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Abstract

Many problems in data science can be treated as estimating a low-rank matrix from highly incomplete,
sometimes even corrupted, observations. One popular approach is to resort to matrix factorization, where
the low-rank matrix factors are optimized via first-order methods over a smooth loss function, such as the
residual sum of squares. While tremendous progresses have been made in recent years, the natural smooth
formulation suffers from two sources of ill-conditioning, where the iteration complexity of gradient descent
scales poorly both with the dimension as well as the condition number of the low-rank matrix. Moreover,
the smooth formulation is not robust to corruptions. In this paper, we propose scaled subgradient
methods to minimize a family of nonsmooth and nonconvex formulations – in particular, the residual
sum of absolute errors – which is guaranteed to converge at a fast rate that is almost dimension-free and
independent of the condition number, even in the presence of corruptions. We illustrate the effectiveness
of our approach when the observation operator satisfies certain mixed-norm restricted isometry properties,
and derive state-of-the-art performance guarantees for a variety of problems such as robust low-rank
matrix sensing and quadratic sampling.

Keywords: low-rank matrix recovery, nonsmooth and nonconvex optimization, residual sum of absolute
errors, scaled subgradient methods

1 Introduction
Many problems in data science can be treated as estimating a low-rank matrix X? ∈ Rn1×n2 from highly
incomplete, sometimes even corrupted, observations y = {yi}mi=1 that are given by

yi ≈ Ai(X?), 1 ≤ i ≤ m. (1)

Here, A = {Ai}mi=1 : Rn1×n2 7→ Rm is the observation operator that models the measurement process.
Instead of operating in the full matrix space, i.e. Rn1×n2 , a memory-efficient approach is to resort to low-rank
matrix factorization, by writing X? = L?R

>
? , if the rank r of X? is known a priori, where L? ∈ Rn1×r and

R? ∈ Rn2×r are of a size that is proportional to the degrees of freedom of the low-rank matrix. Furthermore,
the low-rank factors can be found by optimizing a smooth loss function, such as the residual sum of squares

minimize
L∈Rn1×r,R∈Rn2×r

m∑
i=1

(
yi −Ai(LR>)

)2
, (2)

using first-order methods (e.g. gradient descent). While tremendous progresses have been made in recent
years [CLC19], applying vanilla gradient descent to the above smooth formulation suffers from two sources
of ill-conditioning that preclude a desirable computational efficiency from classical optimization principles:
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• Due to the heavy-tailed nature of certain measurement operators, such as those encountered in phase
retrieval [CLS15] and quadratic sampling [SWW17], the least-squares formulation (2) may suffer from
a large smoothness parameter (and hence a large condition number of the loss function) that scales at
least linearly with respect to the ambient dimension, leading to a conservative choice of stepsizes and
a high iteration complexity when the problem dimension is large;

• Due to the composite nature of the formulation (2), the iteration complexity of vanilla gradient descent
is further exacerbated by the condition number of the underlying low-rank matrix X?, which could be
large in many applications of interest.

While there have been encouraging activities [CCD+19,MWCC19, LMCC18,TMC20] that try to alleviate
these issues regarding ill-conditioning, none of the existing first-order approaches are able to simultaneously
remove both sources of ill-conditioning and achieve fast convergence. Therefore, the goal of the current paper
is to develop first-order methods that are guaranteed to converge at a fast rate that is almost dimension-free
and independent of the condition number, even in the presence of corruptions.

1.1 Main contributions
In this paper, we propose to minimize the following nonsmooth and nonconvex loss function known as the
least absolute deviations, which measures the residual sum of absolute errors

minimize
L∈Rn1×r,R∈Rn2×r

f(LR>) :=

m∑
i=1

∣∣yi −Ai(LR>)
∣∣ , (3)

via scaled subgradient methods:

Lt+1 := Lt − ηtStRt(R
>
t Rt)

−1,

Rt+1 := Rt − ηtS>t Lt(L>t Lt)−1.
(4)

Here, St ∈ ∂f(LtR
>
t ) is a subgradient of f(X) :=

∑m
i=1 |yi −Ai(X)| at LtR

>
t , and ηt > 0 is a sequence

of carefully-chosen stepsizes. Compared with vanilla subgradient methods, our new method (4) scales or
preconditions the search directions StRt and S>t Lt by (R>t Rt)

−1 and (L>t Lt)
−1, respectively.1 As explained

in [TMC20], the scaled subgradient enables better search directions and therefore larger stepsizes. Our main
results can be summarized as follows:

• Under general geometric assumptions of f(·) such as restricted rank-r Lipschitz and sharpness condi-
tions, we demonstrate that the convergence rate of scaled subgradient methods using both Polyak’s
and geometrically decaying stepsizes is independent of the condition number of X?.

• Instantiating our theory under the mixed-norm restricted isometry property (RIP) of the measurement
operator, we demonstrate state-of-the-art computational guarantees for low-rank matrix sensing and
quadratic sampling even when the observations are noisy and corrupted by outliers. This leads to
improvements over the computational complexity of scaled gradient methods in [TMC20] for heavy-
tailed measurement ensembles, as well as of vanilla subgradient methods in [CCD+19]. Table 1 provides
a detailed comparison of the local iteration complexities of the proposed scaled subgradient method
in comparison with these prior algorithms, highlighting its robustness to heavy-tailed observations,
outliers, as well as large condition numbers of the true matrix X?.

Our work leverages exciting advances in nonsmooth optimization [CCD+19] and scaled first-order meth-
ods [TMC20] for low-rank matrix recovery. Our arguments are concise, which avoid the need of sophisti-
cated trajectory-dependent analysis as have been used in [MWCC19,LMCC18] to achieve rapid and robust
convergence guarantees.

1Under appropriate conditions, the inverse matrices always exist; in practice, one can use the pseudo-inverse matrices to
avoid numerical instabilities.
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matrix sensing quadratic sampling

Algorithms without with without with
corruptions corruptions corruptions corruptions

GD
κ log 1

ε N/A r2κ2 log 1
ε N/A[TBS+16,LMCC18]

ScaledGD
log 1

ε N/A poly(n) log 1
ε N/A[TMC20]

SM
κ log 1

ε
κ

(1−2ps)2 log 1
ε rκ log 1

ε
rκ

(1−2ps)2 log 1
ε[CCD+19,LZSV20]

ScaledSM
log 1

ε
1

(1−2ps)2 log 1
ε r log 1

ε
r

(1−2ps)2 log 1
ε(this paper)

Table 1: Local iteration complexities of the proposed scaled subgradient method (ScaledSM) in comparison
with prior algorithms for matrix sensing and quadratic sampling. ScaledSM outperforms the vanilla subgra-
dient method (SM) by a factor of κ in both problems, while outperforms scaled gradient descent (ScaledGD),
and GD with additional robustness guarantees. Here, n = max{n1, n2}, r is the rank, κ is the condition
number of X?, and 0 < ps < 1/2 is the fraction of outliers. We say that the output X of an algorithm
reaches ε-accuracy, if it satisfies ‖X−X?‖F ≤ εσr(X?), where σr(X?) denotes the r-th largest singular value
of X?.

1.2 Related work
Low-rank matrix recovery has been a target of intense interest in the last decade; we invite the readers to
check out [DR16,CC18,CLC19] for recent overviews, and limit our discussions to the most relevant literature
in the sequel.

Nonsmooth formulations for low-rank matrix recovery. Nonsmooth objective functions, such as
the least absolute deviation, have been adopted earlier in both convex and nonconvex formulations of low-
rank matrix recovery, including phase retrieval [Han17, DDP17, QZEW17, ZZLC17, DR19], blind deconvo-
lution [Día19], quadratic sampling [LSC17,CL16,CCD+19,BL20], low-rank matrix sensing [CCD+19,Li13,
WGMM13, LZSV20], robust synchronization [WS13], to name a few. Our work is most closely related to
and generalizes the vanilla subgradient method in [CCD+19], by establishing novel performance guarantees
of scaled subgradient methods for robust low-rank matrix recovery.

Scaled first-order methods for low-rank matrix recovery. Variants of the scaled gradient methods
are proposed in [MAS12, TW16, TMC20] for minimizing the least-squares formulation (2), where strong
statistical and computational complexities are first established in [TMC20]. To the best of our knowl-
edge, the current paper is the first work that provides rigorous statistical and computational guarantees for
scaled subgradient methods for addressing nonsmooth formulations. While it is possible to establish sharper
convergence rates of vanilla gradient descent over the least-squares loss function through a tailored analy-
sis [MWCC19,LMCC18], it is unclear if similar analyses are viable for scaled gradient methods. In contrast,
our analysis for scaled subgradient methods yields strong guarantees in a more straightforward manner.

Robust low-rank matrix recovery via nonconvex optimization. A pleasant side benefit of nons-
mooth formulations is the added robustness to adversarial outliers under a simple algorithm design – the
low-rank factors are updated essentially in the same manner regardless of the presence of outliers. In
comparison, other nonconvex methods based on smooth formulations often need to introduce some spe-
cial treatments to mitigate outliers before updating the low-rank factors, e.g. truncation and threshold-
ing [ZCL16,LCZL20,LZSV20], which can be cumbersome to tune properly.

Condition-number independent rate of convergence. It is well-known that first-order methods such
as gradient descent exhibit poor scaling with respect to the condition number of the low-rank matrix. Possible
remedies include alternating least-squares in the factored space [JNS13,HW14], or spectral methods over the
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matrix space [JMD10]. However, these approaches either require the inversion of a large matrix or a higher
memory footprint, compared with the scaled first-order methods adopted herein.

1.3 Paper organization and notation
The rest of this paper is organized as follows. Section 2 describes the proposed scaled subgradient method and
its connections to existing methods. Section 3 provides the theoretical guarantees for the scaled subgradient
method in terms of both statistical and computational complexities, which are then instantiated to robust
low-rank matrix sensing and quadratic sensing. Section 4 illustrates the superior empirical performance of
the proposed method. Finally, we conclude in Section 5. The proofs are deferred to the appendix.

Notation. Throughout the paper, we use boldfaced symbols for vectors and matrices. For a vector v, we
use ‖v‖p to denote its `p norm. For any matrix A, we use σi(A) to denote its i-th largest singular value,
and let Ai,· and A·,j denote its i-th row and j-th column, respectively. In addition, ‖A‖op and ‖A‖F denote
the spectral norm and the Frobenius norm of a matrix A, respectively. For matrices A,B of the same size,
we use 〈A,B〉 =

∑
i,jAi,jBi,j = tr(A>B) to denote their inner product, where tr(·) denotes the trace. The

set of invertible matrices in Rr×r is denoted by GL(r).

2 Problem Formulation and Algorithms
In this section, we formulate the low-rank matrix recovery problem, followed by a detailed description of the
proposed scaled subgradient method.

2.1 Problem formulation
Let X? ∈ Rn1×n2 be the ground truth rank-r matrix, whose compact singular value decomposition (SVD)
is given by

X? = U?Σ?V
>
? , (5)

where U? ∈ Rn1×r and V? ∈ Rn2×r are composed of r left and right singular vectors, respectively, and
Σ? ∈ Rr×r is a diagonal matrix consisting of r singular values of X? organized in a non-increasing order,
i.e. σ1(X?) ≥ · · · ≥ σr(X?) > 0. The condition number of X? is thus defined as

κ := σ1(X?)/σr(X?). (6)

Without loss of generality, we define the ground truth low-rank factors as

L? := U?Σ
1/2
? , and R? := V?Σ

1/2
? , (7)

so that X? = L?R
>
? . Moreover, we denote the ground truth stacked factor matrix as

F? := [L>? ,R
>
? ]> ∈ R(n1+n2)×r. (8)

Assume that we have access to a number of observations y = {yi}mi=1 of X?, given as

yi = Ai(X?) + wi + si, 1 ≤ i ≤ m, (9)

or equivalently,

y = A(X?) + w + s, (10)

where A(X?) = {Ai(X?)}mi=1 is the measurement ensemble, w = {wi}mi=1 denotes the bounded noise, and
s = {si}mi=1 models arbitrary corruptions. The goal of low-rank matrix recovery is to recover X? from the
noisy and corrupted observations y in a statistically and computationally efficient manner.
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2.2 Scaled subgradient methods
Consider the following nonsmooth and nonconvex optimization problem over the factors

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR>), (11)

where f(·) is a nonsmooth surrogate of the observation residuals. Of particular interest is the residual sum
of absolute errors, defined as

f(X) := ‖y −A(X)‖1 . (12)

Correspondingly, the minimizer is called the least absolute deviation (LAD) solution.
Let us denote the stacked factor matrix in the t-th iterate as Ft := [L>t ,R

>
t ]>. Given an initialization

F0 = [L>0 ,R
>
0 ]>, the proposed scaled subgradient method proceeds as

Lt+1 := Lt − ηt∂LL(L,R)(R>t Rt)
−1 = Lt − ηtStRt(R

>
t Rt)

−1,

Rt+1 := Rt − ηt∂RL(L,R)(L>t Lt)
−1 = Rt − ηtS>t Lt(L>t Lt)−1,

(13)

where St ∈ ∂f(LtR
>
t ) is a subgradient of f(·) at LtR>t , and ηt > 0 is some properly selected stepsize, which

we discuss next.

Stepsize schedules. We consider the following two choices of stepsize schedules:

• If we know the optimal value f(X?), we can invoke the following modified Polyak’s stepsize, given by

ηPt :=
f(LtR

>
t )− f(X?)

‖StRt(R>t Rt)−1/2‖2F + ‖S>t Lt(L>t Lt)−1/2‖2F
, (14)

which scales the original Polyak’s stepsize by the square root of the preconditioners in the denominator.
This schedule is implementable, for example, when the observations are noise-free, leading to f(X?) =
0. However, when the observations are noisy and corrupted, it is not viable to know f(X?) beforehand.

• In general, we can apply the geometrically decaying stepsizes, given by

ηGt :=
λqt√

‖StRt(R>t Rt)−1/2‖2F + ‖S>t Lt(L>t Lt)−1/2‖2F
, (15)

where λ > 0 and q ∈ (0, 1) are some parameters to be specified. This choice is broadly applicable and
works when dealing with noisy and corrupted observations.

Compared with the vanilla subgradient method, which proceeds according to

Lt+1 := Lt − ηt∂LL(L,R) = Lt − ηtStRt,

Rt+1 := Rt − ηt∂RL(L,R) = Rt − ηtS>t Lt,
(16)

the update rule (13) scales the subgradient StRt and S>t Lt by (R>t Rt)
−1 and (L>t Lt)

−1, respectively;
see [TMC20] for its counterpart in smooth problems. An important highlight of the scaled subgradient
method is that the update rule is covariant with respect to the ambiguity of low-rank matrix factorization.
To see this, imagine that we modify the t-th updates as

L̃t := LtQ, R̃t := RtQ
−> (17)

for some invertible matrix Q ∈ GL(r). It is easy to check:

(i) both the Polyak’s stepsize (14) and the geometrically decaying stepsize (15) do not change, since

‖StRt(R
>
t Rt)

−1/2‖2F = 〈St,StRt(R
>
t Rt)

−1R>t 〉 = 〈St,StR̃t(R̃
>
t R̃t)

−1R̃>t 〉 = ‖StR̃t(R̃
>
t R̃t)

−1/2‖2F,

which holds similarly for ‖S>t Lt(L>t Lt)−1/2‖2F;
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(ii) The next (t+ 1)-th iterate can be written as

L̃t+1 = L̃t − ηtStR̃t(R̃
>
t R̃t)

−1 =
[
Lt − ηtStRt(R

>
t Rt)

−1]Q = Lt+1Q,

and similarly R̃t+1 = Rt+1Q
−>. Therefore, all the iterates are covariant with respect to the invertible

transform in (17).

Remark 1 (Comparison with scaled gradient methods). Although not our focus, it is instrumental to
consider the resulting update rule using the nonsmooth `2-loss function f(X) = ‖y − A(X)‖2 (which has
been studied in [CCD+19]), whose subgradient is given by

St =
A∗(rt)
‖rt‖2

,

where A∗ is the conjugate operator of A, and rt = A(LtR
>
t ) − y is the residual using the t-th iterate.

Consequently, the scaled subgradient method follows the update rule

Lt+1 = Lt −
ηt
‖rt‖2

A∗(rt)Rt(R
>
t Rt)

−1,

Rt+1 = Rt −
ηt
‖rt‖2

A∗(rt)>Lt(L>t Lt)−1,

for some stepsize ηt. Careful readers might realize that this coincides with the update rule of scaled gradient
descent [TMC20] when optimizing the smooth squared `2-loss function f(X) = ‖y − A(X)‖22 with an
adaptive stepsize ηt

‖rt‖2 .

3 Theoretical Guarantees
In this section, we first provide the theoretical guarantees of the scaled subgradient method under general
geometric assumptions on f(·), and then instantiate them to concrete problems including robust low-rank
matrix sensing and quadratic sampling.

3.1 Geometric assumptions
We start by introducing the following geometric properties of the loss function f(·), which play a key role in
the convergence analysis.

The first condition is similar to the usual Lipschitz property of a function.

Definition 1 (Restricted Lipschitz property). A function f(·) : Rn1×n2 7→ R is said to be rank-r restricted
L-Lipschitz continuous for some quantity L > 0 if

|f(X1)− f(X2)| ≤ L‖X1 −X2‖F

holds for any X1,X2 ∈ Rn1×n2 such that X1 −X2 has rank at most 2r.

The second geometric condition is akin to the (one-point) strong convexity of a function, with the key
difference that strong convexity adopts the squared Euclidea norm whereas the following one uses the plain
Euclidean norm.

Definition 2 (Restricted sharpness property). A function f(·) : Rn1×n2 7→ R is said to be rank-r restricted
µ-sharp w.r.t. X? for some µ > 0 if

f(X)− f(X?) ≥ µ‖X −X?‖F

holds for any X ∈ Rn1×n2 with rank at most r.
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For notational simplicity, if a function f is both restricted L-Lipschitz and µ-sharp, we denote

χf :=
L

µ
. (18)

In some cases, e.g. in the presence of noise, the loss function f(·) only satisfies an approximate restricted
sharpness property, which is detailed below.

Definition 3 (Approximate restricted sharpness property). A function f(·) : Rn1×n2 7→ R is said to be
ξ-approximate rank-r restricted µ-sharp for some µ, ξ > 0 if

f(X)− f(X?) ≥ µ‖X −X?‖F − ξ

holds for any X ∈ Rn1×n2 with rank at most r.

As shall be seen in Section 3.3, these conditions can be ensured for proper choices of the loss function
as long as the observation operator A satisfies certain mixed-norm RIP, which holds for a wide number of
practical problems.

3.2 Main results
Motivated by [TMC20], we measure the performance of F = [L>,R>]> using the following error metric

dist2(F ,F?) := inf
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2
F

+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2
F
, (19)

which takes into consideration both the representational ambiguity of the factorization up to invertible
transforms and the scaling effect of preconditioners.

We start with stating the linear convergence of the scaled subgradient method when f(·) satisfies both
the rank-r restricted L-Lipschitz and µ-sharp properties. The proof is deferred to Appendix B.

Theorem 1 (Scaled subgradient method with exact convergence). Suppose that f(X) : Rn1×n2 7→ R is
convex in X, and satisfies rank-r restricted L-Lipschitz and µ-sharp properties (cf. Definitions 1 and 2). In
addition, suppose that the initialization F0 satisfies

dist(F0,F?) ≤ 0.02σr(X?)/χf , (20)

and the scaled subgradient method in (13) adopts either the Polyak’s stepsizes in (14) or the geometrically

decaying stepsizes in (15) with λ =

√√
2−1
2 0.02σr(X?)/χ

2
f and q =

√
1− 0.16/χ2

f . Then for all t ≥ 0, the
iterates satisfy

dist(Ft,F?) ≤ (1− 0.16/χ2
f )t/20.02σr(X?)/χf , and∥∥LtR>t −X?

∥∥
F
≤ (1− 0.16/χ2

f )t/20.03σr(X?)/χf .

Theorem 1 shows that the iterates of the scaled subgradient method converges at a linear rate; to reach
ε-accuracy, i.e.

∥∥LtR>t −X?

∥∥
F
≤ εσr(X?), it takes at most O(χ2

f log 1/ε) iterations, which, importantly,
is independent of the condition number κ of X?. In addition, it is still possible to ensure approximate
reconstruction when only the approximate restricted sharpness property holds, as shown in the next theorem.
Again, we postpone the proof to Appendix C.

Theorem 2 (Scaled subgradient method with approximate convergence). Suppose that f(·) : Rn1×n2 7→
R is convex, and satisfies rank-r restricted L-Lipschitz and ξ-approximate µ-sharp properties (cf. Defini-
tions 1 and 3) for some ξ ≤ 10−3σr(X?)µ/χf . Suppose that the initialization F0 satisfies dist(F0,F?) ≤
0.02σr(X?)/χf , and the scaled subgradient method adopts the geometrically decaying stepsizes (15) with

λ =

√√
2−1
2 0.02σr(X?)/χ

2
f and q =

√
1− 0.13/χ2

f . Then for all t ≥ 0, the iterates satisfy

dist(Ft,F?) ≤ max
{

(1− 0.13/χ2
f )t/20.02σr(X?)/χf , 20ξ/µ

}
, and∥∥LtR>t −X?

∥∥
F
≤ max

{
(1− 0.13/χ2

f )t/20.03σr(X?)/χf , 30ξ/µ
}
.
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Theorem 2 shows that as long as the relaxation parameter ξ is sufficiently small, i.e. ξ . σr(X?)µ/χf ,
then the scaled subgradient method with geometrically decaying stepsizes converges at a linear rate until an
error floor is hit. In particular, the iterates satisfy

∥∥LtR>t −X?

∥∥
F
≤ 30ξ/µ after at most O(χ2

f ) iterations
up to logarithmic factors.

Remark 2. For simplicity of exposition, we have fixed the values of λ and q for the geometrically decaying
stepsizes in the above theorems. It is possible to allow a wider range of λ and q by slightly modifying the
arguments without sacrificing the linear convergence. In practice, these parameters should be tuned in order
to yield optimal performance.

3.3 A case study: robust low-rank matrix recovery
We now apply the above theorems to robust low-rank matrix recovery, which showcases the superior perfor-
mance of the scaled subgradient method.

Noise-free case. We start with the observation model (10) with clean measurements, i.e. w = 0 and
s = 0. To proceed, we assume that the observation operator A satisfies the following mixed-norm RIP.

Definition 4 (mixed-norm RIP [RFP10,CCG15,CCD+19]). The linear map A(·) is said to obey the rank-2r
mixed-norm RIP with constants δ1, δ2 if for all matrices M ∈ Rn1×n2 of rank at most 2r, one has

δ1‖M‖F ≤ ‖A(M)‖1 ≤ δ2‖M‖F.

The next proposition verifies that the loss function (12) satisfies restricted Lipschitz and sharpness prop-
erties under the mixed-norm RIP.

Proposition 1. If A satisfies rank-2r mixed-norm RIP with constants (δ1, δ2), then f(X) = ‖y−A(X)‖1 =
‖A(X −X?)‖1 in (12) satisfies the rank-r restricted L-Lipschitz continuity and µ-sharpness with

L = δ2, µ = δ1, and χf =
L

µ
=
δ2
δ1
. (21)

Proof. See Appendix D.

With the geometric characterization of f(·) in place, we immediately have the following corollary that
captures the performance of the scaled subgradient method when A satisfies the mixed-norm RIP.

Corollary 1. If A satisfies rank-2r mixed-norm RIP with (δ1, δ2), then the scaled subgradient method over
the loss function f(X) = ‖A(X −X?)‖1 using either Polyak’s or geometrically decaying stepsizes achieves∥∥LtR>t −X?

∥∥
F
≤ εσr(X?) in O

(
δ22
δ21

log 1
ε

)
iterations as long as the initialization satisfies dist(F0,F?) ≤

0.02δ1
δ2

σr(X?).

Noisy and corrupted case. We now consider the observation model (10) where the noise w is bounded
with ‖w‖1 ≤ σw and ‖s‖0 = psm, where ps ∈ [0, 1/2) is the fraction of outliers. Following [CCD+19], we
further introduce another important property of A.

Definition 5 (S-outlier bound [CCD+19]). The linear map A(·) is said to obey the rank-2r S-outlier bound
w.r.t. a set S with a constant δ3 if for all matrices M ∈ Rn1×n2 of rank at most 2r, one has

δ3‖M‖F ≤ ‖ASc(M)‖1 − ‖AS(M)‖1,

where AS(M) = {Ai(M)}i∈S and ASc(M) = {Ai(M)}i∈Sc .

The next proposition verifies that the loss function in (12) satisfies restricted Lipschitz and approximate
sharpness properties under the mixed-norm RIP (cf. Definition 4) and the S-outlier bound (cf. Definition 5).
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Proposition 2 (Matrix sensing with outliers). Denote the support of the outlier s as S. Suppose that
A satisfies rank-2r mixed-norm RIP with (δ1, δ2) and S-outlier bound with δ3, then f(X) in (12) satisfies
rank-r restricted L-Lipschitz continuity and ξ-approximate µ-sharpness with

L = δ2, µ = δ3, and ξ = 2σw. (22)

Proof. See Appendix E.

Similar to the previous noise-free case, this immediately leads to performance guarantees of the scaled
subgradient method when A satisfies both the mixed-norm RIP and the S-outlier bound.

Corollary 2. If A satisfies rank-2r mixed-norm RIP with (δ1, δ2) and S-outlier bound with δ3, and ‖w‖1 ≤
σw ≤ 10−3σr(X?)δ

2
3/δ2, then the scaled subgradient method over the loss function f(X) = ‖A(X) − y‖1

using the geometrically decaying stepsizes achieves

dist(Ft,F?) ≤ max
{

(1− 0.13δ23/δ
2
2)t/20.02σr(X?)δ3/δ2, 40σw/δ3

}
, and∥∥LtR>t −X?

∥∥
F
≤ max

{
(1− 0.13δ23/δ

2
2)t/20.03σr(X?)δ3/δ2, 60σw/δ3

}
.

if the initialization satisfies dist(F0,F?) ≤ 0.02δ1
δ2

σr(X?).

We now instantiate the above general guarantee to the following two types of observation operators. For
simplicity, we assume there is no dense noise, i.e. σw = 0; see Table 1 for a summary of the comparisons.

• matrix sensing: the measurement operator Ai is defined as Ai(X) = 1
m 〈Ai,X〉, where the matrix Ai

is composed of i.i.d. Gaussian entries N (0, 1).2 It is shown in [CCD+19] (see also [LZSV20]) that A
satisfies the mixed-norm RIP and S-outlier bound with

δ1 & (1), δ2 = O(1), δ3 & 1− 2ps

as long as m & 1
(1−2ps)2 (n1 +n2)r log 1

(1−2ps) . Hence, the scaled subgradient method converges linearly

to ε-accuracy in O
(

1
(1−2ps)2 log 1

ε

)
iterations provided that it is initialized properly, making it robust

simultaneously to ill-conditioning of the matrix X? and the presence of the outliers.

• quadratic sampling: the measurement operator Ai is defined as Ai(X?) = 1
m 〈aia

>
i ,X?〉, where X? ∈

Rn×n is positive semi-definite3 and the vector ai is composed of i.i.d. Gaussian entries N (0, 1). It is
shown in [CCD+19] that A satisfies the mixed-norm RIP and S-outlier bound with

δ1 & 1, δ2 = O(
√
r), δ3 & 1− 2ps

as long as m & 1
(1−2ps)2nr

2 log
√
r

(1−2ps) . Hence, the scaled subgradient method converges linearly

to ε-accuracy in O
(

r
(1−2ps)2 log 1

ε

)
iterations, as long as it is seeded with a good initialization. In

comparison, the iteration complexity of the scaled gradient descent method over the least-squares loss
function depends polynomially with respect to n, due to the heavy-tailed nature of the observation
operator, let alone its sensitivity to the outliers.

Remark 3 (Initialization). The above discussions are limited to the local iteration complexity, assuming a
good initialization satisfying (20) is available. In the absence of outliers, a standard spectral method can
be used, as shown in [TMC20]. In the presence of outliers, a truncated spectral method might be used; see
e.g. [ZCL16,LCZL20].

2The same guarantee holds for sub-Gaussian measurements, too.
3Our algorithms and results work seamlessly for symmetric matrices, although our exposition treats ? as a general matrix.
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4 Numerical Experiments
In this section, we conduct numerical experiments to corroborate our theory. Since the vanilla subgradient
method (VanillaSM) has been extensively benchmarked against other methods and established as state-
of-the-art in [CCD+19], we focus on comparing the proposed scaled subgradient method (ScaledSM) to
VanillaSM in the sequel. In general, the geometrically decaying stepsize (15) is a more practical choice than
the Polyak’s stepsize (14), especially in the presence of noise and outliers. Nonetheless, a properly tuned
geometrically decaying stepsize essentially matches the performance of using the Polyak’s stepsize, for both
VanillaSM [LZSV20] and ScaledSM, the latter of which we shall illustrate in the ensuing experiments. As
such, we adopt the Polyak’s stepsize in the comparison below, to emulate the scenario that both methods
are tuned to operate under its largest allowable stepsize and achieve fastest convergence. In addition, both
algorithms start from the same initialization.

We consider two low-rank matrix estimation tasks discussed in Section 3.3. Recall the observation model
in (10) and its entrywise version in (9), which we repeat below for convenience:

yi = Ai(X?) + wi + si, 1 ≤ i ≤ m.

In both tasks, the noise entry wi is composed of i.i.d. entries uniformly selected from [−σw, σw]. The outlier
si = ziΩi is a sparse vector where Ωi is a Bernoulli random variable with probability ps ∈ [0, 1/2), and zi
is taken uniformly at random from [−10‖A(X?)‖∞, 10‖A(X?)‖∞]. Without of loss of generality, we assume
that X? ∈ Rn×n is a square matrix with n = 100 and r = 10. We collect m = 8nr measurements using the
following respective measurement models. The signal-to-noise ratio is defined as SNR := 20 log10

‖A(X?)‖1
mσw

in dB.

• Matrix sensing. Here, the measurement operator Ai is defined as Ai(X) = 1
m 〈Ai,X〉, where the

matrix Ai is composed of i.i.d. Gaussian entries N (0, 1). The ground truth matrix X? is generated
via its compact SVD X? = U?Σ?V

>
? , where U? ∈ Rn×r is generated as the orthonormal basis vectors

of an n × r matrix with i.i.d. Rademacher entries, Σ? is a diagonal matrix with the diagonal entries
linearly distributed from 1 to κ, and V? ∈ Rn×r is generated in a similar fashion to U?.

• Quadratic sensing. Here, the measurement operator Ai is defined as Ai(X?) = 1
m 〈aia

>
i ,X?〉, where

ai is composed of i.i.d. Gaussian entries N (0, 1). The ground truth matrix X? is positive semi-definite,
and is generated via its compact SVD X? = U?Σ?U

>
? , where U? and Σ? are generated in the same

manner described above.

Denote the index set of the remaining measurements after discarding ps fraction with largest amplitudes
as I = {i : |yi| ≤ |y|(dpsme)}, where |y|(k) denotes the kth largest amplitude of y. The truncated spectral
method in [ZCL16,LCZL20] is used for initialization, where the standard spectral method is applied using
only the subset I of the measurements. For matrix sensing, it follows the prescription in [LCZL20], and for
quadratic sensing, it follows [LMCC18].

Fig. 1 shows the relative reconstruction error ‖Xt −X?‖F/‖X?‖F for matrix sensing without outliers
(in (a)) and with 20% outliers (i.e. ps = 0.2 in (b)) under different condition numbers κ, where Xt is the
estimated low-rank matrix at the t-th iteration. Fig. 2 shows the relative reconstruction error for quadratic
sensing under the same setting. It can be seen that ScaledSM is insensitive to κ and converges as a fast rate
that is independent with κ, while the convergence of VanillaSM slows down dramatically with the increase
of κ. In addition, both algorithms still converge linearly in the presence of outliers, thanks to the robustness
of the least absolute deviation loss.

Fig. 3 further examines the impact of the amount of noise and outliers on the convergence speed in matrix
sensing with a fixed condition number κ = 10, where Fig. 3(a) illustrates the convergence speed at varying
amounts of outliers ps = 0.1, 0.2, 0.3 respectively, and Fig. 3(b) illustrates the convergence with ps = 0.1
and additional bounded noise with varying SNR = 40, 60, 80dB. Similarly, Fig. 4 shows the same plots for
quadratic sensing under the same setting. It can be seen that the convergence rate of ScaledSM slows down
with the increase of outliers, which is again, consistent with the theory. Furthermore, the reconstruction is
robust in the presence of additional bounded noise, where both ScaledSM and VanillaSM converge to the
same accuracy that is proportional to the noise level, with ScaledSM converging at a faster speed.
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Figure 1: Performance comparisons of ScaledSM and VanillaSM for matrix sensing without or with outliers
under different condition numbers κ = 1, 5, 10, 20, where n = 100, r = 10, and m = 8nr.
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Figure 2: Performance comparisons of ScaledSM and VanillaSM for quadratic sensing without or with
outliers under different condition numbers κ = 1, 5, 10, 20, where n = 100, r = 5, and m = 8nr.

Comparison of stepsize schedules. We now compare the geometrically decaying stepsize with Polyak’s
stepsize for ScaledSM, which essentially mirrors similar experiments conducted in [LZSV20] for VanillaSM.
We run ScaledSM for at most T = 1000 iterations, and stop early if the relative error achieves 10−12. Fig. 5
and Fig. 6 show the performance comparison of ScaledSM under various stepsize schedules for matrix sensing
and quadratic sensing, respectively. For both figures, (a) shows the final relative error of ScaledSM using
the geometrically decaying stepsize under various (λ, q), where we see that the methods converges as long
as λ is not too large and q is not too small. We further plot the relative error versus the iteration count for
ScaledSM using the geometrically decaying stepsize with a fixed q and various λ in (b), and with a fixed λ
and various q in (c), where the performance using the Polyak’s stepsize is plotted for comparison. It can be
seen that using the Polyak’s stepsize yields the fast convergence. Indeed, if properly tuned, the performance
of using the geometrically decaying stepsize approaches that of using the Polyak’s stepsize, as shown in
(d). In general, we find that there is a wide range of parameters for the geometrically decaying sizes where
ScaledSM converges in a fast speed comparable to that of using the Polyak’s stepsize, as long as λ is not too
large and q is not too small.
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Figure 3: Performance comparisons of ScaledSM and VanillaSM for matrix sensing under different noise and
outlier models, where n = 100, r = 10, m = 8nr, and κ = 10.
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Figure 4: Performance comparisons of ScaledSM and VanillaSM for quadratic sensing under different noise
and outlier models, where n = 100, r = 5, m = 8nr, and κ = 10.
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Figure 5: Performance comparisons of ScaledSM for matrix sensing using the geometrically decaying stepsize
with parameters (λ, q) and Polyak’s stepsize, where we fix n = 100, r = 10, m = 8nr, κ = 10, and ps = 0.2:
(a) the final relative error for various combinations of (λ, q), (b) the relative error versus iteration count for
fixed q = 0.91 and varying λ, (c) the relative error versus iteration count for fixed λ = 5 and varying q, and
(d) shows a properly tuned geometrically decaying stepsize with λ = 1.85 and q = 0.91 essentially matches
the performance of Polyak’s stepsize.
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Figure 6: Performance comparisons of ScaledSM for quadratic sensing using the geometrically decaying
stepsize with parameters (λ, q) and Polyak’s stepsize, where we fix n = 100, r = 5, m = 8nr, κ = 10, and
ps = 0.2: (a) the final relative error for various combinations of (λ, q), (b) the relative error versus iteration
count for fixed q = 0.92 and varying λ, (c) the relative error versus iteration count for fixed λ = 2 and varying
q, and (d) shows a properly tuned geometrically decaying stepsize with λ = 1.36 and q = 0.88 essentially
matches the performance of Polyak’s stepsize.

5 Discussions
This paper proposes scaled subgradient methods to minimize a family of nonsmooth and nonconvex formu-
lations for low-rank matrix recovery – in particular, the residual sum of absolute errors – and guarantees
its convergence at a rate that is almost dimension-free and independent of the condition number, even in
the presence of corruptions. We illustrate the effectiveness of our approach by providing state-of-the-art
performance guarantees for robust low-rank matrix sensing and quadratic sampling. In the future, it is of
interest to study the performance of scaled subgradient methods for other signal estimation and statisti-
cal inference tasks, such as training student-teacher neural networks [DDKL20], as well as using random
initializations [CCFM19].
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A Technical Lemmas
This section gathers several useful lemmas that will be used in the proof. Throughout the appendix, we use

X? to denote the ground truth, with its compact SVD as X? = U?Σ?V
>
? , and F? =

[
L?
R?

]
=

[
U?Σ

1/2
?

V?Σ
1/2
?

]
.

For any factor matrix F :=

[
L
R

]
∈ R(n1+n2)×r, we define the optimal alignment matrix Q between F and

F? as

Q := argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2
F

+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2
F
, (23)

whenever the minimum is achieved.4

Lemma 1 ( [TMC20]). Fix any factor matrix F :=

[
L
R

]
∈ R(n1+n2)×r. Suppose that

dist(F ,F?) =

√
inf

Q∈GL(r)

∥∥∥(LQ−L?) Σ
1/2
?

∥∥∥2
F

+
∥∥∥(RQ−> −R?) Σ

1/2
?

∥∥∥2
F
< σr(X?), (24)

then the minimizer of the above minimization problem is attained at some Q ∈ GL(r), i.e. the optimal
alignment matrix Q between F and F? exists.

Lemma 2 ( [TMC20]). For any factor matrix F :=

[
L
R

]
∈ R(n1+n2)×r, the following relation holds

dist(F ,F?) ≤
√√

2 + 1 ‖LR> −X?‖F.

Lemma 3 ( [TMC20]). For any L ∈ Rn1×r,R ∈ Rn2×r, denote ∆L := L−L? and ∆R := R−R?. Suppose
that max{‖∆LΣ

−1/2
? ‖op, ‖∆RΣ

−1/2
? ‖op} < 1, then one has∥∥∥L(L>L)−1Σ

1/2
?

∥∥∥
op
≤ 1

1− ‖∆LΣ
−1/2
? ‖op

, (25a)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
op
≤ 1

1− ‖∆RΣ
−1/2
? ‖op

, (25b)

∥∥∥L(L>L)−1Σ
1/2
? −U?

∥∥∥
op
≤
√

2‖∆LΣ
−1/2
? ‖op

1− ‖∆LΣ
−1/2
? ‖op

, (25c)

∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥
op
≤
√

2‖∆RΣ
−1/2
? ‖op

1− ‖∆RΣ
−1/2
? ‖op

. (25d)

Lemma 4 ( [TMC20]). Recall the partial Frobenius norm

‖X‖F,r :=

√√√√ r∑
i=1

σ2
i (X) = ‖Pr(X)‖F, (26)

where Pr(X) is the best rank-r approximation of X. For any X ∈ Rn1×n2 and R ∈ Rn2×r, one has

‖XR‖F ≤ ‖X‖F,r‖R‖op. (27)

In addition, for any X, X̄ ∈ Rn1×n2 with rank(X̄) ≤ r, one has

〈X, X̄〉 ≤ ‖X‖F,r‖X̄‖F. (28)
4If there exist multiple minimizers, we can choose Q to be an arbitrary one.
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Lemma 5. Suppose that f(·) : Rn1×n2 7→ R is convex and rank-r restricted L-Lipschitz (c.f. Definition 1).
Then for any subgradient S ∈ ∂f(X), one has ‖S‖F,r ≤ L.

Proof. Fix any subgradient S ∈ ∂f(X). By the definition of a subgradient, for any X̃ ∈ Rn1×n2 , one has

f(X̃) ≥ f(X) + 〈S, X̃ −X〉.

In particular, taking X̃ = X + Pr(S) arrives at

f(X + Pr(S)) ≥ f(X) + 〈S,Pr(S)〉 = f(X) + ‖S‖2F,r, (29)

where the last equality follows from the definition (26). Note that Pr(S) has rank at most r. By the rank-r
restricted L-Lipschitz continuity of f(·), we have

f(X + Pr(S))− f(X) ≤ L‖Pr(S)‖F = L‖S‖F,r.

Combining the above inequality with (29), we conclude ‖S‖F,r ≤ L.

B Proof of Theorem 1
Suppose that the t-th iterate Ft obeys the condition

dist(Ft,F?) ≤ 0.02σr(X?)/χf . (30)

Lemma 1 ensures that Qt, the optimal alignment matrix between Ft and F? exists. For notational conve-
nience, we denote L := LtQt, R := RtQ

−>
t , ∆L := L−L?, ∆R := R−R?, S := St, and ε := 0.02/χf . By

the definition

dist(Ft,F?) =

√
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F (31)

and the relation ‖AB‖F ≥ σr(B)‖A‖F ≥ σr(B)‖A‖, we have

max{‖∆LΣ
−1/2
? ‖op, ‖∆RΣ

−1/2
? ‖op} ≤ ε. (32)

We start by relating ‖LR> −X?‖F to dist(Ft,F?) given (32). Applying the triangle inequality to the basic
relation LR> −X? = LtR

>
t −X? = ∆LR

>
? + L?∆

>
R + ∆L∆>R, we have

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F +

1

2
‖∆LΣ

−1/2
? ‖op‖∆RΣ

1/2
? ‖F +

1

2
‖∆LΣ

1/2
? ‖F‖∆RΣ

−1/2
? ‖op

≤
(

1 +
1

2
max{‖∆LΣ

−1/2
? ‖op, ‖∆RΣ

−1/2
? ‖op}

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤
(

1 +
ε

2

)√
2

√
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F ≤ 1.5 dist(Ft,F?), (33)

where the last line uses the basic inequality ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F ≤

√
2 dist(Ft,F?) and (32).

From now on, we focus on proving the distance contraction. By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2
F

+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2
F
. (34)

Using the update rule (13), we can expand the first square in (34) as∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2
F

=
∥∥∥(L− ηtSR(R>R)−1 −L?

)
Σ

1/2
?

∥∥∥2
F

= ‖∆LΣ
1/2
? ‖2F − 2ηt

〈
S,∆LΣ?(R

>R)−1R>
〉

+ η2t

∥∥∥SR(R>R)−1Σ
1/2
?

∥∥∥2
F
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= ‖∆LΣ
1/2
? ‖2F − 2ηt

〈
S,∆LR

>
? +

1

2
∆L∆>R

〉
+ η2t

∥∥∥SR(R>R)−1Σ
1/2
?

∥∥∥2
F︸ ︷︷ ︸

S1

− 2ηt

〈
S,∆LΣ?(R

>R)−1R> −∆LR
>
? −

1

2
∆L∆>R

〉
︸ ︷︷ ︸

S2

. (35)

We proceed to bound S1 and S2. The term S1 can be bounded by

S1 ≤
∥∥∥SR(R>R)−1/2

∥∥∥2
F

∥∥∥(R>R)−1/2Σ
1/2
?

∥∥∥2
op

≤
∥∥∥SR(R>R)−1/2

∥∥∥2
F

1

(1− ε)2
,

where the second line follows from the condition (32) and Lemma 3 (cf. (25b)):∥∥∥(R>R)−1/2Σ
1/2
?

∥∥∥
op

=
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
op
≤ 1

1− ε
.

For the term S2, note that

∆LΣ?(R
>R)−1R> −∆LR

>
? −

1

2
∆L∆>R = ∆LΣ

1/2
?

(
R(R>R)−1Σ

1/2
? − V? −

1

2
∆RΣ

−1/2
?

)>
has rank at most r. Hence we can invoke Lemma 4 (cf. (28)) to obtain

|S2| ≤ ‖S‖F,r
∥∥∥∥∆LΣ?(R

>R)−1R> −∆LR
>
? −

1

2
∆L∆>R

∥∥∥∥
F

≤ ‖S‖F,r‖∆LΣ
1/2
? ‖F

(∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥
op

+
1

2
‖∆RΣ

−1/2
? ‖op

)
≤ L

( √
2ε

1− ε
+
ε

2

)
‖∆LΣ

1/2
? ‖F,

where the second line follows from the triangle inequality, and the third line follows from ‖S‖F,r ≤ L (cf.
Lemma 5), (32), and ∥∥∥R(R>R)−1Σ

1/2
? − V?

∥∥∥
op
≤
√

2ε

1− ε

from Lemma 3 (cf. (25d)).
Plugging collectively the bounds for S1 and S2 into (35) yields∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2
F
≤ ‖∆LΣ

1/2
? ‖2F − 2ηt

〈
S,∆LR

>
? +

1

2
∆L∆>R

〉
+

η2t
(1− ε)2

∥∥∥SR(R>R)−1/2
∥∥∥2
F

+ ηtL

(
2
√

2ε

1− ε
+ ε

)
‖∆LΣ

1/2
? ‖F.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖2F. Combine them together to reach

dist2(Ft+1,F?) ≤ ‖∆LΣ
1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F − 2ηt

〈
S,∆LR

>
? + L?∆

>
R + ∆L∆>R

〉
+

η2t
(1− ε)2

(∥∥∥SR(R>R)−1/2
∥∥∥2
F

+
∥∥∥S>L(L>L)−1/2

∥∥∥2
F

)
+ ηtL

(
2
√

2ε

1− ε
+ ε

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Using the subgradient optimality of S, we obtain

〈S,∆LR
>
? + L?∆

>
R + ∆L∆>R〉 = 〈S,LR> −X?〉 ≥ f(LR>)− f(X?),
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together with (31), which further implies that

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− 2ηt
(
f(LR>)− f(X?)

)
+

η2t
(1− ε)2

(∥∥∥SR(R>R)−1/2
∥∥∥2
F

+
∥∥∥S>L(L>L)−1/2

∥∥∥2
F

)
+ ηtL

(
4ε

1− ε
+
√

2ε

)
dist(Ft,F?),

(36)

where the last term uses the basic inequality ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F ≤

√
2 dist(Ft,F?).

Before proceeding to different cases of stepsize schedules, we record two useful properties. First, by the
restricted µ-sharpness of f(·) together with Lemma 2, we have

f(LR>)− f(X?) ≥ µ‖LR> −X?‖F ≥ µ
√√

2− 1 dist(Ft,F?). (37)

On the other end, by Lemma 4 (cf. (27)), we have

‖SR(R>R)−1/2‖2F + ‖S>L(L>L)−1/2‖2F ≤ ‖S‖2F,r
(
‖R(R>R)−1/2‖2op + ‖L(L>L)−1/2‖2op

)
≤ 2L2, (38)

where the second line follows from ‖S‖F,r ≤ L (cf. Lemma 5) and

‖R(R>R)−1/2‖2op = ‖R(R>R)−1R>‖op = 1, ‖L(L>L)−1/2‖2op = ‖L(L>L)−1L>‖op = 1.

B.1 Convergence with Polyak’s stepsizes
Let ηt = ηPt be the Polyak’s stepsize in (14), that is

ηt =
f(LtR

>
t )− f(X?)

‖StRt(R>t Rt)−1/2‖2F + ‖S>t Lt(L>t Lt)−1/2‖2F

=
f(LR>)− f(X?)

‖SR(R>R)−1/2‖2F + ‖S>L(L>L)−1/2‖2F
, (39)

where the second line follows since LtR>t = LR>, Lt(L>t Lt)−1L>t = L(L>L)−1L> and Rt(R
>
t Rt)

−1R>t =
R(R>R)−1R>. Plugging (39) into (36), we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηt
(

2− 1

(1− ε)2

)(
f(LR>)− f(X?)

)
+ ηtL

(
4ε

1− ε
+
√

2ε

)
dist(Ft,F?)

≤ dist2(Ft,F?)− ηtµ
(√√

2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√

2ε

))
dist(Ft,F?) (40)

where the second line follows from (37) and χf = L/µ.
To continue, combining (37) and (38), we can lower bound the Polyak’s stepsize (39) as

ηt ≥
√√

2− 1µdist(Ft,F?)

2L2
. (41)

This, combined with (40), leads to

dist2(Ft+1,F?) ≤ ρ(ε, χf ) dist2(Ft,F?),

where the contraction rate ρ(ε, χf ) is

ρ(ε, χf ) := 1−
√√

2− 1

2χ2
f

(√√
2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√

2ε

))
. (42)
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Under the condition ε = 0.02/χf , we calculate (1− ρ(ε, χf ))χ2
f as follows√√

2− 1

2

(√√
2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√

2ε

))
≥ 0.32

(
0.64×

(
2− 1

0.982

)
− 0.02

(
4

0.98
+
√

2

))
≥ 0.16,

thus ρ(ε, χf ) ≤ 1− 0.16/χ2
f . We conclude that

dist2(Ft+1,F?) ≤ (1− 0.16/χ2
f ) dist2(Ft,F?),

which is the desired claim.

B.2 Convergence with geometrically decaying stepsizes
Let ηt = ηGt be the geometrically decaying stepsize in (15), that is

ηt =
λqt√∥∥SR(R>R)−1/2
∥∥2
F

+
∥∥S>L(L>L)−1/2

∥∥2
F

.

Plugging the above into (36), we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηtµ
(

2

√√
2− 1− χf

(
4ε

1− ε
+
√

2ε

))
dist(Ft,F?) +

λ2q2t

(1− ε)2

≤ dist2(Ft,F?)−
λqt√
2χf

(
2

√√
2− 1− χf

(
4ε

1− ε
+
√

2ε

))
dist(Ft,F?) +

λ2q2t

(1− ε)2
.

where the first line follows from (37) and χf = L/µ, and the second line follows from ηt ≥ λqt√
2L

due to (38).
We now aim to show that

dist(Ft,F?) ≤ (1− 0.16/χ2
f )t/20.02σr(X?)/χf

in an inductive manner. Assume the above induction hypothesis holds at the t-iteration. By the setting of
the parameters, i.e.

λqt =

√√
2− 1

2
(1− 0.16/χ2

f )t/20.02σr(X?)/χ
2
f ,

we have

dist2(Ft+1,F?) ≤ ρ(ε, χf )(1− 0.16/χ2
f )t(0.02σr(X?)/χf )2,

where the contraction rate ρ(ε, χf ) matches exactly (42). Therefore, under the condition ε = 0.02/χf , we
have ρ(ε, χf ) ≤ 1− 0.16/χ2

f , thus we conclude that

dist(Ft+1,F?) ≤ (1− 0.16/χ2
f )(t+1)/20.02σr(X?)/χf ,

which is the desired claim.

C Proof of Theorem 2
We start by introducing the short-hand notation dt := (1− 0.13/χ2

f )t/20.02σr(X?)/χf . The parameters are
set as

λqt =

√√
2− 1

2
(1− 0.13/χ2

f )t/2
0.02σr(X?)

χ2
f

=

√√
2− 1

2

dt
χf
. (43)
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Therefore, the geometric stepsize

ηt =
λqt√∥∥SR(R>R)−1/2
∥∥2
F

+
∥∥S>L(L>L)−1/2

∥∥2
F

,

in view of (38), satisfies

ηt ≥
λqt√
2L

=

√√
2− 1

2

dt
χ2
fµ
. (44)

Follow the same derivations as the proof of Theorem 1 until (36). Plugging the stepsize (44) into (36),
together with the approximate restricted sharpness property

f(LR>)− f(X?) ≥ µ‖LR> −X?‖F − ξ ≥
√√

2− 1µdist(Ft,F?)− ξ,

we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηtµ
(

2

√√
2− 1−

(
4

1− ε
+
√

2

)
εχf

)
dist(Ft,F?) +

λ2q2t

(1− ε)2
+ 2ηtξ.

Under the conditions χf ≥ 1 and ε = 0.02/χf ≤ 0.02, the above relation can be simplified to

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− 1.177ηtµdist(Ft,F?) +
0.216

χ2
f

d2t + 2ηtξ. (45)

We next prove the theorem by induction, where the base case is established trivially by the initial condition.
By the induction hypothesis, the distance at the t-th iterate is bounded by

dist(Ft,F?) ≤ max{dt, 20ξ/µ}.

To obtain the control of dist(Ft+1,F?), we split the discussion in two cases.

1. If dt ≥ 20ξ/µ, or equivalently, ξ ≤ 0.05µdt, in view of (45), we have

dist2(Ft+1,F?)
(i)

≤ d2t − 1.177ηtµdt +
0.216

χ2
f

d2t + 0.1ηtµdt

= d2t − 1.077ηtµdt +
0.216

χ2
f

d2t

(ii)

≤ d2t −
0.346

χ2
f

d2t +
0.216

χ2
f

d2t

= (1− 0.13/χ2
f )d2t ,

where (i) uses ξ ≤ 0.05µdt, and (ii) uses the condition (44). We conclude dist(Ft+1,F?) ≤ (1 −
0.13/χ2

f )1/2dt.

2. If 0 < dt < 20ξ/µ, we have

dist2(Ft+1,F?) ≤ (20ξ/µ)2 − 1.177ηtµ(20ξ/µ) +
0.216

χ2
f

d2t + 2ηtξ

= (20ξ/µ)2 − 1.077ηtµ(20ξ/µ) +
0.216

χ2
f

d2t

≤ (20ξ/µ)2 − 1.077
√√

2− 1

2χ2
f

dt(20ξ/µ) +
0.216

χ2
f

d2t

≤ (20ξ/µ)2 − 0.13dt(20ξ/µ)

≤ (20ξ/µ)2,

where the third line uses the condition (44), and the last line holds since dt ≥ 0.
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In sum, we conclude

dist(Ft+1,F?) ≤ max
{

(1− 0.13/χ2
f )(t+1)/20.02σr(X?)/χf , 20ξ/µ

}
,

which is the desired claim.

D Proof of Proposition 1
For X1 and X2 where X1 −X2 has rank at most 2r, we have

|f(X1)− f(X2)| =
∣∣∣‖A(X1 −X?)‖1 − ‖A(X2 −X?)‖1

∣∣∣
≤ ‖A(X1 −X2)‖1 ≤ δ2‖X1 −X2‖F,

where the second line follows from the inverse triangle inequality and the assumed 2r-RIP of A(·). As a
result, we have L = δ2. On the other end, we note

f(X)− f(X?) = ‖A(X −X?)‖1 ≥ δ1‖X −X?‖F,

where the first equality uses f(X?) = 0 and the second inequality follows from the 2r-RIP; thus µ = δ1.

E Proof of Proposition 2
For X1 and X2 with rank(X1 −X2) ≤ 2r, we have

|f(X1)− f(X2)| =
∣∣∣‖A(X1 −X?)−w − s‖1 − ‖A(X2 −X?)−w − s‖1

∣∣∣
≤ ‖A(X1 −X2)‖1 ≤ δ2‖X1 −X2‖F,

where the second line follows from the inverse triangle inequality and the 2r-RIP; hence L = δ2. For
approximate restricted sharpness, note that

f(X)− f(X?) = ‖A(X −X?)−w − s‖1 − ‖w + s‖1
≥ ‖A(X −X?)− s‖1 − ‖w‖1 − ‖s‖1 − ‖w‖1
= ‖ASc(X −X?)‖1 + ‖AS(X −X?)− s‖1 − ‖s‖1 − 2‖w‖1
≥ ‖ASc(X −X?)‖1 − ‖AS(X −X?)‖1 − 2‖w‖1
≥ δ3‖X −X?‖F − 2‖w‖1
≥ δ3‖X −X?‖F − 2σw,

where the second and the fourth lines follow from the triangle inequality, the third line follows from the
definition of S, and the last line follows from the definition of the S-outlier bound and the noise upper
bound ‖w‖1 ≤ σw. Therefore, we have µ = δ3 and ξ = 2σw.
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