηµ)2,

as long as 0 < ηµ ≤ 0.4.
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