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1

Abstract

Spectral methods have emerged as a simple yet surprisingly effective approach for extracting
information from massive, noisy and incomplete data. In a nutshell, spectral methods refer to
a collection of algorithms built upon the eigenvalues (resp. singular values) and eigenvectors
(resp. singular vectors) of some properly designed matrices constructed from data. A diverse
array of applications have been found in machine learning, imaging science, financial and
econometric modeling, and signal processing, including recommendation systems, community
detection, ranking, structured matrix recovery, tensor data estimation, joint shape matching,
blind deconvolution, financial investments, risk managements, treatment evaluations, causal
inference, amongst others. Due to their simplicity and effectiveness, spectral methods are not
only used as a stand-alone estimator, but also frequently employed to facilitate other more
sophisticated algorithms to enhance performance.

While the studies of spectral methods can be traced back to classical matrix perturbation
theory and the method of moments, the past decade has witnessed tremendous theoretical
advances in demystifying their efficacy through the lens of statistical modeling, with the aid
of concentration inequalities and non-asymptotic random matrix theory. This monograph aims
to present a systematic, comprehensive, yet accessible introduction to spectral methods from a
modern statistical perspective, highlighting their algorithmic implications in diverse large-scale
applications. In particular, our exposition gravitates around several central questions that span
various applications: how to characterize the sample efficiency of spectral methods in reaching
a target level of statistical accuracy, and how to assess their stability in the face of random
noise, missing data, and adversarial corruptions? In addition to conventional `2 perturbation
analysis, we present a systematic `∞ and `2,∞ perturbation theory for eigenspace and singular
subspaces, which has only recently become available owing to a powerful “leave-one-out” analysis
framework.



1
Introduction

In contemporary science and engineering applications, the volume of available data is growing at an
enormous rate. The emergence of this trend is due to recent technological advances that have enabled
the collection, transmission, storage and processing of data from every corner of our life, in the
forms of images, videos, network traffic, email logs, electronic health records, genomic and genetic
measurements, high-frequency financial trades, grocery transactions, online exchanges, and so on.
In the meantime, modern applications often require reasonings about an unprecedented scale of
features or parameters of interest. This gives rise to the pressing demand of developing low-complexity
algorithms that can effectively distill actionable insights from large-scale and high-dimensional data.
In addition to the curse of dimensionality, the challenge is further compounded when the data in
hand are noisy, messy, and contain missing features.

Towards addressing the above challenges, spectral methods have emerged as a simple yet sur-
prisingly effective approach to information extraction from massive and noisy data. In a nutshell,
spectral methods refer to a collection of algorithms built upon the eigenvectors (resp. singular
vectors) and eigenvalues (resp. singular values) of some properly designed matrices generated
from data. Remarkably, spectral methods lend themselves to a diverse array of applications in
practice, including community detection in networks (Newman, 2006; Abbe, 2017; Rohe et al.,
2011; McSherry, 2001), angular synchronization in cryo-EM (Singer and Shkolnisky, 2011; Singer,
2011), joint image alignment (Chen and Candès, 2018), clustering (Von Luxburg, 2007; Ng et al.,
2002), ranking (Negahban et al., 2016; Chen and Suh, 2015; Chen et al., 2019b), dimensionality
reduction (Belkin and Niyogi, 2003), low-rank matrix estimation (Achlioptas and McSherry, 2007;
Keshavan et al., 2010), tensor estimation (Montanari and Sun, 2018; Cai et al., 2019a), covariance
and precision matrix estimation (Fan et al., 2013; Fan et al., 2021b), shape reconstruction (Li and
Hero, 2004), econometric and financial modeling (Fan et al., 2021a), among others. Motivated by
their applicability to numerous real-world problems, this monograph seeks to offer a unified and
comprehensive treatment towards establishing the theoretical underpinnings for spectral methods,
particularly through a statistical lens.
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Figure 1.1: Spectral methods for clustering. We plot in (a) an ideal structure of the adjacency matrix A in (1.1), and
in (b) a noisy version which is a realization from the stochastic block model, where Ai,j is an independent Bernoulli
variable with mean 1+δ

2 (resp. 1−δ
2 ) if i and j belong to the same group (resp. different groups). We report in (c) the

empirical success rate of the spectral method over 200 Monte Carlo trials in correctly clustering n = 100 individuals
as the mean difference δ varies.

1.1 Motivating applications

At the heart of spectral methods is the idea that the eigenvectors or singular vectors of certain
data matrices reveal crucial information pertaining to the targets of interest. We single out a few
examples that epitomize this idea.

Clustering. Clustering corresponds to the grouping of individuals based on their mutual similarities,
which constitutes a fundamental task in unsupervised learning and spans numerous applications
such as image segmentation (e.g., grouping pixels based on the objects they represent in an image)
(Browet et al., 2011) and community detection (e.g., grouping users on the basis of their social
circles) (Fortunato and Hric, 2016). For concreteness, let us take a look at a simple scenario with
n individuals such that: (1) there exists a latent partitioning that divides all individuals into two
groups, with the first n/2 individuals belonging to the first group and the rest belonging to the
second group (without loss of generality); and (2) we observe pairwise similarity measurements
generated based on their group memberships. Ideally, if we know whether any two individuals belong
to the same group or not, then we can form an adjacency matrix A = [Ai,j ]1≤i,j≤n such that

Ai,j =





1, if (i, j) belongs to the same group,
0, else.

(1.1)

As a key observation, this matrix A, as illustrated in Figure 1.1(a), turns out to be a rank-2 matrix

A =
[

1n/21>n/2
1n/21>n/2

]
= 1

21n1>n + 1
2

[
1n/2
−1n/2

] [
1>n/2 −1>n/2

]
,

where 1n represents an n-dimensional all-one vector. After subtracting 1
21n1>n fromA, the eigenvector

u2 := [ 1>n/2 −1>n/2 ] of the remaining component uncovers the underlying group structure; namely,
all positive entries of u2 represent one group, with all negative entries of u2 reflecting another
group. In reality, however, we typically only get to collect imprecise information about whether two
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Figure 1.2: Illustration of spectral clustering for 62 dolphins residing in Doubtful Sound, New Zealand. (a) plots the
spectrum of the Laplacian matrix of an undirected social network of frequent associations, and (b) illustrates the two
communities recovered using the penultimate eigenvector of the Laplacian matrix. Data source: Lusseau et al. (2003).

Figure 1.3: Illustration of the eigenface using the Cropped YaleB dataset (Georghiades et al., 2001). The first four
images are sampled from this dataset, representing typical images taken under different illumination conditions with
various occlusions. The last one represents the eigenface (i.e., the first principal component) of this dataset.

individuals belong to the same group, thus resulting in a corrupted version of A (see Figure 1.1(b)).
Fortunately, the eigenvector (the one corresponding to u2 above) of the observed data matrix (with
proper arrangement) might continue to be informative, as long as the noise level is not overly high.
To illustrate the practical applicability, we plot in Figure 1.1(c) the numerical performance of this
approach, which allows for perfect clustering of all individuals for a wide range of noisy scenarios.
Similar ideas continue to fare well on the clustering of real data, where we illustrate in Figure 1.2
that the penultimate eigenvector of a Laplacian matrix (also known as the Fiedler vector) of an
undirected social network reveals two communities of 62 dolphins residing in Doubtful Sound, New
Zealand.

Principal component analysis (PCA). PCA is arguably one of the most commonly employed
tools for data exploration and visualization. Given a collection of data samples x1, · · · ,xn ∈ Rp,
PCA seeks to identify a rank-r subspace that explains most of the variability of the data. This
is particularly well-grounded when, say, the sample vectors {xi}1≤i≤n reside primarily within a
common rank-r subspace—denoted by U?. To extract out this principal subspace, it is instrumental
to examine the following sample covariance matrix

M = 1
n

n∑

i=1
xix

>
i .
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Figure 1.4: Spectral methods for matrix recovery with missing data, where (a) is an illustration of missing data
and (b) reports the empirical estimation errors of spectral methods as the sampling rate p varies. Both the relative
Euclidean error ‖M̂−M

?‖F
‖M?‖F

and the relative entrywise error ‖M̂−M
?‖∞

‖M?‖∞ are plotted (with M̂ denoting the matrix
estimate and ‖ · ‖∞ the entrywise `∞ norm).

If all sample vectors approximately lie within U?, then one might be able to infer U? by inspecting
the rank-r leading eigenspace of M (or its variants), provided that the signal-to-noise ratio exceeds
some reasonable level. This reflects the role of spectral methods in enabling meaningful dimensionality
reduction and factor analysis.

In practice, a key benefit of PCA is its ability to remove nuance factors in, and extract out
salient features from, each data point. As an illustration, the first four images of Figure 1.3 are
representative ones sampled from a face dataset (Georghiades et al., 2001), which correspond to
faces of the same person under different illumination and occlusion conditions. In contrast, the
“eigenface” (Turk and Pentland, 1991) depicted in the last image of Figure 1.3 corresponds to the
first principal component (i.e., r = 1), which effectively removes the nuance factors and highlights
the feature of the face.

Matrix recovery in the face of missing data. A proliferation of big-data applications has to deal
with matrix estimation in the presence of missing data, either due to the infeasibility to acquire
complete observations of a massive data matrix (Davenport and Romberg, 2016) such as the Netflix
problem in recommender systems (as users only watch and rate a small fraction of movies), or
because of the incentive to accelerate computation by means of sub-sampling (Mahoney, 2016).
Imagine that we are asked to estimate a large matrix M? = [M?

i,j ]1≤i,j≤n, even though a dominant
fraction of its entries are unseen. While in general we cannot predict anything about the missing
entries, reliable estimation might become possible if M? is known a priori to enjoy a low-rank
structure, as is the case in many applications like structure from motion (Tomasi and Kanade,
1992) and sensor network localization (Javanmard and Montanari, 2013). This low-rank assumption
motivates the use of spectral methods. More specifically, suppose the entries of M? are randomly
sampled such that each entry is observed independently with probability p ∈ (0, 1]. An unbiased
estimate M = [Mi,j ]1≤i,j≤n of M? can be readily obtained via rescaling and zero filling (also called
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Figure 1.5: Spectral methods for ranking from pairwise comparisons. (a) illustrates the latent preference scores {w?i }
that govern the ranking of items. The empirical success rates in correctly identifying the top-ranked item are plotted
in (b) as ∆ varies, where ∆ represents the separation between the score of the top item and that of the second-ranked
item.

the inverse probability weighting method):

Mi,j =





1
pM

?
i,j , if the (i, j)-th entry is observed,

0, else.

To capture the assumed low-rank structure of M?, it is natural to resort to the best rank-r
approximation of M (with r the true rank of M?), computable through the rank-r singular value
decomposition ofM . Given its (trivial) success when p = 1, we expect the algorithm to perform well
when p is close to 1. The key question, however, is where the algorithm stands if the vast majority
of the entries is missing. While we shall illuminate this in Chapters 3 and 4, Figure 1.4 provides
some immediate numerical assessment, which demonstrates the appealing performance of spectral
methods—in terms of both Euclidean and entrywise estimation errors—even when the missing rate
is quite high.

Ranking from pairwise comparisons. Another important application of spectral methods arises
from the context of ranking, a task of central importance in, say, web search and recommendation
systems. In a variety of scenarios, humans find it difficult to simultaneously rank many items, but
relatively easier to express pairwise preferences. This gives rise to the problem of ranking based on
pairwise comparisons. More specifically, imagine we are given a collection of n items, and wish to
identify top-ranked items based on pairwise preferences (with uncertainties in comparison outcomes)
between observed pairs of items. A classical statistical model proposed by Bradley and Terry (1952)
and Luce (2012) postulates the existence of a set of latent positive scores {w?i }1≤i≤n—each associated
with an item—that determines the ranks of these items. The outcome of the comparison between
items i and j is generated in a way that

P(i beats j) = w?i
w?i + w?j

, 1 ≤ i, j ≤ n.

As it turns out, the preference scores are closely related to the stationary distribution of a Markov
chain associated with the above probability kernel, thus forming the basis of spectral ranking
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algorithms. To elucidate it in a little more detail, let us construct a probability transition matrix
P ? = [P ?i,j ]1≤i,j≤n with

P ?i,j =





1
n ·

w?j
w?i +w?j

, if i 6= j,

1−∑l:l 6=i P
?
i,l, if i = j.

Clearly, it forms a probability transition matrix since each element is nonnegative and the entries
in each row add up to one. It is straightforward to verify that the score vector w? := [w?i ]1≤i≤n
satisfies w?> = w?>P ?, namely w? is a left eigenvector of P ? associated with eigenvalue one. A
candidate method then consists of (i) forming an unbiased estimate of P ? (which can be easily
obtained using pairwise comparison outcomes), (ii) computing its left eigenvector (in fact, the
leading left eigenvector), and (iii) reporting the ranking result in accordance with the order of the
elements in this eigenvector. This spectral ranking scheme, which shares similar spirit with the
celebrated PageRank algorithm (Page et al., 1999), exhibits intriguing performance when identifying
the top-ranked items, as showcased in the numerical experiments in Figure 1.5(b).

A unified theme. In all preceding applications, the core ideas underlying the development of
spectral methods can be described in a unified fashion:

1. Identify a key matrix M?—which is typically unobserved—whose eigenvectors or singular
vectors disclose the information being sought after;

2. Construct a surrogate matrix M of M? using the data samples in hand, and compute the
corresponding eigenvectors or singular vectors of this surrogate matrix.

Viewed in this light, this monograph aims to identify key factors—e.g., certain spectral structure
of M? as well as the size of the approximation error M −M?—that exert main influences on the
efficacy of the resultant spectral methods.

1.2 A modern statistical perspective

The idea of spectral methods can be traced back to early statistical literature on methods of
moments (e.g., Pearson (1894) and Hansen (1982)), where one seeks to extract key parameters
of the probability distributions of interest by examining the empirical moments of data. While
classical matrix perturbation theory lays a sensible foundations for the analysis of spectral methods
(Stewart and Sun, 1990), the theoretical understanding can be considerably enhanced through the
lens of statistical modeling—a way of thinking that has flourished in the past decade. To the best of
our knowledge, however, a systematic and comprehensive introduction to the modern statistical
foundation of spectral methods, as well as an overview of recent advances, is previously unavailable.

The current monograph aims to fill this gap by developing a coherent and accessible treatment
of spectral methods from a modern statistical perspective. Highlighting algorithmic implications
that inform practice, our exposition gravitates around the following central questions: how to
characterize the sample efficiency of spectral methods in reaching a prescribed accuracy level, and
how to assess the stability of spectral methods in the face of random noise, missing data, and
adversarial corruptions? We underscore several distinguishing features of our treatment compared
to prior studies:
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• In comparison to the worst-case performance guarantees derived solely based on classical
matrix perturbation theory, our statistical treatment emphasizes the benefit of harnessing the
“typical” behavior of data models, which offers key insights into how to harvest performance
gains by leveraging intrinsic properties of data generating mechanisms.

• In contrast to classical asymptotic theory (Van der Vaart, 2000), we adopt a non-asymptotic
(or finite-sample) analysis framework that draws on tools from recent developments of con-
centration inequalities (Tropp, 2015) and high-dimensional statistics (Wainwright, 2019).
This framework accommodates the scenario where both the sample size and the number of
features are enormous, and unveils a clearer and more complete picture about the interplay
and trade-off between salient model parameters.

Another unique feature of this monograph is a principled introduction of fine-grained entrywise
analysis (e.g., a theory studying `∞ eigenvector perturbation), which reflects cutting-edge research
activities in this area. This is particularly important when, for example, demonstrating the feasibility
of exact clustering or perfect ranking in the aforementioned applications. In truth, an effective
entrywise analysis framework cannot be readily obtained from classical matrix analysis alone, and
has only recently become available owing to the emergence of modern statistical toolboxes. In
particular, we shall present a powerful framework, called leave-one-out analysis, that proves effective
and versatile for delivering fine-grained performance guarantees for spectral methods in a variety of
problems.

1.3 Organization

We now present a high-level overview of the structure of this monograph.

• Chapter 2 reviews the fundamentals of classical matrix perturbation theory for spectral
analysis, focusing on `2-type distances measured by the spectral norm and the Frobenius norm.
This chapter covers the celebrated Davis-Kahan sin Θ theorem for eigenspace perturbation, the
Wedin theorem for singular subspace perturbation, and an extension to probability transition
matrices, laying the algebraic foundations for the remaining chapters.

• Chapter 3 explores the utility of `2 matrix perturbation theory when paired with statistical
tools, presenting a unified recipe for statistical analysis empowered by non-asymptotic matrix
tail bounds. We develop spectral methods for a variety of statistical data science applications,
and derive nearly tight theoretical guarantees (up to logarithmic factors) based on this unified
recipe.

• Chapter 4 develops fine-grained perturbation theory for spectral analysis in terms of `∞ and
`2,∞ metrics, based on a leave-one-out analysis framework rooted in probability theory. Its
effectiveness is demonstrated through concrete applications including community recovery
and matrix completion. This analysis framework also enables a non-asymptotic distributional
theory for spectral methods, which paves the way for uncertainty quantification in applications
like noisy matrix completion.

• Chapter 5 concludes this monograph by identifying a few directions that are worthy of future
investigation.
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While this monograph pursues a coherent and accessible treatment that might appeal to a broad
audience, it does not necessarily deliver the sharpest possible results for the applications discussed
herein in terms of the logarithmic terms and/or pre-constants. The bibliographic notes at the end of
each chapter contain information about the state-of-the-art theory for each application as a pointer
to further readings.

1.4 What is not here and complementary readings

The topics presented in this monograph do not cover the tensor decomposition methods studied in
another recent strand of work (Anandkumar et al., 2014). While such tensor-based methods are also
sometimes referred to as spectral methods, their primary focus is to invoke tensor decomposition to
learn latent variables, based on higher-order moments estimated from data samples. We elect not
to discuss this class of methods but instead refer the interested reader to the recently published
monograph by Janzamin et al. (2019). Another monograph by Kannan and Vempala (2009) provides
an in-depth computational and algorithmic treatment of spectral methods from the perspective
of theoretical computer science. The applications and results covered therein (e.g., fast matrix
multiplication) complement the ones presented in the current monograph. In addition, spectral
methods have been frequently employed to initialize nonconvex optimization algorithms. We will
not elaborate on the nonconvex optimization aspect here but instead recommend the reader to the
recent overview article by Chi et al. (2019). Finally, spectral methods are widely adopted to estimate
high-dimensional covariance and precision matrices, and extract latent factors for econometric and
statistical modeling. This topic alone has a huge literature, and we refer the interested reader to
Fan et al. (2020b) for in-depth discussions.

1.5 Notation

Before moving forward, let us introduce some notation that will be used throughout this monograph.
First of all, we reserve boldfaced symbols for vectors, matrices and tensors. For any matrix A,

let σj(A) (resp. λj(A)) represent its j-th largest singular value (resp. eigenvalue). In particular,
σmax(A) (resp. λmax(A)) stands for the largest singular value (resp. eigenvalue) of A, while σmin(A)
(resp. λmin(A)) indicates the smallest singular value (resp. eigenvalue) of A. We use A> to denote
the transpose of A, and let Ai,· and A·,i indicate the i-th row and the i-th column of A, respectively.
We follow standard conventions by letting In be the n× n identity matrix, 1n the n-dimensional
all-one vector, and 0n the n-dimensional all-zero vector; we shall often suppress the subscript as
long as it is clear from the context. The i-th standard basis vector is denoted by ei throughout. The
notation On×r (r ≤ n) represents the set of all n × r orthonormal matrices (whose columns are
orthonormal). Moreover, we refer to [n] as the set {1, · · · , n}.

Next, we turn to vector and matrix norms. For any vector v, we denote by ‖v‖2, ‖v‖1 and ‖v‖∞ its
`2 norm, `1 norm and `∞ norm, respectively. For any matrixA = [Ai,j ]1≤i≤m,1≤j≤n, we let ‖A‖, ‖A‖∗,
‖A‖F and ‖A‖∞ represent respectively its spectral norm (i.e., the largest singular value of A), its
nuclear norm (i.e., the sum of singular values ofA), its Frobenius norm (i.e., ‖A‖F :=

√∑
i,j A

2
i,j), and

its entrywise `∞ norm (i.e., ‖A‖∞ := maxi,j |Ai,j |). We also refer to ‖A‖2,∞ as the `2,∞ norm of A,
defined as ‖A‖2,∞ := maxi ‖Ai,·‖2. Similarly, we define the `∞,2 norm of A as ‖A‖∞,2 := ‖A>‖2,∞.
In addition, for any matrices A = [Ai,j ]1≤i≤m,1≤j≤n and B = [Bi,j ]1≤i≤m,1≤j≤n, the inner product
of A and B is defined as and denoted by 〈A,B〉 = ∑

1≤i≤m,1≤j≤nAi,jBi,j = Tr(A>B).
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When it comes to diagonal matrices, we employ diag([θ1, θ2, · · · , θr]) to abbreviate the diagonal
matrix with diagonal elements θ1, · · · , θr. For any diagonal matrix Θ = diag([θ1, θ2, · · · , θr]), we
adopt the shorthand notation sin Θ := diag([sin θ1, sin θ2, · · · , sin θr]); the notation sin2 Θ, cos Θ,
and cos2 Θ is defined analogously.

Finally, this monograph makes heavy use of the following standard notation: (1) f(n) = O (g(n))
or f(n) . g(n) means that there exists a universal constant c > 0 such that |f(n)| ≤ c|g(n)| holds
for all sufficiently large n; (2) f(n) & g(n) means that there exists a universal constant c > 0
such that |f(n)| ≥ c |g(n)| holds for all sufficiently large n; (3) f(n) � g(n) means that there exist
universal constants c1, c2 > 0 such that c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| holds for all sufficiently large n;
and (4) f(n) = o(g(n)) indicates that f(n)/g(n)→ 0 as n→∞. Additionally, we sometimes use
f(n)� g(n) (resp. f(n)� g(n)) to indicate that there exists some sufficiently large (resp. small)
universal constant c > 0 such that |f(n)| ≥ c |g(n)| (resp. |f(n)| ≤ c |g(n)|).



2
Classical spectral analysis: `2 perturbation theory

Characterizing the performance of spectral methods requires understanding the perturbation of
eigenspaces and/or that of singular subspaces. Classical matrix perturbation theory (e.g., Stewart
and Sun (1990)) offers elementary toolkits that prove effective for this purpose, which we review in
this chapter.

Setting the stage, consider a real-valued matrix M? and its perturbed version as follows

M = M? +E, (2.1)

where E = M −M? denotes a real-valued perturbation or error matrix. In statistical applications,
M can be an observed or estimated data matrix such as the sample covariance matrix, and M? is
the target matrix such as the population covariance matrix. This chapter primarily aims to address
the following questions by means of elementary linear algebra:

1. For a symmetric matrix M?, how does the eigenspace change in response to a symmetric
perturbation matrix E?

2. For a general matrix M?, how is the singular subspace affected as a result of the perturbation
matrix E?

We shall also explore eigenvector perturbation for a special class of asymmetric matrices: probability
transition matrices.

2.1 Preliminaries: Basics of matrix analysis

We begin this chapter by gathering a few elementary materials in matrix analysis that prove useful
for our theoretical development. The readers familiar with matrix analysis can proceed directly to
Section 2.2.

Unitarily invariant norms. Among all matrix norms, the family of unitarily invariant norms defined
below is of central interest, which subsumes as special cases the spectral norm ‖ ·‖ and the Frobenius
norm ‖ · ‖F.

11
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Definition 2.1. A matrix norm |||·||| on Rm×n is said to be unitarily invariant if

|||A||| =
∣∣∣∣∣∣U>AV

∣∣∣∣∣∣

holds for any matrix A ∈ Rm×n and any two square orthonormal matrices U ∈ Om×m and
V ∈ On×n.

This class of matrix norms enjoys several useful properties, as summarized in the following
lemma. The proof can be found in Stewart and Sun (1990, Theorem 3.9).

Lemma 2.1. For any unitarily invariant norm |||·|||, one has

|||AB||| ≤ |||A||| · ‖B‖ , |||AB||| ≤ |||B||| · ‖A‖ ,
|||AB||| ≥ |||A|||σmin (B) , |||AB||| ≥ |||B|||σmin (A) .

Perturbation bounds for eigenvalues and singular values. Next, we review classical perturbation
bounds for eigenvalues of symmetric matrices and for singular values of general matrices.

Lemma 2.2 (Weyl’s inequality for eigenvalues). Let A,E ∈ Rn×n be two real symmetric matrices.
For every 1 ≤ i ≤ n, the i-th largest eigenvalues of A and A+E obey

|λi (A)− λi (A+E)| ≤ ‖E‖ . (2.2)

Proof. See Equation (1.63) in Tao (2012).

Lemma 2.3 (Weyl’s inequality for singular values). Let A,E ∈ Rm×n be two general matrices. Then
for every 1 ≤ i ≤ min{m,n}, the i-th largest singular values of A and A+E obey

|σi (A+E)− σi (A)| ≤ ‖E‖ .

Proof. See Exercise 1.3.22 in Tao (2012).

An immediate implication of Lemma 2.2 (resp. Lemma 2.3) is that the eigenvalues of a real sym-
metric matrix (resp. the singular values of a general matrix) are stable vis-à-vis small perturbations.

2.2 Preliminaries: Distance and angles between subspaces

In order to develop perturbation theory for eigenspaces and singular subspaces, we first need to
delineate a metric that quantifies the proximity of two subspaces in a meaningful way.

2.2.1 Setup and notation

Consider two r-dimensional subspaces U? and U in Rn, where 1 ≤ r ≤ n. One can represent these
two subspaces by two matrices U? ∈ Rn×r and U ∈ Rn×r, whose columns form an orthonormal
basis of U? and U , respectively. Here and throughout, we shall use U and its matrix representation
U interchangeably whenever it is clear from the context.

For the sake of convenience, we further introduce two n× (n− r) matrices U?
⊥ and U⊥, such that

[U?,U?
⊥] and [U ,U⊥] are both n× n orthonormal matrices. In other words, U?

⊥ and U⊥ represent
the orthogonal complement of U? and U , respectively.
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2.2.2 Distance metrics and principal angles

Global rotational ambiguity. To measure the distance between the two subspaces U and U?, a
naive idea is to employ the “metric” |||U −U?|||, where |||·||| is a certain norm of interest (e.g.,
the spectral norm or the Frobenius norm). An immediate drawback arises, however, since this
“metric” does not take into account the global rotational ambiguity—namely, for any rotation matrix
R ∈ Or×r, the columns of the matrix UR also form a valid orthonormal basis of U . This means that
even when the two subspaces U and U? coincide, one might still have |||U −U?||| 6= 0, depending on
how we rotate these matrices.

Valid choices of distance and angles. The takeaway of the above discussion is that any meaningful
metric employed to measure the proximity of two subspaces should account for the rotational
ambiguity properly. In what follows, we single out a few widely used metrics that meet such a
requirement.

1. Distance with optimal rotation. Given the global rotational ambiguity, it is natural to first
adjust the rotation matrix suitably before computing the distance. One choice is to measure
the distance upon optimal rotation, namely,

dist|||·|||
(
U ,U?) := min

R∈Or×r
∣∣∣∣∣∣UR−U?

∣∣∣∣∣∣, (2.3)

where |||·||| is a certain norm to be chosen (e.g., the spectral norm or the Frobenius norm).

2. Distance between projection matrices. As an established fact, the projection matrix onto a
subspace U—given by UU>—is unique and unaffected by how U is rotated (since UU> =
URR>U> for any rotation matrix R ∈ Or×r). The rotational invariance of the projection
matrix motivates us to define the distance between U and U? as follows

distp,|||·|||
(
U ,U?) :=

∣∣∣∣∣∣UU> −U?U?>∣∣∣∣∣∣, (2.4)

where, as usual, |||·||| is a certain matrix norm of interest, and the subscript p stands for
projection.

3. Geometric construction via principal angles. Let σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 be the singular
values of U>U?, arranged in descending order. Given that ‖U>U?‖ ≤ ‖U‖ ‖U?‖ = 1, all the
singular values {σi}ri=1 fall within the interval [0, 1]. Therefore, one can define the principal
angles (or canonical angles) between the two subspaces of interest as

θi := arccos (σi) for all 1 ≤ i ≤ r, (2.5)

which clearly satisfy

0 ≤ θ1 ≤ · · · ≤ θr ≤ π/2. (2.6)

To see why this definition makes sense, consider the simplest example where r = 1. In this
case, the principal angle θ1 coincides with the conventionally defined angle between two unit
vectors U and U?. Armed with these angles, one might measure the distance between the
subspaces U and U? through the following metric

distsin,|||·|||
(
U ,U?) := |||sin Θ|||, (2.7)
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where |||·||| is again some matrix norm to be selected, and

Θ :=



θ1

. . .
θr


, sin Θ :=




sin θ1
. . .

sin θr


. (2.8)

With slight abuse of notation, we can define other diagonal matrices such as cos Θ analogously,
where cos(·) is applied in an entrywise manner to the diagonal elements of Θ. Such matrices
will be useful for future discussions.

2.2.3 Intimate connections between the distance metrics

It turns out that the metrics (2.3), (2.4) and (2.7) introduced above are tightly related, as we shall
explain in this subsection. The proofs of all the results in this subsection are deferred to Section 2.6.

To begin with, we take a look at the relation between distp,|||·|||(·, ·) and distsin,|||·|||(·, ·), which is
perhaps best illuminated by the following lemma.

Lemma 2.4. Consider the settings of Section 2.2.1. If 2r ≤ n, then the singular values of UU> −
U?U?> (including zeros) are given by

sin θr, sin θr, sin θr−1, sin θr−1, · · · , sin θ1, sin θ1︸ ︷︷ ︸
2r

, 0, 0, · · · , 0︸ ︷︷ ︸
n−2r

.

In a nutshell, Lemma 2.4 establishes an explicit link between (a) the difference of the projection
matrices and (b) the principal angles between the two subspaces of interest. This lemma and its
analysis unveil the following crucial equivalence relation under two of our favorite norms—the
spectral norm and the Frobenius norm; in light of this, we might refer to these metrics as the sin Θ
distances from time to time.

Lemma 2.5. Consider the settings of Section 2.2.1, and recall the definition of sin Θ in (2.8). For
any 1 ≤ r ≤ n, one has

∥∥UU> −U?U?>∥∥ = ‖sin Θ‖ =
∥∥U>⊥U?

∥∥ =
∥∥U>U?

⊥
∥∥; (2.9a)

1√
2
∥∥UU> −U?U?>∥∥

F = ‖sin Θ‖F =
∥∥U>⊥U?

∥∥
F =

∥∥U>U?
⊥
∥∥

F. (2.9b)

Next, we move on to demonstrate the (near) equivalence of dist|||·|||(·, ·) and distp,|||·|||(·, ·) under
the above-mentioned two norms.

Lemma 2.6. Under the settings of Section 2.2.1, for any 1 ≤ r ≤ n, one has1

‖UU> −U?U?>‖ ≤ min
R∈Or×r

∥∥UR−U?
∥∥ ≤
√

2‖UU> −U?U?>‖;
1√
2‖UU

> −U?U?>‖F ≤ min
R∈Or×r

‖UR−U?‖F ≤ ‖UU> −U?U?>‖F.

In words, dist|||·|||(·, ·) and distp,|||·|||(·, ·) are equivalent up to a factor of
√

2, when |||·||| is the spectral
norm or the Frobenius norm.

1It is straightforward to verify that the upper bounds on both minR∈Or×r

∥∥UR−U?
∥∥ and minR∈Or×r ‖UR−U?‖F

are attainable when U = [1, 0]> and U? = [0, 1]>.
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2.2.4 The distance metrics of choice in this monograph

In conclusion, the following metrics, which are seemingly distinct at first glance, are (nearly)
equivalent in measuring the distance between two subspaces U and U?:

1)
∣∣∣∣∣∣UU> −U?U?>∣∣∣∣∣∣

2)
∣∣∣∣∣∣ sin Θ

∣∣∣∣∣∣

3)
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣ =
∣∣∣∣∣∣U>U?

⊥
∣∣∣∣∣∣

4) min
R∈Or×r

∣∣∣∣∣∣UR−U?
∣∣∣∣∣∣

when |||·||| represents either the spectral norm or the Frobenius norm. Viewed in this light, we shall
mainly concentrate on the following metrics throughout the rest of this monograph:

dist(U ,U?) := min
R∈Or×r

∥∥UR−U?
∥∥; (2.10a)

distF(U ,U?) := min
R∈Or×r

∥∥UR−U?
∥∥

F. (2.10b)

2.3 Perturbation theory for eigenspaces

Armed with the above metrics for subspace distances, we are in a position to identify key factors
that affect the perturbation of eigenvectors and eigenspaces.

2.3.1 Setup and notation

LetM? andM = M?+E be two n×n real symmetric matrices. We express the eigendecomposition
of M? and M as follows

M? =
n∑

i=1
λ?iu

?
iu

?>
i =

[
U? U?

⊥
] [ Λ? 0

0 Λ?
⊥

] [
U?>

U?>
⊥

]
; (2.11)

M =
n∑

i=1
λiuiu

>
i =

[
U U⊥

] [ Λ 0
0 Λ⊥

] [
U>

U>⊥

]
. (2.12)

Here, {λi} (resp. {λ?i }) denote the eigenvalues of M (resp. M?), and ui (resp. u?i ) stands for the
eigenvector associated with the eigenvalue λi (resp. λ?i ). Additionally, we take

U := [u1, · · · ,ur] ∈ Rn×r, U⊥ := [ur+1, · · · ,un] ∈ Rn×(n−r),

Λ := diag
(
[λ1, · · · , λr]

)
, Λ⊥ := diag

(
[λr+1, · · · , λn]

)
.

The matrices U?, U?
⊥, Λ?, and Λ?

⊥ are defined analogously.

2.3.2 A warm-up example

In general, the eigenvector/eigenspace of a real symmetric matrix might change drastically even upon
a small perturbation. To understand this, consider the following toy example borrowed from Hsu
(2016):

M? =
[

1 + ε 0
0 1− ε

]
, E =

[
−ε ε

ε ε

]
, M =

[
1 ε

ε 1

]
,
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where 0 < ε < 1 can be arbitrarily small. It is straightforward to check that the leading eigenvectors
of M? and M are given respectively by

u?1 =
[

1
0

]
, and u1 = 1√

2

[
1
1

]
.

Consequently, we have
∥∥u1u

>
1 − u?1u?>1

∥∥ = 1√
2
, and

∥∥u1u
>
1 − u?1u?>1

∥∥
F = 1, (2.13)

which are both quite large regardless of the size of ε or the size of the perturbation ‖E‖.
On closer inspection, this “pathological” behavior comes up due to the fact that perturbation

size ε is comparable to the eigengap of M? (namely, λ1(M?)− λ2(M?) = 2ε). This hints at the
important role played by the eigengap in influencing eigenspace perturbation.

2.3.3 The Davis-Kahan sinΘ theorem

At the core of classical eigenspace perturbation theory lies the landmark result of Davis and
Kahan (1970), which delivers powerful eigenspace perturbation bounds in terms of the size of the
perturbation matrix as well as the associated eigengap. Here and throughout, for any symmetric
matrix A, we denote by eigenvalues(A) the set of eigenvalues of A.

Theorem 2.7 (Davis-Kahan’s sinΘ theorem). Consider the settings in Section 2.3.1. Assume that

eigenvalues(Λ?) ⊆ [α, β], (2.14a)
eigenvalues(Λ⊥) ⊆ (−∞, α−∆] ∪ [β + ∆,∞) (2.14b)

for some quantities α, β ∈ R and eigengap ∆ > 0. Then one has

dist
(
U ,U?) ≤

√
2‖ sin Θ‖ ≤

√
2
∥∥EU?

∥∥
∆ ≤

√
2‖E‖
∆ ; (2.15a)

distF
(
U ,U?) ≤

√
2‖ sin Θ‖F ≤

√
2
∥∥EU?

∥∥
F

∆ ≤
√

2r‖E‖
∆ . (2.15b)

This conclusion remains valid if Assumption (2.14) is replaced by

eigenvalues(Λ?) ⊆ (−∞, α−∆] ∪ [β + ∆,∞); (2.16a)
eigenvalues(Λ⊥) ⊆ [α, β]. (2.16b)

Remark 2.1. In fact, Theorem 2.7 can be generalized to accommodate any unitarily invariant norm
|||·|||, in the sense that

|||sin Θ||| ≤ |||EU
?|||

∆ . (2.17)

The proof of Theorem 2.7 and Remark 2.1 is quite elementary and can be found in Section 2.3.4.

Remark 2.2. As we shall demonstrate in Chapter 4, the above bounds that involve ‖EU?‖ and
‖EU?‖F are particularly useful when E exhibits special structure (e.g., row sparsity or column
sparsity).
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Theorem 2.7 is commonly referred to as the Davis-Kahan sinΘ theorem, given that it concerns
the sinΘ distance between subspaces. Both bounds scale linearly with the perturbation size, and are
inversely proportional to the eigengap ∆. Informally, if we view ‖E‖ as the noise size and interpret
the eigengap as the “signal strength” (which dictates how easy it is to distinguish the r eigenvalues
of interest from the remaining spectrum), then Theorem 2.7 asserts that the eigenspace perturbation
degrades gracefully as the signal-to-noise-ratio decreases.

The careful reader might notice that Theorem 2.7 stays silent on the allowable size ‖E‖ of
the perturbation. Note, however, that a restriction on ‖E‖ is somewhat hidden in Assumptions
(2.14) and (2.16). When the eigenvalues in Λ? (resp. Λ) and Λ?

⊥ (resp. Λ⊥) are suitably ordered,
it is oftentimes more convenient to work with the following corollary, which makes apparent the
constraint on the size ‖E‖ with regard to the eigengap of M?.

Corollary 2.8. Consider the settings in Section 2.3.1. Suppose that |λ?1| ≥ |λ?2| ≥ · · · ≥ |λ?r | >
|λ?r+1| ≥ · · · ≥ |λ?n| and |λ1| ≥ |λ2| ≥ · · · ≥ |λn| (i.e., the eigenvalues are sorted by their magnitudes).
If ‖E‖ < (1− 1/

√
2)(|λ?r | − |λ?r+1|), then

dist
(
U ,U?) ≤

√
2‖ sin Θ‖ ≤ 2

∥∥EU?
∥∥

|λ?r | − |λ?r+1|
≤ 2‖E‖
|λ?r | − |λ?r+1|

; (2.18a)

distF
(
U ,U?) ≤

√
2‖ sin Θ‖F ≤

2
∥∥EU?

∥∥
F

|λ?r | − |λ?r+1|
≤ 2

√
r‖E‖

|λ?r | − |λ?r+1|
. (2.18b)

The proof of Corollary 2.8 is also given in Section 2.3.4.

2.3.4 Proof of the Davis-Kahan sinΘ theorem

Proof of Theorem 2.7. The proof proceeds by controlling the distance metric
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣, where
|||·||| denotes a unitarily invariant norm.

We start by proving the theorem under Assumption (2.14), and claim that it suffices to consider
the case where

α = −β ≤ 0. (2.19)

In fact, if this condition is violated, then one can employ a “centering” trick by enforcing global
offset to M? and M as follows

M?
c = M? − α+ β

2 In, and Mc = M − α+ β

2 In.

It is straightforwardly seen that (a) M?
c (resp. Mc) and M? (resp. M) share the same eigenvec-

tors; (b) the eigenvalues of M?
c (resp. Mc) associated with U? (resp. U⊥) reside within [−γ, γ]

(resp. (−∞,−γ −∆] ∪ [γ + ∆,∞)), where γ = β−α
2 ≥ 0. Consequently, this reduces to a scenario

that resembles (2.19). In addition, we isolate two immediate consequences of Assumptions (2.14)
and (2.19) that prove useful:

‖Λ?‖ ≤ β, and σmin(Λ⊥) ≥ β + ∆, (2.20)

where we recall that σmin(Λ⊥) is the minimal singular value of Λ⊥.
Armed with the above spectral conditions, we are prepared to study U>⊥U?. This is controlled

through the following identity (obtained by the definition of eigenvectors):

U>⊥ (M −M?)U? = Λ⊥U>⊥U? −U>⊥U?Λ?, (2.21)
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Let R := (M −M?)U? = EU?. The triangle inequality then tells us that
∣∣∣∣∣∣U>⊥R

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣Λ⊥U>⊥U?

∣∣∣∣∣∣−
∣∣∣∣∣∣U>⊥U?Λ?

∣∣∣∣∣∣

≥ σmin(Λ⊥)
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣− ‖Λ?‖ ·
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣

≥ (β + ∆− β)
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣ = ∆
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣. (2.22)

Here, the middle line follows from Lemma 2.1 in Section 2.1, whereas the last inequality arises from
the properties (2.20). As a consequence,

∣∣∣∣∣∣U>⊥U?
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣U>⊥R
∣∣∣∣∣∣

∆ ≤ |||R|||∆ =
∣∣∣∣∣∣EU?

∣∣∣∣∣∣
∆ ,

where the second inequality follows again from Lemma 2.1 and ‖U⊥‖ = 1. When |||·||| is either the
spectral norm or the Frobenius norm, combining the preceding inequality with Lemmas 2.5-2.6 and
the facts ‖U?‖ = 1 and ‖U?‖F =

√
r immediately establishes the theorem for this case.

Next, we turn to the scenario where Assumption (2.16) is in effect; it can be analyzed in a
similar manner and hence we remark only on the difference. Assuming (2.19) holds without loss of
generality, we have

‖Λ⊥‖ ≤ β, and σmin(Λ?) ≥ β + ∆. (2.23)
Applying the triangle inequality to (2.21) in a different way yields

∣∣∣∣∣∣U>⊥R
∣∣∣∣∣∣ ≥

∣∣∣∣∣∣U>⊥U?Λ?
∣∣∣∣∣∣−

∣∣∣∣∣∣Λ⊥U>⊥U?
∣∣∣∣∣∣

≥ σmin(Λ?)
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣− ‖Λ⊥‖ ·
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣

≥ (β + ∆− β)
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣ = ∆
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣,

a conclusion that coincides with (2.22). The rest of the proof is the same as the one in the previous
case.

Before concluding, we remark that
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣ =
∣∣∣∣∣∣ sin Θ

∣∣∣∣∣∣ holds for any unitarily invariant norm
|||·|||; see Li (1998, Lemma 2.1). This together with the above analysis leads to Remark 2.1.

Proof of Corollary 2.8. We first examine the spectral ranges of Λ⊥ and Λ?. Let λi(M?) (resp. λi(M))
be the i-th largest eigenvalue of M? (resp. M), sorted by their values (as opposed to their magni-
tudes). Then Weyl’s inequality (cf. Lemma 2.2 in Section 2.1) asserts that

|λi(M)− λi(M?)| ≤ ‖E‖, 1 ≤ i ≤ n.

Suppose that M? has r1 positive (resp. r2 = r − r1 negative) eigenvalues whose magnitudes exceed
|λ?r+1|. Then for any i obeying 1 ≤ i ≤ r1 or i > n− r2, the triangle inequality gives

∣∣λi(M)
∣∣ ≥

∣∣λi(M?)
∣∣− ‖E‖ > |λ?r | −

(
1− 1/

√
2
)
(|λ?r | − |λ?r+1|)

> |λ?r+1|+
(
1− 1/

√
2
)
(|λ?r | − |λ?r+1|) ≥ |λ?r+1|+ ‖E‖,

where the last inequality arises from our assumption on ‖E‖. On the contrary, if r1 < i ≤ n− r2,
then one has

∣∣λi(M)
∣∣ ≤

∣∣λ?r+1
∣∣+ ‖E‖.

As a consequence, there are exactly r (resp. n − r) eigenvalues of M whose magnitudes exceed
(resp. lie below) |λ?r+1|+ ‖E‖.
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The above observation together with the ordering |λ1| ≥ |λ2| ≥ · · · ≥ |λn| implies
eigenvalues(Λ⊥) ⊆ [− |λ?r+1| − ‖E‖, |λ?r+1|+ ‖E‖

]
.

In addition, the assumption that |λ?1| ≥ |λ?2| ≥ · · · ≥ |λ?n| tells us that
eigenvalues(Λ?) ⊆ (−∞,−|λ?r |

] ∪ [|λ?r |,∞
)
.

Taking β = −α = |λ?r+1|+ ‖E‖ and ∆ = |λ?r | − |λ?r+1| − ‖E‖ > (|λ?r | − |λ?r+1|)/
√

2, we can invoke
Theorem 2.7 under Assumption (2.16) to establish the advertised results.

2.4 Perturbation theory for singular subspaces

There is no shortage of scenarios where the data matrices under consideration are asymmetric or
rectangular. In these cases, one is often asked to study singular value decomposition (SVD) rather
than eigendecomposition. Fortunately, the eigenspace perturbation theory can be naturally extended
to accommodate perturbation of singular subspaces.

2.4.1 Setup and notation

Let M? and M = M? + E be two matrices in Rn1×n2 (without loss of generality, we assume
n1 ≤ n2), whose SVDs are given respectively by

M? =
n1∑

i=1
σ?i u

?
iv

?>
i =

[
U? U?

⊥
] [ Σ? 0 0

0 Σ?
⊥ 0

] [
V ?>

V ?>
⊥

]
; (2.24)

M =
n1∑

i=1
σiuiv

>
i =

[
U U⊥

] [ Σ 0 0
0 Σ⊥ 0

] [
V >

V >⊥

]
. (2.25)

Here, σ1 ≥ · · · ≥ σn1 (resp. σ?1 ≥ · · · ≥ σ?n1) stand for the singular values of M (resp. M?) arranged
in descending order, ui (resp. u?i ) denotes the left singular vector associated with the singular value
σi (resp. σ?i ), and vi (resp. v?i ) represents the right singular vector associated with σi (resp. σ?i ). In
addition, we denote

Σ := diag
(
[σ1, · · · , σr]

)
, Σ⊥ := diag

(
[σr+1, · · · , σn1 ]

)
,

U := [u1, · · · ,ur] ∈ Rn1×r, U⊥ := [ur+1, · · · ,un1 ] ∈ Rn1×(n1−r),

V := [v1, · · · ,vr] ∈ Rn2×r, V⊥ := [vr+1, · · · ,vn2 ] ∈ Rn2×(n2−r).

The matrices Σ?,Σ?
⊥,U

?,U?
⊥,V

?,V ?
⊥ are defined analogously.

2.4.2 Wedin’s sinΘ theorem

Wedin (1972) developed a perturbation bound for singular subspaces that parallels the Davis-Kahan
sinΘ theorem for eigenspaces. In what follows, we present a version that is convenient for subsequent
discussions in this monograph.
Theorem 2.9 (Wedin’s sinΘ theorem). Consider the settings in Section 2.4.1. If ‖E‖ < σ?r − σ?r+1,
then one has

max
{
dist

(
U ,U?), dist

(
V ,V ?)} ≤

√
2 max

{‖E>U?‖, ‖EV ?‖}

σ?r − σ?r+1 − ‖E‖
;

max
{
distF

(
U ,U?), distF

(
V ,V ?)} ≤

√
2 max

{‖E>U?‖F, ‖EV ?‖F
}

σ?r − σ?r+1 − ‖E‖
.
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This theorem simultaneously controls the perturbation of left and right singular subspaces. As a
worthy note, both the interaction between E and U?, and that between E and V ?, come into play
in determining the perturbation bounds. In particular, if ‖E‖ < (1− 1/

√
2)(σ?r − σ?r+1), then one

can apply Lemma 2.1 in Section 2.1 to obtain

max
{
dist

(
U ,U?), dist

(
V ,V ?)} ≤ 2‖E‖

σ?r − σ?r+1
, (2.26a)

max
{
distF

(
U ,U?), distF

(
V ,V ?)} ≤ 2

√
r‖E‖

σ?r − σ?r+1
, (2.26b)

akin to the eigenspace perturbation bounds (2.18).

2.4.3 Proof of the Wedin sinΘ theorem

We now present a proof of the Wedin theorem. Similar to the proof of the Davis-Kahan theorem, we
start by bounding

∣∣∣∣∣∣U>⊥U?
∣∣∣∣∣∣, where |||·||| stands for any unitarily invariant norm. To this end, it is

seen that

U>⊥U
? = U>⊥

(
U?Σ?V ?>)V ?Σ?−1

= U>⊥
(
M −E −U?

⊥Σ?
⊥V

?>
⊥
)
V ?Σ?−1

= U>⊥
(
UΣV > +U⊥Σ⊥V >⊥ −E −U?

⊥Σ?
⊥V

?>
⊥
)
V ?Σ?−1

= Σ⊥V >⊥ V ?Σ?−1 −U>⊥EV ?Σ?−1. (2.27)

Here, the first identity is valid as long as Σ? is invertible (which is guaranteed since σmin(Σ?) = σ?r >

σ?r+1 + ‖E‖ > 0 under our assumption), the second line follows from the identities M −E = M?

and M? = U?Σ?V ?> +U?
⊥Σ?
⊥V

?>
⊥ , the third line holds since M = UΣV > +U⊥Σ⊥V >⊥ , whereas

the last identity exploits the property

U>⊥U = 0, and V ?>
⊥ V ? = 0.

Applying the triangle inequality and Lemma 2.1 in Section 2.1 to the identity (2.27) yields
∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣ ≤ ‖Σ⊥‖ ·
∣∣∣∣∣∣V >⊥ V ?

∣∣∣∣∣∣ · ‖Σ?−1‖+ ‖U>⊥ ‖ ·
∣∣∣∣∣∣EV ?

∣∣∣∣∣∣ · ‖Σ?−1‖

= σr+1 ·
∣∣∣∣∣∣V >⊥ V ?

∣∣∣∣∣∣ · 1
σ?r

+
∣∣∣∣∣∣EV ?

∣∣∣∣∣∣ · 1
σ?r

≤ σ?r+1 + ‖E‖
σ?r

∣∣∣∣∣∣V >⊥ V ?
∣∣∣∣∣∣+ |||EV

?|||
σ?r

. (2.28)

Here, the second line uses the properties ‖Σ?−1‖ = 1/σ?r and ‖Σ⊥‖ = σr+1, while the last inequality
follows from Weyl’s inequality σr+1 ≤ σ?r+1 + ‖E‖ (cf. Lemma 2.3 in Section 2.1). Repeating the
same argument yields

∣∣∣∣∣∣V >⊥ V ?
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣E>U?
∣∣∣∣∣∣

σ?r
+ σ?r+1 + ‖E‖

σ?r

∣∣∣∣∣∣U>⊥U?
∣∣∣∣∣∣. (2.29)

To finish up, combine the inequalities (2.28) and (2.29) to obtain

max
{∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣,
∣∣∣∣∣∣V >⊥ V ?

∣∣∣∣∣∣} ≤ max
{∣∣∣∣∣∣E>U?

∣∣∣∣∣∣,
∣∣∣∣∣∣EV ?

∣∣∣∣∣∣}

σ?r

+ σ?r+1 + ‖E‖
σ?r

max
{∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣,
∣∣∣∣∣∣V >⊥ V ?

∣∣∣∣∣∣}.
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When ‖E‖ < σ?r − σ?r+1, we can rearrange terms to arrive at

max
{∣∣∣∣∣∣U>⊥U?

∣∣∣∣∣∣,
∣∣∣∣∣∣V >⊥ V ?

∣∣∣∣∣∣} ≤ max
{∣∣∣∣∣∣E>U?

∣∣∣∣∣∣,
∣∣∣∣∣∣EV ?

∣∣∣∣∣∣}

σ?r − σ?r+1 − ‖E‖
.

The proof is then completed by invoking Lemmas 2.5 and 2.6.

2.5 Eigenvector perturbation for probability transition matrices

Thus far, our eigenvector perturbation analysis has been constrained to the set of symmetric
matrices. Note, however, that the utility of eigenvectors is by no means confined to symmetric
matrices. In fact, eigenvector analysis plays a vital role in studying asymmetric matrices as well,
most notably the family of probability transition matrices of Markov chains. This section explores
how to extend eigenvector perturbation theory to accommodate an important class of probability
transition matrices associated with reversible Markov chains.

2.5.1 Background, setup and notation

Before presenting the formulation, we remind the readers that a matrix P ∈ Rn×n is a probability
transition matrix if it is composed of non-negative entries with each row summing to 1, which is
used to describe the state transition of a Markov chain over a set of n states. Of special interest is
the stationary distribution of P , denoted by a probability vector π = [πi]1≤i≤n, that satisfies

π ≥ 0, 1>π = 1, and π>P = π>. (2.30)
In words, the distribution π is invariant with respect to P . Clearly, π is the left eigenvector of P
associated with eigenvalue 1, with the corresponding right eigenvector given by 1. By the Gershgorin
circle theorem (see, e.g., Olver et al. (2006)), the modulus of all eigenvalues must be bounded by the
maximum of the row sum, which is 1. Given that 1 is an eigenvalue of P , the largest modulus of
the eigenvalues of P is precisely 1, and therefore π is the leading left eigenvector of P . In addition,
a Markov chain is said to be reversible when the following detailed balance equations are satisfied:

πiPi,j = πjPj,i, for all 1 ≤ i, j ≤ n, (2.31)
where π = [πi]1≤i≤n is the stationary distribution obeying (2.30). It will be seen in the proof of
Theorem 2.10 that all eigenvalues of such a matrix P are real. For readers who wish an introduction
to the basics of Markov chains, we recommend the monograph by Brémaud (2013).

In this section, we consider the probability transition matrix P ? ∈ Rn×n of a reversible Markov
chain, as well as its perturbed version—also in the form of a probability transition matrix:

P = P ? +E ∈ Rn×n.

The leading left eigenvectors of P ? and P—or equivalently, the vectors representing their stationary
distributions—are denoted by π? and π, respectively. Here, we allow E to be fairly general, meaning
that P does not necessarily represent a reversible Markov chain. The question is: how does the
matrix E affect the perturbation π − π? of the leading left eigenvector of interest?

Additionally, we find it helpful to introduce several notation frequently used in the studies of
Markov chains. Instead of operating under the usual `2 norm, the stationary distribution π equips
us with a new set of norms. Specifically, for a strictly positive probability vector π = [πi]1≤i≤n, any
vector x = [xi]1≤i≤n and any matrix A, it is useful to introduce the vector norm ‖x‖π :=

√∑
i πix

2
i

and the corresponding matrix norm ‖A‖π := sup‖x‖π=1 ‖Ax‖π.
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2.5.2 Perturbation of the leading eigenvector

Now we are ready to present the perturbation bound for the leading left eigenvector of a probability
transition matrix, a result originally developed in Chen et al. (2019b).

Theorem 2.10. Consider the settings in Section 2.5.1. Suppose that P ? represents a reversible
Markov chain, whose stationary distribution vector π? is strictly positive. Assume that

‖E‖π? < 1−max
{
λ2(P ?),−λn(P ?)

}
. (2.32)

Then one has

‖π − π?‖π? ≤
∥∥π?>E

∥∥
π?

1−max
{
λ2(P ?),−λn(P ?)

}− ‖E‖π?
.

The similarity between Theorem 2.10 and Corollary 2.8 is noteworthy. Indeed, recalling that
the largest eigenvalue of the probability transition matrix P ? is precisely 1, one might view
1−max {λ2(P ?),−λn(P ?)} as the gap between the first and the second largest eigenvalues of P ? (in
magnitude), akin to the eigengap |λ?r | − |λ?r+1| in Corollary 2.8 (with r = 1). In words, Theorem 2.10
guarantees that as long as the size of the perturbation matrix E is not too large, the perturbation of
the leading left eigenvector—or equivalently, the perturbation of the stationary distribution of the
associated Markov chain—is proportional to the size of the noise when projected onto the direction
π?, as measured by ‖π?>E‖π? . As we shall demonstrate in Section 3.6, this perturbation theory
delivers powerful techniques for analyzing the ranking problem described previously in Chapter 1.

Remark 2.3. Sensitivity and perturbation analyses for the steady-state distributions of Markov
chains have been studied in the literature; see, e.g., Mitrophanov (2005), Liu (2012), Jiang et al.
(2017), and Rudolf and Schweizer (2018) and the references therein.

2.5.3 Proof of Theorem 2.10

Since π? and π denote respectively the leading left eigenvectors of P ? and P , namely,

π?>P ? = π?>, and π>P = π>,

the perturbation π − π? admits the following decomposition

π> − π?> = π>P − π?>P ? = (π − π?)>P + π?> (P − P ?)
= (π − π?)> (P − P ?) + (π − π?)>P ? + π?> (P − P ?)
= (π − π?)> (P − P ?) + (π − π?)> (P ? − 1π?>

)
+ π?> (P − P ?) .

Here, the last relation hinges upon the fact that π and π? are probability vectors, and hence
(π − π?)> 1 = 1− 1 = 0. Apply the triangle inequality with respect to the norm ‖ · ‖π? to obtain

‖π − π?‖π? ≤
∥∥ (π − π?)> (P − P ?)

∥∥
π?

+
∥∥ (π − π?)> (P ? − 1π?>

)∥∥
π?

+
∥∥π?> (P − P ?)

∥∥
π?

≤
(
‖P − P ?‖π? +

∥∥P ? − 1π?>
∥∥
π?

)
‖π − π?‖π?

+
∥∥π?> (P − P ?)

∥∥
π?
,
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where the last line relies on the definition of the matrix norm ‖ · ‖π? . Rearranging terms, we are left
with

‖π − π?‖π? ≤
∥∥π?> (P − P ?)

∥∥
π?

1− ‖P − P ?‖π? −
∥∥P ? − 1π?>

∥∥
π?

,

with the proviso that ‖P − P ?‖π? + ‖P ? − 1π?>‖π? < 1. The proof would then be completed as
long as one could justify that

∥∥P ? − 1π?>
∥∥
π?

= max
{
λ2(P ?),−λn(P ?)

}
. (2.33)

Proof of the identity (2.33). Let π? = [π?i ]1≤i≤n, and define a diagonal matrix Π? = diag([π?1, · · · , π?n]) ∈
Rn×n. From the definition of the norm ‖ · ‖π? (both the matrix version and the vector version), it is
easily seen that for any matrix A,

‖A‖π? = sup
x 6=0

‖Ax‖π?
‖x‖π?

= sup
x6=0

∥∥(Π?
)1/2

A
(
Π?
)−1/2(Π?

)1/2
x
∥∥

2∥∥(Π?
)1/2

x
∥∥

2

= sup
v 6=0

∥∥(Π?
)1/2

A
(
Π?
)−1/2

v
∥∥

2∥∥v
∥∥

2
=
∥∥(Π?)1/2A

(
Π?)−1/2∥∥, (2.34)

with ‖ · ‖ the usual spectral norm, where the last line replaces
(
Π?
)1/2

x with v. Consequently, we
obtain

‖P ? − 1π?>‖π? = ‖ (Π?)1/2 (P ? − 1π?>
)

(Π?)−1/2 ‖
=
∥∥S? − π?1/2(π?1/2)>

∥∥,

where we define S? := (Π?)1/2P ? (Π?)−1/2 and π?1/2 :=
[√
π?i
]
1≤i≤n. Several basic properties

regarding S? are in order; see Brémaud (2013, Chapter 6.2).

(a) Since P ? represents a reversible Markov chain with stationary distribution π?, the matrix S?
is symmetric, whose eigenvalues are real-valued. This can be verified by the detailed balance
equations (2.31).

(b) Given that S? is obtained via a similarity transformation of P ?, we see that S? and P ? share
the same set of eigenvalues. This can easily be verified from the definition of eigenvectors:

S?ξ = λξ ⇐⇒ P ? (Π?)−1/2 ξ = λ (Π?)−1/2 ξ.

(c) In particular, λ1(S?) = λ1(P ?) = 1, and π?1/2 is precisely the eigenvector of S? associated
with λ1(S?) = 1. Thus, from the eigendecomposition of the symmetric matrix S?, it is easy to
see that the eigenvalues of S? − π?1/2(π?1/2)> are 0, λ2(S?), · · · , λn(S?).

Taking the preceding facts collectively, we reach
∥∥S? − π?1/2(π?1/2)>

∥∥ (i)= max
{∣∣λ2(S?)

∣∣,
∣∣λn(S?)

∣∣}

= max
{
λ2(S?),−λn(S?)

} (ii)= max
{
λ2(P ?),−λn(P ?)

}
.

Here, (i) relies on Property (c), while (ii) follows from Property (b). This concludes the proof.
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2.6 Appendix: Proofs of auxiliary lemmas in Section 2.2

2.6.1 Proof of Lemma 2.4

Given that singular values are unitarily invariant, it suffices to look at the singular values of the
following matrix

[
U>

U>⊥

]
(
UU> −U?U?>)[U?

⊥,U
?] =

[
U>U?

⊥ 0
0 −U>⊥U?

]
. (2.35)

Consequently, the singular values of UU> −U?U?> are composed of those of U>U?
⊥ and those of

U>⊥U
? combined. It then boils down to characterizing the spectrum of U>U?

⊥ and U>⊥U?.
To pin down the singular values of U>U?

⊥, we first turn attention to the eigenvalues of
U>U?

⊥U
?>
⊥ U . Assuming that the SVD of U>U? is given by XΣY > (where X and Y are r × r

orthonormal matrices, and Σ is diagonal), we can derive

U>U?
⊥U

?>
⊥ U = U>

(
In −U?U?>)U = U>U −U>U?U?>U

= Ir −XΣ2X> = X
(
Ir − cos2 Θ

)
X>

= X
(

sin2 Θ
)
X>. (2.36)

Here, the penultimate identity follows from our construction (cf. (2.5)), where we define cos Θ :=
diag([cos θ1, · · · , cos θr]). Therefore, for any 1 ≤ i ≤ r, the i-th largest singular value of U>U?

⊥ obeys

σi
(
U>U?

⊥
)

=
√
λi
(
U>U?

⊥U
?>
⊥ U

)
= sin θr+1−i,

which results from the ordering in (2.6). This means that, if r ≤ n − r, then the singular values
of U>U?

⊥ are precisely given by {sin θi}1≤i≤r. Repeating this argument reveals that the singular
values of U>⊥U? are also {sin θi}1≤i≤r if r ≤ n− r.

Combining the above observations thus completes the proof.

2.6.2 Proof of Lemma 2.5

A closer inspection of the proof of Lemma 2.4 (in particular, (2.36) and the orthonormality of X)
reveals that

∥∥U>U?
⊥
∥∥ =

√∥∥U>U?
⊥U

?>
⊥ U

∥∥ =
√
‖X( sin2 Θ

)
X>‖ = ‖ sin Θ‖,

∥∥U>U?
⊥
∥∥

F =
√

Tr(U>U?
⊥U

?>
⊥ U) =

√
Tr(X

(
sin2 Θ

)
X>)

=
√

Tr(X>X sin2 Θ) =
√

Tr(sin2 Θ) = ‖ sin Θ‖F,

where we have used the basic property Tr(AB) = Tr(BA). Similarly,
∥∥U>⊥U?

∥∥ = ‖ sin Θ‖, and
∥∥U>⊥U?

∥∥
F = ‖ sin Θ‖F.

Note that the above identities hold for all 1 ≤ r ≤ n. In addition, the relation (2.35) tells us that
∥∥UU> −U?U?>∥∥ = max

{∥∥U>U?
⊥
∥∥,
∥∥U>⊥U?

∥∥}; (2.37a)
∥∥UU> −U?U?>∥∥

F =
(∥∥U>U?

⊥
∥∥2

F +
∥∥U>⊥U?

∥∥2
F

)1/2
. (2.37b)

Putting the above identities together immediately establishes the advertised results.
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2.6.3 Proof of Lemma 2.6

As before, suppose that the SVD of U>U? is given byXΣY >, whereX and Y are r×r orthonormal
matrices whose columns contain the left singular vectors and the right singular vectors of U>U?,
respectively, and Σ ∈ Rr×r = cos Θ is a diagonal matrix whose diagonal entries correspond to the
singular values of U>U?.

The spectral norm upper bound. We first observe that

‖UXY > −U?‖2 = ‖(UXY > −U?)>(UXY > −U?)‖
= ‖2Ir − Y X>U>U? −U?>UXY >‖
= ‖2Ir − Y X>XΣY > − Y ΣX>XY >‖
= 2‖Y (Ir −Σ)Y >‖ = 2‖Ir −Σ‖. (2.38)

Here, the penultimate line relies on the singular value decomposition U>U? = XΣY >, while the
two identities in the last line result from the orthonormality of X and Y , respectively. In addition,
note that

‖Ir −Σ‖ = ‖Ir − cos Θ‖ ≤ ‖Ir − cos2 Θ‖
= ‖ sin2 Θ‖ = ‖ sin Θ‖2.

This taken together with (2.38) leads to

min
R∈Or×r

∥∥UR−U?
∥∥ ≤

∥∥UXY > −U?
∥∥ ≤
√

2‖ sin Θ‖,

where the first inequality holds since X and Y are both orthonormal matrices and hence XY > is
also orthonormal.

The spectral norm lower bound. On the other hand, we make the observation that

min
R∈Or×r

∥∥UR−U?
∥∥2 = min

R∈Or×r
∥∥(UR−U?)>(UR−U?)

∥∥

= min
R∈Or×r

∥∥R>U>UR+U?>U? −R>U>U? −U?>UR
∥∥

= min
R∈Or×r

∥∥2Ir −R>XΣY > − Y ΣX>R
∥∥, (2.39)

where the last relation holds since XΣY > is the SVD of U>U?. Continue the derivation to obtain

(2.39) (i)= min
Q∈Or×r

∥∥2Ir −QΣY > − Y ΣQ>
∥∥

(ii)= min
Q∈Or×r

∥∥2Q>Q−Q>QΣY >Q−Q>Y ΣQ>Q
∥∥

= min
Q∈Or×r

∥∥2Ir −ΣY >Q−Q>Y Σ
∥∥

(iii)= min
O∈Or×r

∥∥2Ir −ΣO −O>Σ
∥∥. (2.40)

Here, (i) follows by setting Q = R>X (since both X and R are orthonormal matrices), (ii) results
from the unitary invariance of the spectral norm, whereas (iii) holds by setting O = Y >Q. Moreover,
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recognizing that ‖ΣO‖ ≤ ‖Σ‖ · ‖O‖ ≤ 1 (and hence 2Ir −ΣO −O>Σ � 0), one can obtain

min
O∈Or×r

∥∥2Ir −ΣO −O>Σ
∥∥ = min

O∈Or×r
λmax

(
2Ir −ΣO −O>Σ

)

= min
O∈Or×r

max
u:‖u‖2=1

u>
(
2Ir −ΣO −O>Σ

)
u

= min
O∈Or×r

max
u:‖u‖2=1

(
2− 2u>ΣOu

)

≥ min
O∈Or×r

(
2− 2e>r ΣOer

)

= 2− 2 cos θr max
O∈Or×r

e>r Oer

≥ 2− 2 cos θr = 4 sin2(θr/2). (2.41)

Here, the inequality follows by taking u to be er (recall that by construction, σr = cos θr ≥ 0 is the
smallest singular value of Σ), and the penultimate line holds by combining the facts |e>r Oer| ≤
‖O‖ = 1 and e>r er = 1. Putting (2.41) and (2.40) together yields

min
R∈Or×r

∥∥UR−U?
∥∥ ≥

√
4 sin2(θr/2) = 2 sin(θr/2) = ‖2 sin(Θ/2)‖

≥ ‖ sin Θ‖,

where we again use the inequality 2 sin(θ/2) ≥ sin θ for all θ ∈ [0, π/2].
Finally, invoking the relation ‖ sin Θ‖ = ‖UU> − U?U?>‖ (see Lemma 2.5) establishes the

claimed spectral norm bounds.

The Frobenius norm upper bound. Regarding the Frobenius norm upper bound, one sees that
∥∥UXY > −U?

∥∥2
F = ‖U‖2F +

∥∥U?
∥∥2

F − 2Tr
(
Y X>U>U?)

(i)= r + r − 2Tr
(
Y X>XΣY >

) (ii)= 2r − 2Tr (Σ) , (2.42)

where (i) holds since U and U? are both n × r matrices with orthonormal columns, and (ii)
follows since X>X = Y >Y = I (and hence Tr(Y X>XΣY >) = Tr(Y >Y X>XΣ) = Tr(Σ)).
Furthermore,

2r − 2Tr (Σ) (iii)= 2
∑

i
(1− cos θi) ≤ 2

∑
i
(1− cos2 θi)

= 2 ‖sin Θ‖2F =
∥∥UU> −U?U?>∥∥2

F,

where (iii) holds by construction (cf. (2.5)), and the last identity results from Lemma 2.5. This
taken collectively with (2.42) reveals that

min
R∈Or×r

‖UR−U?‖2F ≤
∥∥UXY > −U?

∥∥2
F ≤

∥∥UU> −U?U?>∥∥2
F,

where the first inequality holds since X and Y are both orthonormal matrices and hence XY > is
also orthonormal.
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The Frobenius norm lower bound. With regards to the Frobenius norm lower bound, it is seen
that

min
R∈Or×r

∥∥UR−U?
∥∥2

F = min
R∈Or×r

{
‖UR‖2F + ‖U?‖2F − 2

〈
UR,U?〉}

(i)= 2 min
R∈Or×r

{
r − 〈R,U>U?〉}

(ii)= 2 min
R∈Or×r

{
r − 〈R,XΣY >

〉}
, (2.43)

where (i) holds since ‖U‖F = ‖U?‖F =
√
r, and (ii) relies on the SVD XΣY > of U>U?. Continue

the derivation to obtain

(2.43) (iii)= 2 min
Q∈Or×r

{
r − 〈Q, cos Θ

〉} (iv)
≥ 2 min

Q∈Or×r

{
r − ‖Q‖ ‖ cos Θ‖∗

}

= 2
(
r −

∑
i
cos θi

)
. (2.44)

Here, (iii) sets Q = X>RY and identifies Σ as cos Θ, (iv) comes from the elementary inequality
〈A,B〉 ≤ ‖A‖ ‖B‖∗, whereas the last line follows since cos θi ≥ 0. Additionally, it is easily seen that

(2.44) = 2
∑

i
(1− cos θi) = 4

∑
i
sin2(θi/2)

≥
∑

i
sin2 θi = 1

2
∥∥UU> −U?U?>∥∥2

F, (2.45)

where the penultimate relation follows from the elementary inequality 2 sin(θ/2) ≥ sin θ (which
holds for any 0 ≤ θ ≤ π/2), and the last line invokes Lemma 2.5. Combining the inequalities (2.44)
and (2.45), we establish the claimed lower bound.

2.7 Notes

Additional resources on matrix perturbation theory. Matrix perturbation theory is a firmly
established topic that has been extensively studied in the past several decades. Two classic books
that offer in-depth discussions of perturbation theory for eigenspaces and singular subspaces are
Stewart and Sun (1990) and Sun (1987). Other valuable resources on this topic include Bhatia
(2013) and Horn and Johnson (2012). The exposition herein is largely influenced by the excellent
lecture notes by Montanari (2011) and Hsu (2016). In addition, the book (Kato, 2013) offers a more
abstract treatment of perturbation theory from the viewpoint of linear operators. Several variants
of the sinΘ theorem amenable to statistical analysis are available in the statistics literature as well
(e.g., Yu et al. (2015), Vu and Lei (2013), Cai and Zhang (2018), and Zhang et al. (2021)).

Extensions. We point out several well-known extensions of the theorems presented in this chapter.
To begin with, the current exposition restricts attention to the real case for simplicity, while in
fact all results herein generalize to the complex-valued case (Stewart and Sun, 1990). In addition,
Theorem 2.9 together with Lemma 2.6 reveals the existence of two rotation matrices RU and RV

obeying

max
{‖URU −U?‖F, ‖V RV − V ?‖F

} ≤
√

2 max
{‖E>U?‖F, ‖EV ?‖F

}

σ?r − σ?r+1 − ‖E‖
,

but falls short of illuminating the connection between RU and RV . An extension derived in Dopico
(2000) establishes a similar perturbation bound even when RU and RV are taken to be the same
rotation matrix.
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Applications of `2 perturbation theory

to data science

This chapter develops tailored spectral methods for several important applications arising in
statistics, machine learning and signal processing. As it turns out, these methods are all variations
of a common recipe: extracting the information of interest from the eigenspace (resp. singular
spaces) and eigenvalues (resp. singular values) of a certain matrix M properly constructed from
data. The inspiration stems from the observation that: the corresponding quantities ofM? = E[M ]—
when properly constructed and under appropriate statistical models—might faithfully reveal the
information being sought after. The classical `2 perturbation theory introduced in Chapter 2, when
paired with modern probabilistic tools reviewed in Section 3.1, uncovers appealing performance of
spectral methods in numerous applications by controlling the size of the perturbation E := M−M?.
The vignettes in this chapter provide ample evidence regarding the benefits of harnessing the
statistical nature of the acquired data.

3.1 Preliminaries: Matrix tail bounds

In order to invoke the sinΘ theorems (Theorems 2.7 and 2.9), an important ingredient lies in
developing a tight upper bound on the spectral norm ‖E‖ of the perturbation matrix E. This is
where statistical/probabilistic tools play a major role. Rather than presenting an encyclopedia of
probabilistic techniques (which can be gleaned from Tropp (2015), Vershynin (2017), Boucheron
et al. (2013), Wainwright (2019), Tropp (2011), Raginsky and Sason (2013), and Howard et al.
(2020)), this monograph singles out only two useful matrix concentration inequalities that suffice for
the applications considered herein.

The (truncated) matrix Bernstein inequality

The first result is an extension of the celebrated matrix Bernstein inequality (Oliveira, 2009; Tropp,
2012; Hopkins et al., 2016). This is an elegant and convenient tail bound for the sum of independent
random matrices, resulting in effective performance guarantees for a diverse array of statistical
applications. We refer the interested reader to Tropp (2015) for a highly accessible introduction of
the classical matrix Bernstein inequality, and Hopkins et al. (2016, Section A.2.2) for a proof of the

28
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truncated variant stated in Theorem 3.1.

Theorem 3.1 (Truncated matrix Bernstein). Let {Xi}1≤i≤m be a sequence of independent real
random matrices with dimension n1 × n2. Suppose that for all 1 ≤ i ≤ m,

P
{ ‖Xi − E [Xi]‖ ≥ L

} ≤ q0 (3.1a)
∥∥E [Xi]− E

[
Xi1

{ ‖Xi‖ < L
}] ∥∥ ≤ q1 (3.1b)

hold for some quantities 0 ≤ q0 ≤ 1 and q1 ≥ 0. In addition, define the matrix variance statistic v as

v := max
{∥∥∥∥∥

m∑

i=1
E
[
(Xi − E [Xi])(Xi − E [Xi])>

]∥∥∥∥∥,
∥∥∥∥∥
m∑

i=1
E
[
(Xi − E [Xi])>(Xi − E [Xi])

]∥∥∥∥∥

}
. (3.2)

Then for all t ≥ mq1, one has

P
(∥∥∥∥∥

m∑

i=1
(Xi − E [Xi])

∥∥∥∥∥ ≥ t
)
≤ (n1 + n2) exp

(
−(t−mq1)2/2
v + L(t−mq1)/3

)
+mq0.

Remark 3.1. Note that when the Xi’s are i.i.d. zero-mean random matrices, the matrix variance
statistic simplifies to

v = mmax
{∥∥E

[
XiX

>
i

]∥∥,
∥∥E
[
X>i Xi

]∥∥
}
.

To make it more user-friendly, we record a straightforward consequence of Theorem 3.1 as
follows.

Corollary 3.2. Suppose the assumptions of Theorem 3.1 hold, and set n := max{n1, n2}. For any
a ≥ 2, with probability exceeding 1− 2n−a+1 −mq0 one has

∥∥∥∥∥
m∑

i=1
(Xi − E [Xi])

∥∥∥∥∥ ≤
√

2av logn+ 2a
3 L logn+mq1. (3.3)

In order to make effective use of the above results (particularly when handling unbounded
random matrices), it is advisable to take L as a high-probability bound on ‖Xi − E [Xi] ‖. The
rationale is simple: by properly truncating Xi based on the level L, we end up with a bounded
sequence that is more convenient to work with while not deviating much from the original sequence.
In particular, if all ‖Xi−E [Xi] ‖ are bounded by a deterministic quantity which is set to be L, then
both q0 and q1 vanish, thus eliminating the need of enforcing truncation. In this case, Corollary 3.2
simplifies to a user-friendly version of the standard matrix Bernstein inequality, which we record
below for ease of reference.

Corollary 3.3 (Matrix Bernstein). Let {Xi}1≤i≤m be a set of independent real random matrices with
dimension n1 × n2. Suppose that

E [Xi] = 0, and ‖Xi‖ ≤ L, for all i. (3.4)

Set n := max{n1, n2}, and recall the definition of variance statistic in (3.2). For any a ≥ 2, with
probability exceeding 1− 2n−a+1 one has

∥∥∥∥∥
m∑

i=1
Xi

∥∥∥∥∥ ≤
√

2av logn+ 2a
3 L logn. (3.5)
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By virtue of the above inequalities, the key to bounding ‖∑iXi‖ largely lies in controlling the
following two crucial quantities:

√
v logn and L logn,

where the former depends on the number m of random matrices involved.

Spectral norm of random matrices with independent entries

An important family of random matrices that merits special attention comprises the ones with
independent random entries, that is, matrices of the form X = [Xi,j ]1≤i,j≤n with independent Xi,j ’s.
While the spectral norm of such a matrix can also be analyzed via matrix Bernstein (by treating X
as the sum of independent random matrices Xi,jeie

>
j ), this approach is typically loose in terms of

the logarithmic factor. Motivated by the abundance of such random matrices in practice, we record
below a strengthened non-asymptotic spectral norm bound, which is of significant utility and is
tighter than what matrix Bernstein has to offer for this case.

Theorem 3.4. Consider a symmetric random matrix X = [Xi,j ]1≤i,j≤n in Rn×n, whose entries are
independently generated and obey

E[Xi,j ] = 0, and |Xi,j | ≤ B, 1 ≤ i, j ≤ n. (3.6)

Define

ν := max
i

∑
j
E[X2

i,j ]. (3.7)

Then there exists some universal constant c > 0 such that for any t ≥ 0,

P
{
‖X‖ ≥ 4

√
ν + t

}
≤ n exp

(
− t2

cB2

)
. (3.8)

This result, which appeared in Bandeira and Van Handel (2016, Remark 3.13), can be established
via tighter control of the expected spectral norm in conjunction with Talagrand’s concentration
inequality. Two remarks are in order.

• First, it is easy to see that the result extends to asymmetric matrices with independent entries,
using the standard “dilation trick” (see, e.g., (Tropp, 2015, Section 2.1.17)). Specifically, for an
asymmetric random matrix X ∈ Rn1×n2 , let us introduce the symmetric dilation S(X) of X:

S(X) :=
[

0 X

X> 0

]
∈ R(n1+n2)×(n1+n2),

which enjoys the desired symmetry and can be analyzed directly using Theorem 3.4. The
resulting bound on ‖S(X)‖ can be translated back to ‖X‖ via the elementary identity
‖X‖ = ‖S(X)‖. For conciseness, we will occasionally apply Theorem 3.4 directly to asymmetric
matrices without invoking the dilation trick.

• As a useful corollary, if we know a priori that E[X2
i,j ] ≤ σ2 for all 1 ≤ i, j ≤ n, then Theorem 3.4

implies that

‖X‖ ≤ 4σ
√
n+ c̃B

√
logn (3.9)

with probability at least 1−n−8 for some constant c̃ > 0. To see this, it suffices to set c̃ =
√

9c
and take t = B

√
9c logn in (3.8).
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Remark 3.2. The inequality (3.9) continues to hold if we replace n−8 with n−α for any positive
constant α > 0. Here and below, we often go with the artificial choice like n−8 since it is small
enough for our purpose.

3.2 Low-rank matrix denoising

To catch a glimpse of the effectiveness of the approach we have introduced, let us start by trying it
out on a warm-up example: low-rank matrix denoising.

3.2.1 Problem formulation and algorithm

Consider an unknown rank-r symmetric matrix M? ∈ Rn×n with eigendecomposition M? =
U?Λ?U?>, where the columns of U? ∈ Rn×r are orthonormal, and Λ? ∈ Rr×r is a diagonal matrix
containing the nonzero eigenvalues {λ?i } of M?. Assume that |λ?1| ≥ |λ?2| ≥ · · · ≥ |λ?r | > 0. Suppose
that we observe a noisy copy

M = M? +E,
where E = [Ei,j ]1≤i,j≤n is a symmetric noise matrix. It is assumed that the entries {Ei,j}i≥j are
independently generated obeying

Ei,j
i.i.d.∼ N (0, σ2), i ≥ j. (3.10)

The aim is to estimate the eigenspace U? from the data matrix M . Despite its simplicity, this
problem has been extensively studied in the literature (Koltchinskii and Xia, 2016; Bao et al., 2021;
Ding, 2020; Xia, 2021; Li et al., 2021a). It also bears close relevance to the famous angular/phase
synchronization problem (Singer, 2011; Bandeira et al., 2017).

In order to estimate the low-rank factors specified by U?, a natural scheme is to resort to
the rank-r leading eigenspace of the data matrix M . More precisely, denote by λ1, · · · , λn the
eigenvalues of M sorted by their magnitudes, i.e.,

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|, (3.11)

and let u1, · · · , un represent the associated eigenvectors. This spectral method returns U =
[u1, · · · ,ur] ∈ Rn×r as an estimate of U?.

3.2.2 Performance guarantees

Statistical accuracy of the spectral estimate. We now examine the accuracy of the above spectral
estimate. Towards this, a key step lies in bounding the spectral norm of the noise matrix E. We
claim for the moment that (which will be established in Section 3.2.3)

‖E‖ ≤ 5σ
√
n (3.12)

with probability at least 1 − O(n−8). Armed with this claim and the fact λ?r+1 = 0, we are in a
situation where it is quite easy to see how the Davis-Kahan theorem applies. According to Corollary
2.8, with probability greater than 1−O(n−8) one has

dist
(
U ,U?) ≤ 2‖E‖

|λ?r |
≤ 10σ

√
n

|λ?r |
, (3.13)

provided that the noise variance is sufficiently small obeying σ
√
n ≤ 1−1/

√
2

5 |λ?r | so that ‖E‖ ≤
(1− 1/

√
2)|λ?r |.
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Tightness and optimality. The tightness of the statistical guarantee (3.13) can be assessed when
compared with the minimax lower bound. For instance, it is well-known in the literature (e.g.,
Cheng et al. (2021, Theorem 3)) that: even for the case with r = 1, one cannot hope to achieve
dist

(
Û ,U?

)
= o(σ

√
n/|λ?r |)—in a minimax sense—regardless of the estimator Û in use. Consequently,

the spectral method turns out to be orderwise statistically optimal for low-rank matrix denoising.

Additional useful results: eigenvalue and matrix estimation. Before concluding, we record several
immediate consequences of the above analysis that will be useful later on. Specifically, assuming
that σ

√
n ≤ 1−1/

√
2

5 |λ?r |, we see from Weyl’s inequality (cf. Lemma 2.2) that

|λi| ≤ ‖E‖ ≤ 5σ
√
n, for all i ≥ r + 1 (3.14)

with probability 1−O(n−8).
We further remark on the Euclidean statistical accuracy when estimating the unknown matrix

M? using M̂ := UΛU>, where Λ := diag
(
[λ1, · · · , λr]

)
. It is seen from the triangle inequality that

∥∥UΛU> −M?
∥∥ ≤

∥∥M −M?
∥∥+

∥∥UΛU> −M
∥∥

=
∥∥E
∥∥+

∣∣λr+1
∣∣ ≤ 2

∥∥E
∥∥, (3.15)

where the last inequality relies on (3.14). Since the rank of UΛU> −M? is at most 2r, with
probability at least 1−O(n−8) one has

∥∥UΛU> −M?
∥∥

F ≤
√

2r
∥∥UΛU> −M?

∥∥ ≤ 2
√

2r ‖E‖
≤ 10σ

√
2nr. (3.16)

3.2.3 Proof of the inequality (3.12) on ‖E‖

We plan to employ Theorem 3.4. Given that Gaussian entries are unbounded, we introduce a
truncated copy Ẽ = [Ẽi,j ]1≤i,j≤n defined as follows

Ẽi,j := Ei,j1
{|Ei,j | ≤ 5σ

√
logn

}
, 1 ≤ i, j ≤ n. (3.17)

Two properties are in place.

• It is readily seen from the property of Gaussian distributions that

P
{
Ei,j = Ẽi,j

} ≥ 1− n−12, 1 ≤ i, j ≤ n,
which combined with the union bound leads to

P
{
E = Ẽ

} ≥ 1− n−10. (3.18)

• Given that B := maxi,j |Ẽi,j | ≤ 5σ
√

logn, we can invoke Theorem 3.4 (or more directly, (3.9))
to demonstrate that

‖Ẽ‖ ≤ 4σ
√
n+O(B logn) ≤ 5σ

√
n

for sufficiently large n, with probability exceeding 1−O(n−8). Here, we implicitly use the fact
that E[Ẽ2

i,j ] ≤ E[E2
i,j ] = σ2.

Combining the above two observations implies that

‖E‖ = ‖Ẽ‖ ≤ 5σ
√
n

with probability exceeding 1−O(n−8), as claimed.
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3.3 Principal component analysis and factor models

Principal component analysis (PCA) and factor models (Jolliffe, 1986; Lawley and Maxwell, 1962; Fan
et al., 2020b)—which serve as an effective unsupervised learning tool for exploring and understanding
data—arise frequently in data-intensive applications in economics, finance, psychology, signal
processing, speech, neuroscience, traffic data analysis, among other things (Stock and Watson, 2002;
McCrae and John, 1992; Scharf, 1991; Chen et al., 2015a; Balzano et al., 2018; Fan et al., 2021b).
PCA and factor models not only allow for dimensionality reduction, but also provide intermediate
means for data visualization, noise removal, anomaly detection, and other downstream tasks. In this
section, we investigate a simple, yet broadly applicable, factor model.

3.3.1 Problem formulation and assumptions

Dependence of high-dimensional measurements is a stylized feature in data science. To model the
dependence among observed high-dimensional data, we assume that there are latent factors that
drive the dependence, with a loading matrix that describes how each component depends on the
latent factors and an idiosyncratic noise that captures the remaining part. To set the stage, imagine
we have collected a set of n independent sample vectors xi ∈ Rp, 1 ≤ i ≤ n obeying

xi = L?fi + ηi, 1 ≤ i ≤ n. (3.19)

Here, fi ∈ Rr is a vector of latent factors, L? ∈ Rp×r represents a factor loading matrix that is
not known a priori, whereas ηi ∈ Rp stands for additive random noise or the idiosyncratic part
that cannot be explained by the latent factor fi. Informally, the samples {xi} are, in some sense,
assumed to be approximately embedded in a low-dimensional subspace encoded by the loading
matrix L?, which describes how each component of data xi depends on the factor fi and captures
the inter-dependency across different variables. In the language of PCA, the subspace spanned by
L? specifies the r principal components underlying this sequence of data samples. A common goal
thus amounts to estimating the subspace spanned by the loading matrix L? and the latent factors
{fi}. In the PCA literature, the subspace represented by L? is commonly referred to as the principal
subspace.

In this monograph, we concentrate on the following tractable statistical model for pedagogical
reasons. See Fan et al. (2020b, Chapter 10) for more general settings (including, say, heavy-tailed
distributions and non-isotropic noise covariance matrices).

Assumption 3.1. The vectors fi and ηi (1 ≤ i ≤ n) are all independently generated according to

fi
i.i.d.∼ N (0, Ir), and ηi

i.i.d.∼ N (0, σ2Ip
)
. (3.20)

Moreover, we assume without loss of generality that L? = U?(Λ?)1/2, where the columns of
U? ∈ Rp×r are composed of orthonormal vectors, and Λ? = diag

(
[λ?1, · · · , λ?r]

)
is an r-dimensional

diagonal matrix obeying λ?1 ≥ · · · ≥ λ?r > 0. Throughout this section, we denote by

κ := λ?1 / λ
?
r

the condition number of the low-rank matrix L?L?> = U?Λ?U?>.
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3.3.2 Algorithm

As a starting point, it is readily seen under Assumption 3.1 that

xi ∼ N
(
0,M?) with M? := U?Λ?U?> + σ2Ip. (3.21)

In brief, the covariance matrix M? is a low-rank matrix superimposed by a scaled identity matrix;
for this reason, this model is also frequently referred to as the spiked covariance model (Johnstone,
2001). The key takeaway is that the top-r eigenspace of the covariance matrixM? in (3.21) coincides
with the r-dimensional principal subspace being sought after (i.e., the one spanned by L? or U?).

The above observation motivates a simple spectral algorithm, which begins by computing a
sample covariance matrix

M := 1
n

n∑

i=1
xix

>
i , (3.22)

followed by computation of the rank-r eigendecomposition UΛU> of M . Here, Λ ∈ Rr×r is a
diagonal matrix whose diagonal entries entail the r largest eigenvalues λ1 ≥ · · · ≥ λr of M , and
U := [u1, · · · ,ur] ∈ Rp×r with ui representing the eigenvector ofM associated with λi. The spectral
algorithm studied herein then returns U as the estimate for the principal subspace U?.

Remark 3.3. In the presence of missing data or heteroskedastic noise (meaning that the variance of
the noise entries varies across different entries), the second part of the covariance matrix M? (i.e.,
σ2Ip in (3.21)) might no longer be a scaled identity. Under such circumstances, one might need to
carefully adjust the diagonal entries of M in order for the algorithm to succeed; see, e.g., Lounici
(2014), Loh and Wainwright (2012), Zhang et al. (2021), Cai et al. (2021a), Zhu et al. (2019), and
Yan et al. (2021). The reader might consult Section 3.9 for an introduction to a commonly adopted
diagonal deletion idea to address the aforementioned issue.

3.3.3 Performance guarantees

This subsection develops statistical guarantees for the spectral method described above by invoking
the eigenspace perturbation theory introduced previously. The first step is to establish a connection
between the sample covariance M and the true covariance M?. Defining F := [f1, · · · ,fn] ∈ Rr×n

and Z := [η1, · · · ,ηn] ∈ Rp×n, one can easily compute that

M = 1
n

(L?F +Z)(L?F +Z)> = M? +E, (3.23)

where M? is defined in (3.21), and

E := L?
( 1
n
FF> − Ir

)
L?> + 1

n
L?FZ> + 1

n
ZF>L?>

+
( 1
n
ZZ> − σ2Ip

)
. (3.24)

To apply the Davis-Kahan theorem, we are in need of controlling the size of the perturbation
matrix E. This is achieved by the following lemma, whose proof is deferred to Section 3.3.4.

Lemma 3.5. Consider the settings in Section 3.3.1. Suppose that n ≥ cr log3(n + p) for some
sufficiently large constant c > 0. Then with probability exceeding 1−O((n+ p)−10), one has

‖E‖ .
(
λ?1

√
r

n
+ σ

√
λ?1p

n
+ σ2

√
p

n
+ σ2p log 3

2 (n+ p)
n

)
log

1
2 (n+ p).
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With Lemma 3.5 in place, we are ready to present the following theorem that controls the
estimation error of the spectral algorithm.

Theorem 3.6. Consider the settings in Section 3.3.1. Suppose that n ≥ C
(
κ2r + r log2(n + p) +

κσ2p
λ?r

+ σ4p
(λ?r)2

)
log3(n+ p) for some sufficiently large constant C > 0. Then with probability at least

1−O((n+ p)−10), the following holds:

dist
(
U ,U?) .

(
σ√
λ?r

√
κp

n
+ σ2

λ?r

√
p

n
+ κ

√
r

n

)
log

1
2 (n+ p). (3.25)

Remark 3.4. The third term κ
√

(r log(n+ p))/n on the right-hand side of (3.25) arises due to
the randomness of {fi} but not that of {ηi}. If our goal is instead to estimate the eigenspace of
L?( 1

n

∑
i fif

>
i )L?> as opposed to that of L?L?>, then this term can be erased.

To interpret what Theorem 3.6 conveys, we include a few remarks in the sequel, focusing on the
simple scenario where κ = O(1). In view of Remark 3.4, we shall ignore the term κ

√
(r log(n+ p))/n

in the discussion below.

Linear vs. quadratic dependency on the noise level. In comparison to the matrix denoising task
(cf. Section 3.2.2) where dist

(
U ,U?

)
scales linearly with the noise level σ (cf. (3.13)), the above

performance guarantees for PCA exhibit contrasting behavior in two different regimes depending on
the strength of the signal-to-noise ratio (SNR), measured in terms of λ?r/σ2:

• When the SNR is sufficiently large with λ?r/σ2 & 1, then the dominant factor in (3.25) is the
term σ

(p log(n+p)
λ?rn

)1/2, which scales linearly with the noise level.

• When the SNR drops below the threshold λ?r/σ2 . 1, then the term σ2

λ?r

√
p log(n+p)

n —which
scales quadratically with the noise level—enters the picture and becomes the dominant effect.

In truth, the quadratic term emerges since our spectral method operates upon the sample covariance
matrix, which inevitably contains second moments of the noise components.

Tightness and optimality. Natural questions arise as to whether the performance guarantees in
Theorem 3.6 are tight, and whether the statistical accuracy can be further improved by designing
more intelligent algorithms. These questions can be addressed by looking into the fundamental
statistical limits. As established in the literature (Zhang et al., 2021; Cai et al., 2021a), one cannot
hope to achieve

dist
(
Û ,U?) = o

(
σ√
λ?r

√
p

n
+ σ2

λ?r

√
p

n

)
(3.26)

in a minimax sense, regardless of the choice of the estimator Û ; see, e.g., Zhang et al. (2021, Theorem
2) for a precise statement. Comparing (3.26) with Theorem 3.6 reveals the near statistical optimality
of the spectral method (modulo some log factor), and confirms the tightness of the eigenspace
perturbation theory when applied to this problem.
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Proof of Theorem 3.6. We first make the observation that

λ1(M?) ≥ · · · ≥ λr(M?) > λr+1(M?) = · · · = λp(M?) = σ2 > 0,
and λr(M?)− λr+1(M?) = λ?r .

The Davis-Kahan sinΘ theorem (cf. Corollary 2.8) thus implies that: if the perturbation size obeys
‖E‖ ≤ (1− 1/

√
2)λ?r , then one has

dist
(
U ,U?) ≤ 2‖E‖

λr(M?)− λr+1(M?) = 2‖E‖
λ?r

. 1
λ?r

(
λ?1

√
r

n
+ σ

√
λ?1p

n
+ σ2

√
p

n
+ σ2p log 3

2 (n+ p)
n

)
log

1
2 (n+ p)

�
(
κ

√
r

n
+ σ√

λ?r

√
κp

n
+ σ2

λ?r

√
p

n

)
log

1
2 (n+ p).

Here, the penultimate inequality results from Lemma 3.5; the last line is valid as long as n &
(σ2/λ?1)p log3(n+ p)—a condition that would hold under the assumption of this theorem—so that
the fourth term is dominated by the second one in the parenthesis of the penultimate line. Finally,
it is immediately seen from Lemma 3.5 that the condition ‖E‖ ≤ (1− 1/

√
2)λ?r would hold under

the assumption of this theorem.

3.3.4 Proof of Lemma 3.5

We start by applying the triangle inequality to (3.24) as follows

‖E‖ ≤
∥∥L?

∥∥2∥∥∥ 1
n
FF> − Ir

∥∥∥+ ‖L?‖
∥∥∥ 1
n
FZ>

∥∥∥+
∥∥∥ 1
n
ZF>

∥∥∥
∥∥L?

∥∥

+
∥∥∥ 1
n
ZZ> − σ2Ip

∥∥∥. (3.27)

In order to develop an upper bound on this quantity, one needs to control the spectral norm
of 1

nFF
> − Ir, 1

nFZ
>, 1

nZF
> and 1

nZZ
> − σ2Ip. All of these terms share similar randomness

structure, namely, they are all averages of independent zero-mean random matrices. As a result, the
truncated matrix Bernstein inequality in Corollary 3.2 becomes applicable. In what follows, we shall
only demonstrate how to control the size of 1

nFZ
>; the other terms can be bounded similarly.

Write FZ> = ∑n
i=1 fiη

>
i . Since the entries of FZ> might be unbounded, we start by identifying

an appropriate truncation level. From standard properties about Gaussian distributions and the
union bound, it is straightforward to verify that

P
{
‖fi
∥∥
∞ ≤ 5

√
log(n+ p) and ‖ηi

∥∥
∞ ≤ 5σ

√
log(n+ p)

}
≥ 1− (n+ p)−11.5.

One can further derive

‖fiη>i
∥∥ ≤ ‖fi

∥∥
2‖ηi

∥∥
2 ≤
√
rp ‖fi

∥∥
∞‖ηi

∥∥
∞ ≤ 25√rpσ log(n+ p)

with probability greater than 1− (n+p)−11.5. In other words, with the choice L := 25√rpσ log(n+p)
one has

P
{
‖fiη>i

∥∥ ≥ L
}
≤ (n+ p)−11.5 =: q0.
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Additionally, the symmetry of Gaussian distributions implies

E
[
fiη
>
i

]− E
[
fiη
>
i 1
{‖fiη>i

∥∥ < L
}]

= 0.

To invoke the truncated Bernstein inequality, it remains to determine the variance statistic.
Towards this end, letting Bi = fiη

>
i , we observe that

E
[
BiB

>
i

]
= E

[
fiη
>
i ηif

>
i

]
= E

[
η>i ηi

]
E
[
fif

>
i

]
= pσ2Ir,

E
[
B>i Bi

]
= E

[
ηif

>
i fiη

>
i

]
= E

[
f>i fi

]
E
[
ηiη
>
i

]
= rσ2Ip,

thus leading to
v := max

{∥∥∥
∑

i

E
[
BiB

>
i

]∥∥∥,
∥∥∥
∑

i

E
[
B>i Bi

]∥∥∥
}

= npσ2,

where we use the fact that r ≤ p. Taking these bound together and applying the truncated matrix
Bernstein theorem (see Corollary 3.2) demonstrate that if n & r log3(n+ p), one has

1
n

∥∥FZ>
∥∥ . 1

n

√
v log(n+ p) + 1

n
L log(n+ p)

� σ
√
p log(n+ p)

n
+
√
rp

n
σ log2(n+ p) � σ

√
p log(n+ p)

n
(3.28a)

with probability at least 1−O((n+ p)−10)− nq0 = 1−O((n+ p)−10).
Repeating the above analysis yields that: if n & r log3(n + p), with probability at least 1 −

O((n+ p)−10) one has
∥∥∥ 1
n
FF> − Ir

∥∥∥ .
√
r log(n+ p)

n
, (3.28b)

∥∥∥ 1
n
ZZ> − σ2Ip

∥∥∥ . σ2

√
p log(n+ p)

n
+ σ2p log2(n+ p)

n
. (3.28c)

Note that we do not get rid of the second term on the right-hand side of (3.28c) since we do not
assume n & p log3(n+ p).

Substituting the above results (3.28) into (3.27) and recognizing the basic fact ‖L?‖ = ‖U?(Λ?)1/2‖ ≤
‖(Λ?)1/2‖ =

√
λ?1, we conclude that

‖E‖ .
(
λ?1

√
r

n
+ σ

√
λ?1p

n
+ σ2

√
p

n
+ σ2p log 3

2 (n+ p)
n

)
log

1
2 (n+ p).

3.4 Graph clustering and community recovery

Next, we move on to a central problem that permeates data science applications: clustering. An
important formulation that falls under this category is graph clustering or community recovery,
which aims to cluster individuals into different communities based on pairwise measurements of their
relationships, each of which reveals information about whether or not two individuals belong to the
same community (Abbe, 2017); see Figure 3.1 for an illustration. There has been a recent explosion
of interest in this problem, due to its wide applicability in, say, social network analysis (Azaouzi
et al., 2019), image segmentation (Browet et al., 2011), shape mapping in computer vision (Huang
and Guibas, 2013), haplotype phasing in genome sequencing (Chen et al., 2016a), to name just a
few. This section explores the capability of spectral methods in application to graph clustering; we
will revisit the clustering problem again in Section 3.5 for another common formulation.
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Figure 3.1: Illustration of graph clustering and community recovery, where one wishes to cluster all nodes into two
communities based on the edges in the graph.

3.4.1 Problem formulation and assumptions

In this section, we formulate the graph clustering problem via the well-renowned stochastic block
model (SBM) introduced in Holland et al. (1983)—an idealized generative model that commonly
serves as a theoretical benchmark for evaluating community recovery algorithms.

Consider an undirected graph G = (V, E) that comprises n vertices, where V and E denote
the vertex set and the edge set of G, respectively. The n vertices, labelled by 1, · · · , n, exhibit
community structures and can be grouped into two non-overlapping communities of equal sizes. Here
and throughout, n is assumed to be an even number, so that each community contains exactly n/2
vertices. To encode the community memberships, we assign n binary-valued variables x?i ∈ {1,−1}
(1 ≤ i ≤ n) to the vertices in a way that

x?i =





1, if vertex i belongs to the 1st community,
−1, otherwise.

The SBM assumes that the set E of (undirected) edges is generated randomly based on the
community memberships of the incident vertices. To be precise, each pair (i, j) of vertices is connected
by an edge independently with probability p (resp. q) if i and j belong to the same community
(resp. different communities). The resultant connectivity pattern is represented by an adjacency
matrix A = [Ai,j ]1≤i,j≤n ∈ {0, 1}n×n, such that for each pair (i, j),

Ai,j =





1, if (i, j) ∈ E ,
0, otherwise.

(3.29)

By convention, we take the diagonal entries to be Ai,i = 0 for all 1 ≤ i ≤ n. As a remark, the matrix
A is symmetric since G is an undirected graph, with upper triangular elements being realizations of
independent Bernoulli random variables with mean either p (if two nodes are in the same community)
or q (otherwise). In addition, it is assumed throughout that p > q > 0, implying that there are in
expectation more within-community edges than across-community edges.

Based on the adjacency matrix A generated by the SBM, the goal is to identify the latent
community memberships of the vertices. To phrase it in mathematical terms, the aim is to reconstruct
the vector x? = [x?i ]1≤i≤n ∈ {1,−1}n modulo the global sign, namely, recovering either x? or −x?.
This is all one can hope for, as there is absolutely no basis to distinguish the names of two groups.
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3.4.2 Algorithm: spectral clustering

Now we describe a spectral method. To simplify presentation, it is assumed without loss of generality
that: x?i = 1 for any 1 ≤ i ≤ n/2, and x?i = −1 for any i > n/2.

A starting point for the algorithm design is to examine the mean of the adjacency matrix, given
as follows

E[A] =
[
p1n/21>n/2 q 1n/21>n/2
q 1n/21>n/2 p1n/21>n/2

]
− pI.

As revealed by the above calculation, the matrix constructed below

M = A− p+ q

2 1n1>n + pI (3.30)

exhibits an approximate rank-1 structure, in the sense that its mean

M? := E[M ] = p− q
2

[
1n/2
−1n/2

] [
1>n/2 −1>n/2

]
(3.31)

is a rank-1 matrix. The leading eigenvalue ofM? and its associated eigenvector are given respectively
by

λ? := (p− q)n
2 , and u? := 1√

n

[
1n/2
−1n/2

]
. (3.32)

Crucially, the eigenvector u? encapsulates the precise community structure we seek to recover: all
positive entries of u? correspond to vertices from one community, while the remaining ones form
another community.

Inspired by the above calculation, a candidate spectral clustering algorithm consists of eigende-
composition followed by entrywise rounding:

1. Compute the leading eigenvector u of M (constructed in (3.30));

2. Compute the estimate x = [xi]1≤i≤n such that for any 1 ≤ i ≤ n,

xi = sgn(ui) =





1, if ui > 0,
−1, if ui ≤ 0.

(3.33)

In words, the community memberships are estimated in accordance with the signs of the entries of
the leading eigenvector of M , namely, the entries with the same signs are declared to come from
the same cluster.

Remark 3.5. The above algorithm requires prior knowledge of the parameters p and q when
constructingM . It is also feasible to develop a “model-agnostic” alternative by, for instance, looking
at the second eigenvector of A (since the second eigenvector of E[A] turns out to be precisely u?),
which does not rely on prior information about p and q at all; see, e.g., Abbe et al. (2020b) for
details. Here, we adopt the above model-dependent version primarily for convenience of exposition.
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3.4.3 Performance guarantees: almost exact recovery

The spectral method enjoys appealing statistical guarantees for recovering the community structure
of the SBM, which can be readily obtained by invoking the `2 eigenvector perturbation theory. To
demonstrate this, we begin by developing an upper bound on the spectral norm of the perturbation
matrix E := M −M?, postponing the proof to Section 3.4.4.

Lemma 3.7. Consider the settings in Section 3.4.1, and suppose that np & logn. Then with
probability at least 1−O(n−8), one has

‖E‖ . √np. (3.34)

This spectral norm bound, in conjunction with the Davis-Kahan sinΘ theorem, leads to the
following theoretical support for the spectral method introduced in Section 3.4.2.

Theorem 3.8. Consider the setting in Section 3.4.1, and suppose that

p & logn
n

, and
√
p

n
= o(p− q). (3.35)

With probability exceeding 1−O(n−8), the spectral method achieves

1
n

n∑

i=1
1
{
xi = x?i

}
= 1− o(1), or 1

n

n∑

i=1
1
{
xi = −x?i

}
= 1− o(1).

It is noteworthy that the metric

min
{

1
n

n∑

i=1
1
{
xi 6= x?i

}
,

1
n

n∑

i=1
1
{
xi 6= −x?i

}
}

can be understood as the mis-clustering rate. In a nutshell, Theorem 3.8 asserts that with the
assistance of simple rounding (i.e., the sgn(·) operation), the spectral method allows for almost
exact community recovery—namely, correctly clustering all but a vanishing fraction of the vertices—
assuming satisfaction of Condition (3.35). Note that “almost exact recovery” is also referred to as
“weak consistency” in the literature (Abbe, 2017).

Let us take a moment to interpret the recovery condition in (3.35). The first requirement in
Condition (3.35) ensures the presence of sufficiently many edges in the observed graph, while still
permits the graph to be fairly sparse (with average vertex degrees as low as the order of logn).
The second requirement in Condition (3.35)—which imposes a lower bound on the separation
between the edge densities p and q—guarantees that the within-community edges can be adequately
differentiated from across-community edges. As a more concrete example, consider the scenario
where p � (logn)/n (so that each vertex is only expected to be incident to O(logn) edges). In this
case, the second requirement in Condition (3.35) can be translated into

p− q �
√

logn /n, if p � (logn) / n.

This indicates that the separation p− q is allowed to be considerably smaller than the edge densities,
even in this low-edge-density regime. In comparison, in another extreme case with p � 1 (so that each
vertex is likely to be connected with a constant fraction of other vertices), the second requirement
in Condition (3.35) reads

p− q � 1/
√
n, if p � 1,
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thereby allowing the edge density difference to be even
√
n times smaller than the edge densities

themselves.
It is worth highlighting that the spectral method is not merely capable of correctly clustering all

but a diminishing fraction of vertices; in fact, it allows for simultaneous and exact recovery for all
vertices under slightly modified conditions. Establishing this stronger assertion requires developing
a significantly strengthened `∞-based eigenvector perturbation theory, which will be elucidated in
Section 4.5. The discussion about the statistical optimality of this spectral method is postponed to
Section 4.5 as well.

Proof of Theorem 3.8. It is readily seen from Lemma 3.7 that with with probability at least
1−O(n−8),

‖E‖ ≤
(
1− 1√

2

)n(p− q)
2 =

(
1− 1√

2

)
λ?,

provided that Condition (3.35) holds. Here, λ? is defined in (3.32). Apply Corollary 2.8 to yield
that with probability at least 1−O(n−8),

dist
(
u,u?

) ≤ 2‖E‖
λ?

.
√
np

n(p− q) = o(1), (3.36)

where the last relation follows from Condition (3.35).
Assume, without loss of generality, that ‖u− u?‖2 = dist

(
u,u?

)
. We shall pay attention to the

set
N :=

{
i | |ui − u?i | ≥ 1/

√
n
}
.

In view of the rounding procedure: for any i obeying xi 6= x?i , one necessarily has sgn(ui) 6= sgn(u?i ),
thus indicating that |ui − u?i | ≥ |u?i | = 1/

√
n and hence i ∈ N . Combining the `2 bound (3.36) and

the definition of N , we can easily verify that

|N | ≤ ‖u− u
?‖22

(1/
√
n)2 = o

(
n
)
,

which in turn leads to the advertised result
1
n

n∑

i=1
1
{
xi 6= x?i

} ≤ 1
n

n∑

i=1
1

{
|ui − u?i | ≥

1√
n

}
= |N |

n
= o(1).

3.4.4 Proof of Lemma 3.7

We intend to apply Theorem 3.4 to establish this lemma. First, observe from the definition E =
M −M? = A− E[A] that ∣∣Ei,j

∣∣ ≤ max
i,j

∣∣Ai,j
∣∣ = 1.

In addition, the variance of Ei,j is upper bounded by

E
[
E2
i,j

]
= Var(Ai,j) ≤ E

[
A2
i,j

] (i)
≤ max{p, q} (ii)= p

for any (i, j), where (i) follows since Ai,j is a Bernoulli random variable with mean either p or q, and
(ii) is due to the assumption p > q. The bound (3.9) and the condition np & logn thus imply that

‖E‖ =
∥∥M − E[M ]

∥∥ . √np+O(
√

logn) � √np (3.37)

with probability exceeding 1−O(n−8).
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3.5 Clustering in Gaussian mixture models

This section is also concerned with clustering, with the aim of grouping unlabeled data points into a
few clusters (so that the data within the same cluster share similar characteristics). In contrast to the
graph clustering setting in Section 3.4 where only pairwise measurements are available, this section
assumes direct access to data samples for each individual. Spectral methods—possibly with the aid of
subsequent refinement like k-means—continue to be remarkably effective for this setting, achieving
practical success in, say, image segmentation (Shi and Malik, 2000), text separation (Reynolds and
Rose, 1995), climate modeling (Lin et al., 2017), and heterogeneity modeling in precision medicine
and marketing (Fan et al., 2014). Motivated by the empirical successes, understanding the theoretical
properties of spectral clustering has garnered growing attention recently. In particular, Gaussian
mixture models emerge as a succinct model of attack, providing elegant yet intuitive abstractions to
pivotal quantities that dictate the feasibility of spectral clustering.

3.5.1 Gaussian mixture models and assumptions

Model and goal. Imagine that we have collected n independent samples {xi}1≤i≤n, generated
from a mixture of r spherical Gaussians with respective centers θ?1, · · · ,θ?r ∈ Rp. More precisely, for
each sample vector xi ∈ Rp, we assume the existence of a predetermined, yet a priori unknown,
cluster membership variable ξ?i ∈ [r] such that

xi =





θ?1 + ηi, if ξ?i = 1,
...

...
θ?r + ηi, if ξ?i = r,

(3.38)

where the noise vector ηi ∼ N (0, Ip) is independently generated across the samples. In words, ξ?i
indicates which Gaussian component a sample is generated from. Clustering in this Gaussian mixture
model can, therefore, be posed as recovering the set of cluster membership variables {ξ?i }1≤i≤n
(modulo the global permutation ambiguity).

Assumptions. To simplify our exposition, we impose the following assumptions throughout this
section. As a worthy note, this assumption is often non-essential and can be significantly relaxed,
which we shall remark on momentarily in Remark 3.8.

Assumption 3.2. The centers are independently generated obeying

θ?i
i.i.d.∼ N

(
0, ∆2

2p Ip
)
, 1 ≤ i ≤ r

for some parameter ∆ > 0.

Under this assumption, standard Gaussian concentration inequalities (Vershynin, 2017) tell us
that, with high probability (for large p and n = poly(p)),

∥∥θ?i
∥∥2

2 = (1 + o(1))∆2

2 ,
∣∣θ?>i θ?j

∣∣ = o(∆2),
∥∥θ?i − θ?j

∥∥2
2 =

∥∥θ?i
∥∥2

2 +
∥∥θ?j

∥∥2
2 − 2θ?>i θ?j = (1 + o(1))∆2
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hold for any pair i 6= j, where o(1) denotes a vanishingly small quantity as p approaches infinity.
The indication is that the parameter ∆ reflects (approximately) the separation between any pair of
centers.

For simplicity of presentation, it is further assumed that there are exactly n/r samples drawn
from each of the r Gaussian components. Without loss of generality, we assume that

ξ?i = l, if
⌈
i

r

⌉
= l (3.39)

for any 1 ≤ i ≤ n, where the ceiling function dxe represents the least integer greater than or equal to
the number x ∈ R. In other words, the first batch of n/r samples is drawn from the first Gaussian
component, the second batch comes from the second component, and so on. It is worth pointing out
that this assumed assignment information (3.39) is unavailable when running the spectral clustering
algorithm.

3.5.2 Algorithm and rationale

Motivation: spectral structure of the data matrix. In order to develop a spectral clustering
algorithm, it is instrumental to first examine the spectral feature of the following data matrix

X := [x1, · · · ,xn] = E[X] + [η1, · · · ,ηn]︸ ︷︷ ︸
=:Z

. (3.40)

Clearly, E[X] ∈ Rp×n exhibits a rank-r structure:

E[X] =
[
θ?1, · · · ,θ?1,θ?2, · · · ,θ?2, · · · ,θ?r , · · · ,θ?r

]
= Θ?F ?>,

where we define

Θ? := [θ?1, · · · ,θ?r ] ∈ Rp×r, F ? :=




1 n
r

1 n
r

. . .
1 n

r


 ∈ Rn×r. (3.41)

Similarly, the Gram matrixX>X also inherits this rank-r structure in the following sense (albeit
in the form of a “spiked” structure due to the presence of noise):

E
[
X>X

]
= E[X]>E[X] + E

[
Z>Z

]
= F ?Θ?>Θ?F ?> + pIn. (3.42)

Recognizing that F ? encodes all the cluster membership information, one is motivated to attempt
information extraction from the rank-r eigenspace of X>X, akin to the PCA algorithm introduced
in Section 3.3.2.

Algorithm: spectral clustering followed by k-means. With the preceding spectral properties in
mind, we are ready to present a spectral clustering algorithm tailored to this Gaussian mixture
model. Given that the eigenspace of X>X might only approximate F ? up to global rotation, we
include a follow-up k-means scheme (MacQueen, 1967) to produce a valid clustering outcome based
on the spectral estimate.

1. Compute the leading rank-r eigenspace U ∈ Rn×r of X>X.
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2. Compute Y = P(UU>) ∈ Rn×n, where the operator P(·) projects each column onto the unit
sphere, i.e.,

P(Z) :=
[ z1
‖z1‖2

, · · · , zn
‖zn‖2

]

for any matrix Z = [z1, · · · , zn]. As will be discussed below, the projection step is not necessary,
and we can also simply take Y = UU>.

3. Let yi represent the i-th column of Y , and apply the k-means algorithm (with k = r) to the
vectors {yi}1≤i≤n to find the cluster centers and cluster labels for all individuals; namely, we
compute

({
ξ̂i
}n
i=1,

{
ϑ̂i
}r
i=1

)
= arg min
ξ1,··· ,ξn∈[r],ϑ1,··· ,ϑr∈Rn

n∑

i=1

∥∥yi − ϑξi
∥∥2

2. (3.43)

The algorithm then returns
{
ξ̂i
}

1≤i≤n as the clustering result. Interestingly, Step 1 bears similarity
with the spectral algorithm for graph clustering, since we essentially generate a pairwise similarity
measurement for each pair (i, j) using the inner product 〈xi,xj〉.

Remark 3.6. The k-means formulation (3.43)—which minimizes the sum of squared distance between
each data point and the center of its associated cluster—is an integer program and intractable in
general (Aloise et al., 2009). Fortunately, computationally feasible solutions are available either
under sufficient minimum center separation or when suitably initialized (Lloyd, 1982; Vempala and
Wang, 2004; Lu and Zhou, 2016; Peng and Wei, 2007; Awasthi et al., 2015; Mixon et al., 2017;
Iguchi et al., 2017). An in-depth account of this computational aspect is beyond the scope of this
monograph, and the interested reader is referred to Li et al. (2020b) and Löffler et al. (2021) for
details.

Further explanations. We take a moment to explain why k-means is applied to the columns of
Y . Recall that the central object the spectral algorithm seeks to approximate is the leading rank-r
eigenspace of F ?Θ?>Θ?F ?> (cf. (3.42)). For convenience, suppose we have the eigendecomposition
Θ?>Θ? = UθΣθU

>
θ , where Uθ ∈ Or×r is orthonormal and Σθ ∈ Rr×r is diagonal. This results in

the decomposition
F ?Θ?>Θ?F ?> = n

r
·
(√ r

n
F ?Uθ

︸ ︷︷ ︸
=:U?

)
Σθ

(√ r

n
F ?Uθ

)>
. (3.44)

Apparently, the matrixU? ∈ Rn×r defined above has orthonormal columns and, as a result, represents
the eigenspace of F ?Θ?>Θ?F ?>. The idea is that if the spectral estimate U approximates U? ∈ Rn×r

well, then the matrices
√

n
r UU

> and Y constructed above are hopefully close to the following
matrix

Y ? :=
√
n

r
U?U?> =

√
r

n




1n
r
1>n
r

. . .
1n
r
1>n
r


 . (3.45)

As can be easily seen, the data points belonging to the same ground-truth cluster are associated
with identical columns in Y ?; for instance, each of the first n/r samples—which belongs to the first
cluster—corresponds to a column of Y ? given by

√
r
n

[
1n/r

0

]
. Therefore, clustering the columns of
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Y via k-means is expected to unveil the underlying cluster structure, provided that Y is sufficiently
close to Y ?. In summary, spectral estimation (Steps 1-2) effectively leads to a new vector yi for
each point, which enjoys substantially enhanced signal-to-noise ratio compared to xi and boosts the
chance for k-means to succeed.

We shall also explain the projection operation enforced in Step 2 of the algorithm. Given that each
column of Y ? has unit `2 norm, projecting each column of UU> onto the unit sphere ensures that
no column of Y has an abnormal size. Note, however, that this projection step is non-essential and
is introduced here primarily to simplify the mathematical analysis. Spectral clustering is expected
to succeed even in the absence of such a projection step (Löffler et al., 2021).

Remark 3.7. Another variation of spectral clustering is to directly apply the k-means algorithm to
cluster the rows of U (or some properly rescaled version of them) (Löffler et al., 2021). To explain
the rationale, we note that under the assumption (3.39), U? necessarily consists of r blocks of
identical rows as follows:

U? =
√
r

n




1n/rν>1
...

1n/rν>r


 ,

where ν>1 , · · · ,ν>r are the orthonormal rows of the matrix Uθ (cf. (3.44)). Consequently, clustering
the rows of U? reveals exactly the true cluster assignments of all individuals. The idea of our spectral
analysis below applies to this method as well; we leave it to the reader as an exercise.

3.5.3 Performance guarantees

Now, we turn to characterizing the clustering performance of the above spectral algorithm. We shall
focus attention on the mis-clustering rate as the performance metric. As the cluster labels in [r]
can be arbitrarily permuted, the mis-clustering rate associated with the labels {ξ̂i} returned by our
algorithm is defined as

`mis
({ξ̂i}, {ξ?i }

)
:= min

φ∈Π

1
n

n∑

i=1
1

{
φ(ξ̂i) 6= ξ?i

}
,

where Π is the set of permutations of [r]. In words, this metric captures the average number of
mislabeled data points, after accounting for global permutation. For notational convenience, we
shall set M? := E

[
X>X

]
and E := X>X − E

[
X>X

]
throughout this section.

The first step towards analyzing the statistical accuracy of the spectral algorithm lies in developing
a perturbation bound on ‖UU> −U?U?>‖, where U? (cf. (3.44)) represents the leading rank-r
eigenspace of M?. This can be accomplished via the Davis-Kahan theorem, which requires us to
first control the size of the perturbation E.

Lemma 3.9. Consider the settings in Section 3.5.1, and suppose p & r log3(n + p). Then with
probability at least 1−O((n+ p)−10), one has

‖E‖ . ∆n
√

log(n+ p)√
r

+
√
np log(n+ p) + n log2(n+ p).

The proof of this lemma can be found in Section 3.5.4. Equipped with the above perturbation
bound, we are ready to present our statistical guarantees for spectral clustering.
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Theorem 3.10. Consider the setting and assumptions in Section 3.5.1, and suppose that r = O(1)
and p & log3 n. With probability at least 1 − O(p−10), the mis-clustering rate of the spectral
algorithm in Section 3.5.2 achieves

`mis
({ξ̂i}, {ξ?i }

)
= o(1),

with the proviso that

log(n+ p) = o(∆) and
(p log(n+ p)

n

)1/4
= o(∆). (3.46)

Before embarking on the proof of this theorem, we discuss briefly the implications of this theorem.
In order to ensure a vanishingly small mis-clustering rate, it suffices for the center separation ∆ to
exceed

∆ &





poly log(n+ p), if p ≤ n,
( p
n

)1/4poly log(n+ p), if p ≥ n.
This separation condition matches the minimax lower bound up to some logarithmic term (Cai and
Zhang, 2018; Ndaoud, 2018). In particular, in the high-dimensional case where p ≥ n, the required
separation condition changes fairly gracefully with the aspect ratio p/n.

Remark 3.8. As alluded to previously, Assumption 3.2 can be significantly relaxed. For example,
the Gaussianity assumption therein is unnecessary; (almost) exact clustering is plausible once
the minimum center separation exceeds a certain threshold, regardless of how {θ?i } are generated.
To achieve this generality, however, the algorithm might need to be properly modified. Roughly
speaking, in addition to U , it is sensible to also exploit information contained in the eigenvalues of
X>X (which is crucial for, say, the scenario where all centers {θ?i } are perfectly aligned except for
the scaling factors). We recommend the readers to Löffler et al. (2021) for detailed discussions.

Proof of Theorem 3.10. The proof consists of two steps: controlling the perturbation ‖UU> −
U?U?>‖F (and hence ‖Y − Y ?‖F), and demonstrating that the follow-up k-means performs well.

The first step is to control ‖UU> −U?U?>‖F, built upon Lemma 3.9 and a lower bound on
the spectral gap of M?. Observe that

λr
(
M?)− λr+1

(
M?) = λmin

(
F ?Θ?>Θ?F ?>) = n

r
λmin

(
Θ?>Θ?),

where the last identity holds since F ?F ?> = n
r Ir according to the definition (3.41). This motivates

us to look at the spectral property of Θ?>Θ?. Given that Θ? is composed of i.i.d. Gaussian entries
(cf. Assumption 3.2), invoking the bound (3.28c) with proper rescaling gives

∥∥Θ?>Θ? − E
[
Θ?>Θ?]∥∥ . ∆2

(√
r log p
p

+ r log2 p

p

)
≤ ∆2

4

with probability exceeding 1 − O(p−10), provided that p ≥ C2r log2 p for some sufficiently large
constant C2 > 0. Further, it is self-evident that E

[
Θ?>Θ?

]
= 1

2∆2Ir. Weyl’s inequality (see
Lemma 2.2) then guarantees that

λmin
(
Θ?>Θ?) ≥ λmin

(
E
[
Θ?>Θ?])−

∥∥Θ?>Θ? − E
[
Θ?>Θ?]∥∥

≥ ∆2/2−∆2/4 = ∆2/4.
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Combine the preceding inequalities to arrive at

λr
(
M?)− λr+1

(
M?) = n

r
λmin

(
Θ?>Θ?) ≥ n∆2

4r . (3.47)

By virtue of Lemma 3.9 and (3.47), if the following condition

∆ ≥ C1 max
{(r2p log(n+ p)

n

)1/4
,
√
r log(n+ p)

}

holds for some large enough constant C1 > 0, then it is guaranteed that ‖E‖ ≤ (1−1/
√

2)(λr
(
M?

)−
λr+1

(
M?

)
). This in turn allows us to invoke the Davis-Kahan theorem (namely, Corollary 2.8) to

obtain
∥∥UU> −U?U?>∥∥

F ≤
√

2r ‖E‖
λr
(
M?

)− λr+1
(
M?

) ≤ √rε (3.48)

with probability exceeding 1−O(p−8), where the last line arises from (3.47) and Lemma 3.9, and

ε �
∆
√
r log(n+ p) + r

√
p log(n+p)

n + r log2(n+ p)
∆2 .

From the construction of Y and (3.45), one can propagate the bound (3.48) to ‖Y − Y ?‖F as
follows:

∥∥Y − Y ?
∥∥2

F
(i)=
∥∥∥P
(√n

r
UU>

)
− Y ?

∥∥∥
2

F

(ii)
≤ 4

∥∥∥
√
n

r
UU> − Y ?

∥∥∥
2

F

= 4n
r

∥∥UU> −U?U?>∥∥2
F . ε2n. (3.49)

Here, the first identity (i) holds since the operator P is invariant to global scaling. Regarding the
inequality (ii), it follows from standard inequality regarding Euclidean projection (e.g., Soltanolkotabi
(2019, Lemma 15)), which we postpone to the end of this proof.

The next step then amounts to translating the perturbation bound (3.49) into clustering accuracy
guarantees (after k-means is applied). This is accomplished through the following key lemma, to be
established in Section 3.5.4.

Lemma 3.11. Suppose that the matrix Y obtained in the spectral algorithm in Section 3.5.2 satisfies

∥∥Y − Y ?
∥∥2

F ≤ ε
2n, (3.50)

where ε > 0 is a quantity obeying ε ≤ c3r−4 for some sufficiently small constant c3 > 0. Then the
mis-clustering rate obeys

`mis
({ξ̂i}, {ξ?i }

) ≤ 2rε1/4.

As a consequence of Lemma 3.11, the mis-clustering rate is o(1) as long as εr4 = o(1), a condition
that is guaranteed under the assumptions (3.46) and r = O(1). This establishes Theorem 3.10.

Proof of the inequality (ii) in (3.49). For any vector v residing in the unit sphere and any other
vector w, we have

‖P(w)−w‖22 = ‖P(w)− v + v −w‖22
= ‖P(w)− v‖22 + ‖v −w‖22 + 2〈P(w)− v,v −w〉
≥ ‖P(w)− v‖22 + ‖P(w)−w‖22 + 2〈P(w)− v,v −w〉,
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where the last inequality follows since P denotes the projection onto the unit sphere and v lies in
the unit sphere. Cancelling out the common term ‖P(w)−w‖22 and invoking Cauchy-Schwarz lead
to

‖P(w)− v‖22 ≤ −2〈P(w)− v,v −w〉 ≤ 2‖P(w)− v‖2‖v −w‖2,

and therefore,

‖P(w)− v‖2 ≤ 2‖w − v‖2, or ‖P(w)− v‖22 ≤ 4‖w − v‖22.

This inequality clearly extends to the matrix counterpart, thus establishing the claimed result.

3.5.4 Proof of auxiliary lemmas

Proof of Lemma 3.9. To begin with, let us decompose E as follows

E = X>X − E
[
X>X

]
=
(
Θ?F ?> +Z

)>(Θ?F ?> +Z
)− E

[
X>X

]

= F ?Θ?>Z +Z>Θ?F ?> +Z>Z − pIn, (3.51)

where we have used the notation in (3.40) and (3.41), as well as the identity (3.42). As it turns out,
similar terms have already been controlled in the proof for PCA (see Section 3.3.4). More precisely,
the first term in (3.51) obeys

∥∥F ?Θ?>Z
∥∥ (i)=

√
n

r

∥∥Θ?>Z
∥∥

(ii)
.
√
n

r
· ∆√

p

√
np log(n+ p)

� ∆n
√

log(n+ p)√
r

with probability exceeding 1−O((n+p)−10), provided that p & r log3(n+p). Here, the first relation
(i) holds true since

√
r
nF

? contains orthonormal columns and the spectral norm is unitarily invariant,
while (ii) invokes the high-probability bound (3.28a). When it comes to the third term of (3.51),
the bound (3.28c) readily implies that

∥∥Z>Z − pIn
∥∥ .

√
np log(n+ p) + n log2(n+ p)

with probability at least 1−O((n+ p)−10). Substituting the preceding two bounds into (3.51) and
applying the triangle inequality, we reach

‖E‖ ≤ 2
∥∥F ?Θ?>Z

∥∥+
∥∥Z>Z − pIn

∥∥

. ∆n
√

log(n+ p)√
r

+
√
np log(n+ p) + n log2(n+ p).

Proof of Lemma 3.11 (analysis for k-means). Given the class labels {ξi}ni=1, the optimization of
the cluster centers {ϑi}ri=1 in the k-means formulation (3.43) is achieved by the sample means of
each cluster. Thus, the k-means formulation (3.43) can be equivalently posed as solving

minimize
C∈Ξ

r∑

l=1

∑

i∈Cl

∥∥∥yi −
1
|Cl|

∑

j∈Cl
yj
∥∥∥

2

2
(3.52)
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where C = {C1, · · · , Cr} represents the cluster assignment, and Ξ denotes the set of all r-partitions
of [n] (i.e., r disjoint subsets whose union equals [n]).

In order to tackle this formulation, a key ingredient of the proof lies in the following deviation
bound that allows one to replace yi with the truth y?i , as long as the cluster size is sufficiently large.

Claim 3.1. Consider any set S ⊆ [n] with cardinality csn for some quantity cs > 0. Suppose that
(3.50) holds with ε ≤ c2

s. Then one has
∣∣∣∣∣
∑

i∈S

∥∥∥yi −
1
|S|

∑

j∈S
yj
∥∥∥

2

2
−
∑

i∈S

∥∥∥y?i −
1
|S|

∑

j∈S
y?j

∥∥∥
2

2

∣∣∣∣∣ ≤ 6cs
√
εn. (3.53)

With Claim 3.1 in place, we are positioned to establish Lemma 3.11 by contradiction; that is,
we intend to demonstrate that any cluster assignment that differs too much from the ground-truth
clusters cannot possibly be the k-means solution. In what follows, we denote by C?l the l-th ground-
truth cluster (1 ≤ l ≤ r), and let {C1, · · · , Cr} represent the minimizer of (3.52) whenever it is clear
from the context.

Step 1: developing an upper bound on (3.52). To begin with, we derive an upper bound on the
optimal objective value of (3.52), which serves as a reference in assessing the (sub)-optimality of
other cluster assignments. By virtue of Claim 3.1 and the assumption |C?l | = n/r, one has

∣∣∣∣∣
∑

i∈C?
l

∥∥∥yi −
1
|C?l |

∑

j∈C?
l

yj
∥∥∥

2

2
−
∑

i∈C?
l

∥∥∥y?i −
1
|C?l |

∑

j∈C?
l

y?j

∥∥∥
2

2

∣∣∣∣∣ ≤
6
√
εn

r
,

with the proviso that ε ≤ 1/r2. Note that by construction, for the “ideal” fitting, one has∑i∈C?
l

∥∥y?i −
1
|C?
l
|
∑
j∈C?

l
y?j
∥∥2

2 = 0. Using this fact and summing the above inequality over all 1 ≤ l ≤ r, we arrive
at

r∑

l=1

∑

i∈C?
l

∥∥∥yi −
1
|C?l |

∑

j∈C?
l

yj
∥∥∥

2

2
≤ 6
√
εn. (3.54)

Consequently, due to the assumed optimality of C w.r.t. (3.52), replacing {C?l }rl=1 in (3.54) by {Cl}rl=1
can only further improve the objective value:

r∑

l=1

∑

i∈Cl

∥∥∥yi −
1
|Cl|

∑

j∈Cl
yj
∥∥∥

2

2
≤

r∑

l=1

∑

i∈C?
l

∥∥∥yi −
1
|C?l |

∑

j∈C?
l

yj
∥∥∥

2

2

≤ 6
√
εn. (3.55)

Step 2: showing that no cluster can be too large. Suppose that there exists a cluster Cl (1 ≤ l ≤ r)
that is too large in the sense that

|Cl| ≥
(1 + cε)n

r
(3.56)

for some quantity cε > 0. We would like to show that this is impossible unless cε is small; in fact,
in light of Claim 3.1, we need only to establish a lower bound on the second term in (3.53) (with
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S = Cl) so that it leads to a contradiction with the upper bound (3.55). Towards this end, we start
with the elementary decomposition of the sum of squared errors:

∑

i∈Cl

∥∥∥y?i −
1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2
=
(∑

i∈Cl

∥∥y?i
∥∥2

2

)
− |Cl| ·

∥∥∥ 1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2

= |Cl|
(
1−

∥∥∥ 1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2

)
, (3.57)

where we have invoked the fact that
∥∥y?i

∥∥
2 = 1. It thus comes down to controlling

∥∥∑
j∈Cl y

?
j

∥∥2
2. For

notational convenience, for any 1 ≤ τ ≤ r, we set nl,τ :=
∣∣Cl ∩ C?τ

∣∣ (namely, the number of points in
Cl coming from the τ -th ground-truth cluster), and let y?(τ) represent the vector associated with the
τ -th cluster (namely, y?(τ) = y?j for any j ∈ C?τ ). Armed with this set of notation, we can write

∥∥∥ 1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2
=
∥∥∥

r∑

τ=1

nl,τ
|Cl|

y?(τ)

∥∥∥
2

2
=

r∑

τ=1

∥∥∥
nl,τ
|Cl|

y?(τ)

∥∥∥
2

2
=
∑r
τ=1 n

2
l,τ

|Cl|2
. (3.58)

Here, the penultimate identity holds since 〈y?(i),y?(j)〉 = 0 for any i 6= j, while the last relation relies
on the fact that

∥∥y?(τ)
∥∥

2 = 1. Using 0 ≤ nl,τ ≤ n/r and ∑r
τ=1 nl,τ = |Cl|, we have

(3.58) ≤
(

maxτ nl,τ
)(∑

τ nl,τ
)

|Cl|2
≤ (n/r) · |Cl|

|Cl|2
≤ 1

1 + cε
,

where the first inequality comes from the basic fact that ‖a‖22 ≤ ‖a‖∞‖a‖1 for any vector a, and
the last relation arises from the assumed cardinality constraint on Cl (cf. (3.56)).

Substitution into (3.57) yields
∑

i∈Cl

∥∥∥y?i −
1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2
≥ |Cl|

(
1− 1

1 + cε

)
≥ cε

n

r
, (3.59)

where the last inequality again arises from the assumption (3.56). This in turn demonstrates that
r∑

l=1

∑

i∈Cl

∥∥∥yi −
1
|Cl|

∑

j∈Cl
yj
∥∥∥

2

2
≥
∑

i∈Cl

∥∥∥yi −
1
|Cl|

∑

j∈Cl
yj
∥∥∥

2

2

≥
∑

i∈Cl

∥∥∥y?i −
1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2
− 6 |Cl|

n

√
εn (3.60)

≥ cε
n

r
− 6
√
εn > 6

√
εn,

where (3.60) results from Claim 3.1 when ε ≤ 1/r2, and the last inequality follows as long as
12
√
ε < cε/r. Comparing this with (3.55) leads to contradiction with the optimality assumption of

{Cl}.

Step 3: showing that no cluster can be too small. Suppose now that there exists a cluster Ci (1 ≤ i ≤ r)
obeying

|Ci| ≤
(
1− cε(r − 1)

)
n

r
.

Then from the pigeonhole principle, one can find another cluster Cl (1 ≤ l ≤ r) with cardinality
exceeding

|Cl| ≥
(1 + cε)n

r
;
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otherwise the total size obeys ∑r
k=1 |Ck| < (1−cε(r−1))n

r + (r − 1) (1+cε)n
r ≤ n and {Cl} is infeasible.

The above condition on |Cl| coincides with the assumption (3.56) in Step 2, which, as a result of
previous arguments, cannot possibly hold. To conclude, for all 1 ≤ i ≤ r, one necessarily has

|Ci| >
(
1− cε(r − 1)

)
n

r
≥
(
1− cεr

)
n

r
. (3.61)

Step 4: showing that each Cl is mainly composed of points from a true (and distinct) cluster. Suppose
that there exists a cluster Cl (1 ≤ l ≤ r) whose dominant component obeys

max
1≤τ≤r

nl,τ ≤ (1− 2rcε)n/r,

where we recall that nl,τ = |Cl ∩ C?τ |. Under this assumption, we have

(3.58) ≤
(

maxτ nl,τ
)(∑

τ nl,τ
)

|Cl|2
≤ [(1− 2rcε)n/r] · |Cl|

|Cl|2
≤ 1− 2rcε

1− rcε
,

where the last inequality relies on the lower bound (3.61). Substitution into (3.57) gives

∑

i∈Cl

∥∥∥y?i −
1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2
≥ |Cl|

(
1− 1− 2rcε

1− rcε
) (i)
≥ (1− rcε)n

r
· rcε

1− rcε
= cεn > 12

√
εn,

where (i) arises again from (3.61), and the last relation is valid once cε > 12
√
ε. This taken collectively

with the inequality (3.60) yields

r∑

l=1

∑

i∈Cl

∥∥∥yi −
1
|Cl|

∑

j∈Cl
yj
∥∥∥

2

2
≥
∑

i∈Cl

∥∥∥y?i −
1
|Cl|

∑

j∈Cl
y?j

∥∥∥
2

2
− 6
√
εn

> 6
√
εn,

which, however, contradicts the upper bound (3.55). Consequently, the dominant component in
every cluster 1 ≤ l ≤ r must obey

max
1≤τ≤r

nl,τ > (1− 2rcε)n/r. (3.62)

In particular, if 2rcε < 1/2, then max1≤τ≤r nl,τ > n/(2r). An immediate consequence is that: the
dominant components of the clusters {Cl} must come from distinct ground-truth clusters.

Step 5: putting all this together. Armed with the preceding bound (3.62) and the remark thereafter,
it is straightforward to verify the following result on the mis-clustering rate:

`mis
({ξ̂i}, {ξ?i }

) ≤ 1−
∑r
l=1 max1≤τ≤r nl,τ

n
≤ 2rcε.

Finally, setting cε = ε1/4 leads to the advertised result, provided that ε ≤ c3r−4 for some sufficiently
small constant c3 > 0.
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Proof of Claim 3.1. Before proceeding, let us take a quick look at how many columns of Y might
deviate considerably from their counterparts in Y ?. To be precise, let us introduce the following set

Nlarge :=
{
i | ‖yi − y?i ‖22 ≥ ε

}
. (3.63)

Clearly, its cardinality is necessarily bounded above by

∣∣Nlarge
∣∣ ≤

∥∥Y − Y ?
∥∥2

F
ε

≤ ε2n

ε
= εn. (3.64)

The starting point of the proof is the elementary identities
∑

i∈S

∥∥∥yi −
1
|S|

∑

j∈S
yj
∥∥∥

2

2
−
∑

i∈S

∥∥∥y?i −
1
|S|

∑

j∈S
y?j

∥∥∥
2

2

=
∑

i∈S

∥∥yi
∥∥2

2 − |S| ·
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2

2
−
(∑

i∈S

∥∥y?i
∥∥2

2 − |S| ·
∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

2

)

= |S| ·
(∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

2
−
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2

2

)
, (3.65)

where the last inequality follows from the fact that
∥∥yi
∥∥

2 =
∥∥y?i

∥∥
2 = 1. To bound the right-hand

side of (3.65), we make the observation that
∥∥∥ 1
|S|

∑

j∈S

(
yj − y?j

)∥∥∥
2
≤ 1
|S|

∑

j∈S\Nlarge

∥∥yj − y?j
∥∥

2 + 1
|S|

∑

j∈S∩Nlarge

∥∥yj − y?j
∥∥

2

(i)
≤ √ε+

2
∣∣Nlarge

∣∣
|S|

(ii)
≤ √ε+ 2ε

cs
≤ 3
√
ε. (3.66)

Here, (i) holds true since any column outside Nlarge satisfies
∥∥yj − y?j

∥∥
2 <
√
ε, and any column

coming from Nlarge obeys
∥∥yj−y?j

∥∥
2 ≤

∥∥yj
∥∥

2+
∥∥y?j

∥∥
2 = 2; (ii) follows from (3.64) and the assumption

|S| = csn; and the last inequality relies on the assumption ε ≤ c2
s. In addition,

∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2
≤ 1
|S|

∑

j∈S

∥∥y?j
∥∥

2 = 1; (3.67a)

∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2
≤ 1
|S|

∑

j∈S

∥∥yj
∥∥

2 = 1. (3.67b)

Combining (3.66) and (3.67) and applying the triangle inequality, we arrive at
∣∣∣∣∣
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2

2
−
∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

2

∣∣∣∣∣

=
∣∣∣∣∣
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2
−
∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

∣∣∣∣∣ ·
∣∣∣∣∣
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2
+
∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

∣∣∣∣∣

≤ 2
∣∣∣∣∣
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2
−
∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

∣∣∣∣∣

≤ 2
∥∥∥ 1
|S|

∑

j∈S
(yj − y?j )

∥∥∥
2
≤ 6
√
ε. (3.68)
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Finally, plugging in (3.68) into (3.65), we conclude that
∣∣∣∣∣
∑

i∈S

∥∥∥yi −
1
|S|

∑

j∈S
yj
∥∥∥

2

2
−
∑

i∈S

∥∥∥y?i −
1
|S|

∑

j∈S
y?j

∥∥∥
2

2

∣∣∣∣∣

= |S| ·
∣∣∣∣∣
∥∥∥ 1
|S|

∑

j∈S
yj
∥∥∥

2

2
−
∥∥∥ 1
|S|

∑

j∈S
y?j

∥∥∥
2

2

∣∣∣∣∣

≤ 6
√
ε|S| = 6cs

√
εn

as claimed, where the last relation holds true since |S| = csn.

3.6 Ranking from pairwise comparisons

The ranking task—which seeks to identify a consistent ordering of several items based on (partially)
revealed preference information about them—is encountered in numerous contexts including web
search, crowd sourcing, social choice, peer grading, and so on (Dwork et al., 2001; Chen et al.,
2013; Caplin and Nalebuff, 1991; Shah et al., 2013). Of particular interest is the “preference-based”
observation model, in which we are only given relative comparisons of a few items (as opposed to
individual scores of them). In practice, comparison data of this kind abound, partly because humans
often find it easier to make a preference over two or a couple of items than to assign specific ratings
to many individual ones. The emergence of crowdsourcing platforms such as Amazon Mechanical
Turk further widens the availability of comparison data, where binary judgments over pairs of
items are often solicited from a pool of non-experts. In this section, we concentrate on pairwise
comparisons and explore the potential of spectral methods for the ranking task.

3.6.1 The Bradley-Terry-Luce model and assumptions

To formulate the problem in a statistically sound manner, we introduce a classical parametric model,
called the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952; Ford Jr, 1957; Luce, 2012),
to describe the generating process of pairwise comparisons.

Latent preference scores. Imagine that there are n items to be ranked. A key component of the
BTL model is the assignment of a latent preference score to each item; more concretely, the BTL
model hypothesizes on the existence of an unseen preference score vector

w? = [w?1, w?2, · · · , w?n]>, (3.69)

with w?i > 0 assigned to the i-th item (1 ≤ i ≤ n). The ranks of these items are therefore determined
exclusively by their (relative) preference scores: an item with a larger score is ranked higher.
Throughout this section, we denote by κ a sort of condition number as follows

κ := max1≤i≤nw?i
min1≤i≤nw?i

. (3.70)

Pairwise comparisons. Equipped with the aforementioned score vector, the BTL model posits
that: the probability of an item winning a paired comparison is determined entirely by the relative
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scores of the two items involved. To be precise, when comparing every pair (i, j) of items, the model
assumes that

P
{
item j is preferred over item i

}
=

w?j
w?i + w?j

, (3.71)

asserting that an item assigned a higher preference score is more likely to win. In this section,
we assume access to a comparison between every pair of items. To be precise, for each pair (i, j)
(1 ≤ i < j ≤ n), we observe an independent binary comparison outcome yi,j following the BTL
model (3.71):

yi,j =





1, with probability w?j
w?i +w?j

,

0, otherwise,
where yi,j = 1 means item j beats item i and yi,j = 0 otherwise. By convention, we set yi,j = 1− yj,i
for all i > j.

Goal. With the BTL parametric model in mind, a natural strategy is to start by estimating the
underlying scores {w?i } based on the pairwise comparisons in hand, followed by a ranking step
performed in accordance with the estimated scores. In this section, we shall focus on characterizing
the statistical accuracy of spectral methods in accomplishing the meta task of preference score
estimation, and will remark in passing on the ranking step that follows. Obviously, from (3.71), we
can only hope for estimating {w?i } up to some global scaling ambiguity.

3.6.2 A spectral ranking algorithm

At first glance, the recipe we have introduced for designing spectral methods seems to have no
direct bearing on the BTL model. Somewhat unexpectedly, a closer inspection unveils an intimate
connection between the BTL model and a reversible Markov chain, whose stationary distribution
embodies crucial information about the score vector of interest. This in turn lays a solid foundation
for the spectral algorithm described below, originally developed by Negahban et al. (2016).

The first step is to convert the pairwise comparison data {yi,j}i 6=j into a probability transition
matrix P = [Pi,j ]1≤i,j≤n, in a way that

Pi,j =





1
nyi,j , if i 6= j,

1−∑j:j 6=i
1
nyi,j , otherwise.

(3.72)

By construction of P , all of its entries are non-negative and the entries in each row sum up to one,
thus confirming that P is a probability transition matrix. The spectral algorithm then computes
the leading left eigenvector π of P , returning it as the estimate for the underlying score vector w?.

To make sense of the rationale behind this algorithm, it is helpful to look at the mean P ? =
[P ?i,j ]1≤i,j≤n := E[P ], which obeys

P ?i,j =





1
n

w?j
w?i +w?j

, if i 6= j,

1− 1
n

∑
j:j 6=i

w?j
w?i +w?j

, otherwise.
(3.73)

Clearly, this matrix P ? is a probability transition matrix as well. As can be straightforwardly
verified, the vector π? = [π?i ]1≤i≤n defined by

π? = 1
1>w?

w? (3.74)
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satisfies the following conditions:

• π? is a probability vector (i.e., π?i ≥ 0 for all i and ∑i π
?
i = 1);

• π? satisfies the detailed balance equations as follows:

π?i P
?
i,j = π?jP

?
j,i, for all (i, j).

Classical Markov chain theory (Brémaud, 2013) thus tells us that P ? represents a reversible Markov
chain, whose stationary distribution is precisely given by π? (this can easily be verified using the
definition of the stationary distribution) and corresponds to the normalized preference scores. As
a consequence, we hold the intuition that: π is close to π?—and hence w? up to some global
scaling—as long as P approximates P ? reasonably well.

3.6.3 Performance guarantees

This subsection develops theoretical support for the above spectral ranking algorithm, based on
the eigenvector perturbation theory developed previously for probability transition matrices in
Section 2.5. For notational convenience, we shall use E := P − P ? to denote the difference of the
above two transition matrices of interest.

By virtue of Theorem 2.10, the perturbation of the stationary distribution of a reversible Markov
chain P ? is dictated by two important quantities: (i) the spectral gap 1−max {λ2(P ?),−λn(P ?)},
and (ii) the noise size ‖E‖π? (recall the definition of ‖ · ‖π? in Section 2.5.1). These two quantities
are controlled respectively via the following two lemmas, whose proofs can be found in Section 3.6.4.

Lemma 3.12. Consider the settings and notation in Sections 3.6.1 and 3.6.2. It follows that

1−max
{
λ2(P ?),−λn(P ?)

} ≥ 1
2κ2 ,

where we recall the definition of κ in (3.70).

Lemma 3.13. Consider the settings and notation in Sections 3.6.1 and 3.6.2, and recall that
E := P − P ?. With probability at least 1−O(n−8),

‖E‖π? ≤
√
κ ‖E‖ .

√
κ logn
n

.

Now we are well prepared to assess the quality of the spectral estimate, as summarized below,
whose proof is given at the end of this subsection.

Theorem 3.14. Consider the settings and algorithm in Sections 3.6.1 and 3.6.2. Suppose that
n ≥ Cκ5 logn for some sufficiently large constant C > 0. Then with probability exceeding 1−O(n−8),
one has

‖π − π?‖2
‖π?‖2

. κ2.5

√
logn
n

. (3.75)

Given the construction (3.74) of π?, this theorem implies the existence of a scalar z > 0 such
that

‖zπ −w?‖2
‖w?‖2

. κ2.5

√
logn
n
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holds with high probability. It is worth noting that one cannot possibly retrieve the global scaling
factor z, due to the invariance of the BTL observation model under global scaling (cf. (3.71)).

To interpret the effectiveness of this theorem, consider, for example, the case when κ = O(1)
(so that all the latent scores w?i are about the same order). Theorem 3.14 tells us that the relative
estimation error of π is vanishing as the number n of items increases. As it turns out, this statistical
error rate (3.75) is near minimax-optimal up to a logarithmic factor; see Negahban et al. (2016,
Theorem 3). In fact, with a more careful analysis, one can further eliminate this extra logn factor
and establish (orderwise) minimax optimality of this algorithm, as has been done in Chen et al.
(2019b, Theorem 5.2).

Caution needs to be exercised, however, that high score estimation accuracy alone does not
necessarily imply appealing ranking accuracy. For instance, if the goal is to identify the top-K
ranked items—a problem commonly referred to as “top-K ranking” (Chen and Suh, 2015)—then
the ranking accuracy also relies heavily on the separation between the score of the K-th ranked
item and that of the (K + 1)-th ranked item (namely, whether the set of top-K ranked items is
sufficiently distinguishable from the remaining ones). Fortunately, the spectral ranking algorithm
introduced in this section remains minimax optimal when it comes to top-K ranking, through a
refined `∞ perturbation theory to be introduced in Chapter 4. The interested reader is referred to
Chen et al. (2019b) for details.

Proof of Theorem 3.14. Invoke Theorem 2.10 to see that

‖π − π?‖π? ≤
∥∥π?>E

∥∥
π?

1−max {λ2(P ?),−λn(P ?)} − ‖E‖π?
≤ 4κ2∥∥π?>E

∥∥
π?
, (3.76)

provided that

1−max
{
λ2(P ?),−λn(P ?)

}− ‖E‖π? ≥ 1/(4κ2). (3.77)

From Lemma 3.12 and Lemma 3.13, we know that Condition (3.77) holds true with probability at
least 1−O(n−8), with the proviso that n ≥ Cκ5 logn for some sufficiently large constant C > 0.

Additionally, letting π?min := mini π?i and π?max := maxi π?i , we can easily see from the definition
of ‖ · ‖π? (i.e., ‖v‖π? =

√∑
i π

?
i v

2
i for any vector v) that

‖v‖π?
(i)
≤
√
π?max ‖v‖2, and ‖v‖2

(ii)
≤ 1√

π?min
‖v‖π? ,

which allows us to further obtain

‖π − π?‖2 ≤
1√
π?min

‖π − π?‖π? ≤
4κ2
√
π?min

‖π?>E‖π? ≤ 4κ2.5‖π?>E‖2

≤ 4κ2.5‖E‖ ‖π?‖2.

Here, the first inequality comes from (ii), the second inequality is a consequence of (3.76), whereas
the third one results from (i). The proof is then completed by applying the high-probability bound
‖E‖ .

√
(logn)/n derived in Lemma 3.13.
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3.6.4 Proof of auxiliary lemmas

Before delving into the proof, we state a general comparison theorem, which is attributed to Diaconis
and Saloff-Coste (1993), that relates the spectral gap of a reversible Markov chain with that of
another (possibly more tractable) reversible chain. We refer the interested reader to Negahban et al.
(2016, Lemma 6) for a proof of the following result.

Lemma 3.15. Consider two reversible Markov chains over the state space {1, 2, · · · , n}. Let P
and π (resp. P̃ and π̃) denote the transition matrix and the stationary distribution of the first
(resp. second) chain. In addition, set

α := min
i,j

πiPi,j

π̃iP̃i,j
, and β := max

i

πi
π̃i
.

Then one has
1−max {λ2(P ),−λn(P )}
1−max

{
λ2(P̃ ),−λn(P̃ )

} ≥ α

β
.

Armed with this comparison lemma, we are ready to present the proof of Lemma 3.12.

Proof of Lemma 3.12. In order to control the spectral gap with the aid of Lemma 3.15, we
construct an auxiliary transition matrix

Q? = 1
n

11>,

which clearly corresponds to a reversible Markov chain with stationary distribution u? = (1/n) · 1.
The eigengap of this newly constructed reversible Markov chain is

1−max {λ2(Q?),−λn(Q?)} = 1,

since λ2(Q?) = λn(Q?) = 0. Therefore, we only need to bound α and β.
Recalling the construction of P ? in (3.73), we can straightforwardly check that

π?i P
?
i,j = 1

n

π?i π
?
j

π?i + π?j
≥ 1

2n min{π?i , π?j }

for every i 6= j, and in addition,

π?i P
?
i,i = π?i

[
1−

∑

j:j 6=i

1
n

w?j
w?i + w?j

]
≥ π?i

[
1−

∑

j:j 6=i

1
n

]
= 1
n
π?i .

Combining the previous two inequalities, we obtain

min
i,j

(
π?i P

?
i,j

) ≥ 1
2n min

1≤i≤n
π?i = 1

2nκ max
1≤i≤n

π?i ≥
1

2n2κ
,

where the last relation holds since maxi π?i ≥ 1
n

∑
i π

?
i = 1

n . This together with the construction of
Q? further leads to

α := min
i,j

π?i P
?
i,j

u?iQ
?
i,j

= n2 min
i,j

(
π?i P

?
i,j

) ≥ 1
2κ.

In regard to β, it is seen that

β := max
i

π?i
u?i

= nmax
i
π?i = nκmin

i
π?i ≤ κ,
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where the final inequality follows since mini πi ≤ 1
n

∑
i πi = 1

n . With the preceding bounds on α and
β in place, Lemma 3.15 informs us that

1−max {λ2(P ?),−λn(P ?)}
1−max {λ2(Q?),−λn(Q?)} ≥

α

β
≥ 1

2κ2 .

This together with the aforementioned eigengap for Q? establishes the advertised result.

Proof of Lemma 3.13. LetD := diag(
√
π?1, · · · ,

√
π?n). We have seen from the proof in Section 2.5.3

(cf. (2.34)) that

‖E‖π? = ‖DED−1‖ ≤ ‖D‖ ‖E‖ ‖D−1‖ =
√

maxi π?i√
mini π?i

‖E‖ =
√
κ ‖E‖,

where κ is defined in (3.70). Therefore, it suffices to bound ‖E‖.
By construction of P and P ? (see (3.72) and (3.73)), we see that

Ei,j = Pi,j − P ?i,j = 1
n

(
yi,j − E[yi,j ]

)
(3.78)

for any i 6= j. In addition, for all 1 ≤ i ≤ n, it follows that

Ei,i = Pi,i − P ?i,i = −
∑

j:j 6=i
Ei,j = − 1

n

∑

j:j 6=i

(
yi,j − E[yi,j ]

)
. (3.79)

In view of these identities, we shall decompose the matrix E into three parts: the upper triangular
part (denoted by Eupper), the diagonal part (denoted by Ediag), and the lower triangular part
(denoted by Elower). Clearly, the triangle inequality gives

‖E‖ ≤ ‖Eupper‖+ ‖Ediag‖+ ‖Elower‖. (3.80)

In the sequel, we deal with these three terms separately.
Let us start with the diagonal part Ediag. In view of the definition of the spectral norm, we know

that
‖Ediag‖ = max

1≤i≤n
|Ei,i| = max

1≤i≤n

∣∣∣
∑

j:j 6=i
Ei,j

∣∣∣,

where the last relation arises from (3.79). Fix any i, then it is easily seen that ∑j:j 6=iEi,j is a
sum of independent zero-mean random variables {Ei,j}, which can be controlled via the Bernstein
inequality. Specifically, observe that

max
j:j 6=i

|Ei,j | = max
j:j 6=i

1
n

∣∣yi,j − E[yi,j ]
∣∣ ≤ 1

n
=: B1

and, in addition,
v1 :=

∑

j:j 6=i
E[E2

i,j ] = 1
n2

∑

j:j 6=i
Var (yi,j) ≤

1
n
,

where the last inequality follows since the variance of a Bernoulli random variable is no larger
than 1. Apply the Bernstein inequality (cf. Corollary 3.3) and the union bound over 1 ≤ i ≤ n to
demonstrate that

‖Ediag‖ = max
1≤i≤n

∣∣∣
∑

j:j 6=i
Ei,j

∣∣∣ .
√
v1 logn+B1 logn

.
√

logn
n

+ logn
n
�
√

logn
n
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Figure 3.2: Illustration of phase retrieval and solving quadratic systems of equations, where only the intensities of linear
measurements are collected. Here, A = [a1, · · · ,am]>, and |z|2 := [|z1|2, · · · , |zm|2]> for any vector z = [zi]1≤i≤m.

holds with probability at least 1−O(n−8).
We now move on to the upper triangular part Eupper, whose entries {Ei,j}i<j are independent.

Invoking Theorem 3.4 (see the remark about asymmetric version right after Theorem 3.4) with the
bounds on B1 and v1 established above, we arrive at

‖Eupper‖ .
√
v1 +B1 logn .

√
1
n

+ logn
n
�
√

1
n

with probability at least 1−O(n−8). Similar arguments lead to the same upper bound on ‖Elower‖,
which we omit for brevity.

Substituting the upper bounds on ‖Ediag‖, ‖Eupper‖ and ‖Elower‖ into (3.80), we immediately
establish the desired bound.

3.7 Phase retrieval and solving quadratic systems of equations

Phase retrieval is a fundamental problem arising in numerous imaging applications such as X-ray
crystallography, diffraction imaging, and so on (Fienup, 1982; Shechtman et al., 2015; Candès et al.,
2013; Candès et al., 2015b; Jaganathan et al., 2016). In physics, phase retrieval is concerned with
estimating a specimen by observing the intensities (or squared modulus) of the diffracted waves
scattered by the object without knowing their phases. The advent of this problem is attributed to
the physical limitation that the optical sensors are unable to record the phases of the diffracted
waves. Put another way, in phase retrieval, we only have access to measurements that are quadratic
functions of the object of interest, and aim at estimating the unknown object up to global phase.
This gives rise to the problem of solving quadratic systems of equations, to be formulated below.

3.7.1 Problem formulation and assumptions

Suppose that we are interested in reconstructing an unknown signal x? ∈ Rn, but only have access
to a collection of m quadratic measurements on the linear combinations of its entries as follows:

yi = (a>i x?)2, 1 ≤ i ≤ m, (3.81)
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where ai = [ai,1, · · · , ai,n]> ∈ Rn is the design vector known a priori. See Figure 3.2 for an illustration
of this measurement model. The question is: when can we hope to reconstruct x?, in an accurate
and efficient fashion, on the basis of these nonlinear equations?

As is well known, solving quadratic systems of equations is, in general, NP hard.1 Additional
assumptions are therefore needed to enable tractable recovery. Here, we adopt a Gaussian design
model commonly studied in the literature.

Assumption 3.3. The design vectors {ai}1≤i≤m are independently generated obeying ai i.i.d.∼
N (0, In).

3.7.2 Algorithm

The Gaussian design model (cf. Assumption 3.3) allows meaningful estimation of the unknown
object x? via the (by now) familiar spectral method. Let us start by arranging the data into the
following matrix

M := 1
m

m∑

i=1
yiaia

>
i = 1

m

m∑

i=1
(a>i x?)2aia

>
i , (3.82)

which can be viewed as a weighted sample covariance matrix of the design vectors {ai}. The spectral
method then estimates x? by

x =
√
λ1
3 u1, (3.83)

where u1 (resp. λ1 = λ1(M)) indicates the leading eigenvector (resp. eigenvalue) of the matrix
M . This simple approach has been suggested for phase retrieval since the work of Netrapalli et al.
(2015).

To explain the rationale of this approach, it is instrumental to look at the mean of M under
Assumption 3.3. Specifically, simple calculation (which we include at the end of this subsection)
gives

M? := E[M ] = E
[
(a>i x?)2aia

>
i

]
= 2x?x?> + ‖x?‖22 In. (3.84)

It is self-evident that (a) the leading eigenvector of M? is precisely given by ±x?/‖x?‖2, and (b)
the leading eigenvalue of M? is given by 3‖x?‖22 by (3.84). From now on, we shall set

u?1 := x?/‖x?‖2, and λ?1 := 3‖x?‖22, (3.85)

which implies x? =
√
λ?1/3u?1 and hence explains the estimator constructed in (3.83). The above

argument further hints that: the spectral estimate x converges to the ground truth ±x? in the
large-sample limit with m→∞ (so that M → E[M ] = M?). The question, however, boils down to
where this algorithm stands in the more realistic finite-sample scenario.

Remark 3.9. The expression (3.85) indicates that x? = ‖x?‖2 u?1. From the law of large numbers,
one expects

1
m

m∑

i=1
yi → E[yi] = E

[
(a>x?)2] = ‖x?‖22,

with probability approaching one. Thus, an alternative estimator is

x̂ =
( 1
m

∑m

i=1
yi
)1/2

u1. (3.86)
1See the reduction to the NP-hard stone problem in Chen and Candès (2017).
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Derivation of (3.84). The (i, j)-th entry of E[M ] is given by

E[Mj,k] = E
[((
a>i x

?)2x?x?>
)
j,k

]
= E

[
(ai,1x?i,1 + · · ·+ ai,nx

?
i,n)2ai,jai,k

]
.

Expanding terms and using the moments of Gaussian variables yield

E[Mj,k] = E
[
2a2

i,ja
2
i,kx

?
i,jx

?
i,k

]
= 2x?i,jx?i,k if j 6= k;

E[Mj,j ] = E
[
a4
i,j

(
x?i,j

)2]+
∑

l: l 6=j
E
[
a2
i,la

2
i,j

(
x?i,l
)2] = 3

(
x?i,j

)2 +
∑

l: l 6=j

(
x?i,l
)2

= 2
(
x?i,j

)2 + ‖x?‖22.

Putting these together leads to the expression (3.84).

3.7.3 Performance guarantees

Developing theoretical support for the aforementioned spectral method hinges upon characterizing
the proximity of λ1 and λ?1 and that of u1 and u?1, both of which rely largely on boundingM −M?.
In what follows, we start by controlling ‖M −M?‖, with the proof postponed to Section 3.7.5.

Lemma 3.16. Consider the settings in Section 3.7.1. There exist sufficiently large constants c, C > 0
such that if m ≥ Cn log3m, then with probability at least 1−O(m−10) one has

‖M −M?‖ ≤ c
√
n log3m

m
‖x?‖22 ≤

1
10‖x

?‖22. (3.87)

Remark 3.10. The sample size requirement can be further relaxed to m ≥ Cn logn with a more
careful treatment (Candès et al., 2015b; Ma et al., 2020). For the sake of conciseness, however, we
do not strive to shave the log factors here.

With the above bound in mind, we are ready to characterize the statistical accuracy of the
spectral method for phase retrieval.

Theorem 3.17. Suppose the assumptions of Lemma 3.16 hold, then with probability at least
1−O(m−10), the following holds

min{‖x− x?‖2, ‖x+ x?‖2} ≤ 3c

√
n log3m

m
‖x?‖2.

As can be seen from Theorem 3.17, when the number m of measurements obeys m� n log3m,
the relative accuracy of the spectral estimates (i.e., min{‖x − x?‖2, ‖x + x?‖2}/‖x?‖2) becomes
considerably smaller than 1, thus indicating consistent estimation. This should be contrasted with
the minimax lower bounds derived in the literature (Cai and Zhang, 2015; Eldar and Mendelson,
2014), which assert that no estimator can achieve a vanishingly small relative estimation error if
m is orderwise smaller than n. All this corroborates the power of spectral methods for solving the
phase retrieval problem.

Proof of Theorem 3.17. Lemma 3.16 and Weyl’s inequality (see Lemma 2.2) yield

|λ1 − λ?1| ≤ ‖M −M?‖ ≤ c
√
n log3m

m
‖x?‖22 ≤ ‖x?‖22, (3.88)
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As a result, by using λ?1 = 3‖x?‖22, we have

λ1 ≥ λ?1 − ‖x?‖22 = 3‖x?‖22 − ‖x?‖22 = 2‖x?‖22. (3.89)

In addition, note that λ?1 = λ1(M?) = 3‖x?‖22 and λi(M?) = ‖x?‖22 for all i ≥ 2. The bound (3.87)
on M −M? indicates that

‖M −M?‖ ≤ (1− 1/
√

2)
[
λ1(M?)− λ2(M?)

]
,

which allows one to invoke the Davis-Kahan sin Θ theorem (cf. Corollary 2.8) to obtain

dist(u1,u
?
1) ≤ 2‖M −M?‖

λ1(M?)− λ2(M?) ≤ 2c

√
n log3m

m
. (3.90)

Without loss of generality, we shall assume ‖u1 − u?1‖2 = dist(u1,u?1) in the sequel.
Now we are ready to control our target quantity dist(x,x?). In view of the definition (3.83) of x,

one has

‖x− x?‖2 =
∥∥∥
√
λ1/3u1 − ‖x?‖2u?1

∥∥∥
2

≤
∥∥∥
(√

λ1/3− ‖x?‖2
)
u1
∥∥∥

2
+ ‖x?‖2‖u1 − u?1‖2

≤
∣∣∣
√
λ1/3− ‖x?‖2

∣∣∣+ 2c

√
n log3m

m
‖x?‖2. (3.91)

Here, the second line applies the triangle inequality, and the last line arises from the facts ‖u1‖2 = 1
and (3.90). It then boils down to controlling |

√
λ1/3 − ‖x?‖2|, for which (3.88) and (3.89) prove

useful. A little algebra reveals that

∣∣∣
√
λ1/3 − ‖x?‖2

∣∣∣ = 1√
3

∣∣λ1 − 3‖x?‖22
∣∣

√
λ1 +

√
3‖x?‖2

≤ c
√
n log3m

m
‖x?‖2, (3.92)

where the last relation relies on the bounds (3.88) and (3.89).
Taking collectively (3.91) and (3.92) concludes the proof.

3.7.4 Extensions

The spectral algorithm described in Section 3.7.2, while enjoying appealing statistical guarantees,
is improvable in multiple aspects. In this subsection, we briefly discuss two central issues: sample
efficiency and robustness against outliers.

Improving sample efficiency

Thus far, the spectral algorithm we have discussed requires the sample size to exceed m & n log3m.
While this can be improved to m & n logn via tighter analysis (Candès et al., 2015b; Ma et al., 2020),
it remains suboptimal due to the presence of the log factor. What happens in the sample-starved
regime where the sample size m is on the same order as the number n of unknowns? Is it possible
to achieve the information-theoretic sampling limit for this problem? As it turns out, in order to
attain the desired statistical accuracy in the sample-starved regime, we have to modify the standard
recipe by applying appropriate preprocessing steps before forming the data matrix M , as we shall
explain momentarily.
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Why is the algorithm in Section 3.7.2 suboptimal? Before introducing the improved spectral
algorithm, we take a closer look at the lower bound of the approximation error ‖M −M?‖ for the
sample-starved regime. Clearly,

‖M‖ ≥
a>j Maj

‖aj‖22
= 1
m

m∑

i=1
yi

(a>i aj)2

‖aj‖22
≥ 1
m
yj‖aj‖22

holds for any 1 ≤ j ≤ m. Taking j = i∗ := arg maxi yi, we obtain

‖M‖ ≥ (maxi yi) ‖ai∗‖22
m

. (3.93)

Under the i.i.d. Gaussian design,
{
yi/‖x?‖22

}
1≤i≤m forms a collection of i.i.d. χ2 random variables

with 1 degree of freedom. Classical Gaussian concentration results (Ferguson, 1996; Vershynin, 2017)
tell us that

max
1≤i≤m

yi = (2 + o(1))‖x?‖22 logm, ‖ai‖22 = (1 + o(1))n, 1 ≤ i ≤ m

with probability approaching one as n grows, as long as m = poly(n). Substitution into (3.93)
implies that

‖M‖ ≥ (2 + o(1)
)n logm

m
‖x?‖22 � ‖x?‖22

once m� n logm, which combined with (3.84) further yields

‖M −M?‖ ≥ ‖M‖ − ‖M?‖ = ‖M‖ − 3‖x?‖22 � ‖M?‖.

In other words, the deviation between M and M? is not as well-controlled as desired in the regime
with m� n logm, and hence classical matrix perturbation theory (e.g., the Davis-Kahan theorem)
does not support the use of the spectral algorithm based on M in this case.

Spectral methods with data preprocessing. The above diagnosis suggests a natural remedy: since
the culprit lies in the large influence maxi yi has brought to bear on the leading eigenvector, it is
advisable to downweight the effect of any excessively large yi. This is precisely the key idea behind
the truncated spectral method proposed by Chen and Candès (2017)—as well as other variations
proposed thereafter—that provably improves the sample efficiency of spectral methods.

More specifically, instead of using the matrix M constructed in (3.82), we resort to a properly
preprocessed data matrix

MT := 1
m

m∑

i=1
T (yi)aia>i (3.94)

with T some preprocessing function, and produce, by (3.86), an estimate

xT =
( 1
m

∑m

i=1
yi
)1/2

u1,T , (3.95)

where u1,T denotes the leading eigenvector of MT . A few representative examples of T are in order.

• mean-based truncation (Chen and Candès, 2017):

T (y) := y1
{
y ≤ α1y

}
, y := 1

m

∑m

i=1
yi, (3.96)

where α1 > 0 is some sufficiently large constant;
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• median-based truncation (Zhang et al., 2016; Zhang et al., 2018a):

T (y) := y1
{
y ≤ α2ymed

}
, ymed := median

( {yi}
)
, (3.97)

where α2 > 0 is some sufficiently large constant;

• orthogonality promotion (Wang et al., 2018a; Duchi and Ruan, 2019)

T (y) := 1
{
y ≥ y(α3m)

}
, (3.98)

where y(1) ≥ y(2) ≥ · · · ≥ y(m) denote the order statistics of {yi}, and 0 < α3 < 1 is some
properly chosen constant;

• optimal preprocessing (Mondelli and Montanari, 2019; Luo et al., 2019):

T (y) := y / y − 1
y / y +

√
2m/n− 1

, y := 1
m

∑m

i=1
yi. (3.99)

Remark 3.11. To be more precise, T (y) depends not only on y but also some statistics about {yi}
(e.g., empirical mean). Here, we suppress the dependency on such additional statistics mainly to
simplify notation.

In words, the first two choices discard any measurement yi that is too large (compared to the order of
either the empirical mean or empirical median), the third one selects a subset of measurements that
are most aligned with the unknown signal and scales their contributions to a measurement-invariant
level, while the last one effectively behaves as a shrinkage operator once yi rises above the empirical
mean. The following theorem—which was first established in Chen and Candès (2017) for the version
(3.96) and subsequently extended to other alternatives (Zhang et al., 2016; Wang et al., 2018a;
Lu and Li, 2020; Mondelli and Montanari, 2019; Luo et al., 2019)—confirms the effectiveness and
importance of proper preprocessing in enabling order-optimal sample complexity. The interested
reader is referred to these papers for the proofs.

Theorem 3.18. Consider the settings in Section 3.7. Fix any constant ε > 0, and suppose m ≥ c0n

for some sufficiently large constant c0 > 0 that is independent of n and m but possibly dependent
on ε. Then the spectral estimate (3.95) equipped with the above choices of T obeys

min{‖xT − x?‖2, ‖xT + x?‖2} ≤ ε ‖x?‖2
with probability at least 1−O(n−2), provided that the parameters α1, α2, α3 are suitably chosen in
(3.96)–(3.98).

To demonstrate the practicability of preprocessing, we depict in Figure 3.3 the numerical
performance of the mean-truncated spectral method (i.e., the choice (3.96)) in comparison to
the vanilla version described in Section 3.7.2. These numerical experiments corroborate the clear
advantage of proper preprocessing in the sample-starved regime.

Finally, we remark that in addition to order-wise statistical guarantees, Lu and Li (2020)
further pinned down sharp characterization of the error bounds (including the pre-constants) in this
sample-starved regime. Leveraging such sharp analyses, Mondelli and Montanari (2019) identified
the information-theoretic optimal choice (3.99), in the sense that it leads to an estimate strictly
better than a random guess (a.k.a. weak recovery) whenever it is information-theoretically possible.
Luo et al. (2019) further showed that this choice is uniformly optimal, meaning that it leads to the
smallest principal angle between xT and x? uniformly over all sampling ratios when m is on the
same order of n.
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(a)

(b)

(c)

Figure 3.3: Numerical performance of spectral methods for phase retrieval under coded diffraction patterns (see Candès
et al. (2015b) for details) when m = 10n. (a) the original image x? (which is 613, 760-dimensional); (b) the estimate of
the spectral method in Section 3.7.2; (c) the estimate of the mean-truncated spectral method (cf. (3.96)). There are in
total 10 groups of measurements each of size n; to generate each group of measurements, the entries of the signal x?
are first independently multiplied by random variables uniformly over {1,−1, i,−i}, followed by an application of the
discrete Fourier transform.
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Robustness vis-à-vis adversarial outliers

Another practical consideration that merits special attention is that the collected samples are
sometimes susceptible to adversarial entries (due to, say, sensor failures or malicious attacks). To
formulate this in more formal terms, consider the following modified measurement model (Zhang
et al., 2016; Hand, 2017; Hand and Voroninski, 2016):

yi =





(a>i x?)2, i /∈ Soutlier,

arbitrary, i ∈ Soutlier.
(3.100)

Here, Soutlier ⊆ {1, · · · ,m} represents the unknown subset of indices associated with outliers, which
is of cardinality |Soutlier| = αm for some 0 < α < 1. In particular, the measurements coming
from Soutlier might be corrupted arbitrarily. The goal is to reliably estimate x? even when the
measurements are grossly corrupted.

Unfortunately, the vanilla spectral method presented in Section 3.7.2 might not function properly
even in the presence of a single outlier; for instance, if the magnitude of this outlier is excessively
large, then the leading eigenvector of M will be heavily biased by this outlier. As a result, the
spectral method needs to be properly adjusted in order to combat the adverse effect of outliers.

To circumvent this issue, we first remind the readers of a classical finding in robust statistics
(Huber, 2004): the median statistic is oftentimes robust against adversarial outliers. Leveraging this
finding to the phase retrieval context, one might naturally employ the median of the measurements
{yi}1≤i≤m as a tool to help detect any excessively large outlier. In fact, this is precisely the idea
behind the median-truncated scheme presented in (3.97), whose capability in dealing with outliers
has been established in Zhang et al. (2016) for phase retrieval and Li et al. (2020c) for low-rank
matrix recovery.

Theorem 3.19. Consider the measurement model in (3.100), and the i.i.d. Gaussian design in
Assumption 3.3. Fix any ε > 0. There exist some constants c0 > 0 and 0 < c1 < 1 such that if
m ≥ c0n and α ≤ c1, then the spectral estimate (3.95) equipped with (3.97) obeys

min{‖xT − x?‖2, ‖xT + x?‖2} ≤ ε‖x?‖2

with probability at least 1−O(n−2).

In a nutshell, Theorem 3.19 reveals that a median-truncated spectral method achieves consistent
estimation even when a constant fraction of the measurements are corrupted in an arbitrary manner.
All this is guaranteed to happen even when the number m of samples is on the same order as n,
thus further enhancing the resilience of spectral methods in the presence of adversarial corruptions.
The interested reader is referred to Zhang et al. (2016) for the proof of this theorem.

3.7.5 Proof of auxiliary lemmas

Proof of Lemma 3.16. Given that {ai} is rotationally invariant, we assume without loss of
generality that x? = e1, where e1 is the first standard basis vector. Thus, our task can be translated
into bounding

M −M? = 1
m

m∑

i=1

{
a2
i,1aia

>
i −

(
2e1e

>
1 + In

)}
=: 1

m

m∑

i=1

(
Bi − E

[
Bi
])
,
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where ai,1 denotes the first entry of the vector ai, and Bi := a2
i,1aia

>
i .

In order to deal with the unboundedness of Gaussian random variables, we resort to the truncated
matrix Bernstein inequality, which requires us to first set a proper truncation level. In view of the
Gaussianity of ai and the union bound, one has ‖ai‖∞ ≤ 5

√
logm for all 1 ≤ i ≤ m with probability

at least 1−m−11.5; on this event, one would have
∥∥Bi

∥∥ =
∣∣ai,1

∣∣2∥∥ai
∥∥2

2 ≤ n
∥∥ai

∥∥4
∞ ≤ 54n log2m. (3.101)

Therefore, taking L := 54n log2m leads to
P
{∥∥Bi

∥∥ ≥ L} ≤ m−11.5 =: q0.

Further, truncating at this level does not incur much bias; to be precise, we claim that (with the
proof deferred to the end of this subsection)

q1 :=
∥∥E
[
Bi1{‖Bi‖ < L} − E[Bi]

]∥∥ . m−3. (3.102)
The next step is to characterize the variance statistic. Towards this end, it is first seen from the

definition of Bi that
E
[
(Bi − E[Bi])2 ] � E[B2

i ] = E
[
a4
i,1
∥∥ai

∥∥2
2aia

>
i

]
. (3.103)

As can be easily verified, E
[
a4
i,1
∥∥ai

∥∥2
2aia

>
i

]
is a diagonal matrix, whose diagonal entries obey

(
E
[
a4
i,1
∥∥ai

∥∥2
2aia

>
i

])
l,l

= E
[
a4
i,1a

2
i,l

∑
j
a2
i,j

]
=
∑

j
E
[
a4
i,1a

2
i,la

2
i,j

]
. n

for any 1 ≤ l ≤ n, where the last relation follows from the property of standard Gaussians. This
taken together with (3.103) gives

v :=
∥∥∥
∑

i

E
[
(Bi − E[Bi])2 ]∥∥∥ ≤

∑

i

max
l

∣∣∣
(
E
[
a4
i,1
∥∥ai

∥∥2
2aia

>
i

])
l,l

∣∣∣ . mn.

Invoking the truncated Bernstein inequality in Corollary 3.2 then yields: with probability at least
1−O(m−10)−mq0 = 1−O(m−10), one has

∥∥M −M?
∥∥ . 1

m

√
v logm+ L

m
logm+ mq1

m

.
√
n logm
m

+ n log3m

m
+ 1
m3 .

√
n log3m

m

as desired, with the proviso that m & n log3m.

Proof of the inequality (3.102). We begin by employing the relation (3.101) to help modify the
truncation event as follows:

q1 =
∥∥E
[
Bi1{‖Bi‖ < L} − E[Bi]

]∥∥ =
∥∥E
[
Bi1{‖Bi‖ ≥ L}

]∥∥

≤
∥∥E
[
Bi1{n‖ai‖4∞ ≥ L}

]∥∥ =
∥∥E
[
Bi1{‖ai‖∞ ≥ L}

]∥∥,
where we define L := (L/n)1/4 = 5

√
logm. It is easily seen that E

[
Bi1{‖ai‖∞ ≥ L}

]
is a diagonal

matrix and, therefore,

q1 ≤ max
l

∣∣∣
(
E
[
Bi1{‖ai‖∞ ≥ L}

])
l,l

∣∣∣ (i)= max
l

E
[
a2
i,1a

2
i,l1{‖ai‖∞ ≥ L}

]

(ii)
≤ 0.5 max

l
E
[
(a4
i,1 + a4

i,l)1{‖ai‖∞ ≥ L}
]

= E
[
a4
i,11{‖ai‖∞ ≥ L}

]

≤ E
[
a4
i,11{

∣∣ai,1
∣∣ ≥ L}]+ E

[
a4
i,11{maxj 6=1

∣∣ai,j
∣∣ ≥ L}], (3.104)
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where (i) relies on the definition of Bi, and (ii) comes from the AM-GM inequality. With regards to
the first term of (3.104), observe that

E
[
a4
i,11{|ai,1| ≥ 5

√
logm}] =

∫ ∞

5
√

logm

2ξ4
√

2π
e−ξ

2/2dξ

≤ 2
∫ ∞

5
√

logm

e−ξ
2/4

√
2π

dξ = 2P
{|ai,1| ≥ 2.5

√
logm

}
. 1
m3

for m sufficiently large, where we have used the fact that ξ4e−ξ
2/2 ≤ e−ξ

2/4 for ξ ≥ 5
√

logm.
Regarding the second term of (3.104), note that

E
[
a4
i,11

{
max
j 6=1

∣∣ai,j
∣∣ ≥ L

}]
= E

[
a4
i,1
]
E
[
1

{
max
j 6=1

∣∣ai,j
∣∣ ≥ L

}]

= 3P
{

max
j 6=1

∣∣ai,j
∣∣ ≥ 5

√
logm

}
. m−10,

where the first identity uses the independence between ai,1 and {ai,j}j 6=1. Substituting the preceding
bounds into (3.104) establishes (3.102).

3.8 Matrix completion

A pressing challenge often encountered in data science applications is estimation and learning in
the face of missing data. To elucidate how to tackle this challenge via spectral methods, we delve
into the renowned matrix completion problem in this section, followed by another application called
tensor completion in Section 3.9.

Imagine that one observes a small subset of the entries in a large unknown matrix and seeks to
fill in all missing entries. An archetypal example is collaborative filtering, where one aims to predict
the users’ preferences on a collection of products based on partially revealed user-product ratings.
See Figure 3.4 for an illustration. The problem, often referred to as matrix completion, is apparently
ill-posed in general, as there are (much) fewer measurements than the unknowns.

Fortunately, if the matrix of interest exhibits certain low-dimensional structure, then reliable
recovery becomes feasible. A commonly encountered example of this kind concerns the case when
the target matrix enjoys a low-rank structure. Again, take collaborative filtering for example: the
user-product rating matrix might be well explained by a relatively small number of latent factors
connecting users’ preferences with products’ attributes, thus resulting in an approximately low-rank
matrix. Motivated by its fundamental importance, recent years have witnessed a flurry of research
activity in studying low-rank matrix completion (Candès and Recht, 2009; Keshavan et al., 2010;
Gross, 2011); see Chen and Chi (2018) and Davenport and Romberg (2016) for overviews of recent
developments. In the sequel, we present a simple yet effective approach enabled by the spectral
method, originally proposed in Achlioptas and McSherry (2007) and Keshavan et al. (2010).

3.8.1 Problem formulation and assumptions

Suppose that we are interested in estimating an n1 × n2 rank-r matrix M? = [M?
i,j ]1≤i≤n1,1≤j≤n2 .

Without loss of generality, we assume
n1 ≤ n2.

Denote byM? = U?Σ?V ?> the SVD ofM?, where the columns of U? ∈ Rn1×r (resp. V ? ∈ Rn2×r)
are the left (resp. right) singular vectors of M?, and Σ? is a diagonal matrix whose diagonal
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Figure 3.4: Illustration of matrix completion, where each “X” stands for an observed entry and each “?” represents
a missing entry.

entries are the singular values of M?. We define the condition number of the matrix M? to be
κ := σ1(M?)/σr(M?).

To capture the presence of missing data, we introduce an index subset Ω ⊆ [n1]× [n2], such that
each entry M?

i,j is observed if and only if (i, j) ∈ Ω. The goal is to reconstruct the singular subspaces
U? and V ?, as well as the full matrix M?, based on entries observed over the sampling set Ω.

Random sampling. Apparently, not all sampling patterns admit reliable estimation. For instance,
if Ω contains only entries in the top half of the matrix, then there is in general no hope to predict
the bottom half of the matrix. In order to allow for meaningful matrix completion, this monograph
focuses on a natural random observation model commonly adopted in the literature, as formulated
below.

Assumption 3.4 (Random sampling). Each entry of M? is observed independently with probability
0 < p < 1, namely, each (i, j) ∈ [n1]× [n2] is included in Ω independently with probability p.

Under this model, we shall view the expected number of observed entries—namely, pn1n2—as
the sample size. In truth, as long as p is not overly small, the number of observed entries is expected
to concentrate around its mean pn1n2.

Incoherence conditions. Caution needs to be exercised, however, that the random sampling model
alone does not guarantee effective recovery of an arbitrary low-rank matrix M?. Consider, for
example, the following rank-1 matrix M? containing a single nonzero entry:




1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0



.

If p = o(1), then with probability 1 − p = 1 − o(1), the sampling pattern will fail to include the
nonzero entry M?

1,1, thus ruling out the possibility of faithful matrix recovery. Consequently, one
needs to make sure that the sampling pattern does not suppress too much useful information.
Towards this end, the pioneering work Candès and Recht (2009) and Candès and Tao (2010) singled
out an incoherence parameter that plays a vital role.
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Definition 3.1. The incoherence parameter µ of the matrix M? ∈ Rn1×n2 is defined as

µ := max
{
n1‖U?‖22,∞

r
,
n2‖V ?‖22,∞

r

}
.

Remark 3.12. Recognizing the following basic relation

r

n1
= 1
n1
‖U?‖2F ≤ ‖U?‖22,∞ ≤ ‖U?‖2 = 1

and an analogous one for V ?, we have 1 ≤ µ ≤ max{n1, n2}/r = n2/r.

In words, a small µ indicates that the energy of the singular vectors is spread out across different
elements, namely, the singular subspace of M? is not too “aligned” with any of the standard basis
vectors, thus ensuring that entrywise observations provide somewhat equalized information about
the full spectrum of M?. The following lemma summarizes a few immediate consequences of this
definition, with the proof deferred to Section 3.8.4.

Lemma 3.20. Assume that M? ∈ Rn1×n2 is µ-incoherent. Then the following relations hold

‖M?‖2,∞ ≤
√
µr/n1

∥∥M?
∥∥; ‖M?>‖2,∞ ≤

√
µr/n2

∥∥M?
∥∥; (3.105a)

‖M?‖∞ ≤ µr
∥∥M?

∥∥/√n1n2. (3.105b)

Additional notation. We find it convenient to introduce a Euclidean projection operator PΩ :
Rn1×n2 7→ Rn1×n2 such that

[PΩ(A)
]
i,j

=




Ai,j , if (i, j) ∈ Ω
0, else

(3.106)

for any matrix A = [Ai,j ] ∈ Rn1×n2 . With this notation in place, matrix completion amounts to
recovering M? on the basis of PΩ(M?).

3.8.2 Algorithm

To apply the spectral method, the first step is to form a reasonable approximation M of the
unknown matrix M?. By virtue of the random sampling model (cf. Assumption 3.4), a candidate
approximation can be obtained from the observed data matrix via inverse probability weighting:

M := p−1PΩ(M?). (3.107)

The rationale is that M forms an unbiased estimate of the ground truth, namely,

E[M ] = M?,

where the expectation is taken over the randomness in Ω.
As a result, the proposed spectral method proceeds by computing the rank-r SVD UΣV > of the

matrix M constructed in (3.107), and employing U ∈ Rn1×r, V ∈ Rn2×r and UΣV > as estimates
of U?, V ? and M?, respectively.
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3.8.3 Performance guarantees

As before, whether the subspace U (resp. V ) is close to U? (resp. V ?) relies crucially on the size of
the perturbation ‖M −M?‖. Therefore, we begin by developing an upper bound on this quantity;
the proof is based on the matrix Bernstein inequality and is postponed to Section 3.8.4.

Lemma 3.21. Consider the settings in Section 3.8.1. Suppose that n2p ≥ Cµr logn2 for some
constant C > 0. Then with probability at least 1−O(n−10

2 ), the matrix M constructed in (3.107)
obeys

∥∥M −M?
∥∥ .

√
µr logn2
n1p

∥∥M?
∥∥.

With this perturbation bound in place, we are equipped to apply Wedin’s sin Θ theorem to
obtain the following results. The condition on the sample size in Theorem 3.22 is stronger than that
in Lemma 3.21, as we need to control the eigengap in the following theorem.

Theorem 3.22. Consider the settings in Section 3.8.1. Suppose that n1p ≥ C1κ2µr logn2 for some
sufficiently large constant C1 > 0. Then with probability exceeding 1−O(n−10

2 ),

max
{

dist (U ,U?) , dist (V ,V ?)
}
. κ

√
µr logn2
n1p

.

Proof. As a direct consequence of Lemma 3.21, one has

∥∥M −M?
∥∥ .

√
µr logn2
n1p

∥∥M?
∥∥ ≤

(
1− 1√

2

)
σr(M?),

provided that n1p ≥ C1κ2µr logn2 for some large enough constant C1 > 0. Apply Wedin’s theorem
(cf. (2.26)) and Lemma 3.21 to obtain

max
{

dist (U ,U?) , dist (V ,V ?)
}
≤ 2

∥∥M −M?
∥∥

σr(M?) . κ

√
µr logn2
n1p

as claimed.

As an important implication of Theorem 3.22, once the sample size exceeds

pn1n2 � κ2µrn2 logn2,

then the spectral estimate achieves consistent estimation in the sense that

max
{

dist (U ,U?) , dist (V ,V ?)
}

= o(1).

Given that pn1n2 & µn2r logn2 is an information-theoretic sampling requirement for reliable matrix
completion when r = o(n1/ logn2) (Candès and Tao, 2010), Theorem 3.22 confirms the near
optimality of spectral methods—in terms of the scaling with n1, n2 and p—when it comes to
consistent subspace estimation.

Before moving forward to the proof, we further characterize the statistical accuracy of UΣV >
in estimating the unknown matrix M?. Accomplishing this only requires Lemma 3.21, without any
need of the singular subspace perturbation theory. This result will also come in handy when we
turn to discussing entrywise estimation accuracy in Chapter 4.
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Theorem 3.23. Consider the settings in Section 3.8.1. Suppose that n2p ≥ Cµr logn2 for some
sufficiently large constant C > 0. Then with probability at least 1−O(n−10

2 ), one has

‖UΣV > −M?‖F .
√
µr2 logn2

n1p

∥∥M?
∥∥.

Proof. First, note

‖UΣV > −M?‖ ≤ ‖UΣV > −M‖+ ‖M −M?‖ ≤ 2‖M −M?‖,

where the first inequality comes from the triangle inequality, and the second inequality follows from
the fact that UΣV > is the best rank-r approximation to M , i.e.,

‖UΣV > −M‖ = min
Z:rank(Z)≤r

‖Z −M‖ ≤ ‖M −M?‖.

Additionally, it is observed that UΣV > −M? has rank at most 2r, which implies

‖UΣV > −M?‖F ≤
√

2r‖UΣV > −M?‖ ≤ 2
√

2r
∥∥M −M?

∥∥.

This combined with Lemma 3.21 immediately concludes the proof.

3.8.4 Proof of auxiliary lemmas

Proof of Lemma 3.20. First of all, the ‖ · ‖2,∞ norm of M? can be upper bounded by

‖M?‖2,∞ = ‖U?Σ?V ?>‖2,∞ ≤ ‖U?‖2,∞‖Σ?‖ ‖V ?‖ ≤
√
µr

n1

∥∥M?
∥∥.

Here, the first inequality arises from the elementary bounds ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖ and ‖AB‖ ≤
‖A‖ ‖B‖, whereas the last relation uses Definition 3.1, the orthonormality of V ?, and identifies
‖Σ?‖ with ‖M?‖. The bound on ‖M?>‖2,∞ can be derived analogously and is omitted for brevity.

In addition, the matrix M? is elementwise bounded by

‖M?‖∞ = ‖U?Σ?V ?>‖∞ ≤ ‖U?‖2,∞‖V ?‖2,∞‖Σ?‖ ≤ µr√
n1n2

∥∥M?
∥∥.

Here, the first inequality follows from the fact ‖AB>‖∞ ≤ ‖A‖2,∞‖B‖2,∞ and the aforementioned
one ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖, while the last inequality again relies on Definition 3.1.

Proof of Lemma 3.21. Note that the matrix E := p−1PΩ(M?) −M? can be expressed as the
sum of n1n2 i.i.d. random matrices

1
p
PΩ(M?)−M? =

n1∑

i=1

n2∑

j=1

(
p−1δi,j − 1

)
M?
i,jeie

>
j︸ ︷︷ ︸

=:Xi,j

.

Here, δi,j (which indicates whether the (i, j)-th entry is observed) follows an independent Bernoulli
distribution with parameter p, and ei stands for the i-th standard basis vector of appropriate
dimensions. It is easily seen that for each (i, j),

E[Xi,j ] = 0 and ‖Xi,j‖ ≤
1
p
‖M?‖∞ ≤

µr

p
√
n1n2

∥∥M?
∥∥,
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where the last relation results from the entrywise upper bound (3.105b) on M?. In order to apply
the matrix Bernstein inequality (cf. Corollary 3.3), we need to control the variance statistic

v := max
{∥∥∥
∑

i,j
E
[
Xi,jX

>
i,j

] ∥∥∥,
∥∥∥
∑

i,j
E
[
X>i,jXi,j

] ∥∥∥
}
.

Regarding the first variance term, we have
∑

i,j
E
[
Xi,jX

>
i,j

]
=
∑

i,j
E
[(
p−1δi,j − 1

)2(M?
i,j)2eie

>
j eje

>
i

]

= 1− p
p

∑
i,j

(
M?
i,j

)2
eie
>
i = 1− p

p

n1∑

i=1
‖M?

i,·‖22eie>i

� 1− p
p
‖M?‖22,∞In1 �

µr

n1p
‖M?‖2 In1 .

Here, the first identity arises from the definition of Xi,j , the second one calculates the variance
of Bernoulli random variables, and the last line relies on the upper bound (3.105a). Similarly, the
second term in the variance statistic enjoys the following characterization:

∑
i,j

E
[
X>i,jXi,j

]
� µr

n2p
‖M?‖2 In2 .

Taking the above relations together and recalling that n1 ≤ n2 give

v ≤ µr

n1p

∥∥M?
∥∥2
.

With the above bounds in place, invoking matrix Bernstein (see Corollary 3.3) reveals that: with
probability at least 1−O(n−10

2 ),

‖E‖ .
√
µr‖M?‖2 logn2

n1p
+ µr‖M?‖ logn2

p
√
n1n2

�
√
µr‖M?‖2 logn2

n1p
,

where the last inequality is valid as long as n2p & µr logn2.

3.9 Tensor completion

Tensor data, which can be viewed as a higher-order generalization of matrix data, are routinely
used in science and engineering applications to capture multi-way interactions across variables
of interest (Kolda and Bader, 2009; Sidiropoulos et al., 2017; Anandkumar et al., 2014). Akin to
matrix completion, the problem of tensor completion aims to reconstruct a (structured) tensor when
the vast majority of its entries are unobserved, a task that spans a wide spectrum of applications
including visual data inpainting, harmonic retrieval, seismic data analysis, and so on (Liu et al.,
2012; Chen and Chi, 2014; Kreimer et al., 2013).

Apparently, this task cannot possibly be accomplished without exploiting further structural
assumptions on the tensor under consideration. Inspired by the success of low-rank matrix completion,
we explore the case where the unknown tensor enjoys certain low-rank structure (more specifically,
low canonical-polyadic (CP) rank (Kolda and Bader, 2009)). For simplicity, we concentrate on
order-three tensors (namely, T = [Ti,j,k] ∈ Rn1×n2×n3), which already capture several fundamental
challenges intrinsic to tensor estimation. In addition, we take the dimensionality n1 = n2 = n3 = n

for simplicity of presentation.
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Figure 3.5: Illustration of tensor completion, where we observe partial entries of an order-three tensor.

3.9.1 Problem formulation and assumptions

Notation. Before describing our models, we introduce several notation that will be useful through-
out. For any vectors a = [ai]1≤i≤n, b = [bi]1≤i≤n, c = [ci]1≤i≤n ∈ Rn, the tensor a⊗b⊗c stands for an

n×n×n array whose (i, j, k)-th entry is given by aibjck. Additionally, we denote by a⊗b :=
[

a1b

...
anb

]

the Kronecker product between a and b. For any tensor T = [Ti,j,k]1≤i,j,k≤n ∈ Rn×n×n, we say that
A = [Ai,j ] ∈ Rn×n2 is the mode-1 matricization of T , denoted by

A = unfold(T ),

if Ai,(j−1)n+k = Ti,j,k for all (i, j, k) ∈ [n]× [n]× [n].

Models and assumptions. Suppose the unknown order-three symmetric tensor T ? = [T ?i,j,k]1≤i,j,k≤n
is a superposition of r (r < n) rank-one symmetric tensors:

T ? =
r∑

i=1
w?
i ⊗w?

i ⊗w?
i ∈ Rn×n×n, (3.108)

where {w?
i ∈ Rn} represents a set of latent tensor factors. What we have available are incomplete

observations of the entries of T ?. The observed data can be succinctly encoded by an index subset
Ω ⊆ [n]× [n]× [n] (called a sampling set) and a tensor T = [Ti,j,k]1≤i,j,k≤n as follows

Ti,j,k =




T ?i,j,k, if (i, j, k) ∈ Ω,
0, else.

(3.109)

This subsection aims for an intermediate goal, namely, estimating the subspace spanned by {w?
i }1≤i≤r,

which often serves as a crucial initial stage towards reliable completion of the whole tensor. The
interested reader is referred to Montanari and Sun (2018) and Cai et al. (2021b) for subsequent
stages of tensor completion algorithms.

Similar to the matrix completion counterpart, we explore a random sampling pattern such that
for all (i, j, k) ∈ [n]× [n]× [n],

(i, j, k) ∈ Ω independently with probability p. (3.110)

In addition, we define for notational convenience that

νi := ‖w?
i ‖32, νmin := min

1≤i≤r
νi, νmax := max

1≤i≤r
νi, (3.111)
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where νi reflects the size of the rank-1 component w?
i ⊗w?

i ⊗w?
i . The condition number of T ? is

then defined as κ := νmax/νmin.
We shall also introduce several incoherence parameters as follows.

Definition 3.2. Define the incoherence parameters of T ? (cf. (3.108)) as

µ1 := max
1≤i≤r

n‖w?
i ‖2∞

‖w?
i ‖22

, and µ2 := max
i 6=j

n
∣∣〈w?

i ,w
?
j 〉
∣∣2

‖w?
i ‖22 ‖w?

j‖22
. (3.112)

Let us explain these parameters in words: small µ1 and µ2 reflect that (i) the energy of each
tensor factor w?

i is spread out across different entries, and (ii) the factors {w?
i } are not too correlated

with each other. To simplify presentation, we set

µ := max{µ1, µ2}.

3.9.2 Algorithm

Unfortunately, it is notoriously difficult to exploit the low-rank structure—and many other low-
complexity structure—efficiently in the original tensor space (Hillar and Lim, 2013). To circumvent
this issue, a natural strategy thus attempts to matricize the tensor data, followed by an application
of suitable low-rank matrix estimation algorithms. Specifically, let us unfold the tensor T ? into an
n× n2 matrix A? as follows

A? := unfold
(
T ?
)

=
r∑

i=1
w?
i

(
w?
i ⊗w?

i

)> ∈ Rn×n
2
. (3.113)

The resulting matrix A? inherits the low-rank structure, as it clearly has rank at most r. We shall
also matricize the observed data as

A := unfold(T ). (3.114)

In order to estimate the subspace U? spanned by {w?
i }1≤i≤r (which is the column space of

A? as well), the spectral method studied here resorts to the rescaled Gram matrix p−2AA>. As a
sanity check, if there is absolutely no missing data (i.e., p = 1), then p−2AA> reduces to A?A?>,
whose column space coincides with that of A?. Turning to the scenario with missing data, a close
inspection reveals that

1
p2E

[
AA>

]
= A?A?> +

(1
p
− 1

)
Pdiag

(
A?A?>), (3.115)

where Pdiag(·) denotes the Euclidean projection onto the set of matrices with zero off-diagonal
entries. This, however, makes apparent a severe issue: in the highly subsampled regime (i.e., where
p is small), the diagonal components might be excessively large and non-identical, thus destroying
the low-rank structure in (3.115).

To mitigate their undesirable effects, it is advisable to properly adjust the sizes of the diagonal
entries (Montanari and Sun, 2018; Cai et al., 2021a). As it turns out, a simple yet plausible scheme
is diagonal deletion, which exploits only the off-diagonal part as follows

M := 1
p2Poff-diag

(
AA>

)
. (3.116a)
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Here, Poff-diag(·) stands for the operator that zeros out all diagonal entries of a matrix. One can
easily verify that, in expectation,

E[M ] = A?A?>
︸ ︷︷ ︸

=:M?

− Pdiag
(
A?A?>), (3.116b)

which stays quite close to the low-rank matrix M? as long as the diagonal entries of M? are small
enough. The spectral method then proceeds by calculating the top-r eigendecomposition UΛU> of
M and returning U as the subspace estimate. Here, the columns of U ∈ Rn×r are formed by the r
leading eigenvectors ofM , while Λ ∈ Rr×r is a diagonal matrix containing the r leading eigenvalues.

Remark 3.13. The diagonal deletion idea has been recommended not just for tensor completion, but
also for problems including but not limited to bi-clustering (Florescu and Perkins, 2016), PCA with
missing data and/or heteroskedastic noise (Cai et al., 2021a; Abbe et al., 2020a), and contextual
community detection (Abbe et al., 2020a). Instead of diagonal deletion, one might also consider
properly rescaling the diagonal entries based on the sampling mechanism; see, e.g., Montanari and
Sun (2018), Lounici (2014), Loh and Wainwright (2012), Zhang et al. (2021), and Zhu et al. (2019).

3.9.3 Performance guarantees

The aforementioned spectral method can be analyzed by means of the `2 perturbation theory as well.
As usual, this requires first controlling the size of E := M −M?, where M and M? are defined in
(3.116a) and (3.116b), respectively.

Lemma 3.24. Consider the settings in Section 3.9.1. There exists some universal constant C > 0
such that with probability at least 1−O(n−7),

‖E‖ ≤ C
(
µ3/2r

√
logn

n3/2p
+
√
µ2r logn
n2p

+ µr

n

)
ν2

max, (3.117)

provided that p & µ3/2r log2.5 n
n3/2 and that µmax{logn, r2κ4} ≤ c3n for some sufficiently small constant

c3 > 0.

In order to apply the Davis-Kahan sin Θ theorem (cf. Corollary 2.8), another step boils down to
characterizing the eigengap of the matrix M? = A?A?> of interest. Our result is this:

Lemma 3.25. Suppose that µr2κ4 ≤ c3n for some sufficiently small constant c3 > 0. Then the i-th
largest eigenvalue of A?A?> obeys

λi
(
A?A?>) ∈ [

ν2
min/2, 2ν2

max
]
, if 1 ≤ i ≤ r;

λi
(
A?A?>) = 0, if i ≥ r + 1.

The preceding two lemmas, which will be established in Section 3.9.4, readily lead to the following
statistical guarantees for the spectral method presented in Section 3.9.2.

Theorem 3.26. Consider the settings in Section 3.9.1. Suppose that

µr2κ4 logn ≤ c4n and p ≥ c5
µ3/2κ2r log2.5 n

n3/2 (3.118)
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hold for some small (resp. large) enough constant c4 > 0 (resp. c5 > 0). Then with probability at
least 1−O(n−7), one has

dist
(
U ,U?) . µ3/2κ2r

√
logn

n3/2p
+
√
µ2κ4r logn

n2p
+ µκ2r

n
.

Proof. In view of Lemmas 3.24-3.25, one would have ‖E‖ ≤ (1− 1/
√

2)λr(M?) under Condition
(3.118). Corollary 2.8 combined with Lemma 3.24 then tells us that, with probability at least
1−O(n−7),

dist
(
U ,U?) ≤ 2

∥∥E
∥∥

λr(M?) .

(
µ3/2r

√
logn

n3/2p
+
√

µ2r logn
n2p + µr

n

)
ν2

max

ν2
min

as desired.

Theorem 3.26 is noteworthy for its implication on the sample complexity. To be precise, consider,
for simplicity, the scenario where r, µ, κ = O(1). In order to achieve consistent estimation in the
sense that dist

(
U ,U?

)
= o(1), it suffices for the sample size—which sharply concentrates around

n3p under our model—to exceed
n3p & n3/2poly log(n).

The careful reader might immediately remark that this sample complexity remains substantially
higher than the information-theoretic limit, the latter of which is nr = O(n) in this case since
there are only nr free parameters. It is worth noting, however, that all polynomial-time algorithms
developed in the literature for tensor completion require a sample size at least exceeding the order
of n3/2 (Barak and Moitra, 2016). This hints at the (potential) existence of a computational barrier
that prevents one from achieving the information-theoretic limit efficiently. Viewed in this light, the
spectral method presented herein already achieves near-optimal sample complexity—when restricted
to computationally tractable algorithms—if the objective is consistent subspace estimation.

3.9.4 Proof of auxiliary lemmas

Proof of Lemma 3.24. Define the following zero-mean random matrix

Z = p−1A−A?.

It is self-evident that

p−2(AA> − E
[
AA>

])
= A?Z> +ZA?> +

(
ZZ> − E

[
ZZ>

])
,

which implies that the identity holds for the off-diagonal part. By the definitions (3.116a) and
(3.116b), it follows from the triangle inequality that

∥∥M −M?
∥∥ ≤

∥∥Pdiag
(
A?A?>)∥∥+ 2

∥∥Poff-diag
(
A?Z>

)∥∥

+
∥∥Poff-diag

(
ZZ> − E

[
ZZ>

])∥∥. (3.119)

In the sequel, we shall discuss how to control the three terms on the right-hand side of (3.119)
separately.

Step 1: bounding ‖Pdiag(A?A?>)‖. It is straightforward to verify that
∥∥Pdiag

(
A?A?>)∥∥ = max

1≤l≤n

∥∥A?
l,·
∥∥2

2 =
∥∥A?

∥∥2
2,∞. (3.120)
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It thus suffices to bound ‖A?‖2,∞, which we shall discuss momentarily.

Step 2: bounding ‖Poff-diag(ZZ> − E[ZZ>])‖. Define a collection of independent zero-mean random
matrices as follows

Qi := Poff-diag
(
Z·,iZ>·,i

)
, 1 ≤ i ≤ n2,

with which we can express

Poff-diag
(
ZZ> − E

[
ZZ>

])
=
∑

i

(
Qi − E

[
Qi
])

=
∑

i
Qi. (3.121)

Here the last relation uses the fact that Poff-diag(E[ZZ>]) = ∑
i E
[
Qi
]

= 0. Recognizing that the
entries of Z·,i are independently generated, one can see from straightforward calculations that
E
[
QiQ

>
i

]
is a diagonal matrix, whose diagonal entries satisfy

(
E
[
QiQ

>
i

])
l,l

= E
[
Z2
l,i

] ∑

j:j 6=l
E
[
Z2
j,i

]
= 1− p

p

(
A?l,i

)2 ∑

j:j 6=l

1− p
p

(
A?j,i

)2

≤ 1
p2
(
A?l,i

)2∥∥A?
·,i
∥∥2

2 ≤
1
p2
(
A?l,i

)2∥∥A?
∥∥2
∞,2

for all 1 ≤ l ≤ n. Taking into account all samples yields
n2∑

i=1

(
E
[
QiQ

>
i

])
l,l
≤ 1
p2

n2∑

i=1

(
A?l,i

)2∥∥A?
∥∥2
∞,2 ≤

1
p2
∥∥A?

∥∥2
2,∞
∥∥A?

∥∥2
∞,2

for any 1 ≤ l ≤ n, which together with the diagonal structure of E
[
QiQ

>
i

]
leads to an upper bound

on the variance statistic

v :=
∥∥∥
∑

i

E
[
QiQ

>
i

]∥∥∥ =
∣∣∣max

l

(∑

i

(
E
[
QiQ

>
i

])
l,l

)∣∣∣ ≤
∥∥A?

∥∥2
2,∞
∥∥A?

∥∥2
∞,2

p2 .

In addition, we identify a suitable truncation level and claim that

P
{∥∥Qi

∥∥
2 ≥ L

}
≤ 2n−7 =: q0, (3.122a)

∥∥∥E
[
Qi1

{∥∥Qi

∥∥
2 ≤ L

}]∥∥∥ ≤ 4n−7p−2∥∥A?
∥∥2
∞,2 =: q1, (3.122b)

where we define L := 2
(
4
√

logn
p

∥∥A?
∥∥
∞,2 + 6 logn

p

∥∥A?
∥∥
∞
)2. Armed with these observations, the

truncated matrix Bernstein inequality (see Corollary 3.2) taken together with (3.121) reveals that
∥∥Poff-diag

(
ZZ> − E

[
ZZ>

])∥∥ .
√
v logn+ L logn+ n2q1

.
√

logn
p

∥∥A?
∥∥

2,∞
∥∥A?

∥∥
∞,2 + log2 n

p

∥∥A?
∥∥2
∞,2 + log3 n

p2
∥∥A?

∥∥2
∞ (3.123)

with probability 1−O(n−7)− nq0 = 1−O(n−7), provided that p & n−5.

Step 3: bounding ‖Poff-diag(A?Z>)‖. This term can be controlled in a similar fashion as ‖Poff-diag(ZZ>−
E[ZZ>])‖. We thus omit the details and only state the result as follows:

‖Poff-diag(A?Z>)‖ .
∥∥A?

∥∥
∞,2
∥∥A?

∥∥
√

logn
p

+
√

log3 n

p

∥∥A?
∥∥2
∞,2 + ‖A?‖∞,2

∥∥A?
∥∥
∞

log2 n

p
(3.124)
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holds with probability at least 1−O(n−7).

Step 4: To finish up, we are in need of bounding ‖A?‖∞,2, ‖A?‖2,∞ and ‖A?‖∞, which is accomplished
in the following lemma.

Lemma 3.27. Suppose that µr2 ≤ n. Then one has

∥∥A?
∥∥
∞ ≤

µ3/2rνmax
n3/2 ,

∥∥A?
∥∥
∞,2 ≤

µ
√

2rνmax
n

,
∥∥A?

∥∥
2,∞ ≤

√
2µr
n
νmax.

Taking Lemma 3.27 collectively with (3.120), (3.123), (3.124) and combining terms, we arrive at

(3.120) + (3.123) + (3.124) .
(
µ3/2r

√
logn

n3/2p
+
√
µ2r logn
n2p

+ µr

n

)
ν2

max

with probability at least 1 − O(n−7), provided that µ logn ≤ n and p & µ3/2r log2.5 n
n3/2 . This taken

together with (3.119) concludes the proof.

Proof of the relation (3.122). We first make note of a connection between Qi and Z·,i as follows
∥∥Qi

∥∥ ≤
∥∥Z·,iZ>·,i

∥∥+
∥∥Pdiag

(
Z·,iZ>·,i

)∥∥ ≤ 2
∥∥Z·,i

∥∥2
2, (3.125)

which motivates us to first control the size of Z·,i. By construction, each entry Zj,i can be written
as Zj,i =

(1
pδj,i − 1

)
A?j,i, where {δj,i} is a collection of independent Bernoulli random variables with

mean p. This observation allows one to derive

Bz := max
i,j

∣∣Zj,i
∣∣ ≤ 1

p

∥∥A?
∥∥
∞;

vz := E
[∥∥Z·,i

∥∥2
2

]
= 1− p

p

∑
j

(
A?j,i

)2 ≤ 1
p

∥∥A?
∥∥2
∞,2.

The matrix Bernstein inequality (see Corollary 3.3) then yields
∥∥Z·,i

∥∥
2 ≤ 4

√
vz logn+ 6Bz logn

≤
(

4
√

logn
p

∥∥A?
∥∥
∞,2 + 6 logn

p

∥∥A?
∥∥
∞

)
=: βz (3.126)

with probability at least 1− 2n−7, which combined with (3.125) gives

P
{∥∥Qi

∥∥
2 ≥ 2β2

z

}
≤ 2n−7. (3.127)

Recalling that E[Qi] = 0, one can derive
∥∥∥E
[
Qi1

{∥∥Qi

∥∥
2 ≤ 2β2

z

}]∥∥∥ =
∥∥∥E
[
Qi
]− E

[
Qi1

{∥∥Qi

∥∥
2 > 2β2

z

}]∥∥∥

=
∥∥∥E
[
Qi1

{∥∥Qi

∥∥
2 > 2β2

z

}]∥∥∥
(i)
≤ P

{∥∥Qi

∥∥
2 > 2β2

z

} · 2
p2
∥∥A?
·,i
∥∥2

2

(ii)
≤ 4
n7p2

∥∥A?
∥∥2
∞,2.

Here, (i) relies on (3.125) and the fact ‖Z·,i‖2 ≤ p−1‖A?
·,i‖2 (by construction), whereas (ii) results

from the calculation in (3.126).
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Proof of Lemma 3.25. Define the normalized tensor factors as

w?
i := w?

i / ‖w?
i ‖2 (1 ≤ i ≤ r),

and it is convenient to introduce the following auxiliary matrices that contain information about
them:

W
? := [w?

1, · · · ,w?
r ] , W

?
lift := [w?

1 ⊗w?
1, · · · ,w?

r ⊗w?
r ] .

Additionally, we introduce a diagonal matrix D? ∈ Rr×r whose diagonal entries are given by
[
D?]

i,i
=
∥∥w?

i

∥∥3
2 = vi, 1 ≤ i ≤ r.

The matrices introduced above allow one to express A? = W
?
D?W

?>
lift and A?A?> as follows

A?A?> = W
?
D?W

?>
liftW

?
liftD

?W
?>
. (3.128)

Clearly, the rank of A?A?> is bounded above by r, and hence it suffices to lower bound λi(A?A?>)
when i ≤ r.

In order to characterize the spectrum of A?A?>, we first look at the eigenvalues of W ?>
W

?

and W ?>
liftW

?
lift. Write

W
?>
W

? = Ir +R, and W
?>
liftW

?
lift = Ir +Rlift (3.129)

for some residual matrices R,Rlift ∈ Rr×r (which are off-diagonal matrices). By virtue of the
definition (3.112), we immediately obtain

‖R‖∞ ≤
√
µ/n, and

∥∥Rlift
∥∥
∞ ≤ µ/n,

thus indicating that

‖R‖ ≤ r ‖R‖∞ ≤ r
√
µ/n,

∥∥Rlift
∥∥ ≤ r

∥∥Rlift
∥∥
∞ ≤ µr/n. (3.130)

Putting these together with (3.129) and invoking Weyl’s inequality give

max
i

∣∣∣λi
(
W

?>
W

?)− 1
∣∣∣ ≤ ‖R‖ ≤ r

√
µ/n, (3.131)

which together with the assumption µr2 ≤ n further reveals that

∥∥W ?∥∥ =
√
λ1
(
W

?>
W

?) ≤
√

1 + r
√
µ/n ≤ 2. (3.132)

We now return to study A?A?>. In view of (3.128) and (3.129), one can decompose A?A?>

into the following two terms

A?A?> = W
?(
D?)2W ?>

︸ ︷︷ ︸
=:G1

+W ?
D?RliftD

?W
?>

︸ ︷︷ ︸
=:G2

. (3.133)

Making use of the bounds (3.130) and (3.132) immediately leads to
∥∥G2

∥∥ ≤
∥∥W ?∥∥2∥∥D?

∥∥2∥∥Rlift
∥∥ ≤ 4µrν2

max/n.
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Regarding G1, it can be directly seen that the non-zero eigenvalues of G1 coincide with those of
D?W

?>
W

?
D?, where the latter can be decomposed into

D?W
?>
W

?
D? = (D?)2 +D?RD?.

As a result, for any 1 ≤ i ≤ r one can derive
∣∣∣λi
(
G1
)− λi

((
D?)2)∣∣∣ =

∣∣∣λi
(
D?W

?>
W

?
D?
)
− λi

((
D?)2)∣∣∣

≤
∥∥D?RD?

∥∥ ≤ ‖D?‖2 ‖R‖ ≤ r
√
µ

n
ν2

max.

This taken together with the decomposition (3.133) leads to
∣∣∣λi
(
A?A?>)− λi

(
G1
)∣∣∣ ≤

∥∥G2
∥∥ ≤ 4µrν2

max
n

,

thus indicating that
∣∣∣λi
(
A?A?>)− λi

((
D?)2)∣∣∣

≤
∣∣∣λi
(
G1
)− λi

((
D?)2)∣∣∣+

∣∣∣λi
(
A?A?>)− λi

(
G1
)∣∣∣

≤ r
√
µ

n
ν2

max + 4µrν2
max
n

≤ 8 max
{√µ

n
,
µ

n

}
rν2

max.

If 16 max{µn ,
√

µ
n

}
rν2

max ≤ ν2
min, then one has

∣∣λi
(
A?A?>) − λi

((
D?
)2)∣∣ ≤ ν2

min/2. In addition,
letting ν(i) be the i-th largest element in {νi}1≤i≤r, we have λi

((
D?
)2) = ν2

(i) and hence arrive at

ν2
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for any 1 ≤ i ≤ r, as claimed.

Proof of Lemma 3.27. Define the following two matrices containing information about the tensor
factors:

W ? :=
[
w?

1, · · · ,w?
r

] ∈ Rn×r, (3.134a)

W ?
lift :=

[
w?

1 ⊗w?
1, · · · ,w?

r ⊗w?
r

] ∈ Rn
2×r. (3.134b)

Given that W ?>W ? =
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w?
i ,w

?
j

〉]
1≤i,j≤r, its diagonal part satisfies
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In addition, the off-diagonal part of W ?>W ? satisfies
∥∥∥Poff-diag

(
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√
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n
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where the second inequality relies on the definition (3.112) of the incoherence parameter, and the
last relation follows from the definition of νmax in (3.111). Consequently, if µr2 ≤ n, then

∥∥W ?
∥∥2 =

∥∥W ?>W ?
∥∥ ≤

∥∥∥Pdiag
(
W ?>W ?)∥∥∥+

∥∥∥Poff-diag
(
W ?>W ?)∥∥∥

≤ ν2/3
max + ν2/3

max

√
µr2

n
≤ 2ν2/3

max. (3.135)

Repeating similar arguments also reveals that
∥∥W ?

lift
∥∥2 ≤ 2ν4/3

max. (3.136)

Next, it is readily seen from the definition (3.112) that

∥∥W ?
∥∥
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√
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i
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√
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µ
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Combining these bounds with (3.135) and (3.136) immediately yields
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3.10 Notes

This section provides further pointers to the applications studied in this chapter, and singles out a
brief list of applications we have omitted.

Before proceeding, it is worth pointing out several important facts. First, for many applications
(e.g., phase retrieval, matrix and tensor completion), the spectral method alone does not allow
for perfect reconstruction of the unknowns even when it is information-theoretically feasible to
do so. Instead, the spectral method frequently serves as a suitable initialization step for these
applications, and its estimate can often be further refined by means of nonconvex optimization
algorithms like gradient descent and alternating minimization; see Chi et al. (2019) and Jain and
Kar (2017) for overviews of recent advances. Second, throughout this chapter, we have assumed that
the underlying matrix is exactly low-rank, and in addition the spectral methods deployed know the
correct rank. However, in reality, data matrices are rarely exactly low-rank. It is therefore of great
importance to develop and analyze methods that can handle such misspecified cases. When the
reconstruction error of the matrix is considered, several methods are capable of achieving graceful
tradeoff between the estimation error and the approximation error, without knowing the correct
rank, e.g. e.g., Koltchinskii et al. (2011), Chatterjee (2014), and Negahban and Wainwright (2011). In
addition, further discussions (e.g., convex relaxation approaches and nonconvex landscape analysis)
about several of these applications can be found in Candès (2014), Wainwright (2019), Wright and
Ma (2020), and Zhang et al. (2020d).
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PCA, factor models and covariance estimation. PCA and factor models are among the most
classic and extensively studied topics in statistics (Anderson, 1962; Fan et al., 2020b; Wainwright,
2019). The model considered in Section 3.3.1 has been studied by, for example, Johnstone (2001),
Paul (2007), Nadler (2008), Perry et al. (2018), Xie et al. (2020), Wang and Fan (2017), Fan et al.
(2018c), and Bao et al. (2020) under the name of spiked covariance models, covering both the
finite-sample regime and high-dimensional asymptotics. A more recent strand of work extended the
theory to accommodate heteroskedastic noise and missing data (including heterogeneous missing
patterns) (Lounici, 2014; Zhang et al., 2021; Cai et al., 2021a; Zhu et al., 2019), as well as exponential
family distributions (Liu et al., 2018). In addition to providing the distance control between the
spectral estimate and the true principle subspace, Koltchinskii and Lounici (2016) and Fan et al.
(2019b) also studied the bias of the spectral estimate under various types of data distributions. It is
clearly impossible to review the enormous literature in a monograph of this length; the interested
reader is referred to the overview papers Johnstone and Paul (2018), Fan et al. (2018a), Vaswani
et al. (2018), and Balzano et al. (2018) and the recent books Fan et al. (2020b) and Wainwright
(2019) for overviews of contemporary developments on this topic (with particular emphasis on
high-dimensional data). In addition, this monograph does not account for the sparsity structure,
or a superposition of low-rank and sparsity structure, where are commonly imposed on either the
covariance matrix or the precision matrix (Johnstone and Lu, 2009; Ma, 2013; Vu and Lei, 2012; Cai
et al., 2013; Candès et al., 2011; Chandrasekaran et al., 2011; Chandrasekaran et al., 2010). These
additional structural assumptions play a crucial role in further dimension reduction and are useful
for, say, learning graphical models, video surveillance in computer vision, and portfolio allocation
and risk managements in finance; see Fan et al. (2020b), Vidal et al. (2016), Wainwright (2019),
and Wright and Ma (2020) for more detailed discussions.

Applications of PCA in statistical and econometric modeling. PCA has been widely applied to
estimate dimension-reduced spaces in multiple-index models (Li, 1992; Duan and Li, 1991; Cook,
2007; Xia et al., 2002; Li, 2018), and latent factors in econometric modeling (Forni et al., 2000; Stock
and Watson, 2002; Bai and Ng, 2002; Bai, 2003; Bai, 2009; Ahn and Horenstein, 2013; Fan et al.,
2015; Fan et al., 2016). For recent reviews of this topic, we refer the readers to Stock and Watson
(2016) for dynamic factor models with applications to macroeconomics, to Bai and Wang (2016) for
time series and panel data models, to Fan et al. (2021b) for robust factor models and large covariance
estimation, and to Fan et al. (2021a) for factor models and their broader applications to econometric
learning. In particular, factor models have been frequently employed to adjust correlated covariates
in high-dimensional model selection, large-scale inference, predictions, treatment evaluations, among
others; see Fan et al. (2021b) and Fan et al. (2021a) and the references therein.

Graph clustering and community recovery. Spectral methods—possibly coupled with other sub-
sequent refining schemes like k-means—are among the most widely used algorithms for graph
clustering (McSherry, 2001; Rohe et al., 2011; Balakrishnan et al., 2011; Chaudhuri et al., 2012;
Fishkind et al., 2013; Sarkar and Bickel, 2015; Jin, 2015; Gao et al., 2017; Zhang and Zhou, 2020;
Newman, 2013; Chen and Hero, 2015; Zhang et al., 2020c; Le and Levina, 2015; Jin, 2015; Le et al.,
2018; Chen et al., 2020c). While a large fraction of earlier papers required the average vertex degree
to be significantly larger than logn, Lei and Rinaldo (2015) broadened the coverage of the theory
by accommodating sparse graphs with average degrees as low as O(logn). This, however, should
be differentiated from the ultra-sparse regime with average degrees O(1); in this scenario, spectral
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methods based on vanilla adjacency matrices no longer work, and more intelligent designs are needed
to effectively detect the communities (Coja-Oghlan, 2010; Massoulié, 2014; Chin et al., 2015; Le
et al., 2017). The theory available for spectral clustering extends far beyond the two-community
SBM presented herein, examples including SBMs with growing communities (Rohe et al., 2011),
degree-corrected SBMs (Lei and Rinaldo, 2015; Lei and Zhu, 2014), graphs with locality (Chen
et al., 2016a), mixed membership models Fan et al. (2019a) and Han et al. (2019), hyper-graphs
(Ahn et al., 2018; Michoel and Nachtergaele, 2012; Cole and Zhu, 2020), and directed graphs (Wang
et al., 2020). An abundance of other paradigms, most notably convex relaxation, have also proved
effective for clustering (Jalali et al., 2011; Amini et al., 2013; Abbe et al., 2016; Hajek et al., 2016;
Cai and Li, 2015; Zhao et al., 2012; Li et al., 2021b; Zhang and Zhou, 2020; Yuan and Qu, 2018; Fei
and Chen, 2018a; Fei and Chen, 2019). We recommend the article Abbe (2017) for an overview of
recent developments.

Gaussian mixture models. The Gaussian mixture model is among the most classic and convenient
statistical models to capture the effect of multi-modal and heterogeneous data (e.g., Pearson (1894),
Titterington et al. (1985), Xu and Jordan (1996), Dasgupta (1999), Hsu and Kakade (2013), Kalai
et al. (2010), Balakrishnan et al. (2017), Xu et al. (2016), Jin et al. (2016b), Fei and Chen (2018b),
Jin et al. (2017), Dan et al. (2020), and Han et al. (2021)). Unlike parameter estimation (e.g.,
estimating the centers) that does not require center separation (Wu and Yang, 2020), the feasibility
of reliable clustering in Gaussian mixture models is dictated by the minimum center separation
(Lu and Zhou, 2016; Cai and Zhang, 2018; Ndaoud, 2018; Giraud and Verzelen, 2019; Chen and
Yang, 2020). While spectral methods naturally come into mind for the clustering task and have
been frequently applied in the literature (Von Luxburg, 2007; Vempala and Wang, 2004; Kannan
et al., 2008; Kumar and Kannan, 2010; Awasthi and Sheffet, 2012), sharp statistical analysis of
spectral clustering (and its variants) has been lacking until recently (Ndaoud, 2018; Löffler et al.,
2021; Srivastava et al., 2019; Abbe et al., 2020a). While it might be tempting to impose a minimum
spectral gap requirement on the matrix Θ? (cf. (3.41)) in order to invoke the sin Θ theorems,
such a condition can be dropped as long as an appropriate spectral clustering scheme is employed
(Löffler et al., 2021). Encouragingly, spectral clustering (with the aid of k-means) also achieves
information-theoretically optimal mis-clustering rate exponents for a couple of scenarios (Löffler
et al., 2021; Abbe et al., 2020a).

Ranking from pairwise comparisons. Deploying spectral methods to address ranking tasks has
a long history, dating back at least to Seeley (1949). We refer the readers to Vigna (2016) for a
historical account of this subject. The specific instance of spectral methods introduced here was due
to Negahban et al. (2016), and has been subsequently analyzed in multiple papers (Rajkumar and
Agarwal, 2014; Chen and Suh, 2015; Jang et al., 2016; Chen et al., 2020b). It bears close similarity to
the celebrated PageRank algorithm heavily used by Google (Page et al., 1999). Negahban et al. (2016)
developed the first `2 statistical guarantees when estimating the underlying score vector, accounting
for missing data and general comparison graphs as well. The `2 guarantees for random comparison
graphs were further sharpened in Chen and Suh (2015) (which closed the logarithmic gap). Note,
however, that the `2 score estimation error bounds alone typically do not imply the ranking accuracy.
Motivated by this inadequacy, Chen and Suh (2015) directly studied the top-K ranking accuracy,
by demonstrating the optimality of spectral ranking followed by an iterative refinement scheme.
However, this left open another question regarding whether the follow-up refinement step is necessary
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in achieving optimal ranking accuracy. Jang et al. (2016) attempted to address this question by
establishing desired ranking accuracy of spectral methods when the number of pairwise comparisons
available is large. A complete picture was subsequently obtained by Chen et al. (2019b), which
proved the optimality of spectral methods in top-K ranking all the way to the sample-starved regime.
Moving beyond exact top-K ranking, the recent work Chen et al. (2020b) studied the capability
(and limitations) of spectral methods in handling partial recovery of the top-K ranked items. Moving
beyond the BTL model, there are also a number of other ranking models that have been extensively
studied in the literature (e.g., the Plackett-Luce model for multi-way comparisons (Hunter, 2004;
Hajek et al., 2014; Oh and Shah, 2014; Agarwal et al., 2018), the stochastically transitive model
(Shah et al., 2016; Shah et al., 2019)), which are beyond the scope of the present monograph.

Phase retrieval. Netrapalli et al. (2015) proposed the first spectral method (cf. Section 3.7.2)
for phase retrieval, and established the performance guarantees when the sample size exceeds
m & n log3 n. The theoretical support was then tightened by Candès et al. (2015b), allowing the
sample size to be as low as m � n logn. Similar theory was provided for the random coded diffraction
pattern model in Candès et al. (2015b). Several variations and generalizations of the spectral method
have been further proposed to improve performance. The first order-wise optimal spectral method
for phase retrieval was proposed by Chen and Candès (2017), based on the truncation idea. This
method has multiple variants (Zhang et al., 2016; Li et al., 2020c; Wang et al., 2018a), and has been
shown to be robust against noise and corruptions. The precise asymptotic characterization of the
spectral method was first obtained in Lu and Li (2020). Based on this characterization, Mondelli
and Montanari (2019) and Luo et al. (2019) later devised optimal designs of spectral methods
in phase retrieval when the sensing matrix follows the Gaussian design, where its sensitivity to
model mismatch was studied in Monardo and Chi (2019). Ma et al. (2021b) and Dudeja et al.
(2020) explored similar questions when the sensing matrix is Haar distributed (e.g., an isotropically
random unitary matrix). The spectral method presented herein has been used to seed a follow-up
procedure that in turn enhances estimation accuracy; see, e.g., Netrapalli et al. (2015), Candès et al.
(2015b), Sanghavi et al. (2017), Goldstein and Studer (2018), Bahmani and Romberg (2017), Ma
et al. (2020), Chandra et al. (2019), Dhifallah et al. (2017), Qu et al. (2019), Zhang et al. (2017), Ma
et al. (2019), Tan and Vershynin (2019), Jeong and Güntürk (2017), Cai et al. (2019b), and Salehi
et al. (2018a). An alternative to the spectral method, based on a nullspace approach, has been
proposed in Chen et al. (2017). Fannjiang and Strohmer (2020) provided an extensive discussion on
initialization strategies for algorithmic phase retrieval, including but not limited to various forms of
spectral methods. Sparse phase retrieval is another important topic when the signal of interest is
assumed to be a sparse vector; we refer the interested reader to Li and Voroninski (2013), Oymak
et al. (2015), Chen et al. (2015b), Cai et al. (2016), Wang et al. (2018b), Jagatap and Hegde (2019),
Yang et al. (2019), Soltanolkotabi (2019), Yang et al. (2016), Zhang et al. (2018b), Salehi et al.
(2018b), Shechtman et al. (2014), Yuan et al. (2019), and Eldar and Mendelson (2014) and additional
references cited therein.

Matrix completion. Regarding matrix completion, the spectral method was originally proposed in
Achlioptas and McSherry (2007) and Keshavan et al. (2010) to estimate (approximately) low-rank
matrices in the face of missing data and random corruptions. Similar to phase retrieval, the estimate
returned by the spectral method is employed as a suitable initialization to enable fast convergence of
nonconvex iterative procedures; see, e.g., Keshavan et al. (2010), Keshavan et al. (2009), Jain et al.
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(2013), Hardt (2014), Sun and Luo (2016), Chen and Wainwright (2015), Zheng and Lafferty (2016),
Boumal and Absil (2015), Wei et al. (2016), Chen et al. (2020a), Ma et al. (2020), Zhang et al.
(2018c), Jin et al. (2016a), and Charisopoulos et al. (2021). Moreover, there are several nuclear norm
penalized estimators that also bear close relevance to the spectral method, e.g., Koltchinskii et al.
(2011). We also remark in passing that there are other estimators that can effectively handle the case
when the underlying matrix is not exactly low-rank, including but not limited to Universal Singular
Value Thresholding (Chatterjee, 2014) and its soft-thresholded version (Koltchinskii et al., 2011).
In addition, while our discussion focuses on clean data and uniform random sampling patterns,
it is of great importance to study various noisy and quantized scenarios (Keshavan et al., 2009;
Candès and Plan, 2010; Cao and Xie, 2015; Klopp, 2014; Chen and Wainwright, 2015; McRae and
Davenport, 2021; Davenport et al., 2014; Ma et al., 2020; Zhang et al., 2018d; Krahmer and Stöger,
2021), as well as non-uniform or deterministic sampling patterns (Foucart et al., 2020; Negahban
and Wainwright, 2012; Shapiro et al., 2018).

Tensor completion and estimation. Unfolding-based spectral methods have been frequently
adopted to deal with various tensor estimation problems including tensor PCA, tensor decom-
position, tensor completion, and so on (Richard and Montanari, 2014; Montanari and Sun, 2018;
Han et al., 2020; Zhang and Xia, 2018; Cai et al., 2021a; Cai et al., 2021b; Xia and Yuan, 2019; Xia
et al., 2021; Moitra and Wein, 2019; Liu and Moitra, 2020; Zhang et al., 2020a; Xia et al., 2020;
Tong et al., 2021c). When it comes to tensor completion, the first near-optimal `2 statistical analysis
of spectral methods was due to Montanari and Sun (2018), which was subsequently extended by Cai
et al. (2021a) to enable `2,∞ error control. The readers interested in higher-order tensors (beyond
third-order tensors) can consult Montanari and Sun (2018) and Richard and Montanari (2014). In
addition, the theory and algorithm presented herein focus attention on the regime where r < n, and
fall short of accommodating “over-complete” tensors when r rises above n. Certain “contraction”
tricks are needed in order to cope with the over-complete regime; see Hopkins et al. (2016) and
Montanari and Sun (2018).

An extensive but non-exhaustive list of other applications. Finally, the list of applications dis-
cussed in this monograph is clearly far from comprehensive. Spectral methods have been successfully
applied to a plethora of other problems, including but not limited to the following topics:
• matrix sensing: Tu et al. (2016), Zheng and Lafferty (2015), Ma et al. (2021a), Chen et al.
(2021a), Tong et al. (2021b), Tong et al. (2021a), and Lee et al. (2017);

• phase synchronization and group synchronization: Singer (2011), Abbe et al. (2020b), and
Ling (2020);

• joint matching and map synchronization: Chen et al. (2014), Pachauri et al. (2013), Shen et al.
(2016), Bajaj et al. (2018), Sun et al. (2018), Sun et al. (2019), Huang et al. (2019a), and
Huang et al. (2019b);

• covariance sketching and quadratic sensing: Li et al. (2021c), Charisopoulos et al. (2021),
Sanghavi et al. (2017), and Chi and Fu (2017);

• blind deconvolution and blind calibration: Li et al. (2019), Ma et al. (2020), Huang and Hand
(2018), Charisopoulos et al. (2019), Chen et al. (2021d), Li et al. (2018), and Cambareri and
Jacques (2016);
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• blind demixing: Ling and Strohmer (2019) and Dong and Shi (2018);

• low-rank phase retrieval and phaseless PCA: Vaswani et al. (2017), Nayer et al. (2019), and
Vaswani (2020);

• canonical correlation analysis (CCA): Cai and Zhang (2018) and Ge et al. (2016);

• sparse PCA: Amini and Wainwright (2008) and Johnstone and Lu (2009);

• mixed linear regression: Yi et al. (2014), Ghosh and Kannan (2020), and Kwon et al. (2021);

• finding hidden cliques: Alon et al. (1998);

• joint image alignment: Chen and Candès (2018);

• robust subspace recovery and robust PCA: Yi et al. (2016), Netrapalli et al. (2014), Chera-
panamjeri et al. (2017), Tong et al. (2021b), Zhu et al. (2018), and Maunu et al. (2019);

• contextual stochastic block models: Binkiewicz et al. (2017) and Abbe et al. (2020a);

• learning neural networks: Zhong et al. (2017) and Fu et al. (2020);

• topic modeling: Ke and Wang (2017);

• crowd sourcing: Ghosh et al. (2011), Dalvi et al. (2013), Karger et al. (2013), Zhang et al.
(2014), and Karger et al. (2014);

• meta learning: Kong et al. (2020), Du et al. (2020), and Tripuraneni et al. (2021);

• subspace clustering: Eriksson et al. (2012) and Li and Gu (2021);

• state aggregation and compression of Markov chains: Zhang and Wang (2020) and Duan et al.
(2019);

• causal inference: Amjad et al. (2018);

• passive imaging: Lee et al. (2018).

For the sake of conciseness, we have chosen not to detail these applications, but instead recommend
the interested reader to the above articles and the references therein.



4
Fine-grained spectral analysis:
`∞ and `2,∞ perturbation theory

In a growing number of applications, the `2-type distance between subspaces, which is the central
subject studied in Chapter 3, turns out to be inadequate for performance characterization. Rather,
what would be of interest is the entrywise behavior of the eigenvector and the matrix under
consideration. This is especially important when the individual entries of the eigenvector or the
matrix of interest carry pivotal operational meanings. For example, in a recommendation system,
one might be interested in controlling the prediction error of a user’s preference on a specific product,
which concerns a specific entry in a user-product rating matrix; in sensor network localization, one
might seek to control the ranging error w.r.t. a pair of sensors, which corresponds to entrywise
prediction errors in a Euclidean distance matrix; and last but not least, in community recovery, the
entries of the leading eigenvector of a certain data matrix might encode the community membership
associated with each individual (as explained in Section 3.4).

Tackling the preceding applications calls for development of fine-grained spectral analysis beyond
classical `2 perturbation theory. To be more precise, consider once again the observation model

M = M? +E

previously studied in Chapter 2 (cf. (2.1)). The sort of fine-grained theory being sought after
gravitates around the following questions concerned with `∞ and/or `2,∞ perturbation:

• For a symmetric matrix M?, how to characterize the effect of E on the `∞ perturbation of
the leading eigenvector, or the `2,∞ perturbation of the rank-r leading eigenspace?

• For a general matrix M?, how to pin down the `∞ perturbation of the leading singular
vector, or the `2,∞ perturbation of the rank-r leading singular subspace, in response to the
perturbation E?

• How to assess the entrywise estimation error of the matrix estimate produced by the spectral
method, and how is it affected by E?

Unfortunately, a direct application of classical `2 perturbation theory typically leads to overly crude
bounds when coping with the above questions. In particular, when the `2 error is approximately
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evenly distributed across entries, naively upper bounding the entrywise error by the `2 error is often
loose by an order-of-magnitude. In order to conquer such limitations, this chapter introduces a
modern suite of techniques that delivers tight `∞ and `2,∞ error control by leveraging the statistical
nature of data models.

4.1 Leave-one-out analysis: An illustrative example

To paint a high-level picture of the core ideas empowering the `∞ and `2,∞ analysis, we find it
helpful to first look at a pedagogical example of rank-1 matrix denoising, a special case of the
formulation introduced in Section 3.2.1.

4.1.1 Setup and algorithm

Suppose that we observe a noisy copy of an unknown rank-1 matrix M? as follows

M = M? +E = λ?u?u?> +E ∈ Rn×n, (4.1)

where λ? > 0 and u? ∈ Rn represent the largest eigenvalue of M? and its associated eigenvector,
respectively. We assume the Gaussian noise model as in Section 3.2.1, namely, E is a symmetric
matrix whose upper triangular part comprises of i.i.d. entries drawn from N (0, σ2). In addition, we
remind the readers of the following incoherence parameter µ (cf. Definition 3.1):

µ = n‖u?‖2∞, (4.2)

which satisfies 1 ≤ µ ≤ n in this rank-1 case; see Remark 3.12.
Letting λ be the leading eigenvalue of M (i.e., λ = λ1(M)) and u ∈ Rn the associated

eigenvector, the spectral method attempts to estimate u? using u. In this section, we are particularly
interested in controlling the entrywise error, defined in terms of the `∞ distance (modulo the global
sign):

dist∞
(
u,u?

)
:= min

{‖u− u?‖∞, ‖u+ u?‖∞
}
. (4.3)

4.1.2 `∞ performance guarantees

While Section 3.2.2 delivers `2 estimation guarantees for the spectral estimate u, it falls short
of characterizing the entrywise behavior—except for the crude and highly suboptimal bound
dist∞(u,u?) ≤ dist(u,u?). Encouragingly, this simple spectral method is provably accurate in an
entrywise fashion, as revealed by the following theorem.

Theorem 4.1. Consider the settings in Section 4.1.1. There exists some sufficiently small constant
c0 > 0 such that if σ

√
n ≤ c0λ?, then

dist∞
(
u,u?

)
. σ(

√
logn+√µ)
λ?

(4.4)

holds with probability exceeding 1−O(n−8).

In particular, if the incoherence parameter obeys µ . logn (the case where no entries of u? are
significantly larger in magnitude than the average magnitude), then our `∞ bound reads

dist∞
(
u,u?

)
. σ
√

logn
λ?

, (4.5)
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Figure 4.1: Illustration of the leave-one-out auxiliary matrix M (l), which removes all the noise in the l-th row and
the l-th column of M .

which is about
√
n/ logn times smaller than the `2 error bound (3.13), that is, dist

(
u,u?

)
. σ

√
n

λ? .
This implies that the estimation errors of u are dispersed more or less evenly across all entries—a
message that is previously unavailable from classical `2 perturbation theory.

4.1.3 Key ingredient and intuition: Leave-one-out estimates

To facilitate entrywise analysis, a crucial ingredient lies in the introduction of a set of leave-one-out
auxiliary estimates, detailed below.

Construction of leave-one-out estimates. For each 1 ≤ l ≤ n, let us construct an auxiliary matrix
M (l) as follows

M (l) := λ?u?u?> +E(l), (4.6)

where the noise matrix E(l) is generated according to

E
(l)
i,j :=




Ei,j , if i 6= l and j 6= l,

0, else.
(4.7)

In words, M (l) (resp. E(l)) is obtained by leaving out the randomness in the l-th row/column of M
(resp. E). The pattern of the leave-one-out construction is illustrated in Figure 4.1. Let λ(l) and
u(l) denote respectively the leading eigenvalue and leading eigenvector of M (l); these leave-one-out
estimates are introduced solely for analysis purpose. It is important to recognize that by construction,
M (l) (and hence u(l)) is independent of the noise in the l-th row/column of E, a fact that plays a
pivotal role in controlling the perturbation of the l-th entry of u?.

Intuition. Before delving into the proof, let us first explain the rationale at an intuitive level.

1. Given that u(l) is obtained by dropping only a tiny fraction of the data, we expect u(l) to be
exceedingly close to u, i.e.,

u ≈ ±u(l). (4.8)
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In words, u(l) forms a reliable surrogate of u, which motivates us to analyze u(l) instead (if
there are foreseeable benefits to do so).

2. The way we construct u(l) makes it particularly convenient to analyze the behavior of the l-th
entry, denoted by u(l)

l . More specifically, given that (λ(l),u(l)) is an eigenpair of M (l), one has
(assuming for the moment that λ(l) 6= 0)

u
(l)
l = 1

λ(l)M
(l)
l,· u

(l) = 1
λ(l)M

?
l,·u

(l) = λ?

λ(l)u
?
lu

?>u(l) (4.9)

≈ ±u?l . (4.10)

Here, the first line follows since, by design, the l-th rows of M (l) and M? coincide (both of
which are given by λ?u?lu?>), whereas the second line holds as long as the size σ of the noise
is sufficiently small, so that λ(l)/λ? ≈ 1 and u?>u(l) ≈ ±1 according to the `2 perturbation
theory.

Combining the above observations suggests that ul ≈ ±u(l)
l ≈ ±u?l .

4.1.4 Leave-one-out analysis

Now we make rigorous the heuristic argument in the last subsection, which relies heavily on careful
statistical analysis.

Preparation: what we have learned from `2 perturbation theory

Let us start by collecting a few results derived from the `2 perturbation theory in Section 3.2 for
handy reference. Experienced readers can proceed directly to Step 1.

Specifically, suppose that σ
√
n ≤ 1−1/

√
2

5 λ?. Then with probability at least 1−O(n−8),

‖E‖ ≤ 5σ
√
n ‖E(l)‖ ≤ ‖E‖ ≤ 5σ

√
n (4.11a)

dist(u,u?) ≤ 10σ
√
n

λ?
dist(u(l),u?) ≤ 10σ

√
n

λ?
(4.11b)

|λ− λ?| ≤ 5σ
√
n |λ(l) − λ?| ≤ 5σ

√
n (4.11c)

max
j:j≥2

|λj(M)| ≤ 5σ
√
n max

j:j≥2
|λj(M (l))| ≤ 5σ

√
n (4.11d)

hold simultaneously for all 1 ≤ l ≤ n. Here, the first line arises from (3.12), and the remaining claims
follow the same argument as in the proof of Corollary 2.8. Consequently, there exist global signs
z, zl ∈ {1,−1} obeying ‖zu− u?‖2 = dist(u,u?) ≤ 10σ

√
n/λ? and ‖zlu(l) − u?‖2 = dist(u(l),u?) ≤

10σ
√
n/λ?. To simplify presentation, we shall assume

‖u− u?‖2 = dist(u,u?), (4.12a)
∥∥u(l) − u?

∥∥
2 = dist(u(l),u?), 1 ≤ l ≤ n (4.12b)

without loss of generality. As a simple yet useful byproduct: if 20σ
√
n < λ?, then Condition (4.12)

necessarily implies
∥∥u− u(l)∥∥

2 = dist
(
u,u(l)), 1 ≤ l ≤ n. (4.13)
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To see this, combine the triangle inequality and (4.11) to yield
∥∥u− u(l)∥∥

2 ≤
∥∥u− u?

∥∥
2 +

∥∥u(l) − u?
∥∥

2 ≤
20σ
√
n

λ?
< 1,

which taken collectively with the fact ‖u‖2 = ‖u(l)‖2 = 1 gives
∥∥u+ u(l)∥∥2

2 = 2
∥∥u
∥∥2

2 + 2
∥∥u(l)∥∥2

2 −
∥∥u− u(l)∥∥2

2 > 1 >
∥∥u− u(l)∥∥2

2.

This together with the definition (2.10a) of dist(·, ·) validates (4.13).

Step 1: bounding the proximity of leave-one-out & true estimates

In this step, we seek to control the distance between the true estimate u and the leave-one-out
estimate u(l). Suppose for the moment that

‖M −M (l)‖ ≤ (1− 1/
√

2)
(
λ(l) −max

j≥2

∣∣λj
(
M (l))∣∣

)
. (4.14)

We can then invoke the Davis-Kahan theorem (cf. Corollary 2.8) and the relation (4.13) to yield

∥∥u− u(l)∥∥
2 ≤

2‖(M −M (l))u(l)‖2
λ(l) −max

j≥2

∣∣λj
(
M (l))∣∣ ≤

4‖(M −M (l))u(l)‖2
λ?

. (4.15)

Here, the last inequality invokes (4.11) and 20σ
√
n ≤ λ? to obtain

λ(l) −max
j≥2

∣∣λj
(
M (l))∣∣ ≥ (λ? − 5σ

√
n)− 5σ

√
n ≥ λ?/2. (4.16)

A byproduct of this calculation is that λ(l) is positive for all 1 ≤ l ≤ n.
It thus remains to control the term ‖(M−M (l))u(l)‖2 in (4.15), towards which certain statistical

independence proves crucial. Specifically, we observe that (by construction of M (l))
(
M −M (l))u(l) = elEl,·u

(l) + u
(l)
l (E·,l − El,lel),

where el is the l-th standard basis vector, and El,· (resp. E·,l) denotes the l-th row (resp. column)
of E. By construction, u(l) is statistically independent of El,·, thus indicating that

El,·u
(l) ∼ N (0, σ2‖u(l)‖22) = N (0, σ2) (4.17)

conditioned on u(l). Hence, with probability at least 1− n−10,
∣∣El,·u(l)∣∣ ≤ 5σ

√
logn, 1 ≤ l ≤ n. (4.18)

In addition, ‖E·,l − El,lel‖2 ≤ ‖E·,l‖2 ≤ ‖E‖ ≤ 5σ
√
n (cf. (4.11)). Consequently,

‖(M −M (l))u(l)‖2 ≤
∣∣El,·u(l)∣∣+

∥∥E·,l
∥∥

2 ·
∣∣u(l)
l

∣∣

≤ 5σ
√

logn+
∥∥E·,l

∥∥
2
(∣∣ul

∣∣+
∥∥u− u(l)∥∥

∞
)

≤ 5σ
√

logn+ 5σ
√
n‖u‖∞ + 5σ

√
n
∥∥u− u(l)∥∥

2.

Substitution into (4.15) yields

∥∥u− u(l)∥∥
2 ≤

20σ
√

logn+ 20σ
√
n‖u‖∞ + 20σ

√
n
∥∥u− u(l)∥∥

2
λ?

≤ 20σ
√

logn+ 20σ
√
n‖u‖∞

λ?
+ 1

2
∥∥u− u(l)∥∥

2,
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provided that 40σ
√
n ≤ λ?. Rearranging terms and taking the union bound, we demonstrate that

with probability at least 1−O(n−8),
∥∥u− u(l)∥∥

2 ≤
40σ
√

logn+ 40σ
√
n‖u‖∞

λ?
, 1 ≤ l ≤ n. (4.19)

Proof of the relation (4.14). Apply the triangle inequality to see that
‖M −M (l)‖ ≤ ‖M −M?‖+ ‖M? −M (l)‖ = ‖E‖+ ‖E(l)‖

≤ 10σ
√
n ≤ λ?/10.

Here, the equality arises from the definition of M and M?, the penultimate inequality uses (4.11),
while the last inequality holds as long as 100σ

√
n ≤ λ?. This together with (4.16) establishes

(4.14).

Step 2: analyzing leave-one-out estimates

We now turn attention to bounding the size of the l-th entry u(l)
l of u(l). Since λ(l) > 0, by (4.9), we

have

u
(l)
l − u?l = u?l

( λ?
λ(l)u

?>u(l) − u?>u?
)

= u?l

(λ? − λ(l)

λ(l) u?>u(l)
)

+ u?lu
?>(u(l) − u?).

The triangle inequality and the Cauchy-Schwarz inequality then give
∣∣u(l)
l − u?l

∣∣ ≤
∣∣u?l
∣∣ ·
∣∣λ? − λ(l)∣∣
∣∣λ(l)∣∣ · ‖u?‖2 · ‖u(l)‖2 +

∣∣u?l
∣∣ · ‖u?‖2 ·

∥∥u(l) − u?
∥∥

2

≤
∣∣u?l
∣∣ · 10σ

√
n

λ?
+
∣∣u?l
∣∣ · 10σ

√
n

λ?

≤ 20σ
√
n

λ?
∥∥u?

∥∥
∞. (4.20)

Here, the second line holds due to Condition (4.11) and the fact
∣∣λ(l)∣∣ ≥ λ?/2; see (4.16).

Step 3: putting all pieces together

Putting (4.19) and (4.20) together, we arrive at
∥∥u− u?

∥∥
∞ = max

l

∣∣ul − u?l
∣∣ ≤ max

l

{∣∣u(l)
l − u?l

∣∣+
∥∥u− u(l)∥∥

2

}

≤ 20σ
√
n

λ?
∥∥u?

∥∥
∞ + 40σ

√
logn+ 40σ

√
n‖u‖∞

λ?
. (4.21)

The above upper bound, however, involves the term ‖u‖∞, which can further be bounded by
‖u?‖∞ + ‖u− u?‖∞. Substituting this into (4.21), we have

∥∥u− u?
∥∥
∞ ≤

40σ
√

logn+ 60σ
√
n ‖u?‖∞

λ?
+ 1

2
∥∥u− u?

∥∥
∞,

provided that 80σ
√
n ≤ λ?. Rearranging terms yields

∥∥u− u?
∥∥
∞ ≤

80σ
√

logn+ 120σ
√
n ‖u?‖∞

λ?
=

80σ
√

logn+ 120σ√µ
λ?

,

where the last identity results from the definition (4.2) of µ.
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4.2 `2,∞ eigenspace perturbation under independent noise

The appealing entrywise behavior of the eigenvector estimator in Section 4.1 hints at the promising
performance of spectral methods for broader contexts. In this section, we set out to develop a more
general framework about `2,∞ eigenspace perturbation that covers a wide spectrum of scenarios.

4.2.1 Setup and notation

Ground truth. Consider a rank-r symmetric matrixM? ∈ Rn×n with eigenvectors u?1, · · · ,u?n and
associated eigenvalues λ?1, · · · , λ?n obeying

|λ?1| ≥ |λ?2| ≥ · · · ≥ |λ?r | > 0 and λ?r+1 = · · · = λ?n = 0. (4.22)

We shall write the eigendecomposition M? = U?Λ?U?> as usual, where Λ? := diag([λ?1, · · · , λ?r])
and U? := [u?1, · · · ,u?r ] ∈ Rn×r. Denote the condition number of M? as

κ := |λ?1| / |λ?r |. (4.23)

Akin to Definition 3.1, the incoherence parameter of M? is defined as

µ :=
n‖U?‖22,∞

r
, (4.24)

a parameter that captures how well the energy of U? is spread out across all rows and that obeys
(see Remark 3.12)

1 ≤ µ ≤ n/r. (4.25)

Observed data. What we observe is a corrupted version

M = M? +E ∈ Rn×n, (4.26)

where E is a symmetric noise matrix. We denote by {λi}1≤i≤n the set of eigenvalues of M obeying

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|, (4.27)

and let ui be the eigenvector of M associated with λi. We shall introduce the diagonal matrix
Λ ∈ Rr×r as Λ := diag([λ1, · · · , λr]).

Noise assumptions. This section aims to cover a fairly broad class of scenarios of independent
noise. In particular, the noise matrix considered herein is assumed to satisfy the mild conditions
listed below.

Assumption 4.1. The entries in the lower triangular part of E = [Ei,j ]1≤i,j≤n are independently
generated obeying

E[Ei,j ] = 0, E[E2
i,j ] =: σ2

i,j ≤ σ2, |Ei,j | ≤ B, for all i ≥ j. (4.28)

In particular, σ2 is taken to be the smallest choice satisfying (4.28). Further, it is assumed that

cb := B

σ
√
n/(µ logn)

= O(1). (4.29)

We emphasize that both σ and B are quantities that are allowed to scale with n. When µ is not
too large, Condition (4.29) allows the maximum magnitude B of each noisy entry to be substantially
larger than the typical size σ.
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Goal and algorithm. We seek to estimate U? based onM . Towards this, a simple spectral method
computes the matrix U = [u1, · · · ,ur] ∈ Rn×r that comprises the top-r leading eigenvectors of M .

4.2.2 `2,∞ and `∞ theoretical guarantees

The leave-one-out argument introduced before, when properly strengthened, enables powerful `2,∞
performance guarantees for the spectral estimate U , which concern row-wise perturbation of the
eigenspace. Before continuing, we remind the readers of the global rotation ambiguity, namely, in
general we cannot expect U to be close to U? unless suitable global rotation is taken into account.
In light of this, we introduce the following notation that helps identify a proper rotation matrix.

Definition 4.1. For any matrixZ with SVDZ = UZΣZV
>
Z (whereUZ and VZ represent respectively

the left and right singular matrices of Z, and ΣZ is a diagonal matrix composed of the singular
values), define

sgn(Z) := UZV
>
Z (4.30)

to be the matrix sign function of Z.

Remark 4.1. The matrix sign function is commonly encountered when aligning two matrices—
classically known as the orthogonal Procrustes problem (Schönemann, 1966). Consider any two
matrices B̂,B ∈ Rn×r with r ≤ n. Among all rotation matrices, the one that best aligns B̂ with B
is precisely sgn(B̂>B) (see, e.g., (Ma et al., 2020, Appendix D.2.1)), namely,

sgn(B̂>B) = arg min
O∈Or×r

‖B̂O −B‖2F.

With this definition in place, we are ready to state an `2,∞ theory adapted from Abbe et al.
(2020b). Compared to the original development in Abbe et al. (2020b), the theorem and its proof
provided herein are more streamlined versions tailored to the current setting.

Theorem 4.2. Consider the settings and assumptions in Section 4.2.1. Define H := U>U?. With
probability exceeding 1−O(n−5), one has

∥∥Usgn(H)−U?
∥∥

2,∞ . σκ
√
µr + σ

√
r logn

|λ?r |
, (4.31a)

∥∥Usgn(H)−MU?(Λ?)−1∥∥
2,∞

. σκ
√
µr

|λ?r |
+
σ2√rn logn+ σB

√
µr log3 n

(
λ?r
)2 , (4.31b)

provided that σ
√
n logn ≤ cσ|λ?r | for some sufficiently small constant cσ > 0.

The proof of this theorem can be found in Section 4.8. Note that under the assumption in the
theorem, the bound on the right-hand side of (4.31b) is no larger than the one on the right-hand
side of (4.31a). In fact, (4.31b) could indeed be tighter than (4.31a) in some important scenarios
like community recovery (see Section 4.5).

The `2,∞ perturbation theory in Theorem 4.2 accommodates a broad family of noise matrices
with independent entries. In the sequel, we take a moment to interpret several key messages conveyed
by this result.
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De-localization of estimation errors. For simplicity, let us concentrate on the case where µ, κ =
O(1). Note that the Davis-Kahan theorem introduced previously results in the following `2 estimation
guarantees (to be detailed in Section 4.8.2)

distF(U ,U?) ≤ √r dist(U ,U?) . σ
√
nr

|λ?r |
. (4.32)

In comparison, the `2,∞ bound derived in Theorem 4.2 simplifies to

min
R∈Or×r

∥∥UR−U?
∥∥

2,∞ ≤
∥∥Usgn(H)−U?

∥∥
2,∞ . σ

√
r logn
|λ?r |

(4.33)

under the condition µ, κ = O(1), which is about O(
√
n/ logn) times smaller than the Euclidean

error bound (4.32). This implies that the estimation error of U is fairly de-localized and spread out
across all rows.

First-order approximation. Informally, Theorem 4.2 (and its analysis) unveils the goodness of the
first-order approximation

Usgn(H) ≈MU?(Λ?)−1 = U? +EU?(Λ?)−1 (4.34)

uniformly across all rows. An implication of Theorem 4.2 is that U might be closer to the first-order
approximation MU?(Λ?)−1 than to the ground truth U? (namely, the upper bound on the right-
hand side of (4.31b) is smaller than the bound on the right-hand side of (4.31a) under the stated
conditions). In principle, the linear term EU?(Λ?)−1 can be viewed as a correction term that helps
improve the approximation fidelity. As we shall see momentarily in Section 4.5, this subtle difference
leads to sharper performance guarantees in applications like community recovery.

Entrywise estimation errors. There is no shortage of applications where one cares more about the
fine-grained estimation accuracy of the matrix rather than that of the low-rank factors. Fortunately,
the `2,∞ theory derived in Theorem 4.2 in turn enables entrywise performance guarantees when
estimating the matrix M?. This is summarized in the following corollary, with the proof deferred to
Section 4.9.

Corollary 4.3. Consider the settings and assumptions in Section 4.2.1, and assume further that
σκ
√
n logn ≤ c1|λ?r | for some sufficiently small constant c1 > 0. Then with probability at least

1−O(n−5), one has

∥∥UΛU> −M?
∥∥
∞ . σκ2µr

√
logn
n

. (4.35)

Once again, it is instrumental to explain the result by specializing it to the simpler regime where
κ, µ, r = O(1). In this case, the finding of Corollary 4.3 reduces to

∥∥UΛU> −M?
∥∥
∞ . σ

√
logn
n

. (4.36)

In comparison, the Euclidean error of this spectral estimate satisfies (which follows by combining
(3.15) with (3.9) and (4.29))

∥∥UΛU> −M?
∥∥

F ≤ 2
√

2‖E‖ . σ
√
n (4.37)
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with high probability, which is on the order of n/
√

logn times larger than the entrywise error
bound (4.36). In other words, the energy of the estimation error of the unknown matrix is also
dispersed more or less across all matrix entries, a message that cannot be derived from classical
matrix perturbation theory alone.

Leave-one-out analysis. As alluded to previously, the proof of Theorem 4.2 relies heavily upon
the leave-one-out analysis framework to decouple delicate statistical dependency. While the core
idea bears close resemblance to the exposition in Section 4.1.4, implementing this idea rigorously for
the general case requires considerably more effort. We defer a complete proof to Section 4.8.

4.3 `2,∞ singular subspace perturbation under independent noise

The general theory presented in Section 4.2 applies only to symmetric matrices. It is not uncommon,
however, to encounter scenarios where the matrix of interest M? is asymmetric. This motivates the
need of extending the `2,∞ perturbation theory to accommodate more general matrices, which is
the main content of the current section.

4.3.1 Setup and notation

Ground truth. Consider an unknown rank-r matrixM? ∈ Rn1×n2 . LetM? = U?Σ?V ?> represent
the SVD of M?, where U? ∈ Rn1×r (resp. V ? ∈ Rn2×r) entails the top-r left (resp. right) singular
vectors of M?, and Σ? = diag([σ?1, σ?2, · · · , σ?r ]) is formed by the (nonzero) singular values of M?.
We arrange the singular values {σ?i } in descending order (i.e., σ?1 ≥ σ?2 ≥ · · · ≥ σ?r > 0).

Key parameters. As usual, µ stands for the incoherence parameter of M? (see Definition 3.1),
and the condition number of the matrix M? is defined as κ := σ?1/σ

?
r . Without loss of generality, it

is assumed that
n1 ≤ n2

and we set n := n1 + n2.

Observations and noise assumptions. Assume we have access to corrupted observations of M?

as follows:
M = M? +E ∈ Rn1×n2 ,

where E = [Ei,j ] stands for a noise or perturbation matrix. We impose the following conditions on
E, which is a natural adaptation of Assumption 4.1 to the general case and covers a diverse array
of scenarios.

Assumption 4.2. The entries of E are independently generated obeying

E[Ei,j ] = 0, E[E2
i,j ] ≤ σ2, |Ei,j | ≤ B for all i, j. (4.38)

Further, assume that

cb := B

σ
√
n1/(µ logn)

= O(1). (4.39)
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Goal and algorithm. Again, we aim at estimating U? and V ?, based on the observationM , using
a spectral method. Specifically, let

M =
[
U U⊥

] [ Σ
Σ⊥

] [
U>

V >

]
(4.40)

be the SVD of M , in which UΣV > is the rank-r SVD (i.e., the singular values in Σ :=
diag([σ1, · · · , σr]) are larger than those in Σ⊥). The spectral method then deploys (U ,V ) as
an estimate of (U?,V ?).

4.3.2 `2,∞ and `∞ theoretical guarantees

We now present a theorem that generalizes Theorem 4.2 and Corollary 4.3 to accommodate general
(asymmetric and possibly rectangular) matrices. This can be accomplished via a standard “symmetric
dilation” trick; the details can be found in Section 4.10.

Theorem 4.4. Consider the settings and assumptions in Section 4.3.1, and define HU := U>U?

and HV := V >V ?. With probability at least 1−O(n−5), one has

max
{
‖Usgn(HU )−U?‖2,∞, ‖V sgn(HV )− V ?‖2,∞

}

.
σ
√
r
(
κ
√

n2
n1
µ+
√

logn
)

σ?r
, (4.41)

provided that σ
√
n logn ≤ c1σ?r for some sufficiently small constant c1 > 0. In addition, if

σκ
√
n logn ≤ c2σ?r for some small enough constant c2 > 0, then the following holds with probability

at least 1−O(n−5):

‖UΣV > −M?‖∞ . σκ2µr

√
(n2/n1) logn

n1
. (4.42)

The messages conveyed in Theorem 4.4 largely parallel those in Theorem 4.2 and Corollary 4.3.
For simplicity, let us discuss the implications when κ, µ, r = O(1) and n1 � n2 (i.e., the aspect ratio
of the matrix is n2/n1 = O(1)). In this scenario, Theorem 4.4 implies that

‖Usgn(HU )−U?‖2,∞ + ‖V sgn(HV )− V ?‖2,∞ . σ
√

logn
σ?r

,

‖UΣV > −M?‖∞ . σ

√
logn
n

,

both of which bear close similarities to our previous observations (4.33) and (4.36). Akin to our
discussions in Section 4.2.2, these findings tell us that the singular subspace estimation errors
(resp. the matrix estimation errors) are fairly spread out across all rows of the singular subspace
(resp. all entries of the matrix).

4.4 Application: Entrywise guarantees for matrix completion

To illustrate the utility of the fine-grained perturbation theory presented in previous sections, let us
revisit the problem of matrix completion introduced in Section 3.8 and apply our refined theory.
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As a recap, the spectral method proposed for matrix completion proceeds by computing the
best rank-r approximation UΣV > of the rescaled data matrix M = p−1PΩ(M?), where p is the
probability of each entry being observed, and PΩ(·) denotes the Euclidean projection onto the set of
matrices supported on the sampling set Ω. This time, we seek to characterize the `2,∞ error when
estimating the true singular subspaces U? and V ?, as well as the `∞ error when estimating the
unknown matrix M?, as stated below. As before, we set n := n1 + n2.

Theorem 4.5. Consider the settings and assumptions in Section 3.8.1, and defineHU := U>U? and
HV := V >V ?. Suppose that n1 ≤ n2 and n1p ≥ Cκ4µ2r2 logn for some sufficiently large constant
C > 0. Then with probability greater than 1−O(n−5), we have

max{‖Usgn(HU )−U?‖2,∞, ‖V sgn(HV )− V ?‖2,∞}

≤ κ2
√
µ3r3 logn

n2
1p

; (4.43a)

‖UΣV > −M?‖∞ . κ2µ2r2
√

logn
n3

1p
‖M?‖. (4.43b)

Proof. Recall our notation E = M −M? = p−1PΩ(M?)−M?. It is straightforward to check that
E satisfies Assumption 4.2 with

σ2 := ‖M
?‖2∞
p

, and B := ‖M
?‖∞
p

. (4.44)

In addition, from the relation B = cbσ
√
n1/(µ logn), it is seen that cb = O(1) holds as long as

n1p & µ logn. With these preparations in place, the claims in Theorem 4.5 follow directly from
Theorem 4.4 and the bound (3.105b) on ‖M?‖∞ (and hence on σ).

In what follows, we compare the `2,∞ and `2 performance guarantees derived in the above theorem
with those `2 guarantees presented in Section 3.8.3; see Figure 1.4 in Section 1.1 for empirical
performances. For the sake of brevity, we shall concentrate on the case where µ, κ, r = O(1).

• `2,∞ singular space perturbation bounds. Comparing the `2,∞ performance guarantee (4.43a)
with Theorem 3.22, one sees that the `2,∞ perturbation bounds could be an order of √n1
times smaller than the `2 counterpart, showcasing the de-localization effect of the errors of
the spectral estimates U and V .

• Entrywise matrix estimation bounds. Furthermore, the entrywise error (4.43b) is about an
order of n1 times smaller than the corresponding Euclidean error predicted in Theorem 3.23.
This indicates that no entry in the resulting matrix estimate suffers from an error significantly
higher than the average entrywise error.

4.5 Application: Exact community recovery

Another application that benefits remarkably from the fine-grained eigenvector perturbation theory
is community recovery. This section reexplores the stochastic block model studied in Section 3.4,
and develops significantly enhanced theoretical support for spectral clustering.
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4.5.1 Performance guarantees: Exact recovery

The focus of this section is simultaneous recovery of the community memberships of all vertices,
which is termed exact recovery or strong consistency in the community detection literature (Abbe,
2017). This imposes a much stronger requirement than the weak consistency studied in Section 3.4.3.

For the sake of conciseness, the theorem below concentrates on the challenging regime where
p, q � logn

n , corresponding to the lowest possible edge densities that allow for exact recovery. This is
because, if p < logn

n , then with high probability, one can find isolated vertices that are not connected
with any edge in the graph (Durrett, 2007); hence, there will be absolutely no means to infer the
community membership of these isolated vertices. The theoretical guarantee is as follows.

Theorem 4.6. Fix any constant ε > 0, and consider the setting of Section 3.4.1. Suppose p = α logn
n

and q = β logn
n for some sufficiently large constants α > β > 0.1 In addition, assume that

(√
p−√q)2 ≥ 2 (1 + ε) logn

n
. (4.45)

With probability 1− o(1), the spectral method in Section 3.4.2 yields

xi = x?i for all 1 ≤ i ≤ n, or xi = −x?i for all 1 ≤ i ≤ n.
This theorem, which first appeared in Abbe et al. (2020b), identifies a sufficient recovery

condition in terms of the edge densities. The result substantially strengthens the `2-based theory in
Section 3.4.3, uncovering the capability of the spectral method in achieving not merely almost exact
recovery in the average sense, but more appealingly, exact community recovery that ensures correct
labels of all vertices.

A natural question arises as to whether the recovery condition (4.45) is improvable via more
sophisticated algorithms. Answering this question requires information-theoretic thinking, that is,
how to characterize a fundamental threshold—in terms of the difference of edge densities—below
which exact recovery is deemed infeasible. As has been demonstrated in Abbe et al. (2016), Mossel
et al. (2015), and Hajek et al. (2016), no algorithm whatsoever is able to achieve exact community
recovery if

(√
p−√q)2 ≤ 2(1− ε) logn

n
(4.46)

for any constant ε > 0. This fundamental lower bound, in conjunction with Theorem 4.6, reveals a
sharp phase transition behind the performance of the spectral method. In particular, its optimality
is guaranteed all the way down to the information-theoretic threshold; see Figure 4.2 for numerical
evidence.

Given that the above information-theoretic threshold is specified in terms of (√p−√q)2, the
reader might naturally wonder what the operational meaning of this quantity is. As it turns out,
this metric is a sort of distance measure between the two edge probability distributions under
consideration. In truth, in the setting of Theorem 4.6, this metric is intimately related to the squared
Hellinger distance between two Bernoulli distributions.

Definition 4.2 (Squared Hellinger distance). Consider two distributions P and Q over a finite alphabet
Y. The squared Hellinger distance H2(P ‖Q) between P and Q is defined as follows

H2(P ‖Q) := 1
2
∑

y∈Y

(√
P (y)−

√
Q(y)

)2
. (4.47)

1In the current proof, the constants α, β might depend on the fixed choice of ε. Encouragingly, this restriction can
be lifted; see Abbe et al. (2020b) for details.
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22 Fine-grained analysis: ¸Œ and ¸2,Œ perturbation theory

Figure 1.3: Phase transition of spectral methods for exact community recovery. Set
n = 300, p = (a logn)/n, and q = (b logn)/n. We vary a, b from 0 to 8 with equal
space of 0.1. For each configuration of a Ø b, we conduct 100 Monte-Carlo trials
and report the empirical success rate for recovering the entire community structure.
White areas indicate complete success, while dark ones indicate complete failure.
The empirical phase transition occurs near the information-theoretic threshold.

Definition 1.2 (Squared Hellinger distance). Consider two distributions
P and Q over a finite alphabet Y. The squared Hellinger distance
H2(P ÎQ) between P and Q is defined as follows

H2(P ÎQ) := 1
2

ÿ
yœY

1Ò
P (y) ≠

Ò
Q(y)

22
. (1.47)

In particular, consider the squared Hellinger distance between two
Bernoulli distributions of interest Bern(p) and Bern(q), where we denote
by Bern(p) the Bernoulli distribution with mean p. It is seen that2
(Chen et al., 2016)
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
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q
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2To justify this approximation, the following calculation su�ces:
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
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Figure 4.2: Phase transition of spectral methods for exact community recovery. Set n = 300, p = (a logn)/n, and
q = (b logn)/n. We vary a, b from 0 to 8 with an equal space of 0.1. For each configuration of a ≥ b, we conduct 100
Monte Carlo trials and report the empirical success rate for recovering the entire community structure correctly. The
empirical phase transition occurs near the information-theoretic threshold (see (4.46)).

In particular, consider the squared Hellinger distance between two Bernoulli distributions of
interest Bern(p) and Bern(q), where we denote by Bern(p) the Bernoulli distribution with mean p. It
is seen that (Chen et al., 2016b)

H2(Bern(p),Bern(q)
)

:= 1
2
(√
p−√q)2 + 1

2
(√

1− p−
√

1− q)2

= (1 + o(1))1
2
(√
p−√q)2,

when p = o(1) and q = o(1).2 The phase transition phenomenon identified in (4.45) and (4.46) can
then be alternatively described as

spectral method works if H2(Bern(p),Bern(q)
) ≥ (1 + ε) logn

n

no algorithm works if H2(Bern(p),Bern(q)
) ≤ (1− ε) logn

n

for an arbitrary small constant ε > 0.

2To justify this approximation, the following calculation suffices:
√

1− q −
√

1− p = p− q√
1− p+

√
1− q = (1 + o(1))

(√
p−√q

)(√
p+√q

)
= o
(√

p−√q
)
.
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4.5.2 Proof of Theorem 4.6

We now turn to the proof of Theorem 4.6. Without loss of generality, suppose that x?i = 1 for all
1 ≤ i ≤ n/2 and x?i = −1 for all i > n/2, so that u? = 1√

n

[
1n/2
−1n/2

]
.

Recalling the matrixM given in (3.30) and its meanM? in (3.31), one can immediately see that
κ = µ = r = 1 for M? in this application. Theorem 4.2 (cf. (4.31b)) readily implies the existence of
some z ∈ {1,−1} such that

∥∥∥zu− 1
λ?
Mu?

∥∥∥
∞

. σ

|λ?| + σ2√n logn+ σB log3/2 n

(λ?)2 (4.48)

with probability at least 1−O(n−5). Additionally, it has already been explained in Section 3.4 that

B = 1, σ2 ≤ max{p, q} = p, and λ? = n(p− q)/2.
Substitution into (4.48) reveals that

∥∥zλ?u−Mu?
∥∥
∞ . σ + σ2√n logn

λ?
+ σB log3/2 n

λ?

≤ C
(√

p+ p
√

logn√
n(p− q) +

√
p log3/2 n

n(p− q)
)

(4.49)

holds for some universal constant C > 0. As a result, a crucial step boils down to controlling Mu?

in an entrywise manner: each element is a difference between two independent random binomial
random variables and is accomplished through the following lemma.

Lemma 4.7. Suppose that

H2
p,q :=

(√
p−√q)2 ≥ (1 + ε) 2 logn

n
(4.50)

for some quantity ε > 0. Let ε0 := ε logn√
n log p(1−q)

q(1−p)
− 1√

n
. Then with probability exceeding 1 − n−ε/2,

one has

Ml,·u
? ≥ ε0 for all l ≤ n

2 , and Ml,·u
? ≤ −ε0 for all l > n

2 .

We now return to analyze the entrywise behavior of u. Note that

(zλ?)ul ≥Ml,·u
? −

∣∣zλ?ul −Ml,·u
?
∣∣ for all l ≤ n/2;

(zλ?)ul ≤Ml,·u
? +

∣∣zλ?ul −Ml,·u
?
∣∣ for all l > n/2.

This together with (4.49), Lemma 4.7 and λ? > 0 yields that if

ε logn
√
n log p(1−q)

q(1−p)
>

1√
n

+ C
(√

p+ p
√

logn√
n(p− q) +

√
p log3/2 n

n(p− q)
)
, (4.51)

then it follows that

zul > 0 for all 1 ≤ l ≤ n

2 , and zul < 0 for all l > n

2 ,

thus guaranteeing exact community recovery once the rounding procedure (based on the sign) is
applied.

To finish up, it remains to validate Condition (4.51). Fixing ε > 0 to be a constant, we make
the following observations.
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• From the assumptions ε � 1 and p, q � logn
n (or α, β � 1), one has

ε logn
√
n log p(1−q)

q(1−p)
= ε logn
√
n log (1+o(1))α

β

� logn√
n
� √p+ 1√

n
.

• Turning to the term p
√

logn√
n(p−q) , we observe that

log p(1− q)
q(1− p) = log

(
1 + p− q

q(1− p)
)
≤ p− q
q(1− p) ≤

2(α− β)
β

,

=⇒ ε logn
√
n log p(1−q)

q(1−p)
≥ ε logn

2
√
n

β

α− β , (4.52)

where in the last inequality of the first line we have used the assumption p = o(1) and hence
1/(1− p) ≤ 2. Given that ε, α, β � 1, it is guaranteed that

(4.52)� α
√

logn√
n(α− β) = p

√
logn√

n(p− q) .

• We then move on to the term
√
p log3/2 n
n(p−q) . If α/β ≤ 2 and β ≥ 200C2

ε2 ≥ 100C2α/β
ε2 , then one has

β ≥ 10C
√
α

ε and hence

(4.52) ≥ 5C
√
α logn√

n(α− β) =
5C√p log3/2 n

n(p− q) .

In addition, if α/β > 2, then it follows that
√
p log3/2 n

n(p− q) =
√
α logn√
n(α− β) ≤

2
√
α logn√
nα

= 2 logn√
nα

, (4.53)

where the inequality holds true since α − β > α − α/2 = α/2. Using the basic inequality
log x ≤ √x further leads to

ε logn
√
n log p(1−q)

q(1−p)
≥ ε logn√

n log 2α
β

≥ ε
√
β logn√
n
√

2α
≥ 5C√p log3/2 n

n(p− q) .

Here, the first inequality holds since p, q = o(1) and hence 1−q
1−p ≤ 2, whereas the last relation

relies on (4.53) and holds with the proviso that β ≥ 200C2/ε2.

The above calculations taken collectively establish Condition (4.51) under the assumptions of
Theorem 4.6, thus concluding the proof.

Remark 4.2. It is worth pointing out that the bound (4.31a) in Theorem 4.2 is not sufficiently tight
when establishing this result. Instead, one needs to resort to the more refined bound (4.31b) in
Theorem 4.2, which allows us to sharpen the error bound by explicitly accounting for the first-order
error term (M −M?)u?.

4.5.3 Proof of auxiliary lemmas

Before embarking on the proof of Lemma 4.7, we first record non-asymptotic tail bounds concerning
log-likelihood ratios and a sum of Bernoulli random variables, which make apparent the role of the
squared Hellinger distance (Tsybakov, 2009).
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Lemma 4.8. Consider two distributions P and Q over a finite alphabet Y, and suppose that
P (y) 6= 0 for all y ∈ Y. Generate an independent sequence {yi}1≤i≤n obeying yi ∼ P . Then for any
ζ ∈ R one has

P
{

n∑

i=1
log Q(yi)

P (yi)
≥ −nζ

}
≤ exp

(
−n
[
H2(P ‖Q)− ζ

2
])
, (4.54)

where H2(P ‖Q) is the squared Hellinger distance between P and Q defined in (4.47).

Lemma 4.9. Consider two sequences of independent random variables

zi ∼ Bern(p), wi ∼ Bern(q), 1 ≤ i ≤ n,
and suppose that p > q. For any ξ ∈ R, it follows that

P
{

n∑

i=1
(zi − wi) ≤ nξ

}
≤ exp

(
−n
[
H2
p,q −

ξ

2 log p(1− q)
q(1− p)

])
,

where H2
p,q :=

(√
p−√q )2.

In what follows, we first establish Lemmas 4.8 and 4.9, and then return to prove Lemma 4.7.

Proof of Lemma 4.8. Apply the Chernoff bound to yield

P
{

n∑

i=1
log Q(yi)

P (yi)
≥ −nζ

}
≤
Eyi∼P

[
exp

(
1
2
∑n
i=1 log Q(yi)

P (yi)

)]

exp(−nζ/2)

(i)=

(
Ey∼P

[ (
Q(y)
P (y)

)1/2 ])n

exp(−nζ/2) , (4.55)

where (i) holds due to the i.i.d. assumption of the yi’s. In addition,

Ey∼P

[(
Q(y)
P (y)

)1/2]
=
∑

y

P (y)
(
Q(y)
P (y)

)1/2
=
∑

y

√
P (y)Q(y)

= 1− 1
2
∑

y

(
P (y) +Q(y)− 2

√
P (y)Q(y)

)

= 1− 1
2
∑

y

(√
P (y)−

√
Q(y)

)2

= 1− H2(P ‖Q) ≤ exp
(− H2(P ‖Q)

)
, (4.56)

where the second line follows since ∑y P (y) = ∑
y Q(y) = 1, and the last line uses the definition

(4.47) and the elementary inequality 1− x ≤ exp(−x). Substituting (4.56) into (4.55) concludes the
proof.

Proof of Lemma 4.9. Set yi := zi − wi. The proof is built upon a mapping between ∑n
i=1 yi and

a certain log-likelihood ratio. Specifically, let us introduce two distributions P and Q supported on
{1, 0,−1}:

P (x) =





p(1− q), if x = 1,
q(1− p), if x = −1,
pq + (1− p)(1− q), if x = 0,
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Q(x) =





q(1− p), if x = 1,
p(1− q), if x = −1,
pq + (1− p)(1− q), if x = 0.

Apparently, P (resp. Q) corresponds to the distribution of yi (resp. −yi). A key observation is that
n∑

i=1
log Q(yi)

P (yi)
=

n∑

i=1

{
1{yi = 1} log q(1− p)

p(1− q) + 1{yi = −1} log p(1− q)
q(1− p)

}

=
n∑

i=1
yi log q(1− p)

p(1− q) ,

which relies on the fact that yi is supported on {1, 0,−1}. Recognizing that log p(1−q)
q(1−p) > 0 holds as

long as p > q (since q(1− p) < p(1− q)), we can further derive

P
{

n∑

i=1
yi ≤ nξ

}
= P





1
log p(1−q)

q(1−p)

n∑

i=1
log Q(yi)

P (yi)
≥ −nξ





≤ exp
(
−n
[
H2(P ‖Q)− ξ

2 log p(1− q)
q(1− p)

])
,

where the last inequality comes from Lemma 4.8. From the constructions of P and Q and the
definition (4.47) of H2(P ‖Q), it is easily seen that

H2(P ‖Q) =
(√

p(1− q)−
√
q(1− p)

)2
=

(
p− q)2

(√
p(1− q) +

√
q(1− p) )2

≥
(
p− q)2

(√
p+√q )2

=
(√
p−√q)2,

thus concluding the proof.

Proof of Lemma 4.7. Let us start by looking at the first entry of Mu?. It is seen from the
construction (3.30) that

M1,·u? = A1,·u? −
p+ q

2
(
1>u?

)
1 + pu?1 ≥ A1,·u?, (4.57)

where we have used the fact that 1>u? = 0 and u?1 > 0. The expression u? = 1√
n

[
1n/2
−1n/2

]
admits

the following decomposition

A1,·u? = 1√
n

∑n/2
i=1

(
A1,i −A1,i+n/2

)
, (4.58)

which can be controlled via Lemma 4.9.
Observe that A1,i ∼ Bern(p) for all 1 < i ≤ n/2 and A1,i ∼ Bern(q) otherwise. Using the

definitions of zi and wi in Lemma 4.9, we obtain

P
{∑n/2

i=1
(
A1,i −A1,i+n/2

) ≤ nζ

2 − 1
}
≤ P

{∑n/2
i=1

(
zi − wi

) ≤ nζ

2

}

≤ exp
(
−n2

[
H2
p,q −

ζ

2 log p(1− q)
q(1− p)

])
≤ 1
n1+δ (4.59)
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for some δ > 0, where the first inequality follows since A1,1 = 0 ≤ z1 + 1 (so that A1,1 −A1,n/2+1 is
stochastically dominated by z1 − w1), and the last inequality holds as long as

H2
p,q −

ζ

2 log p(1− q)
q(1− p) ≥

2(1 + δ) logn
n

, (4.60)

which we shall ensure at the end of the proof. Substituting (4.59) into (4.58) and (4.57) yields

P
{
M1,·u? ≤

nζ − 2
2
√
n

}
≤ P

{
A1,·u? ≤

nζ − 2
2
√
n

}
≤ 1
n1+δ .

Repeating the preceding analysis for Ml,·u? with other l’s and taking the union bound, we see that
with probability at least 1− n−δ,

Ml,·u
? ≥ nζ − 2

2
√
n

if l ≤ n/2 (4.61a)

Ml,·u
? ≤ −nζ − 2

2
√
n

if l > n/2 (4.61b)

hold simultaneously for all 1 ≤ l ≤ n.
Finally, it remains to ensure satisfaction of (4.60). As it turns out, if the condition (4.50) holds,

then it suffices to take δ ≤ ε/2 and ζ = 2ε logn
n log p(1−q)

q(1−p)
. This completes the proof.

4.6 Distributional theory and uncertainty quantification

Thus far, we have demonstrated intriguing statistical performance of estimators developed based on
spectral methods. As one can anticipate, the quality of a spectral estimator is largely affected by the
imperfectness of data generating mechanisms (e.g., noise corruption, missing data). The uncertainty
of the estimator due to these factors would inevitably influence any subsequent decision making
based on it. Viewed in this light, it is recommended to accompany the estimator in hand with valid
measures of uncertainty (or “confidence”), in order to better inform decision makers.

Take the low-rank matrix estimation problem in Section 4.2.1 for instance: an important
uncertainty quantification task can be posed as the construction of a valid confidence interval—based
on the spectral estimator—that is likely to cover an unseen entry of the matrix of interest M?.
More precisely, for any location (i, j) and any target coverage level 1− α ∈ (0, 1) (e.g., 95%), we
aim to identify a short interval—denoted by CI1−αi,j —based on the spectral estimator such that

P
(
M?
i,j ∈ CI1−αi,j

) ≈ 1− α, (4.62)

which essentially augments a point estimate into an interval that is guaranteed to cover the unknown
with the pre-specified target probability. Note that the problem of constructing a valid confidence
interval falls within the realm of statistical inference in the statistics literature, which constitutes an
important step beyond statistical estimation. Accomplishing this task in high dimension often calls
for a refined statistical reasoning toolbox that offers quantitative distributional characterizations of
the estimator.

4.6.1 Entrywise distributional guarantees

As a natural starting point to build confidence intervals, we seek to develop comprehensive under-
standing about the distribution of the spectral estimator. In general, obtaining a non-asymptotic
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yet tractable distributional characterization of a nonconvex estimator like the spectral method could
be remarkably challenging. Fortunately, the `∞ and `2,∞ perturbation theory introduced previously
(e.g., Theorem 4.2) allows one to make progress for some important scenarios.

Let us revisit the setting in Section 4.2.1, and consider the following estimator of the unknown
low-rank matrix M?:

M̂ =
[
M̂i,j

]
1≤i,j≤n = UΛU>, (4.63)

obtained via the spectral method. The aim is to develop tractable distributional guarantees for each
entry of M̂ −M?.

Towards this end, we first examine whether our previous results shed light on certain distributional
properties of M̂ −M?. Informally, Theorem 4.2 (in particular, (4.31b)) reveals that

Usgn(H) ≈MU?(Λ?)−1 = U? +EU?(Λ?)−1
. (4.64)

Assuming tightness of this first-order approximation, one further derives

UΛU> −M? (i)≈ Usgn(H)Λ?(Usgn(H)
)> −U?Λ?U?>

(ii)≈ (
Usgn(H)−U?)Λ?U?> +U?Λ?(Usgn(H)−U?)>

(iii)≈ EU?(Λ?)−1Λ?U?> +U?Λ?(EU?(Λ?)−1)>

= EU?U?> +U?U?>E, (4.65)

where (i) holds as long as sgn(H)Λ?sgn(H)> ≈ Λ (which has already been illuminated in the
analysis of Corollary 4.3 and will be solidified momentarily), (ii) is obtained by dropping the
higher-order term

(
Usgn(H)−U?

)
Λ?
(
Usgn(H)−U?

)>, and (iii) relies upon the approximation
(4.64).

Given that (4.65) is a linear map of the noise matrix E, this essentially forms a first-order
approximation of M̂ , which in turn enables a tractable distributional theory for M̂ . Observe that
each entry of the matrix in (4.65) is a weighted superposition of the independent zero-mean entries
of E. Equipped with this observation, some variant of the central limit theorem suggests that each
entry of M̂ −M? is approximately zero-mean Gaussian, as formalized by the theorem below. For
notational convenience, we shall define a projection matrix

P ? =
[
P ?i,j

]
1≤i,j≤n := U?U?>, (4.66)

and impose a lower bound requirement on the noise variance:

σ2
min ≤ σ2

i,j ≤ σ2, 1 ≤ i, j ≤ n. (4.67)

Theorem 4.10. Suppose that the assumptions of Theorem 4.2 hold. For any 1 ≤ i, j ≤ n, set

v?i,j =





∑n
l=1 σ

2
i,lP

?2
l,j +∑n

l=1 P
?2
i,l σ

2
l,j + 2σ2

i,jP
?
i,iP

?
j,j , if i 6= j,

4∑n
l=1 σ

2
i,lP

?2
l,i , if i = j.

(4.68)

Assume that σ/σmin = O(1), and that
∥∥U?

j,·
∥∥2

2 +
∥∥U?

i,·
∥∥2

2∥∥U?
∥∥2

F

& B2κ2µ2r2 log2 n

σ2n2 + σ2µ2rκ4 log3 n

(λ?r)2 . (4.69)
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Then the estimator (4.63) obeys

sup
z∈R

∣∣∣P
(
M̂i,j −M?

i,j ≤ z
√
v?i,j

)
− Φ(z)

∣∣∣ = o(1),

where Φ(·) represents the cumulative density function (CDF) of the standard Gaussian distribution.

The proof of this theorem is postponed to Section 4.11. In a nutshell, Theorem 4.10 tells us that
M̂ is a nearly unbiased estimator of the truth M?, as long as the signal strength—as captured
by ‖U?

i,·‖2 and ‖U?
j,·‖2 when estimating the (i, j)-th entry—is sufficiently large (cf. (4.69)). The

resulting estimation error in each entry is well approximated by a zero-mean Gaussian random
variable, whose variance can be determined in a tractable fashion. As can be easily verified, the
variance v?i,j is precisely the variance of the (i, j)-th entry of EU?U?>+U?U?>E (as singled out in
(4.65)). The above distributional theory is non-asymptotic, which lends itself well to high-dimensional
applications.

4.6.2 Inference and uncertainty quantification

The Gaussian approximation unveiled in Theorem 4.10, which is dictated by a single parameter v?i,j ,
paves the way for statistical inference and uncertainty quantification tailored to this model. In order
to construct a valid confidence interval for each entry of M?, everything boils down to identifying
an estimator that approximates the variance parameter v?i,j , ideally in a data-driven yet faithful
manner.

In view of the variance characterization (4.68), computing v?i,j requires information about both
the noise variances {σ2

i,j}1≤i,j≤n and the projection matrix P ? (cf. (4.66)). However, estimating
the noise variances is in general statistically infeasible, given that we only have access to a single
observation (i.e., Mi,j) related to each individual variance σ2

i,j . Fortunately, the variance v?i,j involves
only the summation or equivalently the average of these individual variances, whose stochastic
errors will be averaged out. This leads us to the following surrogate

ṽi,j =





∑n
l=1E

2
i,lP

?2
l,j +∑n

l=1 P
?2
i,l E

2
l,j + 2E2

i,jP
?
i,iP

?
j,j , if i 6= j,

4∑n
l=1E

2
i,lP

?2
l,i , if i = j,

(4.70)

which is clearly an unbiased estimator of v?i,j . Given the statistical independence of {Ei,j}i≥j , we
can expect to have ṽi,j ≈ v?i,j , owing to the concentration of measure.

However, the above surrogate ṽi,j remains practically incomputable, due to the absence of
knowledge about both E and P ?. To address this issue, we propose the following plug-in estimator:

v̂i,j =





∑n
l=1 Ê

2
i,lP̂

2
l,j +∑n

l=1 P̂
2
i,lÊ

2
l,j + 2Ê2

i,jP̂i,iP̂j,j , if i 6= j,

4∑n
l=1 Ê

2
i,lP̂

2
l,i, if i = j,

(4.71)

where Ê = [Êi,j ]1≤i,j≤n and P̂ = [P̂i,j ]1≤i,j≤n stand for estimators of E and P ?, respectively. In
particular, we employ the following specific estimators of E and P ?, again adopting the plug-in
strategy:

Ê := M −UΛU>, (4.72a)
P̂ := UU>, (4.72b)
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where U and Λ are, as usual, computed via eigendecomposition of M . For a prescribed coverage
level 1− α (with 0 < α < 1), we construct the following confidence interval for the (i, j)-th entry of
M?, motivated by the Gaussian approximation in Theorem 4.10:

CI1−αi,j :=
[
M̂i,j ± Φ−1(1− α/2)

√
v̂i,j

]
. (4.73)

Here and throughout, for any b > 0, we let [a± b] abbreviate the interval [a− b, a+ b], and we use
Φ−1(·) to represent the inverse CDF of the standard Gaussian distribution.

As encouraging news, the above construction of entrywise confidence intervals is provably valid
with high probability, as revealed by the following theorem. The proof is postponed to Section 4.12.

Theorem 4.11. Consider the settings and assumptions in Section 4.2.1, and suppose that σ/σmin =
O(1), κ4µ2r2 logn ≤ n and σκ

√
n logn . |λ?r |. Consider any 1 ≤ i, j ≤ n, and assume that

∥∥U?
j,·
∥∥2

2 +
∥∥U?

i,·
∥∥2

2∥∥U?
∥∥2

F

& Bκ2µ2r2 log2 n

σn3/2 + σµ2rκ3 log3 n

|λ?r |
√
n

. (4.74)

For any fixed coverage level 1− α ∈ (0, 1), the confidence interval CI1−αi,j constructed in (4.73) obeys

P
(
M?
i,j ∈ CI1−αi,j

)
= 1− α+ o(1). (4.75)

Theorem 4.11 confirms that the confidence interval proposed above meets the prescribed coverage
requirement, provided that the associated signal strength is not too low (see (4.74)). In addition
to its statistical validity, the proposed procedure enjoys several features that make it practically
appealing:

• Adaptive to unknown noise levels and distributions. The above inference procedure is fully
data-driven, which does not require prior knowledge about the noise levels or noise distributions.
As alluded to previously, it is in general impossible to estimate the noise variance in each
entry, and hence a data-driven yet valid approach is of critical value.

• Adaptive to heteroskedastic noise. Our statistical guarantees hold without relying on homogene-
ity of noise components. In other words, this inference procedure automatically accommodates
heteroskedastic noise, a scenario where the variance of the noise components might vary across
different locations.

Careful readers might remark that Theorem 4.11 is concerned with statistical inference for a
single entry. Interestingly, the distributional theory presented in Section 4.6.1 (see also Lemma 4.18
in the proof of Theorem 4.10) might also be instrumental in pursuing simultaneous inference, namely,
the problem of constructing a confidence region that simultaneously accounts for more than one
unknown entries. We omit such an extension for the sake of conciseness.

4.7 Application: Confidence intervals for matrix completion

As an illustration of the applicability of the inference procedure described in Section 4.6.2, we
develop concrete consequences of Theorem 4.11 in application to noisy matrix completion—an
extension of the formulation in Section 3.8 to noisy settings.
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Model: noisy matrix completion. Suppose that we are asked to reconstruct a symmetric rank-r
matrix M? = [M?

i,j ]1≤k,l≤n ∈ Rn×n with eigendecomposition M? = U?Λ?U?>. We only get to
acquire noisy observations of a subset of the entries of M?; more precisely, there exists a sampling
set Ω ⊆ [n]× [n] such that we observe

M?
k,l + ηk,l if (k, l) ∈ Ω. (4.76)

Here, {ηk,l | k ≥ l} denotes independent Gaussian noise obeying

ηk,l = ηl,k
i.i.d.∼ N (0, σ2

η), k ≥ l. (4.77)

As before, we focus on the random sampling model such that each location (k, l) with k ≥ l is
included in the sampling set Ω independently with probability p. Further, assume that M? has
eigenvalues obeying (4.22), condition number κ (cf. (4.23)), and incoherence parameter µ (cf. (4.24)).
Can we build a confidence interval for each entry M?

i,j , on the basis of the output of the spectral
method?

Computing entrywise confidence intervals. In order to apply the inference procedure in Sec-
tion 4.6.2, it suffices to determine the data matrix M = [Mi,j ]1≤i,j≤n, which can be selected as
usual. Specifically, a possible inference procedure proceeds as follows:

• Set M such that for any 1 ≤ i, j ≤ n,

Mi,j =





1
p

(
M?
i,j + ηi,j

)
, if (i, j) ∈ Ω,

0, else,
(4.78)

which clearly obeys E[M ] = M?.

• Compute the estimate M̂ (cf. (4.63)) via the spectral method.

• For a given coverage level 1−α and a given pair (i, j), construct the confidence interval CI1−αi,j

according to (4.73), with auxiliary parameters provided in (4.71) and (4.72).

Performance guarantees and implications. When specialized to noisy matrix completion, our
inference theory in Theorem 4.11 leads to the following statistical guarantees.

Theorem 4.12. Consider the noisy matrix completion setting in this section. Suppose that κ4µ2r2 logn ≤
n, maxk,l |M?

k,l|
mink,l |M?

k,l
| = O(1),

np & κ4r logn and σηκ

√
n logn
p

. |λ?r |. (4.79)

Consider any 1 ≤ i, j ≤ n, and assume that
∥∥U?

j,·
∥∥2

2 +
∥∥U?

i,·
∥∥2

2∥∥U?
∥∥2

F

& µ2r2κ4 log3 n

n
√
np

+ σηµ
2rκ3 log3 n

|λ?r |
√
np

. (4.80)

For any fixed coverage level 1− α ∈ (0, 1), the confidence interval CI1−αi,j constructed in (4.73) obeys

P
(
M?
i,j ∈ CI1−αi,j

)
= 1− α+ o(1). (4.81)
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In order to help interpret the applicable range of Theorem 4.12, let us focus on the simple
scenario with κ, µ, r � 1 to simplify discussion.

• First of all, Condition (4.79) can be simplified as

np & logn and ση

√
n logn
p

. |λ?r |.

The first condition on the sampling size coincides with the fundamental requirement even if
the goal is merely to enable reliable estimation (Candès and Tao, 2010), whereas the second
condition on the signal-to-noise ratio is also necessary—up to some log factor—to ensure an
estimation quality better than that of a random guess (Cai et al., 2021a, Theorem 3.3).

• Next, we move on to interpret the other condition (4.80) imposed in our theory, which simplifies
to ∥∥U?

j,·
∥∥2

2 +
∥∥U?

i,·
∥∥2

2∥∥U?
∥∥2

F

& log3 n

n
√
np

+ ση log3 n

|λ?r |
√
np

.

Let us consider the most challenging case where np & poly logn and ση
√

npoly logn
p . |λ?r | (for

some sufficiently large poly-log factor). In such a case, the above condition only requires
∥∥U?

j,·
∥∥2

2 +
∥∥U?

i,·
∥∥2

2∥∥U?
∥∥2

F

& 1
npoly logn,

indicating that the associated signal power ‖U?
j,·‖22 + ‖U?

i,·‖22 is allowed to be much smaller
than the average signal power across all rows (which can be captured by ‖U?‖2F/n).

In a nutshell, the validity of our inference procedure is ensured for broad settings. Additionally,
we have conducted a series of numerical experiments to examine the entrywise distributions of
M . As illustrated in Figure 4.3, the normalized estimation error (v̂i,j)−1/2(M̂i,j −M?

i,j) is close
in distribution to a standard Gaussian random variable, which corroborates our theory on the
confidence interval construction.

Before concluding, we would like to remark that: while the distributional theory for spectral
methods allows for valid construction of confidence intervals for an unseen entry, it is oftentimes
not among the most effective statistical inference procedures that one can put forward. There exist
other alternatives that are provably more efficient, including but not limited to inference procedures
based on convex relaxation and nonconvex optimization (Chen et al., 2019c; Xia and Yuan, 2021),
and the ones based on more refined spectral methods (Yan et al., 2021; Chernozhukov et al., 2021).

Proof of Theorem 4.12. Given that ηi,j is a Gaussian random variable and hence possibly
unbounded, we find it convenient to introduce a truncated version as follows

η̃i,j = ηi,j1
{|ηi,j | ≤ 5ση

√
logn

}
, 1 ≤ i, j ≤ n.

and

M̃i,j =





1
p

(
M?
i,j + η̃i,j

)
, if (i, j) ∈ Ω,

0, else.
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Figure 4.3: Entrywise numerical distribution for noisy matrix completion. We generate M? = U?U?> with U?

being a random orthonormal matrix, and analyze the behavior of Z1,2 = (v̂1,2)−0.5(M̂1,2 −M?
1,2), where M̂ is defined

in (4.63) and v̂i,j is defined in (4.71). The results are reported for 500 Monte Carlo trials when p = 0.3, n = 1000,
ση = 10−4, and r = 3. (a) Histogram of the empirical distribution of Z1,2; (b) Q-Q (quantile-quantile) plot of Z1,2
vs. the standard normal distribution.

Repeating the analysis in Section 3.2.3, we can show that

P
{
M = M̃

}
= P

{
ηi,j = η̃i,j ,∀i, j ∈ [n]

} ≥ 1− n−10,

meaning that M and M̃ are equivalent with high probability. As a result, we shall concentrate
on validating the confidence interval computed based on M̃ in the subsequent analysis. Before
proceeding, we record several key properties about η̃i,j as follows:

E[η̃i,j ] = 0, E[η̃2
i,j ] = (1− o(1))σ2

η,
∣∣η̃i,j

∣∣ ≤ 5ση
√

logn. (4.82)

The proof follows by invoking Theorem 4.11, as long as the conditions required therein are
satisfied. To begin with, the associated variance parameters are given by

σ2
i,j := E

[(
M̃i,j −M?

i,j

)2]

= pE
[(1− p

p
M?
i,j + 1

p
η̃i,j

)2
]

+ (1− p)(M?
i,j

)2

= (1− p)2

p

(
M?
i,j

)2 + 1
p
E
[
η̃2
i,j

]
+ (1− p)(M?

i,j

)2

= 1− p
p

(
M?
i,j

)2 + 1− o(1)
p

σ2
η,

thus leading to

σ2
min := min

i,j
σ2
i,j = 1− p

p
min
i,j

(
M?
i,j

)2 + 1− o(1)
p

σ2
η,

σ2 := max
i,j

σ2
i,j = 1− p

p
‖M?‖2∞ + 1− o(1)

p
σ2
η.
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Apparently, σ2/σ2
min = O(1) holds true under the assumptions of Theorem 4.12. In addition, the

random variables {M̃i,j −M?
i,j} are all bounded obeying

∣∣M̃i,j −M?
i,j

∣∣ ≤ 1− p
p

∣∣M?
i,j

∣∣+ 1
p

∣∣η̃i,j
∣∣ ≤ (1− p)‖M?‖∞ + ση

√
5 logn

p
=: B.

These bounds readily imply that

B

σ
�

(1−p)‖M?‖∞+ση
√

5 logn
p√

1−p
p ‖M?‖∞ + 1√

pση
.
√

logn
p

. (4.83)

Moving to the condition σκ
√
n logn . |λ?r | in Theorem 4.12, it can be guaranteed if

‖M?‖∞κ
√

(1− p)n logn
p

. |λ?r | and σηκ

√
n logn
p

. |λ?r |.

Given the assumption maxk,l |M?
k,l|

mink,l |M?
k,l
| = O(1), one has

‖M?‖∞ �
1
n
‖M?‖F ≤

√
r

n
‖M?‖ = κ

√
r

n
|λ?r |. (4.84)

As a consequence, the condition σκ
√
n logn . |λ?r | can be ensured under Condition (4.79).

It remains to certify Condition (4.74). By virtue of the above calculations of σ and B as well as
the property (4.83), it is easily seen that Condition (4.74) is valid as long as the following holds:

∥∥U?
j,·
∥∥2

2 +
∥∥U?

i,·
∥∥2

2∥∥U?
∥∥2

F

& κ2µ2r2 log5/2 n

n
√
np

+
√

1− p ‖M?‖∞µ2rκ3 log3 n

|λ?r |
√
np

+ σηµ
2rκ3 log3 n

|λ?r |
√
np

.

Taking this together with the relation (4.84), we can demonstrate straightforwardly that Con-
dition (4.74) is guaranteed to hold as long as Condition (4.80) is satisfied. This completes the
proof.

4.8 Appendix A: Proof of Theorem 4.2

To simplify notation, we assume throughout the proof that λ?r > 0, namely,

|λ?1| ≥ · · · ≥ |λ?r−1| ≥ λ?r > 0. (4.85)

The challenge of the proof arises due to the complicated statistical dependency between M and U ,
and the leave-one-out analysis paves a plausible path to decouple the dependency.

4.8.1 Construction of leave-one-out auxiliary estimates

As elucidated in the rank-1 matrix denoising example in Section 4.1, the key to enabling fine-grained
analysis is to seek assistance from a collection of leave-one-out estimates. Akin to Section 4.1.3, for
each 1 ≤ l ≤ n, we construct two auxiliary matrices M (l) and E(l) =

[
E

(l)
i,j

]
1≤i,j≤n as follows:

M (l) := M? +E(l), E
(l)
i,j :=




Ei,j , if i 6= l and j 6= l,

0, else,
(4.86)
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which are generated by simply discarding all random noise incurred in the l-th column/row of the
data matrix. In addition, let λ(l)

1 , · · · , λ(l)
n be the eigenvalues of M (l) sorted by

∣∣λ(l)
1
∣∣ ≥

∣∣λ(l)
2
∣∣ ≥ · · · ≥

∣∣λ(l)
n

∣∣, (4.87)

and denote by u(l)
i the eigenvector ofM (l) associated with λ(l)

i . The leave-one-out spectral estimates
U (l) and Λ(l) are, therefore, given by

U (l) :=
[
u

(l)
1 , · · · ,u(l)

r

] ∈ Rn×r; Λ(l) := diag
([
λ

(l)
1 , · · · , λ(l)

r

])
. (4.88)

We emphasize again that the main advantage of introducing the leave-one-out estimate U (l)

stems from its statistical independence from the l-th row of M , which substantially simplifies
the analysis for the l-th row of the estimate. In principle, our analysis employs the leave-one-out
estimates to help decouple delicate statistical dependency in a row-by-row fashion. Another crucial
aspect of the analysis lies in the exploitation of the proximity of all these auxiliary estimates, a
feature that is enabled by the “stability” of the spectral method.

4.8.2 Preliminary facts

Before embarking on the `∞ and `2,∞ analyses, we gather a couple of useful facts, whose proofs
are postponed to Section 4.8.4. In what follows, Θ (resp. Θ(l)) denotes a diagonal matrix whose
diagonal entries are the principal angles between U (resp. U (l)) and U?. In addition, we find it
helpful to introduce the following matrices

H := U>U? and H(l) := U (l)>U?, (4.89)

which turn out to be close to being orthonormal.
The first set of results follows from the statistical nature of the perturbation matrix E (cf. As-

sumption 4.1), which is immediately available from the matrix tail bounds.

Lemma 4.13. Consider the setting in Section 4.2. There is some constant c2 > 0 such that with
probability at least 1−O(n−7),

max
l

∥∥E(l)∥∥ ≤ ‖E‖ ≤ c2σ
√
n. (4.90)

Moreover, for any fixed matrix A ∈ Rn×d with d ≤ n, one has

‖EA‖2,∞ ≤ 4σ
√

logn ‖A‖F + (6B logn)‖A‖2,∞. (4.91)

Remark 4.3. In view of (4.91), with probability at least 1− 2n−5,

‖EU?‖2,∞ ≤ 4σ
√

logn ‖U?‖F + (6B logn)‖U?‖2,∞

= 4σ
√
r logn+ 6B

√
µr log2 n

n
= (4 + 6cb)σ

√
r logn, (4.92)

which relies on the definition (4.24) and the definition of cb in (4.29). As a result,
∥∥MU?

∥∥
2,∞ ≤

∥∥M?U?
∥∥

2,∞ +
∥∥EU?

∥∥
2,∞

≤
√
µr

n
|λ?1|+ (4 + 6cb)σ

√
r logn, (4.93)

which follows from the fact M?U? = U?Λ? (so that ‖M?U?‖2,∞ ≤
∥∥U?

∥∥
2,∞‖Λ?‖ =

√
µr/n |λ?1|).
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With the size of the perturbations (i.e., ‖E(l)‖ and ‖E‖) under control, the `2 perturbation
theory established in Chapter 2 leads to the following set of conclusions.

Lemma 4.14. Suppose that c2σ
√
n ≤ (1−1/

√
2)λ?r , where c2 is the same constant as in Lemma 4.13.

Then with probability at least 1−O(n−7), one has

dist(U ,U?) ≤ 2c2σ
√
n

λ?r
, dist

(
U (l),U?) ≤ 2c2σ

√
n

λ?r
, (4.94a)

∥∥ sin Θ
∥∥ ≤ c2σ

√
2n

λ?r
,

∥∥ sin Θ(l)∥∥ ≤ c2σ
√

2n
λ?r

, (4.94b)

max
1≤j≤r

|λj | ≥ λ?r − c2σ
√
n, max

1≤j≤r
|λ(l)
j | ≥ λ?r − c2σ

√
n, (4.94c)

max
j:j>r

|λj | ≤ c2σ
√
n, max

j:j>r
|λ(l)
j | ≤ c2σ

√
n (4.94d)

hold simultaneously for all 1 ≤ l ≤ n. In addition,

‖UH −U?‖F ≤
2c2σ
√
rn

λ?r
. (4.94e)

with probability exceeding 1− 2n−5.

Remark 4.4. Lemmas 4.13 and 4.14 allow us to bound the eigengap and perturbation size as follows

∣∣λ(l)
r

∣∣−
∣∣λ(l)
r+1
∣∣ ≥ λ?r − c2σ

√
n− c2σ

√
n ≥ λ?r/2, (4.95a)

‖M −M (l)‖ ≤ ‖M −M?‖+ ‖M? −M (l)‖ = ‖E‖+ ‖E(l)‖
≤ 2c2σ

√
n ≤ (1− 1/

√
2)
(∣∣λ(l)

r

∣∣−
∣∣λ(l)
r+1
∣∣), (4.95b)

which are valid as long as 20c2σ
√
n ≤ λ?r . These will prove useful when bounding the approximation

error of U using U (l).

Another collection of results is concerned with H and H(l).

Lemma 4.15. Suppose that the assumptions of Lemma 4.14 hold. With probability at least 1 −
O(n−7),

‖H−1‖ ≤ 2,
∥∥(H(l))−1∥∥ ≤ 2, (4.96a)

∥∥H − sgn(H)
∥∥ ≤ 2c2

2nσ
2

(λ?r)2 ,
∥∥H(l) − sgn(H(l))

∥∥ ≤ 2c2
2nσ

2

(λ?r)2 (4.96b)

hold simultaneously for all 1 ≤ l ≤ n.

Remark 4.5. As a consequence of (4.96) and Proposition 2.1, one has

|||A||| =
∣∣∣∣∣∣AHH−1∣∣∣∣∣∣ ≤ |||AH|||

∥∥H−1∥∥ ≤ 2|||AH|||, (4.97a)

|||A||| ≤
∣∣∣∣∣∣AH(l)∣∣∣∣∣∣ ∥∥(H(l))−1∥∥ ≤ 2

∣∣∣∣∣∣AH(l)∣∣∣∣∣∣ (4.97b)

for any matrix A. Here, |||A||| could either be the Frobenius norm or the `2,∞ norm ‖ · ‖2,∞.

4.8.3 Leave-one-out analysis

Now we move on to the main part of the analysis, which is further decomposed into four steps.
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Step 1: decomposing the `2,∞ estimation error of U

By virtue of the proximity of H and sgn(H) unveiled in Lemma 4.15, we are allowed to employ
UH as a surrogate for Usgn(H), which is more convenient to work with. As it turns out, the
discrepancy between UH and the first-order approximation MU?(Λ?)−1, and the discrepancy
between UH and the truth, can be bounded by three important terms, as asserted below. The
proof is built upon elementary algebra and basic `2 perturbation bounds in Section 4.8.2, and is
deferred to Section 4.8.4.

Lemma 4.16. Suppose that 2c2σ
√
n ≤ λ?r for some sufficiently large constant c2 > 0. Then with

probability at least 1−O(n−7), one has
∥∥UH −MU?(Λ?)−1∥∥

2,∞ ≤ E1 + E2, (4.98a)
∥∥UH −U?

∥∥
2,∞ ≤ E1 + E2 + E3, (4.98b)

where E1 := 2‖M(UH−U?)‖2,∞
λ?r

, E2 := 4‖MU?‖2,∞‖E‖
(λ?r)2 , and E3 := ‖EU?‖2,∞

λ?r
.

Lemma 4.16 leaves us with three important terms to deal with. The term E1 is most complicated as
it involves the product of two random matrices, whereas E2 and E3 can be controlled straightforwardly
through our preliminary facts in Section 4.8.2. Specifically, the term E2 can be bounded by combining
(4.93) with the bound (4.90) on E to obtain

E2 ≤
4c2κσ

√
µr

λ?r
+ 4c2(4 + 6cb)σ2√rn logn

(λ?r)2 . (4.99)

Regarding the term E3, the inequality (4.92) readily gives

E3 ≤
(4 + 6cb)σ

√
r logn

λ?r
. (4.100)

Turning to controlling the remaining term E1, a closer inspection, however, reveals substantial
challenges, due to the complicated statistical dependency between M and U . To further complicate
matters, the term E1—as we shall demonstrate momentarily—depend on some intrinsic properties
of interest about U (e.g., ‖UH −U?‖2,∞), which might lead to circular reasoning if not handled
properly. In order to circumvent this issue, we intend to establish the following relation

E1 ≤ E1,1 + ρ1
∥∥UH −U?

∥∥
2,∞ (4.101)

for some quantity E1,1 > 0 that does not involve ‖UH −U?‖2,∞ as well as some contraction factor
0 < ρ1 ≤ 1/2. Assuming the relation (4.101) holds for the moment, we have the following useful
claim (the proof is straightforward and again postponed to Section 4.8.4).

Lemma 4.17. If Conditions (4.98) and (4.101) hold with 0 < ρ1 ≤ 1/2, then we have
∥∥UH −U?

∥∥
2,∞ ≤ 2

(E1,1 + E2 + E3
)
, (4.102a)

∥∥UH −MU?(Λ?)−1∥∥
2,∞ ≤ 2

(E1,1 + E2 + ρ1E3
)
, (4.102b)

∥∥Usgn(H)−U?
∥∥

2,∞ ≤ 4
(E1,1 + E2 + E3

)
+

4c2
2σ

2√µrn
(λ?r)2 , (4.102c)

∥∥Usgn(H)−MU?(Λ?)−1∥∥
2,∞

≤ 3E1,1 + 3E2 +
(
2ρ1 + 8c2

2σ
2n

(λ?r)2

)
E3 +

4c2
2σ

2√µrn
(λ?r)2 . (4.102d)
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Remark 4.6. When E3 is the dominant term, the bound (4.102b) might be stronger than (4.102a)
if ρ1 is small.

With this lemma in mind, everything boils down to (i) establishing the relation (4.101) and (ii)
deriving a tight bound on E1,1, which form the main content of the rest of the proof. In light of the
triangle inequality

∥∥M
(
UH −U?)∥∥

2,∞ ≤
∥∥E
(
UH −U?)∥∥

2,∞ +
∥∥M?(UH −U?)∥∥

2,∞,

we dedicate the next two steps to bounding ‖E(UH−U?)‖2,∞ and ‖M?(UH−U?)‖2,∞ respectively.

Step 2: bounding ‖E(UH − U?)‖2,∞ via leave-one-out analysis

To obtain tight row-wise control of E
(
UH −U?

)
, one needs to carefully decouple the statistical

dependency between E and U , which is where the leave-one-out idea comes into play.

Step 2.1: a convenient decomposition. We start by invoking the triangle inequality to decompose
the target quantity as follows

∥∥E
(
UH −U?)∥∥

2,∞ = max
l

∥∥El,·
(
UH −U?)∥∥

2

≤ max
l

{∥∥El,·
(
U (l)H(l) −U?)∥∥

2 +
∥∥El,·

(
UH −U (l)H(l))∥∥

2

}

≤ max
l

{∥∥El,·
(
U (l)H(l) −U?)∥∥

2 + ‖E‖
∥∥UH −U (l)H(l)∥∥

F

}
. (4.103)

In words, when controlling the l-th row of E
(
UH − U?

)
, we attempt to employ U (l)H(l) as a

surrogate of UH. The benefits to be harvested from this decomposition are:

• The statistical independence between El,· and U (l)H(l) allows for convenient upper bounds
on
∥∥El,·

(
U (l)H(l) −U?

)∥∥
2;

• UH and U (l)H(l) are expected to be exceedingly close, so that the discrepancy incurred by
replacing UH with U (l)H(l) is negligible.

In what follows, we flesh out the proof details.

Step 2.2: the proximity of UH and U (l)H(l). Given that
∥∥UH −U (l)H(l)∥∥

F =
∥∥UU>U? −U (l)U (l)>U?

∥∥
F

≤
∥∥UU> −U (l)U (l)>∥∥

F
∥∥U?

∥∥

=
∥∥UU> −U (l)U (l)>∥∥

F, (4.104)

it boils down to bounding ‖UU> −U (l)U (l)>‖F. Under simple conditions on the eigengap and the
perturbation size (see (4.95) in Remark 4.4), the Davis-Kahan theorem (cf. Corollary 2.8) yields

∥∥UU> −U (l)U (l)>∥∥
F ≤

2
∥∥(M −M (l))U (l)∥∥

F∣∣λ(l)
r

∣∣−
∣∣λ(l)
r+1
∣∣

≤ 4
∥∥(M −M (l))U (l)∥∥

F
λ?r

. (4.105)
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It remains to develop an upper bound on ‖(M −M (l))U (l)‖. The way we construct M (l) (see
Section 4.8.1) allows us to express

(
M −M (l))U (l) = elEl,·U

(l) +
(
E·,l − El,lel

)
e>l U

(l).

This together with the triangle inequality and the fact (4.97) gives
∥∥(M −M (l))U (l)∥∥

F ≤
∥∥El,·U (l)∥∥

2 +
∥∥E·,l − El,lel

∥∥
2
∥∥U (l)∥∥

2,∞

≤
∥∥El,·U (l)∥∥

2 + 2
∥∥E
∥∥ ∥∥U (l)H(l)∥∥

2,∞

≤
∥∥El,·U (l)∥∥

2 + 2
∥∥E
∥∥ ∥∥UH

∥∥
2,∞ + 2

∥∥E
∥∥ ∥∥UH −U (l)H(l)∥∥

F.

Substitution into (4.104) and (4.105) gives
∥∥UH −U (l)H(l)∥∥

F ≤
∥∥UU> −U (l)U (l)>∥∥

F

≤
4
∥∥El,·U (l)∥∥

2 + 8
∥∥E
∥∥ ∥∥UH

∥∥
2,∞ + 8

∥∥E
∥∥ ∥∥UH −U (l)H(l)∥∥

F
λ?r

.

As long as ‖E‖/λ?r ≤ 1/16, one can further rearrange terms to obtain

∥∥UH −U (l)H(l)∥∥
F ≤

8
∥∥El,·U (l)∥∥

2 + 16
∥∥E
∥∥ ∥∥UH

∥∥
2,∞

λ?r
. (4.106)

In addition, the fact (4.97) combined with the triangle inequality yields

1
2
∥∥El,·U (l)∥∥

2 ≤
∥∥El,·U (l)H(l)∥∥

2 ≤
∥∥El,·

(
U (l)H(l) −U?)∥∥

2 +
∥∥El,·U?

∥∥
2,

which taken collectively with (4.106) reveals that

∥∥UH −U (l)H(l)∥∥
F ≤

16
∥∥El,·

(
U (l)H(l) −U?

)∥∥
2

λ?r

+
16
{∥∥El,·U?

∥∥
2 +

∥∥E
∥∥ ∥∥UH −U?

∥∥
2,∞ +

∥∥E
∥∥ ∥∥U?

∥∥
2,∞

}

λ?r
. (4.107)

Step 2.3: bounding ‖El,·(U (l)H(l) − U?)‖2. Recognizing that El,· is statistically independent
of U (l) (since U (l) is computed without using El,·), we invoke Lemma 4.13 (more precisely, we use
the proof of this lemma) to demonstrate that with probability exceeding 1− 2n−6,

∥∥El,·
(
U (l)H(l) −U?)∥∥

2

≤ 4σ
√

logn ‖U (l)H(l) −U?‖F + (6B logn)‖U (l)H(l) −U?‖2,∞
≤ 4σ

√
logn ‖UH −U?‖F + (6B logn)‖UH −U?‖2,∞

+ (10B logn)‖UH −U (l)H(l)‖F (4.108)

holds simultaneously for all 1 ≤ l ≤ n, where the last line results from the triangle inequality and
the fact 4σ

√
logn+ 6B logn ≤ 10B logn.
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Step 2.4: combining the above bounds. The careful reader would immediately remark that the
inequalities (4.107) and (4.108) are convoluted, both of which involve the terms ‖El,·(U (l)H(l) −
U?)‖2 and ‖UH −U (l)H(l)‖F. Fortunately, one can substitute (4.108) into (4.107) to produce a
cleaner bound. By doing so and exploiting the condition 320B logn ≤ λ?r, we rearrange terms to
reach

∥∥UH −U (l)H(l)∥∥
F ≤

32
∥∥El,·U?

∥∥
2 + 32

∥∥E
∥∥ ∥∥U?

∥∥
2,∞

λ?r

+
128σ

√
logn

∥∥UH −U?
∥∥

F + (32c2σ
√
n+ 192B logn)

∥∥UH −U?
∥∥

2,∞
λ?r

,

where we have also used the upper bound on ‖E‖ derived in (4.94). Meanwhile, plugging the above
inequality into (4.108) yields

∥∥El,·
(
U (l)H(l) −U?)∥∥

2 ≤
320B logn

λ?r

(∥∥El,·U?
∥∥

2 +
∥∥E
∥∥ ∥∥U?

∥∥
2,∞
)

+ 5σ
√

logn ‖UH −U?‖F + (7B logn)‖UH −U?‖2,∞, (4.109)

provided that max{σ√n,B logn} ≤ c3λ?r for some small constant c3.
Substituting the preceding two bounds into (4.103) and combining terms reveal the existence of

some constant c4 > 0 such that
∥∥E
(
UH −U?)∥∥

2,∞

≤ α0 + α1 + c4
(
σ
√
n+B logn

)‖UH −U?‖2,∞ (4.110)

provided that max{σ√n,B logn} ≤ c3λ?r for some constant c3 > 0 small enough, where

α0 := 32c2σ
√
n+320B logn
λ?r

(∥∥EU?
∥∥

2,∞ +
∥∥E
∥∥ ∥∥U?

∥∥
2,∞
)
,

α1 := 6σ
√

logn ‖UH −U?‖F.
(4.111)

Before continuing, note that we are already well-equipped to bound the above two quantities.
First, α0 can be bounded by

α0 ≤
32c2σ

√
n+ 320B logn
λ?r

·
(
4σ
√
r logn+ 6B

√
µr

n
logn+ c2σ

√
µr
)
, (4.112)

where we have used the bounds concerning E from Lemma 4.13 as well as the definition (4.24).
Regarding α1, it is seen from (4.94e) that

α1 ≤
12c2σ2√rn logn

λ?r
. (4.113)

Step 3: bounding ‖M?(UH − U?)‖2,∞

We make the key observation that
∥∥M?(UH −U?)∥∥

2,∞ =
∥∥U?Λ?U?>(UH −U?)∥∥

2,∞

≤
∥∥U?

∥∥
2,∞‖Λ

?‖
∥∥U?>(UH −U?)∥∥

=
√
µr

n
‖Λ?‖

∥∥UU> −U?U?>∥∥2
. (4.114)
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Here, the last identity holds true due to the following observation
∥∥U?>(UH −U?)∥∥ =

∥∥U?>UU>U? −U?>U?
∥∥ =

∥∥U?>UU>U? − I
∥∥

=
∥∥Y (cos2 Θ)Y > − I

∥∥ =
∥∥ cos2 Θ− I

∥∥

=
∥∥ sin2 Θ

∥∥ =
∥∥ sin Θ

∥∥2
,

where we denote by X(cos Θ)Y > the SVD of U>U?, with X and Y being orthonormal matrices
and Θ the diagonal matrix consisting of the principal angles between U and U? (see the definition
in (2.5)). The above bounds combined with (4.94b) indicate that

∥∥M?(UH −U?)∥∥
2,∞ ≤

∣∣λ?1
∣∣
√
µr

n

∥∥ sin Θ
∥∥2

≤ 4c2
2κσ

2√µrn
λ?r

=: α2. (4.115)

Step 4: putting all pieces together

Combining the bounds (4.110) and (4.115) in Steps 2-3 and using the definition of E1 (see Lemma 4.16)
give

E1 ≤
2
∥∥E
(
UH −U?

)∥∥
2,∞ + 2

∥∥M?
(
UH −U?

)∥∥
2,∞

λ?r

≤ E1,1 + ρ1‖UH −U?‖2,∞, (4.116)

where
E1,1 :=

2
(
α0 + α1 + α2

)

λ?r
and ρ1 := 2c4(σ

√
n+B logn)
λ?r

. (4.117)

This matches precisely the relation hypothesized in (4.101). In particular, one has 0 < ρ ≤ 1/2 as
long as 4c4(σ

√
n+ B logn) ≤ λ?r, which holds whenever σ

√
n logn ≤ cσλ

?
r for a sufficiently small

cσ > 0 in view of our assumption on B (cf. (4.29)).
Recall that E1,1, E2, E3, α0, α1, α2 and ρ1 have been controlled in (4.117), (4.99), (4.100), (4.112),

(4.113), (4.115) and (4.117), respectively. In addition, recall our assumption (4.29) and suppose that
σ
√
n ≤ cσλ

?
r for some sufficiently small constant cσ > 0. With these bounds and assumptions in

mind, invoking Lemma 4.17 and combining terms immediately conclude the proof.

Remark 4.7. We shall also make note of an immediate consequence of the above argument as follows
∥∥UH −U?

∥∥
2,∞ . σκ

√
µr + σ

√
r logn

λ?r
, (4.118)

which will prove useful for deriving other important results.

4.8.4 Proof of auxiliary lemmas

Proof of Lemma 4.13. Under Assumption 4.1, Theorem 3.4 (in particular (3.9)) reveals the
existence of some constant c2 > 0 such that

max
l

∥∥E(l)∥∥ ≤ ‖E‖ ≤ c2σ
√
n,

holds with probability exceeding 1−O(n−7).
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When it comes to EA, we proceed by viewing its l-th row El,·A as a sum of independent random
vectors as follows

El,·A =
∑

j
El,jAj,· =:

∑
j
zj ,

which can be controlled by the matrix Bernstein inequality. Specifically, it is seen from Assumption 4.1
that

v :=
∑

j
E
[‖zj‖22

] ≤ σ2∑
j

∥∥Aj,·
∥∥2

2 = σ2‖A‖2F;

L := max
j
‖zj‖2 = max

j
|El,j |

∥∥Zj,·
∥∥

2 ≤ B‖Z‖2,∞.

Invoke the matrix Bernstein inequality (cf. Corollary 3.3) and take the union bound to demonstrate
that: with probability exceeding 1− 2n−6,

∥∥El,·A
∥∥

2 ≤ 4
√
v logn+ 6L logn ≤ 4σ

√
logn ‖A‖F + (6B logn)‖A‖2,∞

holds simultaneously for all 1 ≤ l ≤ n, thus concluding the proof.

Proof of Lemma 4.14. Lemma 4.13 tells us that

max
l

∥∥E(l)∥∥ ≤ ‖E‖ ≤ c2σ
√
n (4.119)

holds with probability exceeding 1−O(n−7). Repeating the argument in the proof of Corollary 2.8
reveals that

max
1≤j≤r

|λj | ≥ λ?r − ‖E‖, max
1≤j≤r

|λ(l)
j | ≥ λ?r − ‖E(l)‖, (4.120a)

max
j:j>r

|λj | ≤ ‖E‖, max
j:j>r

|λ(l)
j | ≤ ‖E(l)‖, (4.120b)

which taken together with (4.119) validates (4.94c)-(4.94d).
Regarding (4.94a) and (4.94b), apply Corollary 2.8 to reach

dist(U ,U?) ≤
√

2‖ sin Θ‖ ≤ 2‖E‖
λ?r

≤ 2c2σ
√
n

λ?r
(4.121)

as long as ‖E‖ ≤ c2σ
√
n ≤ (1−1/

√
2)λ?r , where we have used λ?r+1 = 0. The bound on dist

(
U (l),U?

)

follows from the same argument.
Additionally, regarding UH −U? we can derive

‖UH −U?‖F = ‖UU>U? −U?U?>U?‖F
≤ ‖UU> −U?U?>‖ ‖U?‖F

= ‖ sin Θ‖ ‖U?‖F ≤
2c2σ
√
rn

λ?r
, (4.122)

where the last line arises from Lemma 2.5, (4.94b), and ‖U?‖F =
√
r.

Proof of Lemma 4.15. We shall only prove the result for H; the proof for H(l) follows from
identical arguments and is hence omitted.

From our discussion in Section 2.2.2, one can express the SVD of H = U>U? as H =
X(cos Θ)Y >, where the columns of X (resp. Y ) are the left (resp. right) singular vectors of H,
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and Θ is a diagonal matrix composed of the principal angles between U and U?. In light of this
and the definition (4.30), we can establish (4.96b) as follows

∥∥H − sgn(H)
∥∥ =

∥∥X
(

cos Θ− I)Y >
∥∥ =

∥∥I − cos Θ
∥∥

≤
∥∥I − cos2 Θ

∥∥ = ‖ sin Θ‖2

≤ 2c2
2σ

2n

(λ?r)2 , (4.123)

where the middle line holds since 1− cos θ ≤ 1− cos2 θ, and the last line follows from (4.94b).
Coming back to the claim (4.96a), it suffices to justify that σmin(H) ≥ 1/2. Recognizing that

sgn(H) = XY >, we see that all singular values of sgn(H) equal 1. Thus, Weyl’s inequality together
with (4.123) gives

σmin(H) ≥ σmin
(
sgn(H)

)− ‖H − sgn(H)‖ ≥ 1− 2c2
2σ

2n

(λ?r)2 ≥
1
2 ,

with the proviso that 2c2σ
√
n ≤ λ?r .

Proof of Lemma 4.16. We start by connecting UHΛ? more explicitly with MU? as follows (the
invertibility of Λ can be deduced from (4.94c))

UHΛ? = UΛΛ−1HΛ? = MUΛ−1U>U?Λ?, (4.124)

which relies on the definition (4.89) and the eigendecomposition MU = UΛ. In addition, the
eigendecomposition M?U? = U?Λ? gives

U>U?Λ? = U>M?U? = U>MU? −U>EU?

= ΛU>U? −U>EU?, (4.125)

which taken collectively with (4.124) demonstrates that

UHΛ? = MUΛ−1ΛU>U? −MUΛ−1U>EU?

= MUH −MUΛ−1U>EU?

= MU? +M
(
UH −U?)−MUΛ−1U>EU?.

Consequently, the difference between UHΛ? and MU? obeys
∥∥UHΛ? −MU?

∥∥
2,∞ ≤

∥∥M
(
UH −U?)∥∥

2,∞

+
∥∥MUΛ−1U>EU?

∥∥
2,∞. (4.126)

Regarding the second term in (4.126), one can deduce that
∥∥MUΛ−1U>EU?

∥∥
2,∞

≤
∥∥MU

∥∥
2,∞
∥∥Λ−1∥∥ ·

∥∥U
∥∥ ·
∥∥E
∥∥ ·
∥∥U?

∥∥

(i)
≤

2
∥∥MU

∥∥
2,∞
∥∥E
∥∥

λ?r

(ii)
≤

4
∥∥MUH

∥∥
2,∞
∥∥E
∥∥

λ?r
(iii)
≤

4
∥∥M

(
UH −U?

)∥∥
2,∞
∥∥E
∥∥

λ?r
+

4
∥∥MU?

∥∥
2,∞
∥∥E
∥∥

λ?r
(iv)
≤
∥∥M

(
UH −U?)∥∥

2,∞ +
4
∥∥MU?

∥∥
2,∞
∥∥E
∥∥

λ?r
. (4.127)
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Here, (i) follows from the facts ‖U‖ = ‖U?‖ = 1 and |λr| ≥ λ?r − c2σ
√
n ≥ λ?r/2 (see Lemma 4.14),

(ii) holds due to (4.97), (iii) invokes the triangle inequality, whereas (iv) holds true provided that
4‖E‖ ≤ λ?r . Combine (4.126) and (4.127) to reach

∥∥UHΛ? −MU?
∥∥

2,∞ ≤ 2
∥∥M

(
UH −U?)∥∥

2,∞ +
4
∥∥MU?

∥∥
2,∞
∥∥E
∥∥

λ?r
,

which together with the fact that ‖(Λ?)−1‖ = 1/λ?r and the elementary relation ‖A‖2,∞ =
‖AΛ?(Λ?)−1‖2,∞ ≤ ‖AΛ?‖2,∞‖(Λ?)−1‖ yields the desired claim (4.98a).

When it comes to the second claim (4.98b), combining (4.98a) with the triangle inequality
∥∥UH −U?

∥∥
2,∞ =

∥∥UH −M?U?(Λ?)−1∥∥
2,∞

≤
∥∥UH −MU?(Λ?)−1∥∥

2,∞ +
∥∥EU?(Λ?)−1∥∥

2,∞

≤
∥∥UH −MU?(Λ?)−1∥∥

2,∞ +
∥∥EU?

∥∥
2,∞ / λ

?
r

immediately establishes the advertised bound. Here the last relation again arises from the elementary
inequality ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖.

Proof of Lemma 4.17. First of all, taking Condition (4.101) collectively with (4.98b) and rear-
ranging terms yield (4.102a):

∥∥UH −U?
∥∥

2,∞ ≤
1

1− ρ1

(E1,1 + E2 + E3
) ≤ 2

(E1,1 + E2 + E3
)
, (4.128)

where the last inequality follows from ρ ≤ 1/2. Substituting (4.101) and (4.102a) into (4.98a) then
gives (4.102b):

∥∥UH −MU?(Λ?)−1∥∥
2,∞ ≤ E1,1 + 2ρ1

(E1,1 + E2 + E3
)

+ E2

≤ 2E1,1 + 2E2 + 2ρ1E3, (4.129)

where once again we use the assumption that ρ ≤ 1/2. In addition, the following observation connects
UH with Usgn(H):

∥∥UH −Usgn(H)
∥∥

2,∞ ≤ ‖U‖2,∞
∥∥H − sgn(H)

∥∥

(i)
≤ 2c2

2σ
2n

(λ?r)2
∥∥U
∥∥

2,∞
(ii)
≤ 4c2

2σ
2n

(λ?r)2
∥∥UH

∥∥
2,∞

(iii)
≤ 4c2

2σ
2n

(λ?r)2
∥∥UH −U?

∥∥
2,∞ + 4c2

2σ
2n

(λ?r)2

√
µr

n
, (4.130)

where (i) results from (4.96b), (ii) relies on (4.97a), and (iii) comes from the triangle inequality
‖UH‖2,∞ ≤ ‖UH −U?‖2,∞ + ‖U?‖2,∞ and the definition (4.24).

The preceding bound together with the triangle inequality gives (4.102c):
∥∥Usgn(H)−U?

∥∥
2,∞ ≤

∥∥UH −U?
∥∥

2,∞ +
∥∥UH −Usgn(H)

∥∥
2,∞

≤
(
1 + 4c2

2σ
2n

(λ?r)2

)∥∥UH −U?
∥∥

2,∞ + 4c2
2σ

2n

(λ?r)2

√
µr

n

≤ 4
(E1,1 + E2 + E3

)
+

4c2
2σ

2√µrn
(λ?r)2 ,
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where the last inequality holds as long as 4c2
2σ

2n ≤ (λ?r)2. Additionally, the inequalities (4.129) and
(4.130) further allow us to deduce (4.102d):

∥∥Usgn(H)−MU?(Λ?)−1∥∥
2,∞

≤
∥∥UH −MU?(Λ?)−1∥∥

2,∞ +
∥∥UH −Usgn(H)

∥∥
2,∞

≤ 2E1,1 + 2E2 + 2ρ1E3 + 8c2
2σ

2n

(λ?r)2
(E1,1 + E2 + E3

)
+

4c2
2σ

2√µrn
(λ?r)2

≤ 3E1,1 + 3E2 +
(
2ρ1 + 8c2

2σ
2n

(λ?r)2

)
E3 +

4c2
2σ

2√µrn
(λ?r)2 .

Here, the penultimate line combines (4.102a), (4.102b) and (4.130), while the last inequality relies
on the assumption 8c2

2σ
2n ≤ (λ?r)2.

4.9 Appendix B: Proof of Corollary 4.3

Moving on to the proof of Corollary 4.3, we start by pointing out the main issue that deserves
particular attention. Roughly speaking, we have learned from Theorem 4.2 (and its analysis) that
U? ≈ UH under mild conditions, which naturally suggests that

M? = U?Λ?U?> ≈ UHΛ?H>U>.

As a result, in order to enable M? ≈ UΛU>, one would need to ensure HΛ?H> ≈ Λ.
The above argument, while highly informal, reveals the core idea underlying the proof. Our

proof is based upon the following observation
∥∥UΛU> −U?Λ?U?>∥∥

∞ ≤
∥∥U
(
Λ−HΛ?H>

)
U>

∥∥
∞︸ ︷︷ ︸

=:γ1

+
∥∥UHΛ?H>U> −U?Λ?U?>∥∥

∞︸ ︷︷ ︸
=:γ2

, (4.131)

which leaves us with two terms to cope with.

Step 1: bounding γ1

Regarding γ1 defined in (4.131), it is seen that

γ1 ≤
∥∥U
∥∥2

2,∞
∥∥Λ−HΛ?H>

∥∥ ≤ 4µr
n

∥∥Λ−HΛ?H>
∥∥. (4.132)

In the last relation, we have exploited the fact that
∥∥U
∥∥

2,∞ =
∥∥Usgn(H)

∥∥
2,∞ ≤

∥∥U?
∥∥

2,∞ +
∥∥Usgn(H)−U?

∥∥
2,∞

≤ 2
√
µr/n, (4.133)

where the last inequality relies on (4.31a) and the assumption σ
√
n(κ+

√
logn) ≤ c1λ?r for some

sufficiently small constant c1 > 0.
It then boils down to bounding ‖Λ−HΛ?H>‖. Towards this, it is seen from the identity (4.125)

and the definition H = U>U? that

HΛ?H> −Λ = ΛHH> −U>EU?H> −Λ,
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which together with the triangle inequality reveals that
∥∥HΛ?H> −Λ

∥∥ ≤
∥∥Λ
(
HH> − I)

∥∥+
∥∥U>EU?H>

∥∥. (4.134)

The rest of this step is devoted to controlling the above two terms.
With regards to the first term on the right-hand side of (4.134), we make the observation that

‖HH> − I‖ = ‖ cos2 Θ− I‖ = ‖ sin2 Θ‖ ≤ 2c2
2σ

2n

(λ?r)2 ,

where, as usual, Θ denotes a diagonal matrix composed of the principal angles between U and U?,
and the last inequality results from Lemma 4.14. This combined with Weyl’s inequality and Lemma
4.14 leads to

‖Λ(HH> − I)‖ ≤ ‖Λ‖ ‖HH> − I‖ ≤ (‖Λ?‖+ ‖E‖) ‖HH> − I‖

≤ (
∣∣λ?1
∣∣+ c2σ

√
n
)2c2

2σ
2n

(λ?r)2 ≤
4c2

2κσ
2n

λ?r
, (4.135)

provided that c2σ
√
n ≤ λ?r ≤ |λ?1|.

When it comes to the second term on the right-hand side of (4.134), let us introduce an
orthonormal matrix R := arg minQ∈Or×r ‖UQ−U?‖, which helps us derive

∥∥U>EU?H>
∥∥ ≤

∥∥U>EU?
∥∥ =

∥∥R>U>EU?
∥∥

≤
∥∥U?>EU?

∥∥+
∥∥(UR−U?)>EU?

∥∥

≤
∥∥U?>EU?

∥∥+ ‖E‖ dist
(
U ,U?). (4.136)

Here, the first inequality holds since ‖H‖ = ‖U>U?‖ ≤ 1, while the last line follows since ‖U?‖ = 1
and ‖UR−U?‖ = dist(U ,U?). In addition, we claim that with probability at least 1− 2n−7,

‖U?>EU?‖ ≤ (6 + 12cb)σ
√
r logn. (4.137)

If this claim were valid, then one could continue the derivation (4.136) and invoke Lemma 4.14 to
demonstrate that

∥∥U>EU?H>
∥∥ ≤ (6 + 12cb)σ

√
r logn+ 2c2

2σ
2n

λ?r
. (4.138)

To finish up, substituting (4.135) and (4.138) into (4.134) yields

∥∥HΛ?H> −Λ
∥∥ ≤ 6c2

2κσ
2n

λ?r
+ (6 + 12cb)σ

√
r logn, (4.139)

which combined with (4.132) leads to

γ1 . σ2κµr

λ?r
+ σµ

√
r3 logn
n

. (4.140)

Step 2: bounding γ2

Before proceeding, we recall from (4.118) that

∥∥UH −U?
∥∥

2,∞ . σκ
√
µr + σ

√
r logn

λ?r
. σκ

√
µr logn
λ?r

(4.141)



126 Chapter 4. Fine-grained analysis: `∞ and `2,∞ perturbation theory

Recognizing the basic decomposition

γ2 =
∥∥UHΛ?H>U> −U?Λ?U?>∥∥

∞ =
∥∥A1 +A>1 +A2

∥∥
∞

with A1 := (UH − U?)Λ?U?> and A2 := (UH − U?)Λ?(UH − U?)>, we can control each of
these terms separately. Firstly, observe that

∥∥A1
∥∥
∞ ≤ ‖UH −U

?‖2,∞
∥∥U?

∥∥
2,∞
∥∥Λ?

∥∥

.
∣∣λ?1
∣∣
√
µr

n
· σκ
√
µr logn
λ?r

� σκ2µr

√
logn
n

,

where we have made use of (4.141). Similarly,
∥∥A2

∥∥
∞ ≤ ‖UH −U

?‖22,∞
∥∥Λ?

∥∥ .
∣∣λ?1
∣∣σ

2κ2µr logn
(
λ?r
)2

� σ2κ3µr logn
λ?r

. σκ2µr

√
logn
n

,

provided that σκ
√
n logn . λ?r . Consequently,

γ2 ≤ 2
∥∥A1

∥∥
∞ +

∥∥A2
∥∥
∞ . σκ2µr

√
logn
n

.

Step 3: putting all this together

Combining the above bounds, we demonstrate that
∥∥UΛU> −U?Λ?U?>∥∥

∞ ≤ γ1 + γ2

. σκ2µr

√
logn
n

+ κµrσ2

λ?r
+ σµr

√
r logn
n

� σκ2µr

√
logn
n

, (4.142)

provided that σ
√
n . λ?r . This concludes the proof of Corollary 4.3, as long as the claim (4.137) can

be validated.

Proof of the claim (4.137)

Let us start by expressing U?>EU? as a sum of independent random matrices as follows

U?>EU? =
∑

i,j: i≥j
Ei,j

{(
U?
i,·
)>
U?
j,· +

(
U?
j,·
)>
U?
i,·
}

=:
∑

i,j: i≥j
Zi,j .

From the elementary inequality (A+A>)2 � 2AA> + 2A>A, we have

E
[
Z2
i,j

] � σ2
{(
U?
i,·
)>
U?
j,· +

(
U?
j,·
)>
U?
i,·
}{(

U?
i,·
)>
U?
j,· +

(
U?
j,·
)>
U?
i,·
}>

� 2σ2
{∥∥U?

j,·
∥∥2

2
(
U?
i,·
)>
U?
i,· +

∥∥U?
i,·
∥∥2

2
(
U?
j,·
)>
U?
j,·
}
,

thus indicating that

v =
∥∥∥
∑

i,j:i≥j
E
[
Z2
i,j

]∥∥∥ ≤ 2σ2
∥∥∥

n∑

i=1

n∑

j=1

∥∥U?
j,·
∥∥2

2
(
U?
i,·
)>
U?
i,·
∥∥∥

= 2σ2‖U?‖2F
∥∥∥
∑

i

(
U?
i,·
)>
U?
i,·
∥∥∥ = 2σ2r

∥∥U?>U?
∥∥ = 2σ2r.
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In addition, each matrix Zi,j can be bounded in size by

max
i,j
‖Zi,j‖ ≤ 2 max

i,j

∣∣Ei,j
∣∣max
i,j

∥∥U?
i,·
∥∥

2
∥∥U?

j,·
∥∥

2 ≤ 2Bµr
n

=: L,

where we have used the definition of the incoherence parameter µ. Apply the matrix Bernstein
inequality (see Corollary 3.3) to reach

∥∥U?>EU?
∥∥ ≤ 4

√
v logn+ 6L logn ≤ σ

√
32r logn+ 12Bµr logn

n

≤ (6 + 12cb)σ
√
r logn

with probability exceeding 1− 2n−7. Here, the last line holds since

B
µr logn

n
≤ cbσ

√
n

µ logn ·
µr logn

n
= cbσ

√
r logn

√
µr

n
≤ cbσ

√
r logn,

which relies on the assumption (4.29) and the basic fact µ ≤ n/r.

4.10 Appendix C: Proof of Theorem 4.4

A symmetrization trick. As alluded to previously, the proof is built on a “symmetric dilation”
trick that helps symmetrize a general matrix. We start with the following definition.

Definition 4.3 (Symmetric dilation). For any matrix A ∈ Rn1×n2 , its symmetric dilation S(A) ∈
R(n1+n2)×(n1+n2) is defined to be

S(A) =
[

0 A

A> 0

]
.

Apart from the symmetry of S(A), which is immediate from its definition, the main benefit of
the symmetric dilation lies in the correspondence between the eigendecomposition of S(A) and the
singular value decomposition of A. More specifically, let UΣV > be the SVD of A. Then one has
the following eigendecomposition for S(A):

S(A) = 1√
2

[
U U

V −V

]
·
[

Σ 0
0 −Σ

]
· 1√

2

[
U U

V −V

]>
. (4.143)

Here, the columns of 1√
2

[
U U
V −V

]
are orthonormal and represent the eigenvectors of S(A), whereas[

Σ 0
0 −Σ

]
contains all (non-zero) eigenvalues of S(A).

Utilizing this “symmetric dilation” trick, we can translate the observation model M = M? +E
into the following equivalent form

S(M) = S(M?) + S(E),

which is in line with the symmetric observation model stated in (4.26).

Verifying conditions. To invoke the general theory in Section 4.2, one is required to first examine
the spectral properties of S(M?) and S(M), as well as the assumptions on the noise part S(E).

Recall that M? = U?Σ?V ?>, which together with the relation (4.143) reveals that: (i) S(M?)
has rank 2r and condition number κ; (ii) the nonzero eigenvalues of S(M?) and the corresponding
eigenvectors are reflected respectively in the matrices

Λ? :=
[

Σ? 0
0 −Σ?

]
and U

? := 1√
2

[
U? U?

V ? −V ?

]
(4.144)
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Similarly, given that the SVD of M is M = UΣV > + U⊥Σ⊥V >⊥ , we see that the 2r-leading
eigenvalues of S(M) and the corresponding eigenvectors are represented respectively by the matrices

Λ :=
[

Σ 0
0 −Σ

]
and U := 1√

2

[
U U

V −V

]
.

Further, the incoherence parameter µ of S(M?) (cf. (4.24)) obeys

µ := (n1 + n2)
2r ‖U?‖22,∞

(i)= (n1 + n2)
2r max

{‖U?‖22,∞, ‖V ?‖22,∞
}

(ii)
≤ (n1 + n2)

min{n1, n2}
µ

2
(iii)= (n1 + n2)

2n1
µ. (4.145)

Here, the relation (i) is based on the definition (4.144), the inequality (ii) follows from the incoherence
of M? (cf. Definition 3.1), while the last one (iii) holds under the assumption n1 ≤ n2.

When it comes to the “symmetrized” noise part, it is straightforward to verify that under
Assumption 4.2, the matrix S(E) satisfies Assumption 4.1 with precisely the quantities σ,B and cb.

`2,∞ and `∞ guarantees. With the above preparations in place, apply Theorem 4.2 (more
specifically (4.118)) to demonstrate that

‖U U>U? −U?‖2,∞ . σκ
√
µr + σ

√
r logn

σ?r

. σκ
√
n2µr/n1 + σ

√
r logn

σ?r
, (4.146)

where the last relation follows from (4.145). Further, note that

U U
>
U
? −U? = 1√

2

[
UHU −U?, UHU −U?

V HV − V ?, −(V HV − V ?)

]
,

where HU := U>U? and HV := V >V ?. Combining this with the upper bound (4.146) then yields

max
{‖UHU −U?‖2,∞, ‖V HV − V ?‖2,∞

}
. σκ

√
n2µr/n1 + σ

√
r logn

σ?r
.

We can then repeat the same analysis as in the proof of Lemma 4.17 to connect ‖UHU −U?‖2,∞
(resp. ‖V HV −V ?‖2,∞) with ‖Usgn(HU )−U?‖2,∞ (resp. ‖V sgn(HV )−V ?‖2,∞), and obtain the
desired bound in (4.41); the details are omitted here for the sake of conciseness.

We now proceed to the second claim (4.42). Towards this, invoke Corollary 4.3 and the inequality
(4.145) to obtain

∥∥U ΛU> − S(M?)
∥∥
∞ . σκ2µr

√
logn
n

. σκ2µr

√
n logn
n2

1
.

This in conjunction with the following observations

U ΛU> = S(UΣV >
)

∥∥S(UΣV >
)− S(M?)∥∥

∞ =
∥∥UΣV > −M?

∥∥
∞

immediately establishes the second claim.
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4.11 Appendix D: Proof of Theorem 4.10

As before (see (4.85)), we assume throughout the proof that λ?r > 0 for the purpose of simplifying
notation.

4.11.1 Proof outline

We now outline the proof of our distributional guarantees in Theorem 4.10. The first step consists
of justifying the heuristic first-order approximation in (4.65). This is stated in the lemma below,
with the proof deferred to Section 4.11.2.

Lemma 4.18 (First-order approximation). Suppose that the assumptions of Theorem 4.2 hold. Then
with probability at least 1−O(n−5), one can write

Usgn(H)−U? = EU?(Λ?)−1

︸ ︷︷ ︸
=:Z

+ Ψ, (4.147a)

M −M? = EU?U?> +U?U?>E︸ ︷︷ ︸
=:W

+ Φ (4.147b)

for some matrices Ψ and Φ obeying

‖Ψ‖2,∞ .
σ2κ

√
µrn log2 n

(λ?r)2 +
κσ2√µrn

(λ?r)2 + σ

λ?r

√
µr2 logn

n
, (4.148a)

∥∥Φ
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∞ . σ2µrκ2 logn

λ?r
+ σκµ

√
r3 logn
n

. (4.148b)

Remark 4.8. In addition to quantifying the goodness of the approximation (4.147b), Lemma 4.18
also delivers a more refined characterization for the first-order approximation Usgn(H) −U? ≈
EU?

(
Λ?
)−1 in comparison to Theorem 4.2. As it turns out, this result (4.147a) also assists in

performing statistical inference on the low-rank factors U?. The interested reader is referred to Yan
et al. (2021) for details.

In turn, Lemma 4.18 motivates one to pin down the distribution of the matrix W in (4.147b).
This can be accomplished by invoking the Berry-Esseen Theorem (e.g., Chen et al. (2010, Theorem
3.7)), which gives rise to the following distributional characterization. The proof of this lemma can
be found in Section 4.11.3.

Lemma 4.19 (Gaussian approximation). Suppose that the assumptions of Theorem 4.2 hold, and
that

∥∥U?
j,·
∥∥2

2 +
∥∥U?
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∥∥2

2∥∥U?
∥∥2

F

& B2κ2µ2r2 log2 n

σ2
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2 + σ4µ2rκ4 log3 n

σ2
min(λ?r)2 . (4.149)

Let W = EU?U?> +U?U?>E. For any 1 ≤ i, j ≤ n, one has

sup
z∈R

∣∣∣P
(
Wi,j ≤ z

√
v?i,j

)
− Φ(z)

∣∣∣ = o(1), (4.150a)
∥∥Φ
∥∥
∞ = o

(√
v?i,j

)
, (4.150b)

where v?i,j is defined in (4.68), and Φ(·) denotes the CDF of the standard Gaussian distribution.
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To finish up, invoke Lemma 4.18 and (4.150b) to yield

Mi,j −M?
i,j = Wi,j + δφ

√
v?i,j with δφ = o(1).

A little algebra further gives
∣∣∣P
(
Mi,j −M?

i,j ≤ z
√
v?i,j

)
− Φ(z)

∣∣∣ =
∣∣∣P
(
Wi,j ≤ (z − δφ)

√
v?i,j

)
− Φ(z)

∣∣∣

≤
∣∣∣P
(
Wi,j ≤ (z − δφ)

√
v?i,j

)
− Φ(z − δφ)

∣∣∣+ |Φ(z − δφ)− Φ(z)|
≤ o(1) + δφ = o(1),

where the last line invokes Lemma 4.19 and the fact that |Φ(u)− Φ(v)| ≤ |u− v| for any u, v ∈ R.
This completes the proof of Theorem 4.10, as long as Lemmas 4.18 and 4.19 can be established.
The rest of this section is thus devoted to proving Lemmas 4.18 and 4.19.

4.11.2 Proof of Lemma 4.18

Before proceeding to the proof, we make note of several preliminary facts that are all direct
consequences of the analysis of Theorem 4.2 and Corollary 4.3. The proof of these preliminary
results can be found in Section 4.11.4.

Lemma 4.20. With probability exceeding 1−O(n−5), one can write

UΛsgn(H) = MU? + ∆1, (4.151a)
sgn(H)Λ?sgn(H)> = Λ + ∆2 (4.151b)

for some matrices ∆1 and ∆2 obeying

∥∥∆1
∥∥

2,∞ .
σ2κ

√
µrn log2 n

λ?r
, (4.152a)

∥∥∆2
∥∥ . κσ2n

λ?r
+ σ

√
r logn. (4.152b)

We are now ready to embark on the proof of Lemma 4.18. In order to analyze the behavior of
Usgn(H), we first point out the following decomposition:

Usgn(H)Λ? = UΛsgn(H) +U
(
sgn(H)Λ? −Λsgn(H)

)

= MU? + ∆1 +U
(
sgn(H)Λ?sgn(H)> −Λ

)
sgn(H)

= M?U? +EU? + ∆1 +U∆2 sgn(H)
= U?Λ? +EU? + ∆1 +U∆2 sgn(H),

where the second and the third identities result from Lemma 4.20 (cf. (4.151)). The key point of
this decomposition is to establish a connection between Usgn(H)Λ? and U?Λ? +EU?, with the
assistance of the matrices ∆1 and ∆2 studied in Lemma 4.20. A little algebra then yields

Usgn(H)−U? = EU?(Λ?)−1

︸ ︷︷ ︸
=:Z

+ ∆1
(
Λ?)−1 +U∆2 sgn(H)

(
Λ?)−1

︸ ︷︷ ︸
=: Ψ

. (4.153)
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In view of Lemma 4.20, the residual matrix Ψ obeys
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as claimed.
The next step lies in analyzing the matrix estimator M = UΛU>. Towards this, we make the

observation that

M −M? = UΛU> −M?

= U
(
sgn(H)Λ?sgn(H)>

)
U> −U∆2U

> −M?

= (U? +Z + Ψ)Λ?(U? +Z + Ψ)> −U∆2U
> −U?Λ?U?>

= ZΛ?U?> +U?Λ?Z> + Φ
= EU?U?> +U?U?>E + Φ, (4.155)

where the second line relies on Lemma 4.20 (cf. (4.151b)), the third identity makes use of (4.153),
and the residual matrix Φ is defined as

Φ := ΨΛ?(Usgn(H)
)> +U?Λ?Ψ> +ZΛ?(Usgn(H)−U?)> −U∆2U

>. (4.156)

In addition, it is seen from (4.92) that
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Consequently, one can deduce that
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,

where the second inequality follows from (4.154), (4.157), (4.133), Theorem 4.2, and Lemma 4.20.

4.11.3 Proof of Lemma 4.19

In what follows, we shall only focus on the case with i 6= j. The case with i = j can be analyzed in
an analogous manner; we omit it for the sake of brevity. Before proceeding to the proof, we make
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note of a couple of basic facts about P ? that will prove useful. The first property asserts that, for
any 1 ≤ j ≤ n,

n∑

l=1
P ?2j,l =

n∑

l=1
P ?2l,j =

∥∥(U?U?>)
·,j
∥∥2

2 =
∥∥U?(U?

j,·
)>∥∥2

2 = U?
j,·U

?>U?(U?
j,·
)>

=
∥∥U?

j,·
∥∥2

2 = P ?j,j . (4.158)

The second property is concerned with the term ‖P ?‖∞:

‖P ?‖∞ = ‖U?U?>‖∞ ≤ ‖U?‖22,∞ ≤
µr

n
, (4.159)

where the last inequality follows from the incoherence assumption.
In view of the definition (4.66) of P ?, we can express W = EP ? + P ?E, which reveals that

Wi,j =
∑

l: l 6=j
Ei,lP

?
l,j +

∑

l: l 6=i
P ?i,lEl,j + Ei,j(P ?i,i + P ?j,j). (4.160)

In other words, Wi,j can be viewed as a weighted sum of independent random variables {Ei,l | l 6=
j} ∪ {El,j | l 6= i} ∪ {Ei,j}. To pin down the distribution of Wi,j , we resort to a non-asymptotic
version of the celebrated Berry-Esseen Theorem; see Chen et al. (2010, Theorem 3.7) for a proof
using Stein’s method.

Theorem 4.21 (The Berry-Esseen bound). Let ξ1, . . . , ξn be independent zero-mean random variables
satisfying ∑n

i=1 Var(ξi) = v. Then the quantity S = 1√
v

∑n
i=1 ξi satisfies

sup
z∈R

∣∣P (S ≤ z)− Φ (z)
∣∣ ≤ 10γ, where γ =

n∑

i=1

E
[|ξi|3

]

v3/2 .

According to the Berry-Esseen bound (cf. Theorem 4.21), proving the approximate Gaussianity
of Wi,j boils down to characterizing the second and the third moments of these random variables
under consideration.

Let us start with the variance statistics. Given that {Ei,j | i ≥ j} are independently generated,
we can straightforwardly see that

v?i,j =
∑

l: l 6=j
σ2
i,lP

?2
l,j +

∑

l: l 6=i
P ?2i,l σ

2
l,j + σ2

i,j(P ?i,i + P ?j,j)2

= Var(Wi,j). (4.161)

We now develop a lower bound on this variance term. Given that P ? � 0, one has P ?i,i, P ?j,j ≥ 0,
which combined with (4.158) reveals that

v?i,j ≥ σ2
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{
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}
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}
. (4.162)

Next, we move on to bound the third moments. Utilizing the independence of {Ei,j | i ≥ j} once
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again gives
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where we have used the assumption that |Ei,j | ≤ B, and the last line arises from the expression (4.161).
Substituting (4.159) and (4.162) into (4.163) and invoking the elementary identity ‖U?‖2F = r, we
arrive at

γ ≤ 2Bµr
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provided that Condition (4.149) holds.
With the above calculations in place, invoking Theorem 4.21 immediately leads to

sup
z∈R

∣∣∣P
(
Wi,j ≤

√
v?i,jz

)
− Φ(z)

∣∣∣ ≤ 10γ = o(1).

as claimed in (4.150a).
Finally, we turn to proving the bound (4.150b). By virtue of Lemma 4.18 and (4.162), we know

that
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Recognizing the trivial bound σ2 = maxi,j E[E2
i,j ] ≤ B2, we know that Condition (4.164) holds as

long as
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which is precisely Condition (4.149). This concludes the proof of Lemma 4.19.



134 Chapter 4. Fine-grained analysis: `∞ and `2,∞ perturbation theory

4.11.4 Proof of Lemma 4.20

To begin with, let us begin by proving (4.152a). From the definition of the quantity E1 (see
Lemma 4.16), we have
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where the first inequality comes from (4.116) and (4.117), the second inequality is a consequence
of Theorem 4.2, and the last line relies on our previous bounds on α0, α1, α2 (see (4.112), (4.113)
and (4.115)) and holds as long as B . σ

√
n/(µ logn). Additionally, from the elementary identity

MUH = UΛH, we obtain
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where the last line results from Lemma 4.15, the fact (4.133), and the following inequality
‖Λ‖ ≤ ‖Λ?‖+ ‖E‖ ≤ |λ?1|+O(σ

√
n) ≤ 2|λ?1|. (4.166)

Taking together the above bounds and applying the triangle inequality immediately establish (4.152a).
Next, we turn to the proof of the bound (4.152b). Note that it has been shown in (4.139) that
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∥∥ . κσ2n
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√
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In addition, the triangle inequality leads to
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where the third line follows since
∥∥sgn(H)

∥∥ = 1 and ‖H‖ ≤ ‖U‖‖U?‖ = 1, and the last inequality
comes from (4.123). Combining the above two results and invoking the triangle inequality lead to
the advertised bound (4.152b).

4.12 Appendix E: Proof of Theorem 4.11

With the distributional guarantees in Theorem 4.10 in place, the only remaining task boils down
to verifying the statistical accuracy of the variance estimator v̂i,j . This can be achieved via the
following lemma, whose proof is provided in Section 4.12.1.
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Lemma 4.22. Suppose that the assumptions of Theorem 4.2 hold. In addition, assume that
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With probability exceeding 1−O(n−5), one has
∣∣v̂i,j − v?i,j

∣∣ = o
(
v?i,j
)
. (4.168)

Lemma 4.22 essentially enables us to express

v̂i,j = (1 + ζv)2v?i,j with ζv = o(1).

As a consequence, we can further demonstrate that
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where the first inequality follows from Theorem 4.10 and zα/2 := Φ−1(1−α/2), the second inequality
applies the triangle inequality, and the validity of the last line can be seen from the basic fact
|Φ(u)− Φ(v)| ≤ |u− v|.

When σmin � σ, Condition (4.167) simplifies to
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We still need to ensure that Condition (4.69) is satisfied. It is seen that
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which holds if σκ
√
n . |λ?r | and B . σ

√
n. As a result, if Condition (4.74) holds, then both (4.169)

and (4.69) are satisfied. This finishes the proof, as long as Lemma 4.22 can be established.

4.12.1 Proof for Lemma 4.22

As before, we shall only present the proof for the case with i 6= j for the sake of conciseness. In
order to justify the goodness of the estimator v̂i,j , we find it convenient to first look at the surrogate
estimator introduced in (4.70), i.e.,

ṽi,j =
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P ?2i,l E
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?
j,j , (4.170)

In the sequel, our proof consists of two main steps:

• Show that the surrogate ṽi,j is a reliable estimate of the truth v?i,j , namely, ṽi,j ≈ v?i,j .

• Show that the estimator in use and the surrogate estimator are sufficiently close, namely,
v̂i,j ≈ ṽi,j .
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Step 1: show that ṽi,j ≈ v?i,j
Firstly, the fact that the Ei,j ’s are zero-mean random variables immediately reveals that ṽi,j is an
unbiased estimate of v?i,j , that is,

E
[
ṽi,j
]

= v?i,j .

Secondly, given that the Ei,j ’s are statistically independent, we intend to invoke the Bernstein
inequality to control the difference ṽi,j − v?i,j = ṽi,j − E

[
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]
. To do so, one first calculates that
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where the last line follows from (4.158). Invoking the Bernstein inequality (cf. Corollary 3.3) reveals
that with probability exceeding 1−O(n−5),

∣∣ṽi,j − v?i,j
∣∣ = |ṽi,j − E [ṽi,j ]| .

√
V0 logn+ L0 logn

. σB
√
‖P ?‖3∞ logn+B2‖P ?‖2∞ logn

. σBµ3/2r3/2√logn
n3/2 + µ2r2B2 logn

n2 , (4.171)

where the last inequality results from (4.159).

Step 2: show that v̂i,j ≈ ṽi,j

In order to accomplish this, we are in need of controlling the difference between Ei,j (resp. P ?i,j) and
Êi,j (resp. P̂i,j). To this end, apply the entrywise estimation guarantees in Corollary 4.3 to yield

∥∥Ê −E
∥∥
∞ =
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∞

=
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√
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n

, (4.172)

and as a result,
∥∥Ê
∥∥
∞ ≤

∥∥E
∥∥
∞ +

∥∥Ê −E
∥∥
∞ . B + σκ2µr

√
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n
� B, (4.173)
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provided that B & σκ2µr
√

logn
n (which is trivially satisfied if κ2µr

√
logn
n ≤ 1). Moving on to the

error term P̂i,j − P ?i,j , we observe that
∥∥P̂ − P ?
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∞ =
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∞
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}
.

Taking this together with the bound (4.31a) in Theorem 4.2, the incoherence assumption, and the
inequality (4.133), we arrive at

∥∥P̂ − P ?
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∞ . (σκ√µr + σ

√
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√
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n
. (4.174)

This taken together with (4.159) indicates that
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with the proviso that σ
√
n . |λ?r |/κ and σ

√
n logn . |λ?r |.

Armed with the preceding bounds, we are now positioned to control v̂i,j− ṽi,j . From the definition
of ṽi,j and v?i,j , we recognize that
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leaving us with three terms to cope with. Regarding the first term α1 on the right-hand side of
(4.176), it can be easily verified that
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Here, (i) makes use of (4.158) (with P ? replaced by P̂ ), whereas (ii) holds true due to (4.172),
(4.173), (4.159), (4.174), (4.175), and Lemma 4.13. The second term α2 on the right-hand side of
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(4.176) can be bounded in the same manner and we omit it here for brevity. When it comes to the
last term α3 on the right-hand side of (4.176), one has

α3 ≤
∣∣∣Ê2
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∥∥Ê −E

∥∥
∞

{∥∥E
∥∥
∞ +

∥∥Ê
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where the penultimate inequality is a consequence of (4.172), (4.173), (4.159), (4.174) and (4.175),
and the last line holds true as long as µr ≤ n (cf. (4.25)) and B . σ

√
n. Combining the above

inequalities allows one to reach
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with probability at least 1−O(n−5).

Step 3: combining the above bounds

Putting together the results in the previous steps, we can readily derive
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where the last relation is guaranteed as long as B . σ
√
n/ logn. Consequently, if Condition (4.167)

holds, then it follows from (4.177) and the lower bound (4.162) that
∣∣v̂i,j − v?i,j

∣∣ . 1√
lognv

?
i,j ,

thus concluding the proof.

4.13 Notes

Leave-one-out analysis. The core idea of leave-one-out analysis, which drops a small amount of
randomness to decouple complicated statistical dependency, is deeply rooted in the probability and
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statistics literature. For instance, an idea of this kind was invoked by Stein (1972) to help establish
normal approximation, was paired with the Stieltjes transform to establish the limiting spectral law
of random matrices (see, e.g., (Tao, 2012, Section 2.4.3)), and bears some resemblance to the cavity
method in statistical physics (Mezard and Montanari, 2009). When it comes to statistical estimation,
a prominent series of work that unveiled the striking effectiveness of leave-one-out analysis was
El Karoui et al. (2013) and El Karoui (2018), which characterized rigorously the sharp statistical
performance (including pre-constants) of M-estimators in high dimension (i.e., a challenging regime
where the number of samples is comparable to the number of unknown parameters). The deep
analysis framework developed in these papers inspired much of the follow-up work presented in this
chapter. Particularly worth mentioning are: (1) Zhong and Boumal (2018): which was the first to
determine the entrywise behavior of the generalized projected power method; (2) Abbe et al. (2020b)
and Chen et al. (2019b): which extended the leave-one-out analysis idea to establish entrywise
eigenvector perturbation; and (3) Ma et al. (2020) and Chen et al. (2019a): which characterized
tight convergence guarantees for nonconvex optimization algorithms with the aid of leave-one-out
ideas. For readers’ reference, we list below several topics for which leave-one-out analyses prove
useful:

• Maximum likelihood estimation and M-estimation: El Karoui et al. (2013), El Karoui (2018),
Lei et al. (2018), Sur et al. (2019), Sur and Candès (2019), Chen et al. (2019b), and Chen
et al. (2020b);

• spectral methods: Chen et al. (2019b), Abbe et al. (2020b), Ma et al. (2020), Cai et al. (2021a),
Lei (2019), Abbe et al. (2020a), Ling (2020), and Chen et al. (2020b);

• nonconvex optimization for statistical estimation: Ma et al. (2020), Chen et al. (2019a), Li
et al. (2021c), Chen et al. (2020a), Cai et al. (2019a), Dong and Shi (2018), Chen et al. (2021d),
and Wang et al. (2021b);

• semidefinite relaxation for low-rank matrix factorization: Zhong and Boumal (2018), Ding and
Chen (2020), Chen et al. (2020d), Chen et al. (2021c), and Chen et al. (2021d);

• uncertainty quantification and confidence intervals: Javanmard and Montanari (2018), Chen
et al. (2019c), Cai et al. (2020), and Yan et al. (2021);

• cross validation: Xu et al. (2019);

• reinforcement learning: Agarwal et al. (2020), Li et al. (2020a), Pananjady and Wainwright
(2020), Zhang et al. (2020b), Cui and Yang (2021), and Wang et al. (2021a).

`∞ and `2,∞ perturbation theory. The `∞ and `2,∞ perturbation theory for eigenspace and
singular subspaces have been investigated in the literature (Fan et al., 2018b; Cape et al., 2019;
Eldridge et al., 2018), but only scatteredly until very recently. A modern and systematic framework
was established recently, empowered by the leave-one-out analysis idea. Its efficacy and tightness
were first demonstrated by Abbe et al. (2020b) in a setting that subsumes the one presented herein
(with applications to SBMs, phase synchronization and matrix completion), and by Chen et al.
(2019b) in an asymmetric setting (with application to top-K ranking). The theoretical framework
has subsequently been extended in several aspects. For instance, (1) Cai et al. (2021a) investigated
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the “unbalanced” scenario where the column dimension far exceeds the row dimension of the matrix,
resulting in near-optimal fine-grained guarantees for PCA, bi-clustering and tensor completion;
(2) Lei (2019) expanded the setting by accounting for more flexible noise distributions (including
the ones exhibiting certain dependency structure), leading to tight guarantees for, e.g., spectral
clustering with more than two communities, and hierarchical clustering; (3) Abbe et al. (2020a)
explored a more general `p perturbation theory that subsumes the `∞ perturbation theory as special
cases. Another plausible approach to study `∞ eigenvector perturbation is to analyze instead the
dynamics of an iterative procedure (e.g., the power method) that converges to the leading eigenvector
(Zhong and Boumal, 2018), again using the leave-one-out ideas. This iterative approach offers a
perspective complementary to the analysis framework presented herein, while at the same time
playing a pivotal role when studying nonconvex optimization algorithms (see Chi et al. (2019)).
Moving beyond the leave-one-out analysis framework, `∞ and `2,∞ eigenspace perturbation theory
has been derived via other powerful tools as well, e.g., the Neumann trick (Eldridge et al., 2018; Chen
et al., 2021b; Cheng et al., 2021), the Procrustes analysis (Cape et al., 2019), and more specialized
techniques tailored to Gaussian ensembles (Koltchinskii and Xia, 2016; Koltchinskii and Lounici,
2016; Koltchinskii et al., 2020). Perturbations of linear forms and bilinear forms of eigenvectors have
also been investigated in the literature (Koltchinskii and Xia, 2016; Koltchinskii and Lounici, 2016;
Chen et al., 2021b; Cheng et al., 2021; Fan et al., 2020a; Koltchinskii et al., 2020), which are beyond
the scope of this work. Finally, distributional theory and uncertainty quantification for spectral
methods, which have been recently studied by Xia (2021), Cheng et al. (2021), Fan et al. (2020a),
Yan et al. (2021), and Agterberg et al. (2021), are still in their infancy. The results presented in
Section 4.6 follow the analysis framework developed in Yan et al. (2021).



5
Concluding remarks and open problems

This monograph offered a coherent statistical treatment for spectral methods, resulting in appealing
theoretical guarantees for a wide spectrum of data science applications ranging from structured
signal reconstruction and factor analysis to clustering and ranking. The important role of statistical
thinking cannot be overstated. As has been illuminated, the suite of modern statistical techniques
not merely empowers classical `2 perturbation theory by delivering tight Euclidean error bounds,
but also enables fine-grained `∞ and `2,∞ performance guarantees that cannot be derived from
classical matrix perturbation theory alone. We highlighted a unified recipe that underlies our
application-driven analyses, which will be readily applicable to tackle many other problems.

The vignettes presented herein only reflect the tip of an iceberg regarding the capability of
spectral methods. There are multiple aspects about spectral methods that remain inadequately
explored and are worthy of future investigation. We conclude this monograph by pointing out a few
of them.

• Precise performance characterization. The analysis herein falls short of pinpointing a precise
trade-off curve between the statistical accuracy and sample complexity of spectral methods,
and might even be off by some logarithmic factor. For algorithms that exhibit order-wise
equivalent behavior, comparing their performances requires finer statistical characterization,
ideally with sharp pre-constants.

• Handling dependency structure. Thus far, the `∞ and `2,∞ perturbation theory we have
presented is restricted to the case where the entries of the data samples are independently
generated. There is no shortage of applications where the data samples might exhibit across-
entry dependency, examples including blind deconvolution (Ahmed et al., 2013) and phase
retrieval with coded diffraction patterns (Candès et al., 2015a; Gross et al., 2017). Handling
such scenarios might require ideas beyond the current leave-one-out framework.

• Functional estimation. In many decision making applications, what ultimately matters might
not be full information about an eigenvector of a matrix, but rather, some deterministic
functions (e.g., certain linear functionals or polynomials) about the entries of this eigenvector.
However, naive “plug-in” estimators—namely, estimating the eigenvector first and plugging it
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into the target functional—might suffer from significant estimation bias, even in the case of a
linear functional. A systematic bias-correction paradigm is therefore needed to enable optimal
functional estimation.

• Small eigengaps. All theory presented in this monograph imposes a stringent requirement on
the associated eigengap, that is, it needs to exceed the spectral norm of a noise or perturbation
matrix. While this eigengap criterion might be unavoidable in generic matrix perturbation
theory (which takes a worst-case perspective), there is often no statistical lower bound that
rules out the possibility of reliable eigenspace estimation when the eigengap drops below the
perturbation size. It would be of fundamental importance to understand how a small eigengap
impacts the efficacy of spectral methods under various statistical models.

• Weak and sparse factors. As mentioned previously, low-rank matrices often admit factor-model
interpretations. In many applications, one has to deal with weak factors, on which only a
small fraction of the variables have non-negligible loadings. This gives rise to sparse patterns
on the loading matrix or the eigenvectors of the covariance matrix. To utilize such a sparsity
structure, a simple method is to apply marginal screening techniques (Fan and Lv, 2008; Fan
and Fan, 2008). Examples of this kind include supervised PCA (Bair et al., 2006), PCA on
“targeted predictors” (Bai and Ng, 2008), and sparse PCA (Zou et al., 2006; Johnstone and Lu,
2009; Ma, 2013). It remains to develop a more systematic and unified theory concerning how
to efficiently exploit such special structures in low-rank factorizations, taking into account
both statistical and computational considerations.

• Heterogeneous missing patterns. When it comes to missing data, the theory presented herein
adopts a uniform sampling model where every entry is independently observed with the same
probability. In practice, however, one might encounter non-uniform sampling mechanisms,
where the sampling probabilities are non-identical across different entries. How to develop an
effective spectral method to automatically account for heterogeneous observation patterns,
ideally without knowing the detailed sampling probabilities a priori?

• Confidence regions and hypothesis testing for individual eigenvectors. Given the output of
a spectral method, one might be asked to produce valid confidence regions for an unknown
individual eigenvector of interest, a task that has not been fully resolved by the existing
literature. Another closely related task is hypothesis testing for individual eigenvectors: given
two random samples, how to develop viable statistical tests regarding whether these two
samples are associated with the same individual eigenvectors or not. An even more challenging
task is concerned with performing efficient statistical inference on some deterministic functions
of an individual eigenvector, which remains largely unknown.
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