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Abstract

This paper is concerned with the problem of policy evaluation with linear function approximation in
discounted infinite horizon Markov decision processes. We investigate the sample complexities required
to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy
evaluation algorithms: the temporal difference (TD) learning algorithm and the two-timescale linear
TD with gradient correction (TDC) algorithm. In both the on-policy setting, where observations are
generated from the target policy, and the off-policy setting, where samples are drawn from a behavior
policy potentially different from the target policy, we establish the first sample complexity bound with
high-probability convergence guarantee that attains the optimal dependence on the tolerance level. We
also exhibit an explicit dependence on problem-related quantities, and show in the on-policy setting that
our upper bound matches the minimax lower bound on crucial problem parameters, including the choice
of the feature map and the problem dimension.

Keywords: policy evaluation, temporal difference learning, two-timescale stochastic approximation, mini-
max optimal, function approximation
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1 Introduction
Policy evaluation plays a critical role in many scientific and engineering applications in which practitioners
aim to evaluate the performance of a target strategy based on either sequentially collected or a batch of
offline data samples (Bojinov and Shephard, 2019; Dann et al., 2014; Murphy, 2003; Tang and Wiens, 2021).
For example, in clinical trials (Tang and Wiens, 2021), real-time data acquisition might be expensive and
risky; it is thus of essential value if historical data can be analyzed and information can be transferred to
new tasks. While in other applications, such as mobile health (Bertsimas et al., 2022), it is practical to
implement the desired policy and collect its feedback in a timely manner.

Mathematically, Markov decision processes (MDPs) provide a general framework to design policy evalua-
tion methods in dynamic settings; reinforcement learning (RL) is often modeled using MDPs when the exact
model configuration is not available (Bertsekas, 2017; Sutton and Barto, 2018). In this framework, a target
policy is assessed through its corresponding value function. In practice, evaluating value functions often
require an overwhelming number of samples due to the large dimensionality of the underlying state space.
For this reason, RL methods are normally concerned with some form of function approximation. Dating
back to the seminal work of Tsitsiklis and Van Roy (1997), there has been an extensive line of works that
consider different types of function approximation, including linear function approximation (Bhandari et al.,
2021; Fan et al., 2020), reproducing kernel Hilbert space (Duan et al., 2021; Farahmand et al., 2016), deep
neural networks (Arulkumaran et al., 2017; Bertsekas and Tsitsiklis, 1995) or function approximation on the
model itself (see, e.g. Jin et al. (2020); Li et al. (2021a); Wang et al. (2021a)), with a focus on improving the
sample efficiency of RL algorithms.
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Two settings: on-policy vs. off-policy. The main goal of this paper is to provide sharp statistical
guarantees of policy evaluation algorithms with linear function approximation in two different settings. As
the aforementioned examples already indicated, there are typically two different types of data-generating
mechanisms to consider: the on-policy setting when we have access to the outcomes of the target policy
and the off-policy setting, in which the only available data are generated from a behavior policy that is
potentially different from the target policy.

In the on-policy setting, temporal difference (TD) learning is arguably the most popular algorithm (Sut-
ton, 1988) for policy evaluation in RL practice, partly because it is easy to implement and lends itself well
to function approximations. As a model-free algorithm, TD learning processes data in an online manner
without explicitly modeling the environment and is, therefore, memory efficient. While the asymptotic con-
vergence of TD with linear function approximation has been known since Tsitsiklis and Van Roy (1997), the
finite-sample minimax optimality of TD has been established only recently for the tabular MDP (Li et al.,
2023a). For TD learning with linear function approximation, several recent contributions have produced new
non-asymptotic analyses and insights (e.g. Bhandari et al. (2021); Dalal et al. (2018a); Lakshminarayanan
and Szepesvari (2018); Srikant and Ying (2019)), which partially unveil impacts of both the tolerance level
and various problem-related parameters on its sample efficiency. However, minimax-optimal dependence on
the tolerance level (i.e. target level of estimation accuracy) is only established in expectation instead of with
high probability; furthermore, the optimal dependence on problem-related parameters, such as the size of
the state space and the effective horizon, still remains unsettled, and it is unclear whether existing sample
complexity bounds can be further improved. Failing to understand these questions, however, casts doubt on
whether TD with linear function approximation is statistically efficient in practice, and brings difficulties to
performing statistical inference based on TD estimators. In this paper, we seek to answer these questions
by providing tighter characterizations of the performance of TD with linear function approximation.

In the off-policy setting, it is known that the error of TD learning with linear function approximation
may diverge to infinity (Baird, 1995). In order to address this issue, Sutton et al. (2009) proposed a now
popular alternative with two-timescale learning rates, called the linear TD with gradient correction (TDC)
algorithm, which enjoys convergence guarantees in the off-policy case. In terms of finite-sample guarantees,
although a number of recent efforts (see, e.g. Dalal et al. (2020, 2018b); Gupta et al. (2019); Kaledin et al.
(2020); Wang et al. (2021b); Xu and Liang (2021)) tried to characterize the statistical performance of TDC
for both i.i.d. and Markovian data, they remain inadequate in providing either a convergence guarantee with
high-probability, an explicit dependence on salient problem parameters, or a sharp dependence on the sample
size. The challenge lies in dealing with the statistical dependence between two separate iterate sequences at
different timescales. To tackle this challenge, it calls for a new analysis framework for the TDC algorithm.

1.1 Our main contributions
This paper is concerned with evaluating the performance of a given target policy π in an infinite-horizon γ-
discounted MDP with a finite but large number of states. The goal is to learn the best linear approximation
of the value function in a pre-specified feature space given i.i.d. transition pairs drawn from the stationary
distribution. In the on-policy setting, we focus on the TD learning algorithm; in the off-policy setting, we
shift gear to the TDC learning algorithm. We summarize our main contributions as follows, with their exact
statements and consequences postponed to later sections.

• Via a careful analysis of TD learning with Polyak-Ruppert averaging, we show that, in the on-policy
setting, a number of samples of order

Õ

(
maxs{ϕ(s)⊤Σ−1ϕ(s)}(1 + ∥θ⋆∥2Σ)

(1− γ)2ε2

)
is sufficient to achieve an accuracy level (estimation error) of ε > 0, with high probability. Here,
ϕ(s) ∈ Rd indicates the linear feature vector for the state s in the state space S, θ⋆ is the best
linear approximation coefficient of the value function, and Σ corresponds to the feature covariance
matrix weighted by the stationary distribution. See Section 2 for the definitions of these parameters.
Compared to prior work by Bhandari et al. (2021) and Srikant and Ying (2019), our sample complexity
bound can be tighter by a factor of cond(Σ) which can be as large as |S| (the cardinality of the state
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paper algorithm stepsize sample complexity error control

Bhandari et al. (2021) TD ηt ≍ t−1 O
(

∥Σ−2∥∥Σ∥
(1−γ)4ε2

)
in expectation

Srikant and Ying (2019) TD ηt ≍ T−1 O
(

∥Σ−2∥∥Σ∥
(1−γ)4ε2

)
in expectation

Dalal et al. (2018a) TD ηt = t−1 O
(

1

εmax{2,1+ 1
λ

}

)
,λ ∈ (0, λmin(A)) w. high-prob

Durmus et al. (2022) Averaged TD ηt ≍ T−1/2 O
(

∥Σ−1∥
(1−γ)4ε2 ∨ ∥Σ2∥∥Σ−4∥

(1−γ)6

)
w. high-prob

This work Averaged TD ηt = η O
(

∥Σ−1∥
(1−γ)4ε2 ∨ ∥Σ2∥∥Σ−3∥

(1−γ)4

)
w. high-prob

Table 1. Comparisons with prior results (up to logarithmic terms) in finding an ε-optimal solution using TD
learning. Using the Polyak-Ruppert averaging, our high-probability sample complexity bound improves upon
previous works in the dependence on the tolerance level ε and problem-related parameters.

space). Our result also controls ε-convergence with high probability that matches the minimax-optimal
dependence on the tolerance level ε with lowest burn-in cost. To assess the tightness of this upper
bound, we provide a minimax lower bound in Section 3.3, which certifies the optimal dependence of
our bound on both the tolerance level ε and problem-related parameters Σ and θ⋆.

• In the off-policy setting, we establish a sample complexity bound for the TDC algorithm of order

Õ

(
ρ7max

λ4
1λ

3
2

∥Σ̃∥2

ε2
(1 + ∥θ̃⋆∥2

Σ̃
)

)
,

where θ̃ corresponds to the best linear approximation coefficient of the value function in the off-
policy setting, Σ̃ is the feature covariance matrix under the behavior policy, ρmax denotes the largest
importance sampling ratio measuring the discrepancy between the target policy and the behavior
policy, and lastly, λ1 and λ2 denote the smallest eigenvalues of some problem-dependent matrices.
Details about these constants are deferred to Section 4. To the best of our knowledge, our bound is the
first one to control ε-convergence with high probability that matches the minimax-optimal dependence
on the tolerance level ε. At the same time, our sample complexity bound also provides an explicit
dependence on the salient parameters.

Comparisons of our results to existing bounds and relevant commentary can be found in Table 1 and 2.

1.2 Other related works
In this section, we review several recent lines of works and provide a broader context of the current paper.

Finite-sample guarantees for policy evaluation. Classical analyses of policy evaluation algorithms
have mainly focused on providing asymptotic guarantees given a fixed model (Szepesvári, 1998; Tsitsiklis
and Van Roy, 1997). New tools developed in high-dimensional statistics and probability allow for a fine-
grained understanding of these algorithms especially from a finite-sample and finite-time perspective. As
argued in this paper, understanding how statistical errors depend on the effective horizon, dimension of
the problem and the number of samples, is essential as it provides important insights on how these RL
algorithms perform in practice. A highly incomplete list of prior art includes Bhandari et al. (2021); Boyan
(1999); Dalal et al. (2018a); Jin et al. (2018); Khamaru et al. (2020); Lakshminarayanan and Szepesvari
(2018); Srikant and Ying (2019) with a focus on the non-asymptotic analyses for model-free algorithms, and
Agarwal et al. (2020); Li et al. (2023b); Pananjady and Wainwright (2021); Sidford et al. (2018) which derive
non-asymptotic bounds for model-based algorithms.
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paper algorithm stepsize sample complexity error control

Dalal et al. (2020) Projected TDC αt = t−α, βt = t−β O
(

1
ε2α

)
, α < 1 w. high-prob

Kaledin et al. (2020) TDC αt, βt ≍ 1
T O

(
1
ε2

)
in expectation

Xu and Liang (2021) Batched TDC αt = α, βt = β O
(

1
ε2 log

1
ε

)
in expectation

This work TDC αt, βt ≍ 1
T O

(
1
ε2

)
w. high-prob

Table 2. Comparisons with prior results (up to logarithmic terms) in finding an ε-optimal solution using
TDC learning. We omit dependence on problem-related parameters in this table. Our sample complexity
bound for TDC is the first to achieve high-probability convergence guarantee with non-varying stepsizes and
without using projection steps or batched updates; in the mean time, we also provide explicit dependence on
problem-related parameters.

Stochastic approximation. The idea of stochastic approximation (SA) (Lai, 2003; Robbins and Monro,
1951) lies at the core of the TD and TDC learning algorithms considered in this paper. With the intention
of solving a deterministic fixed-point equation, SA methods perform stochastic updates based on approxi-
mations of the current residual. The asymptotic theory of SA methods are relatively well-developed, where
SA iterates provably track the trajectory of a limiting ordinary differential equation (Borkar, 2009; Borkar
and Meyn, 2000) and with properly decaying step sizes, the Polyak-Ruppert averaged iterates asymptoti-
cally follow the central limit theorem. Recently, non-asymptotic results have also been obtained for SA for
different problems especially in the RL setting; see Lakshminarayanan and Szepesvari (2018); Mou et al.
(2020); Moulines and Bach (2011); Nemirovski et al. (2009) and references therein. The TDC algorithm is a
special case of two-timescale linear SA, whose convergence rates have also been investigated in Dalal et al.
(2020); Gupta et al. (2019); Wu et al. (2020); Xu et al. (2019), among others.

Off-policy learning. Policy evaluation in the off-policy setting is closely related to offline or batch RL,
which aims to learn purely based on historical data without actively exploring the environment. The main
challenge here lies in the discrepancy between the behavior policy and the target or optimal policy. One
natural approach is to use importance sampling (IS) in order to form an unbiased estimator of the target
policy (Precup, 2000), and various different techniques have been applied to reduce the high variance of IS
(see, e.g. Jiang and Li (2016); Kallus and Uehara (2020); Ma et al. (2022); Thomas and Brunskill (2016);
Xie et al. (2019); Yang et al. (2020)). Non-asymptotic guarantees are also provided for off-policy evaluation
using a fitted Q-iteration approach under linear function approximation in Duan et al. (2020). A recent line
of works also considered finding the optimal policy using batch datasets (Jin et al., 2021; Li et al., 2022;
Rashidinejad et al., 2021; Shi et al., 2022; Xie et al., 2021).

1.3 Notation
Throughout this paper, we denote by ∆(S) (resp. ∆(A)) the probability simplex over the finite set S
(resp. A). For any positive integer n, we use [n] to denote the set of positive integers that are no larger than
n: [n] = {1, 2, ..., n}. When a function is applied to a vector, it should be understood as being applied in a
component-wise fashion; for example,

√
z := [

√
zi]1≤i≤n and |z| := [|zi|]1≤i≤n. For any vectors z = [ai]1≤i≤n

and w = [wi]1≤i≤n, the notation z ≥ w (resp. z ≤ w) stands for zi ≥ wi (resp. zi ≤ wi) for all 1 ≤ i ≤ n.
Additionally, we write 1 for the all-one vector, I for the identity matrix, and 1{·} for the indicator function.

For any matrix P = [Pij ], we denote ∥P ∥1 := maxi
∑

j |Pij |. Given a symmetric positive definite matrix
D, define the inner product ⟨·, ·⟩D as ⟨u,v⟩D = u⊤Dv and the associated norm ∥v∥D =

√
⟨v,v⟩D. For

any matrix M , we use ∥M∥ to denote its operator norm (i.e. the largest singular value), if not specified
otherwise. Throughout this paper, we use c, c0, c1, C, · · · to denote universal constants that do not depend
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either on the parameters of the MDP or the target levels (ε, δ); their exact values may change from line to line.
Given two sequences, {ft}t≥0 and {gt}t≥0, we write ft ≲ gt (resp. ft ≳ gt) or ft = O(gt) (resp. gt = O(ft))
if there exists some universal constant c1 > 0, such that ft ≤ c1gt (resp. f ≥ c1g). If both f = O(g) and
g = O(f) hold simultaneously, we write ft ≍ gt or ft = Θ(gt). We adopt the notation f = Õ(g) to indicate
f = O(g) up to logarithmic factors in g. For any symmetric matrix X, we use λmin(X) to denote its smallest
eigenvalue.

2 Problem formulation

2.1 Model and settings
Markov decision process. Consider an infinite-horizon MDP M = (S,A,P, r, γ) with discounted re-
wards, where S and A denote respectively the (finite) state space and action space, and γ ∈ (0, 1) in-
dicates the discount factor (Bertsekas, 2017). The probability transition kernel of the MDP is given by
P : S ×A 7→ ∆(S), where for each state-action pair (s, a) ∈ S ×A, P(· | s, a) ∈ ∆(S) denotes the transition
probability distribution from state s when action a is executed. The reward function is represented by the
function r : S ×A 7→ [0, 1], where r(s, a) denotes the immediate reward from state s when action a is taken;
for simplicity, we assume throughout that all immediate rewards lie within [0, 1].

A policy π : S 7→ ∆(A) is an action selection rule that maps a state to a distribution over the set of
actions; in particular, it is said to be stationary if it is time-invariant. The value function V π : S 7→ R is
used to measure the quality of a policy π, defined as

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s

]
, (1)

which is the expected discounted cumulative reward received by following the policy π under the MDP M
when initialized at state s0 = s. Here, at ∼ π(· | st) and st+1 ∼ P(· | st, at) for all t ≥ 0. It can be easily
verified that 0 ≤ V π(s) ≤ 1

1−γ for any π.
For a given policy π, we can define the reward function of every state s ∈ S as the expected reward for

(s, a) when a is chosen according to π:

r(s) = Ea∼π(·|s)[r(s, a)]. (2)

For simplicity, we introduce the vector notation for the reward function r := [r(s)]1≤s≤|S| ∈ R|S|, and the
value function V π = [V π(s)]1≤s≤|S| ∈ R|S|. We can also define the transition matrix P π for this given policy
π, such that its (i, j) element represents the probability that state i is transited to state j under the policy
π; formally,

Pπ
ij =

∑
a∈A

P(st+1 = j | st = i, at = a)π(at = a | st = i). (3)

We denote by µ the stationary distribution corresponding to the Markov chain when the transition follows
P π, which we assume to be well-defined, and introduce the vector notation µ := [µ(s)]1≤s≤|S| ∈ R|S|.

Linear approximation for the value function. As discussed previously, it is often infeasible to collect
a number of samples that scales with the ambient dimension |S|. This motivates the search for lower
dimension approximation of the value function, of which linear approximation emerges as a convenient
option. Mathematically, for θ ∈ Rd, define Vθ(s) as

∀s ∈ S : Vθ(s) = ϕ(s)⊤θ,

where ϕ(s) ∈ Rd is the feature vector associated with state s ∈ S, with d ≤ |S|. The vector θ of linear
coefficients is shared across states.

Using matrix notation, we let

Φ := [ϕ(1),ϕ(2), · · · ,ϕ(|S|)]⊤ ∈ R|S|×d, (4)
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be the feature matrix that concatenates the feature vectors for all states and Vθ = [Vθ(s)]s∈S ∈ R|S| be the
linear approximation vector to the value function. It follows that

Vθ = Φθ.

We impose the following mild assumption on the feature vectors.

Assumption 1. The columns of Φ are linearly independent with Euclidean norm uniformly bounded by one,
i.e. maxs∈S ∥ϕ(s)∥2 ≤ 1.

2.2 Policy evaluation with linear approximation
On-policy evaluation with linear approximation. The task of policy evaluation is to measure the
value function V π(s) for every s ∈ S (see definition (1)) given a policy π of interest. In the on-policy
setting, data samples are collected while the policy π is executed and a sequence of samples are obtained

{(s0, a0, r0), . . . , (sT , a0, rT )}, where at ∼ π(· | st), rt = r(st, at).

In this setting, in order to find the best linear approximation to V π, we find it helpful to first introduce
some shorthand notation. First, given the stationary distribution µ for P π, we let

Dµ = diag
(
µ(1), µ(2), · · · , µ(|S|)

)
(5)

and denote with

Σ := Φ⊤DµΦ = E
s∼µ

[
ϕ(s)ϕ(s)⊤

]
∈ Rd×d (6)

the feature covariance matrix with respect to this stationary distribution.
The best linear approximation coefficients, θ⋆, is defined as the unique solution to the following projected

Bellman equation (Tsitsiklis and Van Roy, 1997)

Φθ = ΠDµT π (Φθ) . (7)

Here, ΠDµ denotes the projection operator onto the column space of Φ (namely, the subspace {Φx | x ∈ Rd})
w.r.t. the inner product ⟨·, ·⟩Dµ , where for any vector v ∈ R|S| one has

ΠDµ(v) := argmin
z ∈{Φx |x∈Rd}

∥z − v∥2Dµ
.

The function T π : R|S| 7→ R|S| is known as the Bellman operator, which is given by

v 7→ T π(v) := r + γP πv. (8)

Off-policy evaluation with linear approximation. In contrast, in the off-policy setting, we observe
a trajectory from a behavior policy πb instead of the target policy π. The goal is then to learn the value
function for the target policy π based on

{(s0, a0, r0), . . . , (sT , a0, rT )}, where at ∼ πb(· | st), rt = r(st, at).

Let µb be the stationary distribution over S induced by the behavior πb, and correspondingly let

Dµb
:= diag

(
µb(1), µb(2), · · · , µb(|S|)

)
.

We denote with ΠDµb
the projection operator associated with Dµb

, which is given explicitly as

ΠDµb
v := argmin

z ∈{Φx |x∈Rd}
∥z − v∥2Dµb

.
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In the off-policy setting, instead of trying to solve the projected Bellman’s equation (7), we aim at
minimizing the Mean-Squared Projected Bellman Error (MSPBE):

minimizeθ MSPBE(θ) :=
1

2
∥Vθ −ΠDµb

T πVθ∥2Dµb
. (9)

Throughout, we shall denote the minimizer of the above problem (9) as θ̃⋆. We remark here that the norm
and the projection are both induced by Dµb

, while the Bellman operator is again in terms of the target
policy π. For this reason, solving (9) is different from solving the projected Bellman’s equation (7); as a
result, in general, θ⋆ ̸= θ̃⋆.

3 On-policy evaluation with TD learning
In this section, we study the accuracy of the estimator of θ⋆ (cf. (7)) returned by the TD learning algorithm
in the on-policy setting. Specifically, we seek to determine the tightest sample complexity for this algorithm
that ensures an ε-close solution. To better highlight our analysis strategy, we only consider the stylized
generative model1 whereby, at each time stamp t, one acquires an independent sample pair

(st, s
′
t) where st

i.i.d.∼ µ, at ∼ π(st), and s′t ∼ P(· | st, at). (10)

Here recall that µ is the stationary distribution corresponding to P π. Notice that in the on-policy setting,
since we are focused on a fixed policy π and interested only in the state pairs {(st, s′t)}Tt=0 and not the
actions {at}Tt=0, the Markov decision process reduces to a Markov reward process (MRP). Given a sequence
of sample pairs {(st, s′t)}Tt=0 and a given level of tolerance ε > 0, our goal is to derive a sharp lower bound
on the number of samples T that is required for TD learning to produce an estimator θ̂ such that, with high
probability,

∥θ̂ − θ⋆∥Σ ≤ ε.

3.1 The TD learning algorithm
To motivate TD learning, it is helpful to first consider the properties of the best linear approximation
coefficients θ⋆; see (7). For any sample transition (st, s

′
t) (see (10)), define the random quantities

At := ϕ(st) (ϕ(st)− γϕ(s′t))
⊤ ∈ Rd×d, (11a)

bt := ϕ(st)r(st) ∈ Rd, (11b)

whose means are given respectively by

A := E
s∼µ,s′∼Pπ(·|s)

[
ϕ(s) (ϕ(s)− γϕ(s′))

⊤
]
= Φ⊤Dµ(I − γP π)Φ ∈ Rd×d, (12a)

b := E
s∼µ

[ϕ(s)r(s)] = Φ⊤Dµr ∈ Rd. (12b)

It turns out that the target vector θ⋆ satisfies the equation (Tsitsiklis and Van Roy, 1997)

θ⋆ := A−1b. (13)

The TD learning algorithm leverages this representation by iteratively improving the linear approximation
of the value function at each time stamp through the updates

θt+1 = θt − ηt(Atθt − bt), t = 0, 1, 2, . . . , (14a)

1We believe that our framework can be potentially generalized to Markovian samples using similar techniques in Li et al.
(2021b) which is beyond the scope of the current paper.
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where, for each t, ηt > 0 denotes the learning rate or stepsize. After T iterations, the TD learning algorithm
returns θT as the estimator. In contrast, TD learning with Polyak-Ruppert averaging, or averaged TD
learning in short, returns an average across all iterates

θT =
1

T

T∑
i=1

θi. (14b)

While we are mainly concerned with the averaged estimator θT , we also obtain some theoretical properties
of θT as a by-product of our analysis.

3.2 Sample complexity of TD learning
In this section, we present a finite-sample bound for the estimation error of θT assuming independent data,
from which we derive a novel sample complexity guarantee for TD learning. Below, we denote by κ the
condition number of Σ as follows

κ := λmax(Σ)/λmin(Σ) ≥ 1. (15)

Theorem 1. There exist universal, positive constants C0, c0 > 0 and c1 > 0 , such that for any given
0 < δ < 1, the averaged TD learning estimator θT (14) after T iterations satisfies the bound

∥∥θT − θ⋆
∥∥
Σ
≤ C0

{√
maxs ϕ(s)⊤Σ−1ϕ(s) log(dδ )

T (1− γ)2
(
∥θ⋆∥Σ + 1

)

+
∥Σ−1∥

[(
∥θ⋆∥Σ + 1

)√κ log( dT
δ )

η(1−γ)3 + 1
η(1−γ)∥θ

⋆∥Σ
]

T

}
(16)

with probability at least 1− δ, provided that θ0 = 0, η0 = . . . = ηT = η < c0(1−γ)
κ log(Td/δ) and

T ≥
c1κ(∥θ⋆∥Σ + 1)2 log2 κdT (∥θ⋆∥2+1)

(1−γ)δ

η(1− γ)λmin(Σ)
.

The proof of the theorem and the other results from this section can be found in Section 6. Theorem 1
directly implies the following corollary, which gives an upper bound for the sample complexity of TD learning
with independent samples.

Corollary 1 (Sample complexity of TD learning). There exists a universal constant c > 0 such that, for
any ε ∈ (0, ∥θ⋆∥Σ) and δ ∈ (0, 1), the averaged TD estimator (14b) achieves∥∥Vθ̄T

− Vθ⋆

∥∥
Dµ

=
∥∥θ̄T − θ⋆

∥∥
Σ
≤ ε (17)

with probability exceeding 1− δ, provided that

T ≥
c
{
maxs ϕ(s)

⊤Σ−1ϕ(s)
}(

1 +
∥∥θ⋆

∥∥2
Σ

)
log
(
d
δ

)
(1− γ)2ε2

. (18)

Comparisons to prior literature. We remark that the best finite-sample results for TD learning obtained
so far are given by (Bhandari et al., 2021, Theorem 2(c)) and (Srikant and Ying, 2019, Corollary 1), with
decaying stepsizes ηt ≍ t−1 and sample size-related stepsizes ηt ≍ T−1 respectively. Translated into our
notation, they both prove that in order for the expected estimation error to be controlled by ε, namely

E ∥θT − θ⋆∥2Σ ≤ ε2,

it suffices to take (up to some logarithmic factors)

T prior ≍
κ∥Σ−1∥

(
∥θ⋆∥21+Σ

)
(1− γ)2

1

ε2
. (19)
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We refer readers to Appendix D.1 and D.2 for a detailed translation of their results. Comparing (18) and
(19), our result improves upon previous works by a multiplicative factor of

T prior

T ours = κ,

the condition number of Σ; κ can be as large as d, the dimension of the features, which can scale with |S|.
As for sample complexity with high-probability convergence guarantees, another recent work Dalal et al.

(2018a) shows that in order for (17) to hold with probability at least 1− δ, it suffices to take

T ≍ max

{(
1

ε

)2(
log

1

δ

)3

,

(
1

ε

)1+1/λmin(A)(
log

1

δ

)1+1/λmin(A)
}
. (20)

Comparing (18) and (20), we can see that our result improves on the dependence of both the error tolerance
ε and the probability tolerance δ; in fact, our result is the first sample complexity for TD learning with
high-probability convergence guarantee that matches the minimax-optimal dependence of ε and displays a
clear dependence on the problem-related parameters, as would be shown in the following section.

After the initial post of the current paper, we are pointed to the work Durmus et al. (2022), which provides
a general treatment of linear stochastic approximation with Polyak-Ruppert averaging. Their results lead
to the same sample complexity as Corollary 1 with a slightly higher burn-in cost. We include the detailed
comparisons of their result in Section D.3.

3.3 Minimax lower bounds
To assess the tightness of our upper bounds in Corollary 1, in this section, we provide a minimax lower bound
for the value function estimation problem with linear approximation. More specifically, the question we intend
to answer is: for any target accuracy level ε, do there exist estimators that achieve an ε-approximation of
Vθ⋆ with fewer samples? As shown in the following result, the answer is, by and large, negative.

Theorem 2 (Minimax lower bound). Consider any 1
2 < γ < 1, 1 < d ≤ |S|, and 0 < ε < c1 max{1, ∥θ⋆∥Σ}

for some universal constant c1 > 0. There exist universal constants c2, c3 > 0 such that for any estimator θ̂
based on T independent pairs {(st, s′t)}Tt=1 as in (10), there exists a Markov reward process and a choice of
the feature matrix Φ such that

P
{∥∥θ̂ − θ⋆

∥∥
Σ
> c2ε

}
≥ 1

4
, (21)

provided that the number of samples T satisfies

T ≤
c3
{
maxs ϕ(s)

⊤Σ−1ϕ(s)
}(

1 +
∥∥θ⋆

∥∥2
Σ

)
(1− γ)ε2

. (22)

Remark 1. We remark that minimax lower bounds are also previously investigated in a general framework
in (Duan et al., 2021) where the value function is approximated using a general reproducing kernel Hilbert
space (RKHS). When it comes to linear function approximation, for completeness, we include in Section B
a different but simpler construction tailored to the linear space. Compared to the results of Duan et al.
(2021), our lower bound is stated in terms of different parameters, which allows us to evaluate the tightness
of Corollary 1 directly. Instantiating both lower bounds, they do agree and equal to

O

(
d

ε2(1− γ)3

)
, (23)

as one plugs in the exact parameters from our construction.
As asserted by this theorem, no algorithm whatsoever can attain an ε-approximation of the best linear

coefficient — in a minimax sense — unless the total sample size exceeds

O

({
maxs ϕ(s)

⊤Σ−1ϕ(s)
}(

1 +
∥∥θ⋆

∥∥2
Σ

)
(1− γ)ε2

)
.
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Consequently, the upper bounds developed in Corollary 1 are sharp in terms of the accuracy level ε, the
dependence of the feature map Φ, the underlying coefficient θ⋆, and the covariance matrix Σ. Therefore, it
implies that the performances of the TD learning algorithms can not be further improved in the minimax
sense other than a factor of 1

1−γ—the effective horizon.

4 Off-policy evaluation with TDC learning

In this section, we aim to estimate the optimizer θ̃⋆ of the optimization problem (9) in the off-policy setting
by means of the TDC algorithm. We continue to focus on the case when samples are generated in the i.i.d.
fashion by the behavior policy πb. At each time stamp t, one obtains

(st, at, s
′
t) where st

i.i.d.∼ µb, at ∼ πb(· | st), and s′t ∼ P(· | st, at). (24)

Here, recall that µb is the stationary distribution corresponding to the behavior policy πb. We first provide
some intuition behind the TDC algorithm before describing novel bounds on its sample complexity for
obtaining an ε-accurate solution.

4.1 The TDC algorithm
The TDC algorithm is designed to solve the optimization problem (9) using a two-timescale linear TD
with gradient correction (Sutton et al., 2009). To provide some high-level ideas behind the design of this
algorithm, it is helpful to rewrite the objective function in the following form by directly expanding the
terms in expression (9).

Claim 1. The quantity MSPBE(θ) can be equivalently written as

MSPBE(θ) =
1

2
Eµb,π,P [ϕ(st)δt]

⊤ {Eµb

[
ϕ(st)ϕ(st)

⊤]}⊤ Eµb,π,P [ϕ(st)δt] , (25)

where δt := rt + γϕ(s′t)
⊤θ − ϕ(st)

⊤θ is the temporal difference error.

In light of the above expression, the gradient of MSPBE(θ) with respect to θ equals to

∇θMSPBE(θ) = Eµb,π,P
[
(γϕ(s′t)− ϕt)ϕ(st)

⊤] {Eµb

[
ϕ(st)ϕ(st)

⊤]}−1 Eµb,π,P [ϕ(st)δt]

= −Eµb,π,P [ϕ(st)δt] + γEµb,π,P
[
ϕ(s′t)ϕ(st)

⊤] {Eµb

[
ϕ(st)ϕ(st)

⊤]}−1 Eµb,π,P [ϕ(st)δt]

= −Eµb,πb,P [ρtϕ(st))δt] + γEµb,πb,P
[
ρtϕ(s

′
t)ϕ(st)

⊤]wt, (26)

where in the last step we have defined

wt = w(θt) =
{
Eµb

[
ϕ(st)ϕ(st)

⊤]}−1 Eµb,πb,P [ρtϕ(st)δt] . (27)

and have used the importance weights

ρt :=
π(at|st)
πb(at|st)

(28)

to replace the expectation w.r.t. π with the expectation w.r.t. πb.
The high-level idea of TDC is to estimate the right hand side of (26) based on the sample trajectory (24),

and then perform stochastic gradient updates for θt. However, the challenge is that the second term in the
gradient of MSPBE (26) involves the product of two expectations. Simultaneously sampling and using the
sample product is inappropriate due to their correlation. In order to address this issue, Sutton et al. (2008)
and Sutton et al. (2009) introduced an auxiliary parameter w to estimate w(θt) by solving a linear stochastic
approximation (SA) problem corresponding to the linear system

Eµb

[
ϕ(st)ϕ(st)

⊤]w = Eµb,πb,P [ρtϕ(st)δt] . (29)
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Putting these ideas together, TDC amounts to the following two-timescale linear stochastic method

θ̃t+1 = θ̃t − αt[γρtϕ(s
′
t)ϕ(st)

⊤wt − ρtδtϕ(st)];

wt+1 = wt − βt

[
ϕ(st)ϕ(st)

⊤wt − ρtδtϕ(st)
]
.

Here, the update of θ̃t corresponds to a gradient step regarding (25), the update of wt corresponds to linear
SA for solving (29), and δt := rt + γϕ(s′t)

⊤θ̃t −ϕ(st)
⊤θ̃t is the temporal difference error. In addition, αt, βt

are the corresponding stepsizes. For notational convenience, let us denote

Ãt = ρtϕ(st) (ϕ(st)− γϕ(s′t))
⊤
, b̃t := ρtϕ(st)rt,

Πt := ρtϕ(st)ϕ(s
′
t)

⊤, Σ̃t := ϕ(st)ϕ(st)
⊤.

(30)

With these definitions, the TDC iterates can be written compactly as

θ̃t+1 = θ̃t − αt(Ãtθ̃t − b̃t + γΠ⊤
t wt); (31a)

wt+1 = wt − βt(Ãtθ̃t − b̃t + Σ̃twt). (31b)

4.2 Sample complexity of TDC
Our finite-sample characterization of TDC builds upon a careful analysis of the population dynamics of
TDC, which we then show to be uniformly well approximated by the empirical dynamics of TDC via matrix
concentration inequalities. Before stating our main result, we find it helpful to introduce some extra pieces
of notation. Specifically, define the population parameters as

Ã := Eµb,πb,P [Ãt] = Eµb,πb,P [ρtϕ(st) (ϕ(st)− γϕ(s′t))
⊤
]; (32a)

b̃ := Eµb
[b̃t] = Eµb,πb

[ρtϕ(st)rt]; (32b)

Π := Eµb,πb,P [Πt] = Eµb,πb,P [ρtϕ(st)ϕ(s
′
t)

⊤]; (32c)

Σ̃ := Eµb
[Σ̃t] = Eµb

[ϕ(st)ϕ(st)
⊤]. (32d)

In addition, denote the parameters

λ1 = λmin(Ã
⊤Σ̃−1Ã), λ2 = λmin(Σ̃), λΣ = ∥Σ̃−1∥ = 1/λ2,

κ̃ = λΣ · ∥Σ̃∥, ρmax = max
s,a

[π(a|s)/πb(a|s)].
(33)

With these notation in place, we are ready to state our main result for TDC learning, with its proof deferred
to Section 7.

Theorem 3. There exist universal constants C̃0, c̃1 > 0, such that for any given 0 ≤ δ ≤ 1, the output θ̃T
of the TDC learning iterate (31) at time T satisfies the bound

∥θ̃T − θ̃⋆∥Σ̃ ≤ C̃0
ρ2max∥Σ̃∥

λ1

√
β

λ2
log

2dT

δ
(∥θ̃⋆∥Σ̃ + 2), (34)

with probability at least 1− δ, provided that

θ̃0 = 0,

α0 = . . . = αT = α, β0 = . . . = βT = β,

0 < α <
1

λ1λ2
Σ∥Σ̃∥ log 2dT

δ

,
α

β
=

1

128

λ1λ2

ρ2max(1 + λΣρmax)
,

T ≥ c̃1
log ∥θ̃⋆∥2

αλ1
logmax

{
√
κ̃, ∥θ̃⋆∥Σ̃

√
αλ1

log 2dT
δ

}
.

(35)
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Remark 2. A similar result in terms of the ℓ2 error (namely, ∥θ̃T − θ̃⋆∥2) can be derived in the same way
as in (34). In particular, under the same conditions as in (35), it can be derived with probability at least
1− δ that

∥θ̃T − θ̃⋆∥2 ≲ C̃0
ρ2max

λ1

√
β

λ2
log

2dT

δ
(∥θ̃⋆∥2 + 2). (36)

Since the proof follows in the similar fashion, we omit here for brevity.

Next, we state a direct consequence of Theorem 3 below, which gives an upper bound for the sample
complexity of TDC.

Corollary 2. There exists a universal constant c̃ such that, for any δ ∈ (0, 1) and ε ∈ (0, ∥θ̃⋆∥Σ̃), the TDC
estimator θ̃T at iterate T satisfies the bound

∥Vθ̃T
− Vθ̃⋆∥Dµb

= ∥θ̃T − θ̃⋆∥Σ̃ ≤ ε (37)

with probability exceeding 1− δ, provided that

T ≥ c̃
ρ7max

λ4
1λ

3
2

∥Σ̃∥2

ε2
(1 + ∥θ̃⋆∥2

Σ̃
) log

(d∥θ̃⋆∥Σ̃
δ

)
, (38)

and the stepsize parameters αt and βt are chosen as

αt ≍
log ∥θ̃⋆∥Σ̃

Tλ1
, βt = 128

ρ2max(1 + λΣρmax)

λ1λ2
α. (39)

Comparisons to other sample complexity bounds for TDC. Let us compare our results in Theorem
3 and Corollary 2 with the state-of-the-art sample complexities for the TDC algorithm. The result that is
most comparable to ours is obtained by Dalal et al. (2020), where a projected version of TDC is considered
with decaying stepsizes αt = O(t−α) and βt = O(t−β) for 0 < β < α < 1. The sample complexity therein,
with high-probability convergence guarantee at tolerance level ε, is of order O

((
1
ε

)2α) without explicit
dependence on the problem-related parameters. If one chooses α = 1 − δ with δ sufficiently small, their
sample complexity bound can be improved, but it cannot achieve the rate Θ

(
1
ε2

)
. Regarding finite-sample

in-expectation error control for TDC, the best result so far is developed by Kaledin et al. (2020), who shows
that with the choice of αt, βt ≍ 1

T , the sample complexity for TDC with tolerance level ε can be upper
bounded by O

(
1
ε2

)
. Our result in Corollary 2 is the first sample complexity for the original TDC algorithm

that guarantees high-probability convergence and achieves the minimax-optimal rate of O
(

1
ε2

)
; it is also

noteworthy that we display an explicit dependence on problem-related parameters. We also remark that Xu
and Liang (2021) considers a variant of TDC where θ̃t is updated not with every sample tuple (st, at, s

′
t),

but with every batch of samples, and obtains a sample complexity of order O( 1
ε2 log(

1
ε )).

5 Numerical experiments
In this section, we corroborate our theoretical results with illustrative numerical experiments. In what
follows, we will consider the on-policy and off-policy settings respectively.

5.1 On-policy evaluation: averaged TD learning
In the on-policy setting, we will investigate the empirical performance of the averaged TD learning algorithm.

MDP setting. We consider a member of the family of MDPs constructed in proof of Theorem 2, which
provides a minimax lower bound. This family of MDPs is designed to be difficult to distinguish between
each other, and hence, is a natural instance for evaluating the performance of TD learning. For construction
details of this MDP, we refer the reader to Appendix B. In these simulations, we set |S| = 10, γ = 0.2,
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Figure 1. (a) Comparisons of the estimation error of TD and averaged TD when d = 3. (b) Comparisons of
the estimation error for averaged TD with d = 3 and d = 9. Two curves in the middle represent their average
errors, while the shaded areas represent the 95% confidence bands.

and choose the stepsize of TD as η = 0.01. We examine both the original and the averaged TD iterates
when the feature dimension equals to d = 3 and d = 9. Under each setting, 100 independent trials for
T = 105 iterations were conducted, and we report the mean value as well as the 95% confidence band for
the estimation error ∥θt − θ⋆∥Σ for TD and ∥θt − θ⋆∥Σ for averaged TD.

Experimental results. Figure 1(a) compares the performances of TD and averaged TD of an MDP with
feature dimension d = 3. While the estimation error of TD levels off at around 5× 10−3 after 103 iterations,
the error of averaged TD keeps decreasing to below 5 × 10−4 when T = 105. In addition, Figure 1(b)
demonstrates the estimation error of averaged TD for MDPs with feature dimension d = 3 and d = 9. The
slopes of these curves on the right part of this log-log plot match our theoretical prediction: the estimation
error decreases in the order of O(t−1/2). Moreover, the difference between the two curves indicates that the
lower-dimension problem enjoys a faster convergence rate.

5.2 Off-policy evaluation: TDC learning
In order to demonstrate the efficiency of TDC for off-policy evaluation, we compare its performance with
that of the off-policy TD learning on Baird’s counterexample (Baird, 1995).

Baird’s counterexample. We start by introducing Baird’s counterexample, which was constructed to
illustrate the instability of TD learning in the off-policy regime. Consider an MDP (S,A,P, r, γ), with the
discount factor γ = 0.9, state space S = [7], action space A = {0, 1} and the reward function r = 0 for
all states and actions. The action a = 1 transitions any initial state s to s′ = 7, while the action a = 0
transitions any initial state s to s′ ∈ [6] with the same probability. The target policy π selects a = 1 at any
given state s, while the behavior policy πb takes a = 0 with probability 6

7 and a = 1 with probability 1
7 .

Formally, the MDP satisfies the equations (see also Figure 2 for an illustration)

P(s′|s, 1) = 1{s′ = 7}, ∀s ∈ [7]; P(s′|s, 0) = 1

6
1{1 ≤ s′ ≤ 6}, ∀s ∈ [7];

π(1|s) = 1, ∀s ∈ [7];

πb(0|s) =
6

7
, ∀s ∈ [7]; πb(1|s) =

1

7
, ∀s ∈ [7].

In this example, it is easy to check that the stationary distribution corresponding to the behavior policy
πb is the uniform distribution among all states, and that the value function is 0 for all states. We apply the
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Figure 2. Baird’s counterexample. Taking action a = 1 always leads to state s = 7, while taking a = 0 leads
to one of the other six states with equal probability. The reward is set to be always zero.

following linear approximation of the value function: for θ ∈ R8,{
V (i) = 2θi + θ8, for 1 ≤ i ≤ 6;

V (7) = θ7 + 2θ8.
(40)

We remark that with this approximation, the feature space has a higher dimension (d = 8) than the state
space (|S| = 7). Consequently, the optimal estimator θ̃⋆ is not unique, and instead can be any θ ∈ R8 such
that the estimated value vector is Vθ = 0. Technically, this issue can be circumvented by creating several
identical states as state s = 7; we omit this detail here for simplicity, since we use ∥θ̂t−θ̃⋆∥Σ̃ = ∥Vθ̂t

−V ⋆∥Dµb

to evaluate the estimation error, and our experimental results would remain the same.

Experimental results. We perform 100 independent trials for both off-policy averaged TD learning (with
stepsize η = 0.02) and TDC (with stepsizes α = 0.02, β = 0.002), starting at θ̂0 = (1, 1, 1, 1, 1, 1, 10, 1)⊤, as
suggested by Baird (1995). In these experiments, we set α = η to ensure that the stepsize for θ-updates are
the same between the two algorithms. Figure 3 demonstrates how the estimation error ∥θ̂t − θ̃⋆∥Σ̃ changes
as two algorithms execute. As can be seen in this figure, TDC converges to an error of below 0.01 after
T = 105 iterations while the off-policy averaged TD diverges to infinity.

6 Proof of Theorem 1 (TD learning)
For the sake of convenience, let us introduce the following notation

∆t := θt − θ⋆, and ∆t := θt − θ⋆. (41)

Step 1: a recursive relation. To understand the convergence behavior of ∆t, the idea is to first look at
the following decomposition

∆t+1 = θt+1 − θ⋆ = θt − θ⋆ − η(Atθt − bt)

= θt − θ⋆ − η
(
Atθt − bt − (Aθ⋆ − b)

)
= θt − θ⋆ − η

(
A(θt − θ⋆) + (At −A)θt − (bt − b)

)
= (I − ηA)∆t − ηξt,

where we define

ξt := (At −A)θt − (bt − b). (42)
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Figure 3. Performances of off-policy averaged TD (red, η = 0.02) and TDC (blue, α = 0.02, β = 0.002).
Two curves in the middle represent their average errors, while the shaded areas correspond to 95% confidence
bands.

Here, the second line invokes the update rule (14a) and the identity Aθ⋆ = b, whereas the third line is
obtained by properly rearranging terms. Applying the above relation recursively, one arrives at

∆t = (I − ηA)∆t−1 − ηξt−1 = (I − ηA)t∆0 − η

t−1∑
i=0

(I − ηA)t−i−1ξi. (43)

Step 2: a crude bound on ∥∆t∥Σ. We aim to establish, via an induction argument, that with probability
at least 1− δ,

∥∆t∥Σ ≤ 32

√
ηκ log 2dT

δ

1− γ
(1 + ∥θ⋆∥Σ) + 2

√
κ∥∆0∥Σ =: R0 (44)

simultaneously over all 0 ≤ t ≤ T , as long as 0 < ηt ≤ c3(1−γ)

κ log dT
δ

for some sufficiently small constant c3 > 0.
As a side remark, this boundedness property saves us from enforcing additional projection steps as adopted
in Bhandari et al. (2021).

To start with, note that the inequality (44) holds trivially for the base case with t = 0, given that κ ≥ 1.
Next, suppose that the hypothesis (44) holds for ∆0, . . . ,∆t−1, and we intend to establish it for ∆t as well.
Towards this end, invoking the decomposition (43) and the triangle inequality yields

∥∆t∥Σ ≤
∥∥(I − ηA)t∆0

∥∥
Σ
+ η

∥∥∥ t−1∑
i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
. (45)

As for the first term of (45), it is seen that∥∥(I − ηA)t∆0

∥∥
Σ
=
∥∥Σ1/2(I − ηA)tΣ−1/2Σ1/2∆0

∥∥
2
≤
∥∥Σ1/2

∥∥ · ∥∥Σ−1/2
∥∥ · ∥∥I − ηA

∥∥t · ∥∥Σ1/2∆0

∥∥
2

≤
√
κ

(
1− 1

2
η(1− γ)λmin(Σ)

)t

∥∆0∥Σ ≤
√
κ∥∆0∥Σ, (46)

where the last inequality arises from the definition of κ and the property (79g) (with the restriction that
η ≤ (1− γ)/(4∥Σ∥)). When it comes to the second term of (45), the following lemma comes in handy.
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Lemma 1. Fix any quantity R > 0 and, for each 0 ≤ i ≤ T − 1, define the auxiliary random vector

ξ̃i := ξi 1{Hi}, where Hi :=
{
∥∆i∥Σ ≤ R

}
. (47)

Then, with probability at least 1−δ/T , simultaneously over the indices (l, u, t) such that 0 ≤ l ≤ u ≤ t−1 < T
it holds that∥∥∥ u∑

i=l

(I− ηA)t−i−1ξ̃i

∥∥∥
Σ
≤ 16

(
1− 1

2
η(1− γ)λmin(Σ)

)t−u−1

(∥θ⋆∥Σ +R+ 1)

√
κ log 2dT

δ

η(1− γ)
,

provided that 0 < ηt ≤ 1−γ
κ log 2dT

δ

.

Proof. See Section C.1.

Under the induction hypothesis that ∥∆i∥Σ ≤ R0 for 0 ≤ i ≤ t − 1, we can invoke Lemma 1 (with
R = R0, l = 0 and u = t− 1) to show that∥∥∥ t−1∑

i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
=
∥∥∥ t−1∑

i=0

(I − ηA)t−i−1ξi1{∥∆i∥Σ ≤ R0}
∥∥∥
Σ

≤ 16(∥θ⋆∥Σ +R0 + 1)

√
κ log 2dT

δ

η(1− γ)
(48)

holds with probability at least 1 − δ/T , provided that 0 < η ≤ 1−γ
κ log dT

δ

. Combining (45), (46) and (48)
together and recalling the definition (44) of R0, we can easily verify that

∥∆t∥Σ ≤
√
κ∥∆0∥Σ + 16(∥θ⋆∥Σ +R0 + 1)

√
ηκ log 2dT

δ

1− γ
≤ R0, (49)

with the proviso that 32
√

ηκ log(2dT/δ)
1−γ ≤ 1. The induction argument coupled with the union bound then

establishes the claim (44).

Step 3: a refined bound on ∥∆t∥Σ. It turns out that the upper bound (44) is somewhat loose due to the
complete ignorance of the contraction effect of I− ηA; see (46). In what follows, we develop a strengthened
bound. Define

tseg :=
c1 logmax{4

√
κ, 16κ∥∆0∥Σ

∥θ⋆∥Σ+1 , ∥∆0∥Σ
√

1−γ
ηκ log 2dT

δ

}

η(1− γ)λmin(Σ)
(50)

for some sufficiently large constant c1 > 0. For any integer k ≥ 1, we aim to establish that

∥∆t∥Σ ≤ 32

√
ηκ log 2dT

δ

1− γ

(
∥θ⋆∥Σ +

√
κ∥∆0∥Σ
2k−1

+
3

2

)
=: Rk (51)

for any t obeying ktseg ≤ t ≤ T , provided that 0 < η ≤ c3(1−γ)

κ log dT
δ

for some small enough constant c3 > 0.
Because of relation (45), we claim that it suffices to prove that

∥∥∥ t−1∑
i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
≤ 32

(
∥θ⋆∥Σ +

2
√
κ∥∆0∥Σ
2k

+ 1
)√κ log 2dT

δ

η(1− γ)
, ktseg ≤ t ≤ T. (52)

To see this: note that the first term on the right-hand side of (45) has already been bounded in (46), which
combined with the definition (50) of tseg indicates that

∥∥Σ1/2(I − ηA)t∆0

∥∥
2
≤

√
κ

(
1− 1

2
η(1− γ)λmin(Σ)

)tseg

∥∆0∥Σ ≤

√
ηκ log 2dT

δ

1− γ
(53)
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for any t ≥ tseg. Clearly, combining (52) with (45) and (53) shall immediately lead to the claim (51). The
remainder of this step is thus devoted to demonstrating (52) inductively.

The base case (i.e. k = 1) follows immediately from our bounds (44) and (48) in Step 2, given that√
ηκ log 2dT

δ

1−γ is sufficiently small. Suppose now that the claim (52) holds for a given integer k ≥ 1 and any
t obeying ktseg ≤ t ≤ T , and we intend to show that (52) continues to hold for k + 1 and any t obeying
(k + 1)tseg ≤ t ≤ T . Towards this, we first single out the following straightforward decomposition

∥∥∥ t−1∑
i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
≤
∥∥∥ t−1∑

i=t−tseg+1

(I − ηA)t−i−1ξi

∥∥∥
Σ
+
∥∥∥ t−tseg∑

i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
,

which allows us to upper bound the two terms on the right-hand side above seperately.

• Under the induction hypothesis that ∥∆i∥Σ ≤ Rk for all i obeying ktseg ≤ i ≤ T , one can invoke
Lemma 1 with R = Rk, l = t− tseg + 1 and u = t− 1 to see that∥∥∥ t−1∑

i=t−tseg+1

(I − ηA)t−i−1ξi

∥∥∥
Σ
=
∥∥∥ t−1∑

i=t−tseg+1

(I − ηA)t−i−1ξi1{∥∆i∥Σ ≤ Rk}
∥∥∥
Σ

≤ 16
(
∥θ⋆∥Σ +Rk + 1

)√κ log 2dT
δ

η(1− γ)

≤ 24
(
∥θ⋆∥Σ +

2
√
κ∥∆0∥Σ
2k+1

+ 1
)√κ log 2dT

δ

η(1− γ)
,

where the last line uses the definition (51) of Rk and holds as long as ηκ log 2dT
δ

1−γ is sufficiently small.

• In addition, we make the observation that: for any t ≥ tseg,∥∥∥ t−tseg∑
i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
=
∥∥∥ t−tseg∑

i=0

(I − ηA)t−i−1ξi1{∥∆i∥Σ ≤ R0}
∥∥∥
Σ

≤ 16(1− 1

2
η(1− γ)λmin(Σ))tseg−1(∥θ⋆∥Σ +R0 + 1)

√
κ log 2dT

δ

η(1− γ)

≤ 8
(
∥θ⋆∥Σ + 1

)√κ log 2dT
δ

η(1− γ)
.

Here, the first equality uses the crude bound ∥∆i∥Σ ≤ R0 for all i (see (44)), the second to last
inequality utilizes Lemma 1 with R = R0, l = 0 and u = t−tseg, whereas the last inequality relies on the
definition (44) of R0 and invokes the fact that

√
κ
(
1− 1

2η(1− γ)λmin(Σ)
)tseg−1 ≤ min

{
1
4 ,

1
4
√
κ∥∆0∥Σ

}
with our choice (50) of tseg.

Combine the previous two bounds to reach

∥∥∥ t−1∑
i=0

(I − ηA)t−i−1ξi

∥∥∥
Σ
≤ 24

(
∥θ⋆∥Σ +

2
√
κ∥∆0∥Σ
2k+1

+ 1
)√κ log 2dT

δ

η(1− γ)
+ 8
(
∥θ⋆∥Σ + 1

)√κ log 2dT
δ

η(1− γ)

≤ 32
(
∥θ⋆∥Σ +

2
√
κ∥∆0∥Σ
2k

+ 1
)√κ log 2dT

δ

η(1− γ)
.

This finishes the induction step and in turn establishes (52) (and hence (51)).
As a straightforward consequence, the bounds (44) and (51) imply that

∥∆t∥Σ ≤

{
R0, 0 ≤ t < t′seg,

32
√

ηκ log 2dT
δ

1−γ (∥θ⋆∥Σ + 2), t′seg ≤ t < T,
(54)
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where

t′seg := c2tseg log
(
κ(∥∆0∥2 + 1)

)
(55)

for some large enough constant c2 > 0. To see this, note that for any t ≥ t′seg, it is guaranteed that the
second term on the right-hand side of (51) obeys 4

√
κ∥∆0∥Σ

2⌊t/tseg⌋
≤ 2, thus confirming the second case in (54).

Step 4: controlling ∥∆T ∥Σ. Now we are positioned to control ∆T . The key is to write ∆T as a linear
combination of {ξi}0≤i≤T−1 as follows, which is a direct consequence of the relation (43):

∆T =
1

T

T∑
j=1

∆j =
1

T

T∑
j=1

(I − ηA)j∆0 −
1

T

T∑
j=1

η

j−1∑
i=0

(I − ηA)j−i−1ξi

=
1

T

T∑
j=1

(I − ηA)j∆0 −
1

T

T−1∑
i=0

η

T∑
j=i+1

(I − ηA)j−i−1ξi

=
1

Tη
A

(T+1)
0 ∆0 −

1

T
∆0 −

1

T

T−1∑
i=0

A
(T )
i ξi, (56)

where the middle line follows from swapping the summation over i and j, and in the last line we define

A
(t)
i := η

t∑
j=i+1

(I − ηA)j−i−1 = A−1
(
I − (I − ηA)t−i

)
. (57)

We claim that the following two inequalities hold, the first deterministically and the second with probability
of at least 1− δ (with their proofs deferred to Section C.2)

∥∥A(T+1)
0 ∆0

∥∥
Σ
≤ 2∥Σ−1∥

1− γ

∥∥∆0∥Σ; (58a)

∥∥∥ T−1∑
i=0

A
(T )
i ξi

∥∥∥
Σ
≲


√

maxs ϕ(s)⊤Σ−1ϕ(s) log 2d
δ

T (1− γ)2
+

∥∥Σ−1
∥∥

T

√
κ log 2dT

δ

η(1− γ)3

(∥θ⋆∥Σ + 1
)
. (58b)

Putting the above two inequalities together with (56), we arrive at

∥∆T ∥Σ ≤
∥∥∥ 1

Tη
A

(T+1)
0 ∆0

∥∥∥
Σ
+
∥∥∥ 1
T
∆0

∥∥∥
Σ
+
∥∥∥ 1
T

T−1∑
i=0

A
(T )
i ξi

∥∥∥
Σ

≲
1

ηT

∥∥Σ−1
∥∥

1− γ

∥∥∆0∥Σ +
1

T
∥∆0∥Σ +


√

maxs ϕ(s)⊤Σ−1ϕ(s) log 2d
δ

T (1− γ)2
+

∥∥Σ−1
∥∥

T

√
κ log 2dT

δ

η(1− γ)3

(∥θ⋆∥Σ + 1
)

≍ 1

ηT

∥∥Σ−1
∥∥

1− γ

∥∥∆0∥Σ +


√

maxs ϕ(s)⊤Σ−1ϕ(s) log 2d
δ

T (1− γ)2
+

∥∥Σ−1
∥∥

T

√
κ log 2dT

δ

η(1− γ)3

(∥θ⋆∥Σ + 1
)
,

where the last line follows since ∥Σ−1∥ ≥ 1 (see (79h)) and η < 1. This finishes the proof of Theorem 1.

7 Proof of Theorem 3 (TDC learning)
Firstly, let us analyze the population dynamics of TDC. It turns out that the convergence of this dynamics
can be described via a contractive linear mapping. Given this nice property of population TDC, we shall
decompose the empirical TDC into two parts: the first part can be controlled via the aforementioned
population dynamics, and the rest is treated as a stochastic component, which is controlled via matrix
martingale concentration.
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7.1 Population analysis
First recall that the population parameters are defined as

Ã := Eµb,πb,P [Ãt] = Eµb,πb,P [ρtϕ(st) (ϕ(st)− γϕ(s′t))
⊤
];

b̃ := Eµb,πb
[b̃t] = Eµb,πb

[ρtϕ(st)rt];

Π := Eµb,πb,P [Πt] = Eµb,πb,P [ρtϕ(st)ϕ(s
′
t)

⊤];

Σ̃ := Eµb
[Σt] = Eµb

[ϕ(st)ϕ(st)
⊤].

Corresponding to the empirical version of TDC as given in (31), we can define its population analogue of
TDC as

θ̆t+1 = θ̆t − α(Ãθ̆t − b̃+ γΠ⊤w̆t),

w̆t+1 = w̆t − β(Ãθ̆t − b̃+ Σ̃w̆t), (59)

where sampled parameters are replaced by their corresponding expectations. In this section, we analyze the
population dynamics of TDC as given above; in order to control the finite-sample dynamics, we bound the
difference of these two in the section to follow.

Since ϕ(st) is independent of the transition, the expectation of Σ̃t is independent of which policy is being
adopted. Hence, Σ̃ can also be presented as

Σ̃ =
∑
st∈S

µb(st)ϕ(st)ϕ(st)
⊤

=
∑
st∈S

µb(st)

(∑
at∈A

π(at|st)

)
ϕ(st)ϕ(st)

⊤

=
∑
st∈S

∑
at∈A

µb(st)πb(at|st)
(

π(at|st)
πb(at|st)

)
ϕ(st)ϕ(st)

⊤ = Eµb,πb
[ρtϕ(st)ϕ(st)

⊤]. (60)

In view of this relation, Ã admits another characterization, namely

Ã = Σ̃− γΠ. (61)

Consequently, the fixed point (θ̆⋆,w⋆) of the population dynamics obeys{
Ãθ̆⋆ − b̃+ γΠ⊤w⋆ = 0,

Ãθ̆⋆ − b̃+ Σ̃w⋆ = 0.

As long as Ã is invertible, this set of conditions is equivalent to

Ãθ̆⋆ = b̃, and w⋆ = 0.

In order to study the population dynamics, it is useful to consider two auxiliary parameters

∆̆t := θ̆t − θ̆⋆,

z̆t := w̆t + Σ̃−1Ã∆̆t;

here ∆̆t tracks the convergence of θ̆t to θ̆⋆, and z̆t tracks the size of the residual Ãθ̆t− b̃+ Σ̃w̆t. With these
two parameters in place, the population dynamics satisfy[

∆̆t

z̆t

]
=

[
I − αÃ⊤Σ̃−1Ã −αγΠ⊤

−α(I − γΣ−1Π)Ã⊤Σ̃−1Ã I − βΣ̃− αγ(I − γΣ̃−1Π)Π⊤

] [
∆̆t−1

z̆t−1

]
. (62)
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To analyze this optimization dynamics, for every positive constant κ ∈ (0, 1), consider

x̆t :=

[
∆̆t

κz̆t

]
then x̆t yields

x̆t =

[
I − αÃ⊤Σ̃−1Ã − 1

καγΠ
⊤

−κα(I − γΣ−1Π)Ã⊤Σ̃−1Ã I − βΣ̃− αγ(I − γΣ̃−1Π)Π⊤

]
︸ ︷︷ ︸

=:Ψ

x̆t−1. (63)

It is known that how fast x̆t converges to 0 is determined by the spectral norm of Ψ, which is characterized
in the lemma below.

Lemma 2. Suppose that

λ1 = λmin(Ã
⊤Σ̃−1Ã), λ2 = λmin(Σ̃), λΣ = ∥Σ̃−1∥ = 1/λ2.

Then as long as the following conditions hold:

β ≳ λΣρmaxα, (64a)
κβ ≳ α, (64b)

αγ(ρmax + γλΣρ
2
max) ≪ βλw, (64c)

αγρmax

κ
+ κα(1 + γλΣρmax)λΣ(2ρmax)

2 ≪
√
αλ1βλw (64d)

it holds true that

∥Ψ∥ ≤ 1− 1

2
αλ1.

Therefore, the mapping Ψ is contractive, thus ensuring the linear convergence of xt, with the proviso
that αλ1 < 2.

7.2 Finite-sample analysis
Armed with the population analysis, the proof for Theorem 3 is completed if we can make a connection of
the finite-sample performances to that of the population ones.

Step 1: a recursive relation. Firstly, we define two noise variables

νt := (Ãt − Ã)θ̃t − (b̃t − b̃) + γ(Πt −Π)⊤wt,

ηt := (Ãt − Ã)θ̃t − (b̃t − b̃) + (Σ̃t − Σ̃)wt.

As a result, TDC can be rewritten as

θ̃t+1 = θ̃t − α(Ãθ̃t − b̃+ γΠ⊤wt)− ανt;

wt+1 = wt − β(Ãθ̃t − b̃+ Σ̃wt)− βηt.

Using the same notations as in Section 7.1, we observe that the following iteration holds true for finite-sample
TDC:

xt+1 = Ψxt − ζt,

in which

ζt =

[
ανt

κ(α(1− γΣ̃−1Π)νt + βηt)

]
. (65)
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Hence,

xt = Ψtx0 −
t−1∑
i=0

Ψt−i−1ζi, (66)

where x0 = [∆⊤
0 ,κz⊤

0 ]⊤. Since the norm of Ψ has been bounded by Lemma 2, bounding the norm of xt

boils down to bounding the second term of (66). In the following, with a slight abuse of notation, for any
x = (x1,x2) ∈ R2d with x1,x2 ∈ Rd, we will define ∥x∥2

Σ̃
as

∥x∥2
Σ̃
= ∥x1∥2Σ̃ + ∥x2∥2Σ̃.

with this definition, it is easy to see that

∥xt∥2Σ̃ = ∥∆̃t∥2Σ̃ + κ2∥wt + Σ̃−1Ã∆̃t∥2Σ̃.

Hence, the norms of ∆̃t, wt and xt can be related by the inequalities
∥∆̃t∥Σ̃ ≤ ∥xt∥Σ̃;
∥wt∥Σ̃ ≲ 1

κ ∥xt∥Σ̃;
∥xt∥Σ̃ ≲ ∥∆̃t∥Σ̃ + |wt∥Σ̃.

(67)

Step 2: crude bound for ∥xt∥Σ̃. We first aim to establish, via an induction argument, that with
probability at least 1− δ,

∥xt∥Σ̃ ≤ 2∥∆̃0∥Σ̃ + 80κβρmax

√
1

αλ1
log

2dT

δ
(∥θ̃⋆∥Σ̃ + 1) =: R̃0 (68)

holds simulatanesouly for all 0 ≤ t ≤ T . To start with, note that the inequality (68) holds trivially for the
base case with t = 0. Next, suppose that the hypothesis (68) holds for x0,x1, . . . , ,xt−1, and we intend to
establish it for xt as well. Towards this end, involking the decomposition (66) and the triangle inequality
yields

∥xt∥Σ̃ =
∥∥Ψtx0

∥∥
Σ̃
+

∥∥∥∥∥
t−1∑
i=0

Ψt−i−1ζi

∥∥∥∥∥
Σ̃

. (69)

As for the first term of (69), it is seen that∥∥Ψtx0

∥∥
Σ̃
≤ ∥x0∥Σ̃ = ∥∆̃0∥Σ̃. (70)

When it comes to the second term of (69), the following lemma comes in handy.

Lemma 3. Fix any quantity R̃ > 0 and, for each 0 ≤ i ≤ T − 1, define the random vector

ζ̃i := ζi1{H̃i}, where H̃i :=
{
∥xi∥Σ̃ ≤ R̃

}
. (71)

Then, with probability at least 1− δ/T ,∥∥∥∥∥
t−1∑
i=0

Ψt−i−1ζ̃i

∥∥∥∥∥
Σ̃

≲

√
∥Σ̃∥
αλ1

log
2dT

δ
κβρmax(∥θ̃⋆∥Σ̃ +

1

κ
R̃+ 1), (72)

provided that the stepsizes α, β satisfy the conditions (64) and that 0 < α < 1

λ1λ2
Σ∥Σ̃∥ log 2dT

δ

.

Proof. See Section C.4.
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Putting relations (69) and (72) together, we find

∥xt∥Σ̃ = ∥∆̃0∥Σ̃ + C

√
∥Σ̃∥
αλ1

log
2dT

δ
κβρmax(∥θ̃⋆∥Σ̃ +

1

κ
R̃0 + 1) ≤ R̃0

by definition of R̃0 in (68), provided that
√

1
αλ1

log 2dT
δ βρmax ≤ c for some constant c > 0 small enough.

Therefore, by induction assumption, one has

P
{
max
0≤i≤t

∥xi∥Σ̃ > R̃0

}
≤ P

{
max

0≤i<t−1
∥xi∥Σ̃ > R̃0

}
+ P

{
max

0≤i<t−1
∥xi∥Σ̃ ≤ R̃0, ∥xt∥Σ̃ > R̃0

}

≤ (t− 1)δ

T
+ P


∥∥∥∥∥
t−1∑
i=0

Ψt−i−1ζ̃i

∥∥∥∥∥
Σ̃

≳

√
∥Σ̃∥
αλ1

log
2dT

δ
κβρmax(∥θ̃⋆∥Σ̃ + R̃0 + 1)


≤ (t− 1)δ

T
+

δ

T
=

tδ

T
. (73)

This completes our claim at this step.

Step 3: refined bound for ∥xt∥Σ̃. It turns out that the upper bound (68) can be tightened by taking
into account the contraction effect of Ψ. In what follows, we develop a strengthened bound. Define

t̃seg :=

c̃1 logmax

{√
κ̃,

√
κ̃∥∆̃0∥Σ̃

∥θ̃⋆∥Σ̃+1
, ∥∆̃0∥Σ̃

√
αλ1

∥Σ̃∥ log 2dT
δ

1
κβρmax

}
αλ1

(74)

for some sufficiently large constant c̃1 > 0, where κ̃ is the condition number of Σ̃. For any integer k > 1, we
claim that with probability at least 1− δ,

∥xt∥Σ̃ ≲ κβρmax

√
1

αλ1
log

2dT

δ

(
∥θ̃⋆∥Σ̃ +

∥∆̃0∥Σ̃
2k−1

+
3

2

)
=: R̃k (75)

for any t obeying kt̃seg ≤ t ≤ T , provided that
√

1
αλ1

log 2dT
δ κβρmax ≤ c for some constant c small enough.

The proof of this claim is essentially the same as that of Step 3 for proving Theorem 1, and we will omit it
here. Therefore, by defining

t̃′seg :=

(
2 +

1

log 2
log ∥θ̃⋆∥Σ̃

)
t̃seg, (76)

we can conclude that with probability at least 1− δ, for all t ≥ t̃′seg,

∥xt∥Σ̃ ≲ κβρmax

√
∥Σ̃∥
αλ1

log
2dT

δ

(
∥θ̃⋆∥Σ̃ + 2

)
. (77)

Recall that this bound holds for any κ ∈ (0, 1) satisfying the conditions (64). Hence, Theorem 3 follows by
taking κ = 8ρmax

√
α

λ1βλ2
and

α

β
=

1

128

λ1λ2

ρ2max(1 + λΣρmax)
.

8 Discussion
Our primary contribution in this paper is obtaining high-probability sample complexity bounds for both the
TD and TDC algorithms for policy evaluation in the γ-discounted infinite-horizon MDPs. For TD learning
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with Polyak-Ruppert averaging, we improve upon existing results in terms of both the accuracy level ε
and other problem-related parameters like the effective horizon 1

1−γ , the weighted feature covariance Σ and
the optimal linear estimator θ⋆. We have also established a minimax lower bound and showed that our
upper bound is near-minimax optimal by a factor of 1

1−γ . For TDC with linear function approximation, we
provide the first sample complexity bound that achieves the optimal dependence on the error tolerance ε,
and characterize the exact dependence on problem-related constants at the same time.

Our analysis leaves open several directions for future investigation; we close by sampling a few of them.
Regarding TD learning, a natural direction of future work is to close the 1

1−γ gap between our upper bound
and the minimax lower bound. Notably, this gap also appears in the bounds of Duan et al. (2021) for least-
square TD in general when no restriction of the variance for the temporal difference residual is imposed. In
terms of TDC, while our result provides a tight control of the same size T , the dependence on problem-related
constants can be potentially improved. Moreover, it is noteworthy that the analysis in this work is based
on the assumption of i.i.d. transition pairs drawn from the stationary distribution; it is of natural interest
to generalize these results to other scenarios such as Markovian trajectories. Moving beyond linear function
approximation, understanding the sample complexities for policy evaluation with other function classes is
also an interesting direction.

Acknowledgements
W. Wu and A. Rinaldo are supported in part by the NIH Grant R01 NS121913. Y. Chi is supported in
part by the grants ONR N00014-19-1-2404 and NSF CCF-2106778. Y. Wei is supported in part by the NSF
grants CCF-2106778, DMS-2147546/2015447 and NSF CAREER award DMS-2143215 and Google Research
Scholar Award.

A Preliminary facts
The following two lemmas consider the basic properties of important matrices and vectors that would be
useful in the proof of the main theorems in the paper.

Lemma 4. Recall the definitions of Φ, Dµ and Σ in (4), (5) and (6), respectively. Then one has∥∥D 1
2
µΦΣ− 1

2

∥∥ = 1, and
∥∥D 1

2
µP

πD
− 1

2
µ

∥∥ = 1. (78)

Proof. For notational convenience, let Φ̃ := D
1
2
µΦΣ− 1

2 and PDµ := D
1
2
µP πD

− 1
2

µ . First of all, it is seen that

∥∥Φ̃∥∥ =

√∥∥Φ̃⊤Φ̃
∥∥ =

√∥∥Σ− 1
2Φ⊤D

1
2
µD

1
2
µΦΣ− 1

2

∥∥ =
√∥∥Σ− 1

2ΣΣ− 1
2

∥∥ = 1.

When it comes to
∥∥PDµ

∥∥, we make the observation that

∥∥PDµ

∥∥ =
√∥∥PDµ

P⊤
Dµ

∥∥ =

√∥∥∥D 1
2
µPD−1

µ P⊤D
1
2
µ

∥∥∥ =

√∥∥∥D 1
2
µ

(
PD−1

µ P⊤Dµ

)
D

− 1
2

µ

∥∥∥ = 1.

To see why the last identity holds, observe that PD−1
µ P⊤Dµ is a stochastic matrix, that is PD−1

µ P⊤Dµ

contains nonnegative elements, and
PD−1

µ P⊤Dµ1 = 1.

In addition, D
1
2
µ

(
PD−1

µ P⊤Dµ

)
D

− 1
2

µ is similar to PD−1
µ P⊤Dµ. As a result, by the Perron-Frobenious

theorem, ∥∥∥D 1
2
µ

(
PD−1

µ P⊤Dµ

)
D

− 1
2

µ

∥∥∥ = max
i

|λi(D
1
2
µ

(
PD−1

µ P⊤Dµ

)
D

− 1
2

µ )|

= max
i

|λi(PD−1
µ P⊤Dµ)| = 1,

where λi(B) denotes the i-th eigenvalue of the matrix B.
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Lemma 5. Suppose that ∥r∥∞ ≤ 1. For any 0 ≤ γ < 1, the matrix Σ defined in (6) and the vector b defined
in (12b) obey

Σ− 1
2A⊤Σ−1AΣ− 1

2 ⪰ (1− γ)2I, (79a)

Σ− 1
2AΣ−1A⊤Σ− 1

2 ⪰ (1− γ)2I, (79b)∥∥Σ 1
2 (A⊤)−1ΣA−1Σ

1
2

∥∥ ≤ (1− γ)−2, (79c)∥∥Σ 1
2A−1Σ(A⊤)−1Σ

1
2

∥∥ ≤ (1− γ)−2, (79d)∥∥Σ 1
2A−1Σ

1
2

∥∥ ≤ (1− γ)−1, (79e)∥∥Σ−1/2Φ⊤Dµ

∥∥ ≤ max
s∈S

ϕ(s)⊤Σ−1ϕ(s), (79f)

∥I− ηA∥ ≤ 1− 1

2
η(1− γ)λmin(Σ), ∀0 < η <

1− γ

4 ∥Σ∥
, (79g)

∥Σ∥ ≤ 1, ∥Σ−1∥ ≥ 1, (79h)∥∥Σ− 1
2 b
∥∥
2
≤ 1. (79i)

Proof. We shall establish each of these claims separately as follows.

Proof of Eqn. (79a) and (79b). We start with the lower bound on Σ− 1
2A⊤Σ−1AΣ− 1

2 . To begin with,
observe that

Σ− 1
2AΣ− 1

2 = Σ− 1
2Φ⊤Dµ(I − γP )ΦΣ− 1

2

= Σ− 1
2Φ⊤DµΦΣ− 1

2 − γΣ− 1
2Φ⊤D

1
2
µ

(
D

1
2
µPD

− 1
2

µ

)
D

1
2
µΦΣ− 1

2

= I − γΦ̃⊤PDµ
Φ̃,

where

Φ̃ := D
1
2
µΦΣ− 1

2 and PDµ
:= D

1
2
µPD

− 1
2

µ . (80)

Therefore, any unit vector x (i.e. ∥x∥2 = 1) necessarily satisfies

x⊤Σ− 1
2A⊤Σ−1AΣ− 1

2x =
∥∥Σ− 1

2AΣ− 1
2x
∥∥2
2
≥
(
x⊤Σ− 1

2AΣ− 1
2x
)2

=
(
1− γx⊤Φ̃⊤PDµ

Φ̃x
)2
.

Further, Lemma 4 tells us that∣∣∣x⊤Φ̃⊤PDµΦ̃x
∣∣∣ ≤ ∥Φ̃⊤PDµΦ̃

∥∥ ≤ ∥Φ̃
∥∥2∥PDµ

∥∥ = 1. (81)

Putting the preceding two bounds together, we demonstrate that

x⊤Σ− 1
2A⊤Σ−1AΣ− 1

2x ≥
(
1− γ

)2
for any unit vector x, thus concluding the proof of (79a). The proof for (79b) follows from an identical
argument and is omitted for brevity.

Proof of Eqn. (79c), (79d) and (79e). With the above bounds in place, we can further obtain∥∥Σ 1
2 (A⊤)−1ΣA−1Σ

1
2

∥∥ =
∥∥(Σ− 1

2AΣ−1A⊤Σ− 1
2

)−1∥∥ ≤ 1

λmin

(
Σ− 1

2AΣ−1A⊤Σ− 1
2

) ≤ 1

(1− γ)2
,

where λmin(B) denotes the smallest eigenvalue of B, and the last inequality comes from (79b). This estab-
lishes (79c). The inequality (79d) follows from a similar argument. This also implies that∥∥Σ 1

2A−1Σ
1
2

∥∥ =
√∥∥Σ 1

2 (A⊤)−1ΣA−1Σ
1
2

∥∥ ≤ 1

1− γ
,

as claimed in (79e).
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Proof of Eqn. (79g). Recalling that Σ = Φ⊤DµΦ, we can arrange terms to derive

A+A⊤ = Φ⊤Dµ(I − γP )Φ+Φ⊤(I − γP⊤)DµΦ

= 2Σ− γΣ
1
2

{
Σ− 1

2Φ⊤DµPΦΣ− 1
2 +Σ− 1

2Φ⊤P⊤DµΦΣ− 1
2

}
Σ

1
2

= Σ
1
2

{
2I − γ

(
Φ̃⊤PDµ

Φ̃+ Φ̃⊤P⊤
Dµ

Φ̃
)}

Σ
1
2

⪰ Σ
1
2

{
2I − 2γ

∥∥Φ̃⊤PDµ
Φ̃
∥∥I}Σ

1
2

⪰ 2(1− γ)Σ,

where Φ̃ and PDµ
are defined in (80). Here, the last line follows since

∥∥Φ̃⊤PDµ
Φ̃
∥∥ ≤ 1 — a fact that has

already been shown in (81). In addition, the following identity

AA⊤ = Σ
1
2 Φ̃⊤ (I − γPDµ

)
Φ̃ΣΦ̃⊤

(
I − γP⊤

Dµ

)
Φ̃Σ

1
2

allows us to bound ∥∥Σ− 1
2AA⊤Σ− 1

2

∥∥ =
∥∥Φ̃⊤(I − γPDµ

)
Φ̃ΣΦ̃⊤(I − γP⊤

Dµ

)
Φ̃
∥∥

≤
∥∥I − γPDµ

∥∥2∥∥Φ̃∥∥4 ∥Σ∥ = ∥I − γPDµ
∥2∥Σ∥

≤
(
1 + γ

∥∥PDµ

∥∥)2∥Σ∥ ≤ 4∥Σ∥,

where the last line makes use of Lemma 4. This essentially tells us that

0 ⪯ Σ− 1
2AA⊤Σ− 1

2 ⪯ 4∥Σ∥I

=⇒ AA⊤ ⪯ 4∥Σ∥Σ.

Putting the preceding bounds together implies that: for any 0 < η < 1−γ
4∥Σ∥ one has

0 ⪯ (I − ηA)
(
I − ηA⊤) = I − η(A+A⊤) + η2AA⊤

⪯ I − 2η(1− γ)Σ+ 4η2∥Σ∥Σ
= I −

{
2η(1− γ)− 4η2∥Σ∥

}
Σ

⪯ I − η(1− γ)Σ

⪯ (1− η(1− γ)λmin(Σ)) I,

thus indicating that∥∥I − ηA
∥∥ ≤

√
∥(I − ηA) (I − ηA⊤)∥ ≤

√
1− η(1− γ)λmin(Σ) ≤ 1− 1

2
η(1− γ)λmin(Σ).

Proof of Eqn. (79h). For any unit vector u, the assumption maxs ∥ϕ(s)∥2 ≤ 1 guarantees that

∥Φu∥∞ ≤ max
s

|ϕ(s)⊤u| ≤ max
s

∥ϕ(s)∥2∥u∥2 ≤ 1,

where in the last inequality we have used Cauchy-Schwartz inequality. Consequently, for any unit vector u,
by Hölder’s inequality,

u⊤Φ⊤DµΦu ≤ ∥Φu∥∞ · 1⊤Dµ1 ≤ 1,

thus proving that ∥Σ∥ ≤ 1. This immediately implies that ∥Σ−1∥ ≥ 1/∥Σ∥ ≥ 1.
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Proof of Eqn. (79i). Finally, we observe that

∥∥Σ− 1
2 b
∥∥
2
=
∥∥Σ− 1

2Φ⊤D
1
2
µD

1
2
µ r
∥∥
2
≤
∥∥Σ− 1

2Φ⊤D
1
2
µ

∥∥ · ∥∥D 1
2
µ r
∥∥
2

(i)

≤
∥∥D 1

2
µ r
∥∥
2
≤ 1

as claimed. Here, (i) follows from Lemma 4 and (ii) holds true since
∥∥D 1

2
µ r
∥∥
2
=

√∑
s µ(s)

(
r(s)

)2 ≤√∑
s µ(s) = 1.

The following lemmas, about the concentration of Â, will be useful in our analysis.

Lemma 6. Consider any 0 < δ < 1, and suppose that T ≳ log
(
d
δ

)
. Then the vector b defined in (12b) obeys

that, with probability exceeding 1− δ,

∥∥A−1
(
b̂− b

)∥∥
Σ
≲

√
maxs∈S ϕ(s)⊤Σ−1ϕ(s)

T (1− γ)2
log
(d
δ

)
.

Proof. See Section C.5.

Lemma 7. For any 0 < δ < 1, it follows that Â is invertible and that

∥∥Σ1/2A−1
(
A− Â

)
Σ−1/2

∥∥ ≲

√
maxs ϕ(s)⊤Σ−1ϕ(s)

T (1− γ)2
log
(d
δ

)
with probability at least 1 − δ, as long as T ≥ c2 maxs ϕ(s)

⊤Σ−1ϕ(s) log(dδ ) for some sufficiently large
constant c2 > 0.

Proof. See Section C.5.

B Proof of Theorem 2 (minimax lower bounds)
This theorem is proved by constructing a set of MDP instances that are hard to distinguish among each
other. Based on this construction, the estimation error can be lower bounded via Fano’s inequality, which
reduces to control the KL-divergence between marginal likelihood functions. We start by constructing a
sequence of hard MDP instances.

Construction of MDP instances and their properties. Given the state space S, define a sequence of
MDP {Mq} indexed by q ∈ Q ⊂ {q+, q−}d−1 where for each q, the transition kernel equals to

Pq(s
′ | s) =

{
qs1(s

′ = s) + 1−qs
|S|−d+11(s

′ ≥ d) for s < d;

γ
|S|−d+11(s

′ ≥ d) + 1−qs′
d−1 1(s

′ < d) for s ≥ d.
(82)

and the reward function equals to r(s) = 1(s ≥ d).
Here, for each i ∈ [d− 1], qi is taken to be either q+ or q− where

q+ := γ + (1− γ)2ε, and q− := γ − (1− γ)2ε.

We further impose the constraint that the number of q+’s and q−’s in q are the same, namely,

d−1∑
s=1

1(qs = q+) =

d−1∑
s=1

1(qs = q−) = (d− 1)/2. (83)

Here without loss of generality, assume d is an odd number. With these definitions in place, it can be easily
verified that the stationary distribution for P obeys

µ(s) =

{ 1
2(d−1) for s < d;

1
2(|S|−d+1) for s ≥ d.

(84)
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Moreover, suppose the feature map is taken to be

ϕ(s) = es∧d ∈ Rd,

then one can further verify that

θ⋆(d) = V ⋆(s) =
1

1− γ2 −
∑d−1

i=1
γ2(1−qi)2

(d−1)(1−γqi)

, (85)

θ⋆(i) = V ⋆(i) =
γ(1− qi)

1− γqi
V ⋆(s), for s ≥ d and i < d. (86)

From the expressions above, we remark that, the values of q and V ⋆(s) with s ≥ d are fixed for all q ∈ Q
which is ensured by the construction (83).

Calculations of several key quantities. Based on the above constructions, let us compute several key
quantities. To begin with, some direct algebra leads to

Σ = Φ⊤DµΦ =

d−1∑
s=1

1

2(d− 1)
ese

⊤
s +

1

2
ede

⊤
d ,

as well as

ϕ(s)⊤Σ−1ϕ(s) =

{
2(d− 1) for s < d;
2 for s ≥ d.

As a consequence, one has

max
s

{ϕ(s)⊤Σ−1ϕ(s)} ≍ d. (87)

Next, we move on to compute
∥∥θ⋆

∥∥
Σ
. First notice that for ε ≤ c1γ

1−γ with constant c1 small enough, (1−γ)2ε ≤
c1γ(1 − γ) and hence, 1 − γq+, 1 − γq− ≍ 1 − γ, which guarantees that V ⋆(s) ≍ 1

1−γ . In view of these
calculations, it satisfies that

∥∥θ⋆
∥∥2
Σ
=

d−1∑
i=1

1

2(d− 1)
θ⋆2(i) +

1

2
θ⋆2(d) =

d−1∑
i=1

1

2(d− 1)

[
γ(1− qi)

1− γqi
V ⋆(s)

]2
+

1

2
[V ⋆(s)]2

≍
d−1∑
i=1

1

2(d− 1)

[
γ(1− γ)

1− γ

1

1− γ

]2
+

1

2

[
1

1− γ

]2
≍ 1

(1− γ)2
. (88)

Application of Fano’s inequality. Armed with the properties derived above, we are ready to establish
the desired lower bound. First notice that for q, q′ ∈ Q, if at some i ∈ [d− 1], qi ̸= q′i, then

|θ⋆(i)− θ′⋆(i)| = γV ⋆(s)

∣∣∣∣ 1− qi
1− γqi

− 1− q′i
1− γq′i

∣∣∣∣ = γV ⋆(s)
2ε(1− γ)3

(1− γqi)(1− γq′i)

≳ (2γ)
1

1− γ

ε(1− γ)3

(1− γ)2
≳ ε,

where the penultimate inequality follows from V ⋆(s) ≍ 1
1−γ . Consequently, we can bound ∥θ⋆ − θ′⋆∥2Σ as

∥∥θ⋆ − θ′⋆∥∥2
Σ
≥

d−1∑
s=1

|θ⋆(s)− θ′⋆(s)|2 1

2(d− 1)
≳ ε2

1

d− 1

d−1∑
s=1

1(qs ̸= q′s).

28



This relation guarantees that if
∑d−1

s=1 1(qs ̸= q′s) ≥ (d− 1)/16, one has∥∥θ⋆ − θ′⋆∥∥
Σ
≳ ε. (89)

In other words, if we want each θ⋆ to be ε apart from each other, it is sufficient to construct a set Q where
every q and q′ are (d − 1)/16 apart in Hamming distance. By virtue of the Gilbert-Varshamov lemma
(Gilbert, 1952), there exists a set Q such that

M := |Q| ≥ ed/16 and
d−1∑
s=1

1(qs ̸= q′s) ≥
d

16
for any q, q′ ∈ Q obeying q ̸= q′. (90)

The Fano method transforms the problem of estimating θ⋆ into an M -ary testing problem among the
above MDPs {Pq1 ,Pq2 . . . ,PqM }. More specifically, in view of Fano’s inequality (Tsybakov (2009)), the
probability of interest thus satisfies

P
(∥∥θ̂ − θ⋆

∥∥
Σ
≳ ε
)
≥ 1− 1

logM

( 1

M2

M∑
j,k=1

KL(PT
qj ∥ PT

qk) + log 2
)
, (91)

given T independent sample pairs {(st, s′t)}Tt=1. To control the right hand side, we proceed by computing the
KL-divergence between every Pq and Pq′ . Here Pq denotes the joint distribution of (s, s′) when the transition
is made according to Pq(s

′ | s) (cf. (82)). More specifically, given s ∼ µq and s′|s ∼ Pq(s
′|s), one has

Pq(s, s
′) = µ(s)P (s′|s) =


1

2(d−1)qs1(s
′ = s), for s < d, s′ < d;

1−qs
2(d−1)(S−d+1) , for s < d, s′ > d;

1−qs′
2(d−1)(S−d+1) , for s > d, s′ < d;

γ
2(S−d+1)2 , for s > d, s′ > d.

Recognizing the relation between the KL divergence and the χ2 divergence, KL(Pq ∥ Pq′) satisfies

KL(Pq ∥ Pq′) ≤ χ2(Pq′ ∥ Pq)

=
∑
s,s′

(Pq(s, s
′)− Pq′(s, s′))2

Pq(s, s′)

=

 ∑
s<d,s′<d

+
∑

s<d,s′≥d

+
∑

s≥d,s′<d

+
∑

s≥d,s′≥d

 (Pq(s, s
′)− Pq′(s, s′))2

Pq(s, s′)

=
d−1∑
s=1

1

2(d− 1)

(qs − q′s)
2

qs
+

∑
s<d,s′≥d

1

2(d− 1)(S − d+ 1)

[(1− qs)− (1− q′s)
2]

1− qs

+
∑

s≥d,s′<d

1

2(d− 1)(S − d+ 1)

[(1− qs′)− (1− q′s′)
2]

1− qs′
+ 0

≲
d−1∑
s=1

1

2(d− 1)

[2ε(1− γ)2]2

1− γ
+
∑
s<d

1

2(d− 1)

[2ε(1− γ)2]2

1− γ
+
∑
s′<d

1

2(d− 1)

[2ε(1− γ)2]2

1− γ

≍ ε2(1− γ)3.

As a result, we have

KL
(
PT
q ∥ PT

q′

)
≲ ε2(1− γ)3T. (92)

Substituting the above relation into (91) gives

P
(∥∥θ̂ − θ⋆

∥∥
Σ
≳ ε
)
≥ 1− 1

d/16

(
cε2(1− γ)3T + log 2

)
.

To prove Theorem 2, it is enough to take the above together with relations (87) and (88).
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C Proofs of auxiliary lemmas and claims

C.1 Proof of Lemma 1
Here and throughout, we denote by Ei[·] the expectation conditioned on the probability space generated by
the samples {(sj , s′j)}j≤i (more formally, Ei[·] represents the expectation conditioned on the filtration Fi —
the σ-algebra generated by {(sj , s′j)}j≤i). It is then easy to check that {(I−ηA)t−i−1ξ̃i} forms a martingale
difference sequence, which motivates us to apply matrix Freedman’s inequality.

To this end, one needs to upper bound the following two quantities

W :=

u∑
i=l

Ei−1

[∥∥Σ1/2(I − ηA)t−i−1ξi
∥∥2
2
1{Hi}

]
, and B := max

i:l≤i≤u

∥∥Σ1/2(I − ηA)t−i−1ξi1{Hi}
∥∥
2
, (93)

which we accomplish in the sequel. For notational convenience, we set

α :=
(
1− 1

2
η(1− γ)λmin(Σ)

)t−u−1

. (94)

Control of W . Direct calculations yield

W =

u∑
i=l

Ei−1

[
ξ⊤i (I − ηA⊤)t−i−1Σ(I − ηA)t−i−1ξi1{Hi}

]
≤

u∑
i=l

∥∥(I − ηA⊤)t−i−1Σ(I − ηA)t−i−1
∥∥ · Ei−1

[
∥ξi∥221{Hi}

]
(i)

≤
u∑
i=l

∥Σ∥
(
1− 1

2
η(1− γ)λmin(Σ)

)2t−2i−2

2 max
i:l≤i≤u

{
Ei−1

[
∥(Ai −A)θi∥221{Hi}

]
+ Ei−1

[
∥bi − b∥22

]}
(ii)

≤ 4∥Σ∥α2

η(1− γ)λmin(Σ)
max

i:l≤i≤u

{
Ei−1

[
∥(Ai −A)θi∥221{Hi}

]
+ Ei−1

[
∥bi − b∥22

]}
, (95)

where (i) follows from the property (79g) (together with the assumption η < (1 − γ)/(4∥Σ∥)) and the
elementary inequality ∥a + b∥22 ≤ 2∥a∥22 + 2∥b∥22, and (ii) uses the elementary upper bound for the sum of
geometric series as well as the definition (94) of α.

We then turn attention to Ei−1

[
∥(Ai−A)θi∥221{Hi}

]
and Ei−1

[
∥bi−b∥22

]
. First, given that Ei−1[Aiθi1{Hi}] =

Aθi1{Hi}, one can derive

Ei−1

[
∥(Ai −A)θi∥221{Hi}

]
≤ Ei−1

[
∥Aiθi∥221{Hi}

]
= Ei−1

[
θ⊤
i

(
ϕ(si)− γϕ(s′i)

)
ϕ(si)

⊤ϕ(si)
(
ϕ(si)− γϕ(s′i)

)⊤
θi1{Hi}

]
≤ max

s
∥ϕ(s)∥22 · Ei−1

[
θ⊤
i

(
ϕ(si)− γϕ(s′i)

)(
ϕ(si)− γϕ(s′i)

)⊤
θi1{Hi}

]
(i)

≤ 2max
s

∥ϕ(s)∥22
(
Ei−1

[
θ⊤
i ϕ(si)ϕ(si)

⊤θi1{Hi}
]
+ γ2Ei−1

[
θ⊤
i ϕ(s

′
i)ϕ(s

′
i)

⊤θi1{Hi}
] )

(ii)
= 2max

s
∥ϕ(s)∥22

(
Ei−1

[
θ⊤
i Σθi1{Hi}

]
+ γ2Ei−1

[
θ⊤
i Σθi1{Hi}

])
(iii)

≤ 4∥θi∥2Σ1{Hi} ≤ 4
(
∥θ⋆∥Σ + ∥∆i∥Σ

)2
1{Hi}

≤ 4(∥θ⋆∥Σ +R)2, (96)

where (i) relies on the elementary inequality (a+b)(a+b)⊤ ⪯ 2aa⊤+2bb⊤, (ii) follows from the definition (6)
of Σ and the fact that si, s

′
i ∼ µ in this case, (iii) holds due to the assumption maxs ∥ϕ(s)∥2 ≤ 1, and the

last inequality results from the definition (47) of the event Hi. Similarly, one can derive

Ei−1[∥bi − b∥22] ≤ Ei−1[∥bi∥22] = Ei−1

[
∥ϕ(si)r(si)∥22

]
≤ 1, (97)
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where the last inequality holds since maxs ∥ϕ(s)∥2 ≤ 1 and maxs |r(s)| ≤ 1. Substitution into (95) yields

W ≤ 4κ

η(1− γ)
α2
{
4(∥θ⋆∥Σ +R)2 + 1

}
=: Wmax. (98)

Control of B. By definition of B, one can write

B = max
i:l≤i≤u

∥∥Σ 1
2 (I − ηA)t−i−1ξi

∥∥
2
1{Hi} = max

i:l≤i≤u

∥∥Σ 1
2 (I − ηA)t−i−1Σ

1
2Σ− 1

2 ξi
∥∥
2
1{Hi}

≤ ∥Σ∥ max
i:l≤i≤u

∥∥I − ηA
∥∥t−i−1 · max

i:l≤i≤u

∥∥Σ− 1
2 ξi
∥∥
2
1{Hi}

≤ α∥Σ∥ max
i:l≤i≤u

{∥∥Σ− 1
2 (Ai −A)θi

∥∥
2
1{Hi}+

∥∥Σ− 1
2 (bi − b)

∥∥
2

}
, (99)

where the last step results from (79g) (with the restriction that η < (1− γ)/(4∥Σ∥)) and the definition (94)
of α. It then suffices to control the two terms on the right-hand side of (99). To begin with, we have∥∥Σ− 1

2 (Ai −A)θi
∥∥
2
≤
∥∥Σ− 1

2 (Ai −A)Σ− 1
2

∥∥∥θi∥Σ
≤
(
∥Σ− 1

2AiΣ
− 1

2 ∥+ ∥Σ− 1
2AΣ− 1

2 ∥
)(

∥θ⋆∥Σ + ∥∆i∥Σ
)
.

Recall from (135) that ∥Σ− 1
2AiΣ

− 1
2 ∥ ≤ 2maxs ∥Σ−1/2ϕ(s)∥22, and similarly ∥Σ− 1

2AΣ− 1
2 ∥ ≤ 2maxs ∥Σ−1/2ϕ(s)∥22.

We then have ∥∥Σ− 1
2 (Ai −A)θi

∥∥
2
≤ 4max

s

{
ϕ(s)⊤Σ−1ϕ(s)

}(
∥θ⋆∥Σ + ∥∆i∥Σ

)
. (100)

Regarding the second term of (99), direct calculations give

∥Σ− 1
2 (bi − b)∥22 ≤ 2∥Σ− 1

2 bi∥22 + 2∥Σ− 1
2 b∥22 = 2

∥∥Σ− 1
2ϕ(si)r(si)

∥∥2
2
+ 2
∥∥Σ− 1

2Es∼µ

[
ϕ(s)r(s)

]∥∥2
2

≤ 4max
s

{
ϕ(s)⊤Σ−1ϕ(s)

}
max

s
|r(s)|2 ≤ 4max

s

{
ϕ(s)⊤Σ−1ϕ(s)

}
. (101)

Substituting the preceding two bounds into (99), we arrive at

B ≤ 4α∥Σ∥
(
max

s

{
ϕ(s)⊤Σ−1ϕ(s)

}
max
i:i<t

(
∥θ⋆∥Σ + ∥∆i∥Σ

)
1{Hi}+

√
max

s
{ϕ(s)⊤Σ−1ϕ(s)}

)
≤ 4α∥Σ∥

(
max

s

{
ϕ(s)⊤Σ−1ϕ(s)

}(
∥θ⋆∥Σ +R

)
+
√

max
s

{ϕ(s)⊤Σ−1ϕ(s)}
)

≤ 4α∥Σ∥max
s

{
ϕ(s)⊤Σ−1ϕ(s)

}(
∥θ⋆∥Σ +R+ 1

)
≤ 4α∥Σ∥∥Σ−1∥

(
∥θ⋆∥Σ +R+ 1

)
= 4κα

(
∥θ⋆∥Σ +R+ 1

)
=: Bmax. (102)

Here, the last line follows from the assumption max ∥ϕ(s)∥2 ≤ 1, while the second to last inequality holds
since maxs

{
ϕ(s)⊤Σ−1ϕ(s)

}
≥ 1 (cf. (137)).

Invoking matrix Freedman’s inequality. Equipped with the above bounds (98) and (102), we are ready
to apply Freedman’s inequality (Tropp, 2011, Corollary 1.3) (or a version in (Li et al., 2023a, Section A)),
which asserts that∥∥∥ t−1∑

i=0

(I − ηA)t−i−1ξ̃i

∥∥∥
Σ
≤ 2

√
Wmax log

2dT

δ
+

4

3
Bmax log

2dT

δ

= α ·

{
2

√
4κ

η(1− γ)

{
4(∥θ⋆∥Σ +R)2 + 1

}
log

2dT

δ
+

16κ

3

(
∥θ⋆∥Σ +R+ 1

)
log

2dT

δ

}

≤ 16(1− 1

2
η(1− γ)λmin(Σ))t−u−1(∥θ⋆∥Σ +R+ 1)

√
κ log 2dT

δ

η(1− γ)
(103)

holds with probability at least 1−δ/T , provided that 0 < η ≤ 1
κ(1−γ) log 2dT

δ

. Here in the last line, we identify

α with (1− 1
2η(1−γ)λmin(Σ))t−u−1. The proof is completed by observing that any 0 < η ≤ 1−γ

κ log 2dT
δ

satisfies

the two requirements 0 < η ≤ 1
κ(1−γ) log 2dT

δ

and η < (1−γ)/(4∥Σ∥) (given that ∥Σ∥ ≤ 1 according to (79h)).
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C.2 Proof of the inequalities (58a) and (58b)
Proof of the inequality (58a). Combining the triangle inequality with the definition (57) ensures that∥∥A(T+1)

0 ∆0

∥∥
Σ
≤ ∥A−1∆0∥Σ + ∥A−1(I − ηA)T+1∆0∥Σ
=
∥∥Σ 1

2A−1Σ
1
2Σ−1Σ

1
2∆0

∥∥
2
+ ∥Σ 1

2A−1Σ
1
2Σ− 1

2 (I − ηA)T+1Σ− 1
2Σ

1
2∆0∥2

≤
∥∥Σ 1

2A−1Σ
1
2

∥∥ · ∥∥Σ−1
∥∥ · ∥∥∆0

∥∥
Σ
+
∥∥Σ 1

2A−1Σ
1
2

∥∥ · ∥∥Σ− 1
2

∥∥2 · ∥I − ηA∥T+1 ·
∥∥∆0

∥∥
Σ

≤ ∥Σ−1∥
1− γ

{
1 +

(
1− 1

2
η(1− γ)λmin(Σ)

)T+1
}∥∥∆0∥Σ

≤ 2∥Σ−1∥
1− γ

∥∥∆0∥Σ (104)

as claimed. Here, the second to last step follows from (79e) and (79g), provided that η ≤ (1− γ)/(4∥Σ∥).

Proof of the inequality (58b). Again, the triangle inequality together with the definition (57) yields

∥∥∥ T−1∑
i=0

A
(T )
i ξi

∥∥∥
Σ
≤
∥∥∥ T−1∑

i=0

A−1ξi

∥∥∥
Σ
+
∥∥∥ T−1∑

i=0

A−1(I − ηA)T−iξi

∥∥∥
Σ

≤
∥∥∥A−1

T−1∑
i=0

(Ai −A)θi

∥∥∥
Σ
+
∥∥∥A−1

T−1∑
i=0

(bi − b)
∥∥∥
Σ
+
∥∥∥ T−1∑

i=0

A−1(I − ηA)T−iξi

∥∥∥
Σ
, (105)

leaving us with three terms to handle. Here in the second line, we substitute in the definition of ξi (42).

• The second term of (105) can be bounded by Lemma 6, which asserts that

1

T

∥∥∥ T−1∑
i=0

A−1
(
bi − b

)∥∥∥
Σ
≲

√
maxs ϕ(s)⊤Σ−1ϕ(s)

T (1− γ)2
log
(d
δ

)
(106)

holds with probability at least 1− δ, as long as T ≳ log d
δ .

• For the third term of (105), invoking the property (79e) again yields

∥∥∥ T−1∑
i=0

A−1(I − ηA)T−iξi

∥∥∥
Σ
=
∥∥∥Σ 1

2A−1Σ
1
2Σ−1

T−1∑
i=0

Σ
1
2 (I − ηA)T−iξi

∥∥∥
2

≤
∥∥Σ 1

2A−1Σ
1
2

∥∥ · ∥∥Σ−1
∥∥ · ∥∥∥ T−1∑

i=0

Σ
1
2 (I − ηA)T−iξi

∥∥∥
2

≤ ∥Σ−1∥
1− γ

∥∥∥ T−1∑
i=0

(I − ηA)T−iξi

∥∥∥
Σ
. (107)

Repeating the same analysis as in Step 3 to see that

∥∥∥ T−1∑
i=0

(I − ηA)T−iξi

∥∥∥
Σ
≤ 16(2∥θ⋆∥Σ + 3)

√
κ log 2dT

δ

η(1− γ)
(108)

with probability at least 1− δ. Substitution into (107) leads to

∥∥∥ T−1∑
i=0

A−1(I − ηA)T−iξi

∥∥∥
Σ
≤ 16

(
2∥θ⋆∥Σ + 3

)∥∥Σ−1
∥∥√ κ log 2dT

δ

η(1− γ)3
. (109)
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• It then boils down to bounding the first term of (105). In light of (54), we decompose it as follows

∥∥∥ 1
T

T−1∑
i=0

Σ
1
2A−1(Ai −A)θi

∥∥∥
2
≤
∥∥∥ 1
T

t̃seg−1∑
i=0

Σ
1
2A−1(Ai −A)θi

∥∥∥
2
+
∥∥∥ 1
T

T−1∑
i=t̃seg

Σ
1
2A−1(Ai −A)θi

∥∥∥
2
.

(110)

Bounding these terms requires the following lemma, whose proof is deferred to Section C.6.

Lemma 8. Fix any R > 0 and define a collection of auxiliary random vectors for 0 ≤ i ≤ T − 1

θ′
i := θi1{Hi}, Hi :=

{
∥∆i∥Σ ≤ R}, (111)

Then for any indices (l, u, t) obeying 0 ≤ l ≤ u ≤ T − 1, one has with probability at least 1− δ that

∥∥∥ 1

u− l + 1

u∑
i=l

Σ
1
2A−1(Ai −A)θ′

i

∥∥∥
2
≤

16
(
∥θ⋆∥Σ +R

)
1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

u− l + 1
(112)

provided that

u− l + 1 ≥
4maxs ϕ(s)

⊤Σ−1ϕ(s) log 2d
δ

9
.

Apply Lemma 8 with R = R0, l = 0 and u = t′seg − 1 to obtain with probability of at least 1− δ that

∥∥∥ 1

t′seg

t′seg−1∑
i=0

Σ
1
2A−1(Ai −A)θi

∥∥∥
2
=
∥∥∥ 1

t′seg

t′seg−1∑
i=0

Σ
1
2A−1(Ai −A)θi1{∥∆i∥ ≤ R0}

∥∥∥
2

≤
16
(
∥θ⋆∥Σ +R0

)
1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

t′seg
,

as long as t′seg ≥
4∥Σ−1∥ log 2d

δ

9 ≥ 4maxs ϕ(s)⊤Σ−1ϕ(s) log 2d
δ

9 . Here, the identity holds since ∥∆i∥Σ ≤ R0 for

i ≤ t′seg−1 with probability of at least 1−δ. Similarly, invoke Lemma 8 with R = 32
√

ηκ log 2dT
δ

1−γ (∥θ⋆∥Σ+

2), l = t′seg and u = T − 1 to obtain with probability of at least 1− δ that

∥∥∥ 1

T − t′seg

T−1∑
i=t′seg

Σ
1
2A−1(Ai −A)θi

∥∥∥
2
≤

16
(
∥θ⋆∥Σ + 32

√
ηκ log 2dT

δ

1−γ (∥θ⋆∥Σ + 2)
)

1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

T − t′seg

≤
16
(
1.5∥θ⋆∥Σ + 2

)
1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

T − t′seg

provided that T − t′seg ≥
4maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

9 . Here, the last inequality arises from the relation

32

√
ηκ log 2dT

δ

1− γ
(∥θ⋆∥Σ + 2) ≤ 0.5∥θ⋆∥Σ + 2,

which is an immediate consequence of the assumption that ηκ log 2dT
δ

1−γ is sufficiently small. Therefore,

∥∥∥ 1
T

T−1∑
i=0

Σ
1
2A−1(Ai −A)θi

∥∥∥
2
≤

32
(
∥θ⋆∥Σ +

√
t′seg
T R0 + 1

)
1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

T
. (113)
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Combining the preceding bounds (106), (109) and (113) with (105), we reach the conclusion that with
probability of at least 1− δ,

∥∥∥ T−1∑
i=0

A
(t)
i ξi

∥∥∥
Σ
≍


√

maxs ϕ(s)⊤Σ−1ϕ(s) log 2d
δ

T (1− γ)2
+

∥∥Σ−1
∥∥

T

√
κ log dT

δ

η(1− γ)3

(∥θ⋆∥Σ + 1
)
,

as long as T ≥ t′segκ∥∆0∥2Σ, where we use the definition (44) of R0. It thus establishes the inequality (58b).

C.3 Proof of Lemma 2
We first decompose Ψ into

Ψ =

[
I − αÃ⊤Σ̃−1Ã 0

0 I − βΣ̃

]
+

[
0 − 1

καγΠ
⊤

−κα(1− γΣ̃−1Π)Ã⊤Σ̃−1Ã −αγ(I − γΣ̃−1Π)Π⊤

]
.

Then the triangle inequality together with the properties of the operator norm tells us that

∥Ψ∥ ≤ max{∥I − αÃ⊤Σ̃−1Ã∥, ∥I − βΣ̃∥}+ ∥ 1
κ
αγΠ⊤∥

+ ∥κα(I − γΣ̃−1Π)Ã⊤Σ̃−1Ã∥+ ∥αγ(I − γΣ̃−1Π)Π⊤∥.

Note that by definition of λw and λw, we find

∥I − αÃ⊤Σ̃−1Ã∥ ≤ 1− αλθ,

∥I − βΣ̃∥ ≤ 1− βλw.

In addition, some direct algebra suggests∥∥∥∥ 1καγΠ⊤
∥∥∥∥ ≤ αγρmax

κ
,

∥κα(I − γΣ̃−1Π)Ã⊤Σ̃−1Ã∥ ≤ κα(1 + γλΣρmax)λΣ(2ρmax)
2,

∥αγ(I − γΣ̃−1Π)Π⊤∥ ≤ αγ(ρmax + γλΣρ
2
max).

In summary, as long as

αγ(ρmax + γλΣρ
2
max) ≪ βλw,

αγρmax

κ
+ κα(1 + γλΣρmax)λΣ(2ρmax)

2 ≪
√
αλθβλw,

one has
∥Ψ∥ ≤ 1− 1

2
αλθ.

C.4 Proof of Lemma 3
Using the same notation of Ei−1 as in Section C.1, we observe that {Ψt−i−1ζ̃i} forms a martingale difference
sequence. Furthermore, define

W̃ :=

t−1∑
i=0

Ei−1

[∥∥Ψt−i−1ζi

∥∥2
Σ̃
1
{
H̃i

}]
, and B̃ := max

i:0≤i≤t−1

∥∥∥Ψt−i−1ζi1
{
H̃i

}∥∥∥
Σ̃
. (114)

In order to bound W̃ and B̃, we will firstly need to bound the norm of ζ̃i, as is shown in the following
paragraph.
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Controlling the norm of ζi. We firstly observe that since ∥ϕ(s)∥2 ≤ 1 and r(s) ≤ 1 for all s ∈ S, with
similar logic as (96), (97), (100) and (101), the following bounds hold true:

• For any Fi−1-measurable θ̃i ∈ Rd, the norm of (Ãi − Ã)θ̃i is bounded by

Ei−1

∥∥∥(Ãi − Ã)θ̃i

∥∥∥2
2
≤ 4ρ2max

(
∥θ̃⋆∥2

Σ̃
+ ∥∆̃i∥2Σ̃

)
, and (115)∥∥∥Σ̃−1/2(Ãi − Ã)θ̃i

∥∥∥
2
≤ 4ρmax max

s

{
ϕ(s)Σ̃−1ϕ(s)

}(
∥θ̃⋆∥Σ̃ + ∥∆̃i∥Σ̃

)
; (116)

• For any Fi−1-measurable zi ∈ Rd, the norm of (Πi −Π)⊤zi is bounded by

Ei−1

∥∥∥(Πi −Π)
⊤
zi

∥∥∥2
2
≤ ρ2max∥zi∥2Σ̃, and (117)∥∥∥Σ̃−1/2 (Πi −Π)

⊤
zi

∥∥∥
2
≤ 2ρmax max

s

{
ϕ(s)Σ̃−1ϕ(s)

}
∥zi∥Σ̃; (118)

• For any Fi−1-measurable zi ∈ Rd, the norm of (Σ̃i − Σ̃)zi is bounded by

Ei−1

∥∥∥(Σ̃i − Σ̃
)
zi

∥∥∥2
2
≤ ∥zi∥2Σ̃, and (119)∥∥∥Σ̃−1/2

(
Σ̃i − Σ̃

)
zi

∥∥∥
2
≤ 2max

s

{
ϕ(s)Σ̃−1ϕ(s)

}
∥zi∥Σ̃; (120)

• The norm of b̃i − b̃ is bounded by

Ei−1

∥∥∥b̃i − b̃
∥∥∥2
2
≤ ρ2max, and (121)∥∥∥Σ̃−1/2

(
b̃i − b̃

)∥∥∥2
2
≤ 4ρ2max max

s

{
ϕ(s)Σ̃−1ϕ(s)

}
. (122)

Therefore, by triangle inequality, the norm of νi can be bounded by

Ei−1 ∥νi∥22 ≲ ρ2max

[(
∥θ̃⋆∥2

Σ̃
+ ∥∆̃i∥2Σ̃

)
+ 1 + γ2∥wi∥2Σ̃

]
, and (123)∥∥∥Σ̃−1/2νi

∥∥∥
2
≲ ρmax max

s

{
ϕ(s)Σ̃−1ϕ(s)

}[(
∥θ̃⋆∥Σ̃ + ∥∆̃i∥Σ̃

)
+ γ∥wi∥Σ̃ + 1

]
; (124)

similarly, the norm of ηi can be bounded by

Ei−1 ∥ηi∥22 ≲ ρ2max

[(
∥θ̃⋆∥2

Σ̃
+ ∥∆̃i∥2Σ̃

)
+ 1
]
+ ∥wi∥2Σ̃, and (125)∥∥∥Σ̃−1/2ηi

∥∥∥
2
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s

{
ϕ(s)Σ̃−1ϕ(s)

}{
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[(
∥θ̃⋆∥Σ̃ + ∥∆̃i∥Σ̃

)
+ 1
]
+ ∥wi∥Σ̃

}
. (126)

By combining (123) and (125) with the definition of ζi (65), we obtain the following bound:

Ei−1∥ζi∥22 ≲ α2Ei−1∥νi∥22 + κ2α2∥I − γΣ̃−1Π∥2Ei−1∥νi∥22 + κ2β2Ei−1∥ηi∥22
≲ α2

(
1 + κ2(1 + γλΣρmax)

2
)
· ρ2max

[
4
(
∥θ̃⋆∥2

Σ̃
+ ∥∆̃i∥2Σ̃

)
+ 1 + γ2∥wi∥2Σ̃

]
+ κ2β2 ·

{
ρ2max

[(
∥θ̃⋆∥2

Σ̃
+ ∥∆̃i∥2Σ̃

)
+ 1
]
+ ∥wi∥2Σ̃

}
≲ κ2β2ρ2max

(
∥θ̃⋆∥2

Σ̃
+

1

κ2
∥xi∥2Σ̃ + 1

)
, (127)

and ∥∥∥Σ̃−1/2ζi

∥∥∥
2
≲ α∥Σ̃−1/2νi∥2 + ακ∥I − γΣ̃−1Π∥∥Σ̃−1/2νi∥2 + κβ

∥∥∥Σ̃−1/2ηi

∥∥∥
2
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≲ α (1 + κ(1 + γλΣρmax)) · ρmax max
s

{
ϕ(s)Σ̃−1ϕ(s)

}
·[

2
(
∥θ̃⋆∥Σ̃ + ∥∆̃i∥Σ̃

)
+ γ∥wi∥Σ̃ + 1

]
+

κβ ·max
s

{
ϕ(s)Σ̃−1ϕ(s)

}{
ρmax

[(
∥θ̃⋆∥Σ̃ + ∥∆̃i∥Σ̃

)
+ 1
]
+ ∥wi∥Σ̃

}
≲ κβmax

s

{
ϕ(s)Σ̃−1ϕ(s)

}(
∥θ̃⋆∥Σ̃ +

2

κ
∥xi∥Σ̃ + 1

)
(128)

Control of W̃ and B̃. With the norm of ζ̃i bounded, we can apply similar techniques as in equations
(95), (98), (99) and (102) of Section C.1 to construct the following bound for W̃ :

W̃ ≤ ∥Σ̃∥
t−1∑
i=0

∥Ψt−i−1∥2 · Ei−1

[
∥ζi∥221

{
H̃i

}]
≲ ∥Σ̃∥

t−1∑
i=0

(1− 1

2
αλθ)

2t−2i−2κ2β2ρ2max(2∥θ̃⋆∥Σ̃ + 2R̃+ 1)2

≲
∥Σ̃∥
αλθ

κ2β2ρ2max(∥θ̃⋆∥Σ̃ +
1

κ
R̃+ 1)2, (129)

and the following bound for B̃:

B̃ ≤ ∥Σ̃∥ max
i:0≤i≤t−1

∥∥∥Σ̃−1/2ζi1 {Hi}
∥∥∥
2

≲ ∥Σ̃∥κβρmax max
s

{
ϕ(s)Σ̃−1ϕ(s)

}
(∥θ̃⋆∥2 + R̃+ 1) =: B̃max. (130)

Invoking the matrix Freedman’s inequality. With W̃ and B̃ bounded, we again invoke the matrix
Freedman’s inequality (Tropp, 2011, Corollary 1.3) to assert that∥∥∥∥∥

t−1∑
i=0

Ψt−i−1ζ̃i

∥∥∥∥∥
2

≤ 2

√
W̃max log

2dT

δ
+

4

3
B̃max log

2dT

δ

≲

√
∥Σ̃∥
αλθ

log
2dT

δ
κβρmax(∥θ̃⋆∥Σ̃ +

1

κ
R̃+ 1) (131)

holds with probability at least 1− δ/T , proveded that 0 < α < 1

λθλ2
Σ∥Σ̃∥ log 2dT

δ

.

C.5 Proof of Lemma 6 and Lemma 7
Proof of Lemma 7: controlling ∥Σ 1

2A−1
(
A − Â

)
Σ− 1

2 ∥. We intend to invoke the matrix Bernstein
inequality to establish the advertised bound Tropp (2015). Note that

Σ
1
2A−1

(
A− Â

)
Σ− 1

2 =
1

T

T−1∑
t=0

Σ
1
2A−1

(
A−At

)
Σ− 1

2︸ ︷︷ ︸
=:Zt

. (132)

In order to control it, we need to first control the following two quantities:

v := max
t

{
max

{∥∥E [ZtZ
⊤
t

] ∥∥, ∥∥E [Z⊤
t Zt

] ∥∥}} and B := max
t

∥Zt∥.

Step 1: controlling
∥∥E [ZtZ

⊤
t

] ∥∥. Towards this, we first make the observation that

E
[
ZtZ

⊤
t

]
= E

[
Σ

1
2A−1

(
A−At

)
Σ−1

(
A−At

)⊤(
A⊤)−1

Σ
1
2

]
36



⪯ E
[
Σ

1
2A−1AtΣ

−1A⊤
t

(
A⊤)−1

Σ
1
2

]
= E

s∼µ, s′∼P (·|s)

[
Σ

1
2A−1ϕ(s)

(
ϕ(s)− γϕ(s′)

)⊤
Σ−1

(
ϕ(s)− γϕ(s′)

)
ϕ(s)⊤

(
A⊤)−1

Σ
1
2

]
⪯ max

s,s′

{(
ϕ(s)− γϕ(s′)

)⊤
Σ−1

(
ϕ(s)− γϕ(s′)

)}
E

s∼µ

[
Σ

1
2A−1ϕ(s)ϕ(s)⊤

(
A⊤)−1

Σ
1
2

]
⪯ max

s,s′

{
2ϕ(s)⊤Σ−1ϕ(s) + 2γ2ϕ(s′)⊤Σ−1ϕ(s′)

}
·
{
Σ

1
2A−1Σ

(
A⊤)−1

Σ
1
2

}
⪯ 4maxs ϕ(s)

⊤Σ−1ϕ(s)

(1− γ)2
I, (133)

where the second line holds since E
[
(M − E[M ])(M − E[M ])⊤

]
⪯ E[MM⊤] for any random matrix M ,

the second to last inequality holds since (a−b)⊤Σ−1(a−b) ≤ 2a⊤Σ−1a+2b⊤Σ−1b, and the last inequality
comes from the assumption γ < 1 and Lemma 5.

Step 2: controlling
∥∥E [Z⊤

t Zt

] ∥∥. Similarly, one can obtain

E
[
Z⊤

t Zt

]
= E

[
Σ− 1

2

(
A−At

)⊤
(A⊤)−1ΣA−1

(
A−At

)
Σ− 1

2

]
⪯ E

[
Σ− 1

2A⊤
t (A

⊤)−1ΣA−1AtΣ
− 1

2

]
= E

[
Σ− 1

2

(
ϕ(st)− γϕ(s′t)

)
ϕ(st)

⊤(A⊤)−1ΣA−1ϕ(st)
(
ϕ(st)− γϕ(s′t)

)⊤
Σ− 1

2

]
⪯ max

s

{
ϕ(s)⊤(A⊤)−1ΣA−1ϕ(s)

}
E
[
Σ− 1

2

(
ϕ(st)− γϕ(s′t)

)(
ϕ(st)− γϕ(s′t)

)⊤
Σ− 1

2

]
⪯ max

s

{
ϕ(s)⊤(A⊤)−1ΣA−1ϕ(s)

}
· 2E

[
Σ− 1

2

(
ϕ(st)ϕ(st)

⊤ + ϕ(s′t)ϕ(s
′
t)

⊤)Σ− 1
2

]
⪯ 4max

s

{
ϕ(s)⊤(A⊤)−1ΣA−1ϕ(s)

}
I.

Here, the second to last bound follows from the elementary inequality (a− b)(a− b)⊤ ⪯ 2aa⊤ + 2bb⊤ and
the assumption γ < 1, whereas the last line makes use of the facts st ∼ µ, s′t ∼ µ and the definition (6) of
Σ. It then boils down to upper bounding maxs

{
ϕ(s)⊤(A⊤)−1ΣA−1ϕ(s)

}
, which can be accomplished as

follows

ϕ(s)⊤(A⊤)−1ΣA−1ϕ(s) = ϕ(s)⊤Σ− 1
2

{
Σ

1
2 (A⊤)−1ΣA−1Σ

1
2

}
Σ− 1

2ϕ(s)

≤
∥∥Σ− 1

2ϕ(s)
∥∥2
2
·
∥∥Σ 1

2 (A⊤)−1ΣA−1Σ
1
2

∥∥
≤ maxs ϕ(s)

⊤Σ−1ϕ(s)

(1− γ)2
.

Here, the last line arises from Lemma 5. Putting the above bounds together yields

E
[
Z⊤

t Zt

]
⪯ 4maxs ϕ(s)

⊤Σ−1ϕ(s)

(1− γ)2
I. (134)

Step 3: controlling ∥Zt∥. Our starting point is the following triangle inequality

∥Zt∥ =
∥∥Σ 1

2A−1
(
A−At

)
Σ− 1

2

∥∥ ≤
∥∥Σ 1

2A−1AtΣ
− 1

2

∥∥+ ∥∥Σ 1
2A−1AΣ− 1

2

∥∥
≤
∥∥Σ 1

2A−1Σ
1
2

∥∥ · ∥∥Σ− 1
2AtΣ

− 1
2

∥∥+ 1

≤ 1

1− γ

∥∥Σ− 1
2AtΣ

− 1
2

∥∥+ 1,

where the last inequality follows from Lemma 5. In addition, we see that∥∥Σ− 1
2AtΣ

− 1
2

∥∥ ≤ max
s

∥∥Σ− 1
2ϕ(s)ϕ(s)⊤Σ− 1

2

∥∥+ γmax
s,s′

∥∥Σ− 1
2ϕ(s′)ϕ(s)⊤Σ− 1

2

∥∥ ≤ 2max
s

∥∥Σ− 1
2ϕ(s)

∥∥2
2
.

(135)
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This combined with the preceding bounds yields

∥Zt∥ ≤
2maxs

∥∥Σ− 1
2ϕ(s)

∥∥2
2

1− γ
+ 1 ≤

4maxs
∥∥Σ− 1

2ϕ(s)
∥∥2
2

1− γ
=

4maxs ϕ(s)
⊤Σ−1ϕ(s)

1− γ
. (136)

Here, the inequality follows since

max
s

∥∥Σ− 1
2ϕ(s)

∥∥2
2
≥ E

s∼µ

[
ϕ(s)⊤Σ−1ϕ(s)

]
= E

s∼µ

[
tr
(
Σ−1ϕ(s)ϕ(s)⊤

)]
= tr(Id) = d ≥ 1. (137)

Step 4: invoking the matrix Bernstein inequality. With the above bounds in mind, we are ready to apply

the matrix Bernstein inequality (Tropp, 2015) to obtain that: with probability at least 1− δ one has

∥∥Σ 1
2A−1

(
A− Â

)
Σ− 1

2

∥∥ ≲

√√√√ 1

T 2

T−1∑
t=0

max
{∥∥E [ZtZ⊤

t

] ∥∥, ∥∥E [Z⊤
t Zt

] ∥∥} log (d
δ

)
+

maxt ∥Zt∥ log(dδ )
T

.

(i)

≲

√
maxs ϕ(s)⊤Σ−1ϕ(s)

T (1− γ)2
log
(d
δ

)
+

maxs ϕ(s)
⊤Σ−1ϕ(s) log(dδ )

T (1− γ)

(ii)
≍

√
maxs ϕ(s)⊤Σ−1ϕ(s)

T (1− γ)2
log
(d
δ

)
. (138)

Here, (i) results from the bounds (133), (134) and (136), while (ii) holds as long as T ≳ maxs ϕ(s)
⊤Σ−1ϕ(s) log

(
d
δ

)
.

In addition, if T ≥ c2 maxs ϕ(s)⊤Σ−1ϕ(s) log
(

d
δ

)
(1−γ)2 for some constant c2 large enough, then one has

∥∥Σ 1
2A−1

(
A−

Â
)
Σ− 1

2

∥∥ < 1. Suppose that Â is not invertible. Given that A and Σ are both invertible, this means that
one can find a unit vectors u obeying A−1ÂΣ− 1

2u = 0, which in turn implies

u⊤Σ
1
2A−1

(
A− Â

)
Σ− 1

2u = u⊤Σ
1
2A−1AΣ− 1

2u− u⊤Σ
1
2A−1ÂΣ− 1

2u

= 1− 0 = 1

and hence contradicts the condition
∥∥Σ 1

2A−1
(
A−Â

)
Σ− 1

2

∥∥ < 1. As a result, we conclude that Â is invertible
as long as

∥∥Σ 1
2A−1

(
A− Â

)
Σ− 1

2

∥∥ < 1.

Proof of Lemma 6: controlling
∥∥A−1

(
b̂− b

)∥∥
Σ
. First of all, it is seen that

∥∥A−1
(
b̂− b

)∥∥
Σ
=
∥∥∥ 1
T

T−1∑
t=0

Σ
1
2A−1

(
bt − b

)∥∥∥
2
=
∥∥∥ 1
T

T−1∑
t=0

zt

∥∥∥
2
,

where we define the vector zt := Σ
1
2A−1

(
bt−b

)
. Therefore, we need to look at the properties of zt. Towards

this end, we observe that

E
[
z⊤
t zt

]
= E

[(
bt − b

)⊤(
A⊤)−1

ΣA−1
(
bt − b

)]
⪯ E

[
b⊤t
(
A⊤)−1

ΣA−1bt

]
(i)

≤
{
max
s∈S

|r(s)|2
}
E
[
ϕ(st)

⊤(A⊤)−1
ΣA−1ϕ(st)

]
(ii)

≤ E
[
ϕ(st)

⊤(A⊤)−1
ΣA−1ϕ(st)

]
= E

[
ϕ(st)

⊤Σ− 1
2Σ

1
2

(
A⊤)−1

ΣA−1Σ
1
2Σ− 1

2ϕ(st)
]

≤
{
max
s∈S

∥∥Σ− 1
2ϕ(s)

∥∥2
2

}
·
∥∥Σ 1

2

(
A⊤)−1

ΣA−1Σ
1
2

∥∥
(iii)

≤ 1

(1− γ)2
max
s∈S

∥∥Σ− 1
2ϕ(s)

∥∥2
2
,
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where (i) holds since bt = ϕ(st)r(st), (ii) follows from the assumption maxs |r(s)| ≤ 1, and (iii) arises from
Lemma 5. Additionally,

max
t

∥∥zt∥∥2 ≤ max
t

∥∥Σ 1
2A−1bt

∥∥
2
+
∥∥Σ 1

2A−1b
∥∥
2

(iv)

≤ 2max
s

∥∥Σ 1
2A−1ϕ(s)r(s)

∥∥
2

(v)

≤ 2max
s∈S

∥∥Σ 1
2A−1ϕ(s)

∥∥
2

≤ 2
∥∥Σ 1

2A−1Σ
1
2

∥∥ ·max
s∈S

∥∥Σ− 1
2ϕ(s)

∥∥
2

≤ 2

1− γ
max
s∈S

∥∥Σ− 1
2ϕ(s)

∥∥
2
,

where (iv) holds since bt = ϕ(st)r(st) and b = Es∼µ

[
ϕ(s)r(s)

]
, (v) comes from the assumption maxs |r(s)| ≤

1, and the last line is due to Lemma 5. Consequently, the matrix Bernstein inequality Tropp (2015) yields

∥∥A−1
(
b̂− b

)∥∥
Σ
=
∥∥∥ 1
T

T∑
t=1

zt

∥∥∥
2
≲

√√√√ 1

T 2

T−1∑
t=0

E
[
z⊤
t zt

]
log
(d
δ

)
+

1

T
max

t

∥∥zt∥∥2 log (dδ)

≲
maxs∈S

∥∥Σ− 1
2ϕ(s)

∥∥
2

1− γ

√
1

T
log
(d
δ

)
+

maxs∈S
∥∥Σ− 1

2ϕ(s)
∥∥
2

1− γ
· 1
T

log
(d
δ

)
≍

maxs∈S
∥∥Σ− 1

2ϕ(s)
∥∥
2

1− γ

√
1

T
log
(d
δ

)
(139)

with probability at least 1− δ, as long as T ≳ log
(
d
δ

)
.

C.6 Proof of Lemma 8
Recall from the proof of Lemma 1 that Ei[·] represents the expectation conditioned on the probability space
generated by the samples {(sj , s′j)}j≤i. It is easy to check that {Σ 1

2A−1(Ai−A)θ′
i} forms a martingale dif-

ference sequence, and we seek to bound
∥∥∥ 1
u−l+1

∑u
i=l Σ

1
2A−1(Ai−A)θ′

i

∥∥∥
2

via matrix Freedman’s inequality.
The key is to control the following quantities (here, we abuse notation whenever it is clear from context):

W :=

u∑
i=l

Ei−1

[∥∥Σ1/2A−1(Ai −A)θ′
i

∥∥2
2

]
and B := max

i:l≤i≤u

∥∥Σ1/2A−1(Ai −A)θ′
i

∥∥
2
. (140)

Control of B. To begin with, observe that

B = max
i:l≤i≤u

∥∥Σ1/2A−1(Ai −A)Σ−1/2
∥∥ · ∥∥θ′

i

∥∥
Σ

≤ 4maxs ϕ(s)
⊤Σ−1ϕ(s)

1− γ
max

i:l≤i≤u
{∥θ⋆∥Σ + ∥∆i∥Σ}1{Hi}

≤ 4maxs ϕ(s)
⊤Σ−1ϕ(s)

1− γ

(
∥θ⋆∥Σ +R

)
=: Bmax,

where the second to last inequality comes from (136) and the triangle inequality, and the last line is due to
the definition of Hi.

Control of W . Moreover, one can derive

W :=

u∑
i=l

Ei−1

[
∥Σ1/2A−1(Ai −A)Σ−1/2Σ1/2θ′

i

∥∥2
2

]
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=

u∑
i=l

θ′⊤
i Σ1/2Ei−1

[
Σ−1/2(Ai −A)⊤(A⊤)−1ΣA−1(Ai −A)Σ−1/2

]
Σ1/2θ′

i

≤
u∑
i=l

4maxs ϕ(s)
⊤Σ−1ϕ(s)

(1− γ)2
∥∥Σ1/2θ′

i

∥∥2
2

≤ 4maxs ϕ(s)
⊤Σ−1ϕ(s)

(1− γ)2

u∑
i=l

(
∥θ⋆∥Σ + ∥∆i∥Σ

)2
1{Hi}

≤ 4(u− l + 1)maxs ϕ(s)
⊤Σ−1ϕ(s)

(1− γ)2
(
∥θ⋆∥Σ +R

)2
=: Wmax,

where the first inequality arises from (134), and the last inequality makes use of the definition of Hi.
With the above bounds in place, we can apply Freedman’s inequality (Tropp, 2011, Corollary 1.3) for

matrix martingales to demonstrate that∥∥∥ 1

u− l + 1

u∑
i=l

Σ
1
2A−1(Ai −A)θ′

i

∥∥∥
2
≤ 2

u− l + 1

√
Wmax log

2d

δ
+

4

3u− l + 1
Bmax log

2d

δ

≤
8
(
∥θ⋆∥Σ +R

)
1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

u− l + 1
+

16maxs ϕ(s)
⊤Σ−1ϕ(s) log 2d

δ

3(1− γ)(u− l + 1)

(
∥θ⋆∥Σ +R

)
≤

16
(
∥θ⋆∥Σ +R

)
1− γ

√
maxs ϕ(s)⊤Σ−1ϕ(s) log 2d

δ

u− l + 1

with probability at least 1− δ, as long as u− l + 1 ≥ 4maxs ϕ(s)⊤Σ−1ϕ(s) log 2d
δ

9 .

D Comparisons with previous works

D.1 Comparisons with Srikant and Ying (2019)
Srikant and Ying (2019) bounded the expectation of TD estimation error E∥θT −θ⋆∥22 with Markov samples
by an iterative relation. For fair comparisons, we apply their ideas to bounding the error in Σ-norm with
independent samples.

Iterative relation on E∥∆t∥2Σ. Recall from the TD update rule (14) that

∆t+1 = ∆t − ηt(Atθt − bt)

= (I − ηtAt)∆t − ηt(Atθ
⋆ − bt).

Therefore, the Σ-norm of ∆t+1 can be expressed as

∥∆t+1∥2Σ = ∥∆t∥2Σ − 2ηt⟨∆t,At∆t⟩Σ + η2t ∥At∆t∥2Σ
− 2ηt⟨∆t,Atθ

⋆ − bt⟩Σ + 2η2t ⟨At∆t,Atθ
⋆ − bt⟩Σ + η2t ∥Atθ

⋆ − bt∥2Σ.

Notice that by definition,

Et⟨∆t,Atθ
⋆ − bt⟩Σ = ⟨∆t,Aθ⋆ − b⟩ = 0,

and that a basic property of inner product yields

2⟨At∆t,Atθ
⋆ − bt⟩Σ ≤ ∥At∆t∥2Σ + ∥Atθ

⋆ − bt∥2Σ.

Therefore, we can apply the law of total expectations to obtain the following iterative relation:

E∥∆t+1∥2Σ = E∥∆t∥2Σ − 2ηtE[∆⊤
t (A

⊤Σ+ΣA)∆t︸ ︷︷ ︸]
I1

+ 2η2tE∥At∆t∥2Σ︸ ︷︷ ︸
I2

+ 2η2tE∥Atθ
⋆ − bt∥2Σ︸ ︷︷ ︸

I3

. (141)

We now turn to bounding I1, I2 and I3 in order.
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Bounding I1. In order to lower bound I1 as a function of ∥∆t∥2Σ, we firstly express it as

∆⊤
t (A

⊤Σ+ΣA)∆t = ∆⊤
t Σ

1/2Σ−1/2(A⊤Σ+ΣA)Σ−1Σ1/2∆t

≥ ∥Σ1/2∆t∥22λmin

(
Σ−1/2A⊤Σ1/2 +Σ1/2AΣ−1/2

)
= ∥∆t∥2Σλmin

(
Σ−1/2A⊤Σ1/2 +Σ1/2AΣ−1/2

)
.

Recall from (79e) that

∥Σ 1
2A−1Σ

1
2 ∥ ≤ (1− γ)−1,

so the minimal eigenvalue of Σ−1/2A⊤Σ1/2 +Σ1/2AΣ−1/2 is lower bounded by

λmin

(
Σ−1/2A⊤Σ1/2 +Σ1/2AΣ−1/2

)
≥ λmin(Σ) ·

[
γmin

(
Σ− 1

2A⊤Σ− 1
2

)
+ γmin

(
Σ− 1

2AΣ− 1
2

)]
≥ 2λmin(Σ)

∥Σ 1
2A−1Σ

1
2 ∥

≥ 2λmin(Σ)(1− γ).

This directly implies that I1 is lower bounded by

I1 ≥ 2ηt(1− γ)λmin(Σ)E∥∆t∥2Σ. (142)

Bounding I2. We aim to upper bound I2 as a function of η2t and ∥∆t∥2Σ, so that when ηt is sufficiently
small, I2 is negligible compared to I1. Specifically, for any At generated by (11a) and any ∆t ∈ Rd, we
observe

∥At∆t∥2Σ = ∆⊤
t AtΣAt∆t ≤ ∥∆t∥22∥A∥2∥Σ∥ ≤ 4∥Σ∥∥∆t∥22

≤ 4∥Σ∥∥Σ−1∥∥Σ 1
2∆t∥22 = 4κ∥∆t∥2Σ,

where we recall κ as the condition number of Σ. Therefore, as long as

ηt ≤
(1− γ)λmin(Σ)

4κ
,

it can be guaranteed that I2 ≤ 1
2I1.

Bounding I3. In order to compare with our result (Theorem 1 and Corollary 1), we aim to bound I3 as
a function of ∥θ⋆∥Σ. Towards this end, we firstly notice that

Atθ
⋆ − bt = ϕ(st)ϕ(st)

⊤θ⋆ − γϕ(st)ϕ(s
′
t)

⊤θ⋆ − r(st)ϕ(st).

Therefore, we can upper bound E∥Atθ
⋆ − bt∥2Σ by

E∥Atθ
⋆ − bt∥2Σ ≤ 3 E

s∼µ
∥ϕ(s)ϕ(s)⊤θ⋆∥2Σ + 3 E

s∼µ,s′∼P(·|s)
∥ϕ(s)ϕ(s′)⊤θ⋆∥2Σ + 3 E

s∼µ
∥r(s)ϕ(s)∥2Σ,

where the three terms on the right-hand-side can be bounded respectively by

E
s∼µ

∥ϕ(s)ϕ(s)⊤θ⋆∥2Σ = E
s∼µ

[
θ⋆⊤ϕ(s)

(
ϕ(s)⊤Σϕ(s)

)
ϕ(s)⊤θ⋆

]
≤ E

s∼µ

[
θ⋆⊤ϕ(s)∥Σ∥ϕ(s)⊤θ⋆

]
= ∥Σ∥θ⋆⊤ E

s∼µ
[ϕ(s)ϕ(s)⊤]θ⋆

= ∥Σ∥θ⋆⊤Σθ⋆ = ∥Σ∥∥θ⋆∥2Σ;

E
s∼µ,s′∼P(·|s)

∥ϕ(s)ϕ(s′)⊤θ⋆∥2Σ = E
s∼µ,s′∼P(·|s)

[
θ⋆⊤ϕ(s′)

(
ϕ(s)⊤Σϕ(s)

)
ϕ(s′)⊤θ⋆

]
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≤ E
s∼µ,s′∼P(·|s)

[
θ⋆⊤ϕ(s′)∥Σ∥ϕ(s′)⊤θ⋆

]
= ∥Σ∥θ⋆⊤ E

s′∼µ
[ϕ(s′)ϕ(s′)⊤]θ⋆

= ∥Σ∥θ⋆⊤Σθ⋆ = ∥Σ∥∥θ⋆∥2Σ,

and E
s∼µ

∥r(s)ϕ(s)∥2Σ ≤ max
s∈S

r2(s)∥ϕ(s)∥22∥Σ∥ ≤ ∥Σ∥.

Consequently, I3 can be upper bounded by

I3 ≤ 6η2t ∥Σ∥
(
2∥θ⋆∥2Σ + 1

)
. (143)

Bounding E∥∆T ∥2Σ. By combining (141), (142) and (143) and recalling that I2 ≤ 1
2I1 when ηt is suffi-

ciently small, we obtain

E∥∆t+1∥2Σ ≤ (1− (1− γ)λmin(Σ)ηt)E∥∆t∥2Σ + 6η2t ∥Σ∥
(
2∥θ⋆∥2Σ + 1

)
. (144)

Therefore, for constant stepsizes η0 = η1 = . . . = ηT = η, it is easy to verify by induction that

E∥∆T ∥2Σ ≤ (1− (1− γ)λmin(Σ)η)T ∥∆0∥2Σ +
6η∥Σ∥

(
2∥θ⋆∥2Σ + 1

)
(1− γ)λmin(Σ)

.

Hence, in order to guarantee E∥∆T ∥2Σ ≤ ε2, it suffices to take

η∥Σ∥
(
∥θ⋆∥2Σ + 1

)
(1− γ)λmin(Σ)

≲ ε2; and exp (−(1− γ)λmin(Σ)ηT ) ∥∆0∥2Σ ≲ ε2.

This implies the following upper bound for the sample complexity:

T ≍
κ∥Σ−1∥

(
∥θ⋆∥2Σ + 1

)
(1− γ)2

1

ε2
log

1

ε
, (145)

with the proviso that we take the stepsize η ≍ ∥Σ−1∥
1−γ

1
T and that T ≳ ∥Σ−2∥(1− γ)−2.

D.2 Comparisons with Bhandari et al. (2021)

Theorem 2(c) in (Bhandari et al., 2021) shows that with decaying stepsizes ηt =
β

λ+t where

β =
2∥Σ−1∥
(1− γ)

, λ =
16∥Σ−1∥
(1− γ)2

, (146)

the expected ℓ2 norm of TD estimation error is bounded by

E∥θT − θ⋆∥22 ≤ ν

λ+ T
, (147)

where

ν = max

{
8σ2∥Σ−2∥
(1− γ)2

,
16∥θ⋆∥22∥Σ−1∥

(1− γ)2

}
. (148)

• Suppose the maximum is attained at the second term for ν and T is sufficiently large, (147) is simplified
as

E∥θT − θ⋆∥22 ≲
16∥θ⋆∥22∥Σ−1∥

(1− γ)2T
.
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In order for E∥θT − θ⋆∥2Σ ≤ ε2, it suffices to take

ε2

∥Σ∥
≥ 16∥θ⋆∥22∥Σ−1∥

(1− γ)2T
≥ E∥θT − θ⋆∥22,

which implies the following sample complexity:

T ≍ ∥Σ−1∥∥Σ∥∥θ⋆∥22
(1− γ)2ε2

• Suppose that the first term on the right hand side of expression (148) is larger, (147) can be simplified
as

E∥θT − θ⋆∥22 ≲
σ2∥Σ−2∥
(1− γ)2T

.

Then similarly, the sample complexity is

T ≍ ∥Σ−2∥∥Σ∥σ2

(1− γ)2ε2
,

where σ2 = E∥Atθ
⋆ − bt∥22.

In the worst-case scenario, it satisfies σ2 ≍ ∥θ⋆∥2Σ+1. Therefore, the sample complexity implied by Theorem
2(c) of Bhandari et al. (2021) scales as

T ≍
κ∥Σ−1∥

(
∥θ⋆∥2Σ + 1

)
(1− γ)2

1

ε2
. (149)

D.3 Comparison with Durmus et al. (2022)
It is difficult to place the corresponding instance dependent results in comparison, so, we focus our attention
on the minimax results. In the following, we make use of the relations that ∥A(θT −θ⋆)∥2 ≥ ∥AΣ−1/2∥∥θT −
θ⋆∥Σ ≳ (1−γ)

√
λmin(Σ)∥θT −θ⋆∥Σ, and E∥Atθ

⋆−bt∥22 ≲ 1
(1−γ)2 , sup ∥Atθ

⋆−bt∥2 ≲ 1
1−γ . We also consider

the situations when ∥θ⋆∥Σ ≲ 1
1−γ , and ϕ(s)⊤Σ−1ϕ(s) ≲ λmin(Σ)−1. Notice that there exists an MDP

instance such that equality can be attained in all these bounds simultaneously. For ease of presentation, let
us first rephrase the result Durmus et al. (2022, Corollary 1) in terms of our notation2. It is shown therein
that for

η ≲
(1− γ)3λmin(Σ)

κ
√
T

,

with probability at least 1− δ, the averaged TD estimation error is bounded by

∥θT − θ⋆∥Σ ≲

√
1

λmin(Σ)(1− γ)4T
, (150)

when T ≳ 1
c2A

≳ κ2

(1−γ)6λmin(Σ)2 . Here, we omit the dependency of log factors. In comparison, our result

delivers the same bound as long as T ≳ κ2

(1−γ)4λmin(Σ) . We incur a lower born-in cost for the relation (150)
to hold.

2We take CA ≲ (1 − γ)−1, a ≍ ∥Q∥−1 ≲ (1 − γ)λmin(Σ) and then cA ≲ κ−1(1 − γ)3λmin(Σ) (see the definitions of these
parameters in Durmus et al. (2022)).
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