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Abstract

An increasing number of data science and machine learning problems rely on computation with
tensors, which better capture the multi-way relationships and interactions of data than matrices. When
tapping into this critical advantage, a key challenge is to develop computationally efficient and provably
correct algorithms for extracting useful information from tensor data that are simultaneously robust to
corruptions and ill-conditioning. This paper tackles tensor robust principal component analysis (RPCA),
which aims to recover a low-rank tensor from its observations contaminated by sparse corruptions, under
the Tucker decomposition. To minimize the computation and memory footprints, we propose to directly
recover the low-dimensional tensor factors—starting from a tailored spectral initialization—via scaled
gradient descent (ScaledGD), coupled with an iteration-varying thresholding operation to adaptively
remove the impact of corruptions. Theoretically, we establish that the proposed algorithm converges
linearly to the true low-rank tensor at a constant rate that is independent with its condition number, as
long as the level of corruptions is not too large. Empirically, we demonstrate that the proposed algorithm
achieves better and more scalable performance than state-of-the-art tensor RPCA algorithms through
synthetic experiments and real-world applications.

Keywords: low-rank tensors, Tucker decomposition, robust principal component analysis, scaled gradient
descent, preconditioning.
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1 Introduction
An increasing number of data science and machine learning problems rely on computation with tensors
[KB09,PFS16], which better capture the multi-way relationships and interactions of data than matrices; ex-
amples include recommendation systems [KABO10], topic modeling [AGH+14], image processing [LMWY12],
anomaly detection [LWQ+15], and so on. Oftentimes the data object of interest can be represented by a
much smaller number of latent factors than what its ambient dimension suggests, which induces a low-rank
structure in the underlying tensor. Unlike the matrix case, the flexibility of tensor modeling allows one to
decompose a tensor under several choices of popular decompositions. The particular tensor decomposition
studied in this paper is the Tucker decomposition, where a third-order tensor X ? ∈ Rn1×n2×n3 is low-rank
if it can be decomposed as1

X ? =
(
U

(1)
? ,U

(2)
? ,U

(3)
?

)
· G?,

whereU (1)
? ∈ Rn1×r1 , U (2)

? ∈ Rn2×r2 , U (3)
? ∈ Rn3×r3 are the factor matrices along each mode, G? ∈ Rr1×r2×r3

is the core tensor, and {ri}3i=1 are the rank of each mode; see Section 2.1 for the precise definition. If we
flatten the tensor along each mode, then the obtained matrices are all correspondingly low-rank:

r1 = rank
(
M1(X ?)

)
, r2 = rank

(
M2(X ?)

)
, r3 = rank

(
M3(X ?)

)
,

whereMk(·) denotes the matricization of an input tensor along the k-th mode (k = 1, 2, 3). Intuitively, this
means that the fibers along each mode lie in the same low-dimensional subspace. In other words, the tensor
X ? has a multi-linear rank r = (r1, r2, r3), where typically rk � nk. Throughout the paper, we denote
n := maxk nk and r := maxk rk.

This paper tackles tensor robust principal component analysis (RPCA), which aims to recover a low-
rank tensor X ? from its observations contaminated by sparse corruptions. Mathematically, imagine we have
access to a set of measurements given as

Y = X ? + S?,

where S? ∈ Rn1×n2×n3 is a sparse tensor—in which the number of nonzero entries is much smaller than
its ambient dimension—modeling corruptions or gross errors in the observations due to sensor failures,

1Note that there are several other popular notation for denoting the Tucker decomposition; our choice is made to facilitate
the presentation of the analysis.
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anomalies, or adversarial perturbations. Our goal is to recover X ? from the corrupted observation Y in a
computationally efficient and provably correct manner.

1.1 Our approach
In this paper, we propose a novel iterative method for tensor RPCA with provable convergence guarantees.
To minimize the memory footprint, we aim to directly estimate the ground truth factors, collected in F? =

(U
(1)
? ,U

(2)
? ,U

(3)
? ,G?), via optimizing the following objective function:

L(F ,S) :=
1

2

∥∥∥(U (1),U (2),U (3)
)
· G + S −Y

∥∥∥2

F
, (1)

where F = (U (1),U (2),U (3),G) and S are the optimization variables for the tensor factors and the corruption
tensor, respectively. Despite the nonconvexity of the objective function, a simple and intuitive approach is
to update the tensor factors via gradient descent, which, unfortunately, converges slowly even when the
problem instance is moderately ill-conditioned [HWZ20].

On a high level, our proposed method alternates between corruption pruning (i.e., updating S) and factor
refinements (i.e., updating F ). At the beginning of each iteration, we update the corruption tensor S via
thresholding the observation residuals as

St+1 = Tζt+1

(
Y −

(
U

(1)
t ,U

(2)
t ,U

(3)
t

)
· Gt
)
, t = 0, 1, . . . (2a)

where St+1 is the update of the corruption tensor at the t-th iteration, Tζt+1
(·) trims away the entries with

magnitudes smaller than an iteration-varying threshold ζt+1 that is carefully orchestrated, e.g., following
a geometric decaying schedule. As the estimate of the data tensor X t =

(
U

(1)
t ,U

(2)
t ,U

(3)
t

)
· Gt gets more

accurate, the observation residual becomes more aligned with the corruptions, therefore the thresholding
operator (2a) becomes more effective in identifying and removing the impact of corruptions. Turning to the
low-rank tensor factors F , motivated by the recent success of scaled gradient descent (ScaledGD) [TMC21a,
TMC21b,TMPB+22] for accelerating ill-conditioned low-rank estimation, we propose to update the tensor
factors iteratively by descending along the scaled gradient directions:

U
(k)
t+1 = U

(k)
t − η∇

U
(k)
t
L(Ft,St+1)

(
Ŭ

(k)>
t Ŭ

(k)
t

)−1
, k = 1, 2, 3, and

Gt+1 = Gt − η
((

U
(1)>
t U

(1)
t

)−1
,
(
U

(2)>
t U

(2)
t

)−1
,
(
U

(3)>
t U

(3)
t

)−1
)
·∇Gt

L(Ft,St+1).
(2b)

Here, Ft = (U
(1)
t ,U

(2)
t ,U

(3)
t ,Gt) is the estimate of the tensor factors at the t-th iteration, ∇U(k)L(F ,S) and

∇GL(F ,S) are the partial derivatives of L(F ,S) with respect to the corresponding variables, η > 0 is the
learning rate, and

Ŭ
(1)
t =

(
U

(3)
t ⊗U

(2)
t

)
M1(Gt)>, Ŭ

(2)
t =

(
U

(3)
t ⊗U

(1)
t

)
M2(Gt)>, Ŭ

(3)
t =

(
U

(2)
t ⊗U

(1)
t

)
M3(Gt)>

are used to construct the preconditioned directions of the gradients, with ⊗ denoting the Kronecker product.
With the preconditioners, ScaledGD balances the tensor factors to find better descent directions, the benefits
of which are more accentuated in ill-conditioned tensors where the convergence rate of vanilla gradient descent
degenerates significantly, while ScaledGD is capable of maintaining a linear rate of convergence regardless
of the condition number.

Theoretical guarantees. Coupled with a tailored spectral initialization scheme, the proposed ScaledGD
method converges linearly to the true low-rank tensor in both the Frobenius norm and the entrywise `∞ norm
at a constant rate that is independent of its condition number, as long as the level of corruptions—measured
in terms of the fraction of nonzero entries per fiber—does not exceed the order of 1

µ2κr1r2r3
, where µ and

κ are respectively the incoherence parameter and the condition number of the ground truth tensor X ? (to
be formally defined later). This not only enables fast global convergence by virtue of following the scaled
gradients rather than the vanilla gradients [TMPB+22], but also lends additional robustness to finding the
low-rank Tucker decomposition despite the presence of corruptions and gross errors. Moreover, our work
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provides the first refined entrywise error analysis for tensor RPCA, suggesting the errors are distributed
evenly across the entries when the ground low-rank truth tensor is incoherent. To corroborate the theoretical
findings, we further demonstrate that the proposed ScaledGD algorithm achieves better and more scalable
performance than state-of-the-art matrix and tensor RPCA algorithms through synthetic experiments and
real-world applications.

Comparisons to prior art. While tensor RPCA has been previously investigated under various low-rank
tensor decompositions, e.g., [LFC+16,AJSN16,DBBG19], the development of provably efficient algorithms
under the Tucker decomposition remains scarce. The most closely related work is [CLX21], which proposed
a Riemannian gradient descent algorithm for the same tensor RPCA model as ours. Their algorithm is
proven to also achieve a constant rate of convergence—at a higher per-iteration expense—as long as the
fraction of outliers per fiber does not exceed the order of min

{
1

µ4
sκ

14
s r2 log2 n

, 1
µ12
s κ12

s r3

}
(cf. [CLX21, Theorem

5.1]), where µs and κs are the spikiness parameter and the worst-case condition number of X ?, respectively.
Using the relation µ ≤ µ2

sκ
2
s (cf. [CLX21, Lemma 13.5]) and κ ≤ κs (cf. (14)) to conservatively translate

our bound, our algorithm succeeds as long as the corruption level is below the order of 1
µ4
sκ

5
sr

3 , which is still
significantly higher than that allowed in [CLX21], when the outliers are evenly distributed across the fibers.
See additional numerical comparisons in Section 4.

1.2 Related works
Broadly speaking, our work falls under the recent surge of developing both computationally efficient and
provably correct algorithms for high-dimensional signal estimation via nonconvex optimization, which has
been particularly fruitful for problems with inherent low-rank structures; we refer interested readers to the
recent overviews [CLC19,CC18] for further pointers. In the rest of this section, we focus on works that are
most closely related to our paper.

Provable algorithms for matrix RPCA. The matrix RPCA problem, which aims to decompose a low-
rank matrix and a sparse matrix from their sum, has been heavily investigated since its introduction in the
seminar papers [CLMW11,CSPW11]. Convex relaxation based approaches, which minimize a weighted sum
of the nuclear norm of the data matrix and the `1 norm of the corruption matrix, have been demonstrated
to achieve near-optimal performance guarantees [CLMW11,WGR+09, CSPW11, LCM10, CFMY21, CC14].
However, their computational and memory complexities are prohibitive when applied to large-scale problem
instances; for example, solving the resulting semidefinite programs via accelerated proximal gradient de-
scent [TY10] only results in a sublinear rate of convergence with a per-iteration complexity that scales cubi-
cally with the matrix dimension. To address the computational bottleneck, nonconvex methods have been de-
veloped to achieve both statistical and computational efficiencies simultaneously [NNS+14,CCW19,GWL16,
YPCC16, TMC21a, CLY21]. Our tensor RPCA algorithm draws inspiration from [TMC21a, TMPB+22],
which adopt a factored representation of the low-rank object and invoke scaled gradient updates to bypass
the dependence of the convergence rate on the condition number. The matrix RPCA method in [CLY21]
differs from [TMC21a] by using a threshold-based trimming procedure—which we also adopt—rather than
a sorting-based one to identify the sparse matrix, for further computational savings.

Provable algorithms for tensor RPCA. Moving onto tensors, although one could unfold a tensor
and feed the resulting matrices into a matrix RPCA algorithm [GQ14, ZWZM19], destroying the tensor
structure through matricizations can result in suboptimal performance because it ignores the higher-order
interactions [YZ16]. Therefore, it is desirable to directly operate in the tensor space. However, tensor
algorithms encounter unique issues not present for matrices. For instance, while it appears straightforward
to generalize the convex relaxation approach to tensors, it has been shown that computing the tensor nuclear
norm is in fact NP-hard [FL18]; a similar drawback is applicable to the atomic norm formulation studied
in [DBBG19]. Tensor RPCA has also been studied under different low-rank tensor decompositions, a small
number of samples including the tubal rank [LFC+16,LFC+19] and the CP-rank [AJSN16,DBBG19]. These
algorithms are not directly comparable with ours which uses the multilinear rank.
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Robust low-rank tensor recovery. Broadly speaking, tensor RPCA concerns with reconstructing a
high-dimensional tensor with certain low-dimensional structures from incomplete and corrupted observa-
tions. Pertaining to works that deal with the Tucker decomposition, [XY19] proposed a gradient descent
based algorithm for tensor completion, [TMPB+22,TMC22] proposed scaled gradient descent algorithms for
tensor regression and tensor completion (which our algorithm also adopts), [LZ21] proposed a Gauss-Newton
algorithm for tensor regression that achieves quadratic convergence, [WCW21] proposed a Riemannian gra-
dient method with entrywise convergence guarantees, and [ARB20] studied tensor regression assuming the
underlying tensor is simultaneously low-rank and sparse.

1.3 Notation and tensor preliminaries
Throughout this paper, we use boldface calligraphic letters (e.g. X ) to denote tensors, and boldface capi-
talized letters (e.g. X) to denote matrices. For any matrix X, let σi(X) be its i-th largest singular value,
and σmax(X) (resp. σmin(X)) to denote its largest (resp. smallest) nonzero singular value. Let ‖X‖, ‖X‖F,
‖X‖2,∞, and ‖X‖∞ be the spectral norm, the Frobenius norm, the `2,∞ norm (largest `2 norm of the rows),
and the entrywise `∞ norm of a matrix X, respectively. The r × r identity matrix is denoted by Ir. The
set of invertible matrices in Rr×r is denoted by GL(r).

We now describe some preliminaries on tensor algebra that are used throughout this paper. For a
tensor X ∈ Rn1×n2×n3 , let [X ]i,j,k be its (i, j, k)-th entry. For a tensor X ∈ Rn1×n2×n3 , suppose it can be
represented via the multilinear multiplication

X =
(
U (1),U (2),U (3)

)
· G,

where U (k) ∈ Rnk×rk , k = 1, 2, 3,, and G ∈ Rr1×r2×r3 . Equivalently, the entries of X can be expressed as

[
X
]
i1,i2,i3

=

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

[
U (1)

]
i1,j1

[
U (2)

]
i2,j2

[
U (3)

]
i3,j3

[
G
]
j1,j2,j3

.

The multilinear multiplication possesses several nice properties. A crucial one is that for any B(k) ∈ Rrk×rk ,
k = 1, 2, 3, it holds that(

U (1)B(1),U (2)B(2),U (3)B(3)
)
· G =

(
U (1),U (2),U (3)

)
·
((

B(1),B(2),B(3)
)
· G
)
. (3)

In addition, if we flatten the tensor X along different modes, the obtained matrices obey the following
low-rank decompositions:

M1 (X ) = U (1)M1 (G)
(
U (3) ⊗U (2)

)>
= U (1)Ŭ (1)>, Ŭ (1) :=

(
U (3) ⊗U (2)

)
M1 (G)

>
, (4a)

M2 (X ) = U (2)M2 (G) (U (3) ⊗U (1))> = U (2)Ŭ (2)>, Ŭ (2) :=
(
U (3) ⊗U (1)

)
M2 (G)

>
, (4b)

M3 (X ) = U (3)M3 (G) (U (2) ⊗U (1))> = U (3)Ŭ (3)>, Ŭ (3) :=
(
U (2) ⊗U (1)

)
M3 (G)

>
. (4c)

Given two tensors A and B, their inner product is defined as 〈A,B〉 =
∑
i1,i2,i3

Ai1,i2,i3Bi1,i2,i3 . The
inner product satisfies the following property:〈(

U (1),U (2),U (3)
)
· G,X

〉
=
〈
G,
(
U (1)>,U (2)>,U (3)>) ·X〉 . (5)

Denote the Frobenius norm and the `∞ norm of X as ‖X‖F =
√
〈X ,X 〉 and ‖X‖∞ = maxi1,i2,i3 |X i1,i2,i3 |,

respectively. It follows that for Qk ∈ Rrk×rk , k = 1, 2, 3:∥∥(Q1,Q2,Q3

)
· G
∥∥
F
≤ ‖Q1‖‖Q2‖‖Q3‖‖G‖F. (6)

Let r = (r1, r2, r3). For a tensor X ∈ Rn1×n2×n3 , let its rank-r higher-order singular value decomposition
(HOSVD) Hr (X ) be

Hr (X ) = (U (1),U (2),U (3),G), (7)
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where U (k) is the top rk left singular vectors of Mk (X ), k = 1, 2, 3, and G = (U (1)>,U (2)>,U (3)>) ·X is
the core tensor. The HOSVD is an extension of the matrix SVD and can be seen as a special case of the
Tucker decomposition; see [BL10] for an exposition. Although there are faster methods—such as [VVM12]—
available, one straightforward way of computing the HOSVD is to obtain the singular vectors from performing
matrix SVD on each matricization of X . With these vectors, we can construct each U (k), followed by finding
G = (U (1)>,U (2)>,U (3)>) ·X to complete the process. In contrast to its matrix counterpart, the core tensor
G will not necessarily be diagonal.

2 Main results

2.1 Problem formulation
Suppose that the ground truth tensor X ? ∈ Rn1×n2×n3 with multilinear rank r = (r1, r2, r3) admits the
following Tucker decomposition

X ? =
(
U

(1)
? ,U

(2)
? ,U

(3)
?

)
· G?, (8)

where U
(1)
? ∈ Rn1×r1 , U (2)

? ∈ Rn2×r2 , U (3)
? ∈ Rn3×r3 are the factor matrices along each mode, and G? ∈

Rr1×r2×r3 is the core tensor. The Tucker decomposition is not unique since for anyQ(k) ∈ GL(rk), k = 1, 2, 3,
in view of (3), we have (

U (1),U (2),U (3)
)
· G =

(
U (1)Q(1),U (2)Q(2),U (3)Q(3)

)
· GQ

where GQ =
(
(Q(1))−1, (Q(2))−1, (Q(3))−1

)
· G. Without loss of generality, to address ambiguity, we set the

ground truth F? = (U
(1)
? ,U

(2)
? ,U

(3)
? ,G?) to satisfy that for each mode, U (k)

? ∈ Rnk×rk to have orthonormal
columns, and

Mk (G?)Mk (G?)> =
(
Σ

(k)
?

)2
, (9)

the squared singular value matrix Σ
(k)
? of Mk (X ?). This can be easily met, for example, by taking the

tensor factors F? as the HOSVD of X ?.

Observation model and goal. Suppose that we collect a set of corrupted observations of X ? as

Y = X ? + S?, (10)

where S? is the corruption tensor. The problem of tensor RPCA seeks to separate X ? and S? from their
sum Y as efficiently and accurately as possible.

Key quantities. Obviously, the tensor RPCA problem is ill-posed without imposing additional constraints
on the low-rank tensor X ? and the corruption tensor S?, which are crucial in determining the performance
of the proposed algorithm. We first introduce the incoherence parameter of the tensor X ?.

Definition 1 (Incoherence). The incoherence parameter µ of X ? is defined as

µ := max
k

{
nk
rk

∥∥∥U (k)
?

∥∥∥2

2,∞

}
, (11)

where X ? =
(
U

(1)
? ,U

(2)
? ,U

(3)
?

)
· G? is its Tucker decomposition.

The incoherence parameter roughly measures how spread the energy of X ? is over its entries—the energy
is more spread as µ gets smaller. Moreover, we define a new notion of condition number that measures the
conditioning of the ground truth tensor X ? as follows, which is weaker than previously used notions.

Definition 2 (Condition number). The condition number κ of X ? is defined as

κ :=
mink σmax(Mk (X ?))

mink σmin(Mk (X ?))
. (12)

6



With slight abuse of terminology, denote

σmin(X ?) = min
k
σmin(Mk(X ?)) (13)

as the minimum nonzero singular value of X ?.
Remark 1. The above-defined condition number can be much smaller than the worst-case condition number
κs used in prior analyses [TMPB+22,CLX21,HWZ20], which is defined as

κs :=
maxk σmax(Mk (X ?))

mink σmin(Mk (X ?))
≥ mink σmax(Mk (X ?))

mink σmin(Mk (X ?))
= κ. (14)

Furthermore, the condition number κ is also upper bounded by the largest condition number of the matri-
cization along different modes, i.e., κ ≤ maxk κk = maxk

σmax(Mk(X?))
σmin(Mk(X?)) .

Turning to the corruption tensor, we consider a deterministic sparsity model following the matrix
case [CSPW11,NNS+14,YPCC16], where S? contains at most a small fraction of nonzero entries per fiber.
This is captured in the following definition.

Definition 3 (α-fraction sparsity). The corruption tensor S? is α-fraction sparse, i.e., S? ∈ Sα, where

Sα :=
{
S ∈ Rn1×n2×n3 : ‖Si1,i2,:‖0 ≤ αn3, ‖Si1,:,i3‖0 ≤ αn2, ‖S :,i2,i3‖0 ≤ αn1,

for all 1 ≤ ik ≤ nk, k = 1, 2, 3
}
. (15)

With this setup in hand, we are now ready to describe the proposed algorithm.

2.2 Proposed algorithm
Our algorithm alternates between corruption removal and factor refinements. To remove the corruption, we
use the following soft-shrinkage operator that trims the magnitudes of the entries by the amount of some
carefully pre-set threshold.

Definition 4 (Soft-shrinkage operator). For an order-3 tensor X , the soft-shrinkage operator Tζ (·) :
Rn1×n2×n3 7→ Rn1×n2×n3 with threshold ζ > 0 is defined as[

Tζ (X )
]
i1,i2,i3

:= sgn
(
[X ]i1,i2,i3

)
· max

(
0,
∣∣[X ]i1,i2,i3

∣∣− ζ).
The soft-shrinkage operator Tζ () sets entries with magnitudes smaller than ζ to 0, while uniformly

shrinking the magnitudes of the other entries by ζ. At the beginning of each iteration, the corruption tensor
is updated via

St+1 = Tζt+1

(
Y −

(
U

(1)
t ,U

(2)
t ,U

(3)
t

)
· Gt
)
, (16a)

with the schedule ζt to be specified shortly. With the newly updated estimate of the corruption tensor, the
tensor factors are then updated by scaled gradient descent [TMPB+22], for which they they are computed
according to (2b) with respect to L(Ft,St+1) in (1):

U
(k)
t+1 = U

(k)
t − η∇

U
(k)
t
L(Ft,St+1)

(
Ŭ

(k)>
t Ŭ

(k)
t

)−1

= (1− η)U
(k)
t − η

(
Mk (St+1)−Mk (Y)

)
Ŭ

(k)
t

(
Ŭ

(k)>
t Ŭ

(k)
t

)−1 (16b)

for k = 1, 2, 3 and

Gt+1 = Gt − η
((

U
(1)>
t U

(1)
t

)−1
,
(
U

(2)>
t U

(2)
t

)−1
,
(
U

(3)>
t U

(3)
t

)−1
)
·∇Gt

L(Ft,St+1)

= (1− η)Gt − η
((

U
(1)>
t U

(1)
t

)−1
U

(1)>
t ,

(
U

(2)>
t U

(2)
t

)−1
U

(2)>
t ,

(
U

(3)>
t U

(3)
t

)−1
U

(3)>
t

)
· (St+1 −Y) .

(16c)
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Algorithm 1 ScaledGD for tensor robust principal component analysis

Input: the observed tensor Y , the multilinear rank r, learning rate η, and threshold schedule {ζt}Tt=0.
Initialization: S0 = Tζ0 (Y) and

(
U

(1)
0 ,U

(2)
0 ,U

(3)
0 ,G0

)
= Hr (Y − S0).

for t = 0, 1, . . . , T − 1 do
Update the corruption tensor St+1 via (16a);
Update the tensor factors Ft+1 =

(
U

(1)
t+1,U

(2)
t+1,U

(3)
t+1,Gt+1

)
via (16b) and (16c);

end for
Output: the tensor factors FT =

(
U

(1)
T ,U

(2)
T ,U

(3)
T ,GT

)
.

Here, η > 0 is the learning rate, and

Ŭ
(1)
t :=

(
U

(3)
t ⊗U

(2)
t

)
M1 (Gt)> , Ŭ

(2)
t :=

(
U

(3)
t ⊗U

(1)
t

)
M2 (Gt)> , and Ŭ

(3)
t :=

(
U

(2)
t ⊗U

(1)
t

)
M3 (Gt)> .

To complete the algorithm description, we still need to specify how to initialize the algorithm. We will
estimate the tensor factors via the spectral method, by computing the HOSVD of the observation after
applying the soft-shrinkage operator:(

U
(1)
0 ,U

(2)
0 ,U

(3)
0 ,G0

)
= Hr (Y − S0) , where S0 = Tζ0 (Y) .

Altogether, we arrive at Algorithm 1, which we still dub as ScaledGD for simplicity.

Computational benefits. It is worth highlighting that the proposed tensor RPCA algorithm possesses
several computational benefits which might be of interest in applications.

• Advantages over matrix RPCA algorithms. While it is possible to matricize the input tensor and then
apply the matrix RPCA algorithms, they can only exploit the low-rank structure along the mode
that the tensor is unfolded, rather than along multiple rows simultaneously as in the tensor RPCA
algorithm. In addition, the space complexity of storing and computing the factors is much higher for
the matrix RPCA algorithms, where the size of the factors become multiplicative in terms of the tensor
dimensions due to unfolding, rather than linear as in the tensor RPCA algorithm.

• Generalization to N -th order tensors. Although the description of Algorithm 1 is tailored to an order-
3 tensor, our algorithm is easily generalizable to any N -th order tensor; in fact, Algorithm 1 can be
applied almost verbatim by redefining

Ŭ
(k)
t =

(
U

(N)
t ⊗ · · · ⊗U

(k+1)
t ⊗U

(k−1)
t ⊗ · · · ⊗U

(1)
t

)
Mk (Gt)> , k = 1, . . . , N

to its natural high-order counterpart. This extension is numerically evaluated in our experiments in
Section 4.

• Parallelizability. At each iteration of the proposed algorithm, each tensor factor is updated indepen-
dently as done in (16b) and (16c), therefore we can update them in a parallel manner. This improvement
becomes more apparent as the order of the tensor increases.

• Selective modes to update: If we know the underlying ground truth tensor is only low-rank along certain
mode, we can choose to skip the iterative updates of the rest of the modes after initialization to reduce
computational costs, which we demonstrate empirically in Section 4.3.

2.3 Performance guarantees
Motivated by the analysis in [TMPB+22], we consider the following distance metric, which not only resolves
the ambiguity in the Tucker decomposition, but also takes the preconditioning factor into consideration.
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Definition 5 (Distance metric). Letting F :=
(
U (1),U (2),U (3),G

)
and F? :=

(
U

(1)
? ,U

(2)
? ,U

(3)
? ,G?

)
, denote

dist2(F ,F?) := inf
Q(k)∈GL(rk)

3∑
k=1

∥∥∥(U (k)Q(k) −U
(k)
?

)
Σ

(k)
?

∥∥∥2

F
+
∥∥∥((Q(1))−1, (Q(2))−1, (Q(3))−1

)
· G − G?

∥∥∥2

F
,

(17)
where we recall Σ

(k)
? is the singular value matrix of Mk (X ?), k = 1, 2, 3. Moreover, if the infimum is

attained at the arguments {Q(k)}3k=1, they are called the optimal alignment matrices between F and F?.

Fortunately, the proposed ScaledGD algorithm (cf. Algorithm 1) provably recovers the ground truth
tensor—as long as the fraction of corruptions is not too large—with proper choices of the tuning parameters,
as captured in following theorem.

Theorem 1. Let Y = X ?+S? ∈ Rn1×n2×n3 , where X ? is µ-incoherent with multilinear rank r = (r1, r2, r3),
and S? is α-sparse. Suppose that the threshold values {ζk}∞k=0 obey that ‖X ?‖∞ ≤ ζ0 ≤ 2 ‖X ?‖∞ and

ζt+1 = ρζt, t ≥ 1, for some properly tuned ζ1 := 8
√

µ3r1r2r3
n1n2n3

σmin(X ?) and 1
7 ≤ η ≤ 1

4 , where ρ = 1− 0.45η.

Then, the iterates X t =
(
U

(1)
t ,U

(2)
t ,U

(3)
t

)
· Gt satisfy

‖X t −X ?‖F ≤ 0.03ρtσmin(X ?), (18a)

‖X t −X ?‖∞ ≤ 8ρt

√
µ3r1r2r3

n1n2n3
σmin(X ?), (18b)

‖St − S?‖∞ ≤ 16ρt−1

√
µ3r1r2r3

n1n2n3
σmin(X ?) (18c)

for all t ≥ 0, as long as the level of corruptions obeys α ≤ c0
µ2r1r2r3κ

for some sufficiently small c0 > 0.

The value of ρ was selected to simplify the proof and should not be taken as an optimal convergence rate.
In a nutshell, Theorem 1 has the following immediate consequences:

• Exact recovery. Upon appropriate choices of the parameters, if the level of corruptions α is small
enough, i.e. not exceeding the order of 1

µ2r1r2r3κ
, we can ensure that the proposed Algorithm 1 exactly

recovers the ground truth tensor X ? even when the gross corruptions are arbitrary and adversarial.
As mentioned earlier, our result significantly enlarges the range of allowable corruption levels for
exact recovery when the outliers are evenly distributed across the fibers, compared with the prior art
established in [CLX21].

• Constant linear rate of convergence. The proposed ScaledGD algorithm (cf. Algorithm 1) finds
the ground truth tensor at a constant linear rate, which is independent of the condition number, from
a carefully designed spectral initialization. Consequently, the proposed ScaledGD algorithm inherits
the computational robustness against ill-conditioning as [TMPB+22], even in the presence of gross
outliers, as long as the thresholding operations are properly carried out.

• Refined entrywise error guarantees. Furthermore, when µ = O(1) and r = O(1), the entrywise
error bound (18b)—which is smaller than the Frobenius error (18a) by a factor of

√
1

n1n2n3
—suggests

the errors are distributed in an evenly manner across the entries for incoherent and low-rank tensors.
The same applies to the entrywise error bound of the sparse tensor (18c) which exhibits similar behavior
as (18b). To the best of our knowledge, this is the first time such a refined entrywise error analysis is
established for tensor RPCA.

3 Outline of the analysis
In this section, we outline the proof of Theorem 1. The proof is inductive in nature, where we aim to establish
the following induction hypothesis at all the iterations:

dist(Ft,F?) ≤ ε0ρtσmin(X ?), (19a)

9



max
k

{√
nk
rk

∥∥∥(U
(k)
t Q

(k)
t −U

(k)
? )Σ

(k)
?

∥∥∥
2,∞

}
≤ ρt√µσmin(X ?), (19b)

where ρ = 1− 0.45η, ε0 < 0.01 is some sufficiently small constant, and {Q(k)
t }3k=1 are the optimal alignment

matrices between Ft and F?. The claims (18) in Theorem 1 follow immediately with the aid of Lemma 10
and Lemma 8 (see Appendix E). The following set of lemmas, whose proofs are deferred to Appendix A,
establishes the induction hypothesis (19) for both the induction case and the base case.

Induction: local contraction. We start by outlining the local contraction of the proposed Algorithm 1,
by establishing the induction hypothesis (19) continues to hold at the (t+ 1)-th iteration, assuming it holds
at the t-th iteration, as long as the corruption level is not too large.

Lemma 1 (Distance contraction). Let Y = X ?+S? ∈ Rn1×n2×n3 , where X ? is µ-incoherent with multilinear
rank r = (r1, r2, r3), and S? is α-sparse. Let Ft :=

(
U

(1)
t ,U

(2)
t ,U

(3)
t ,Gt

)
be the t-th iterate of Algorithm 1.

Suppose that the induction hypothesis (19) holds at the t-th iteration. Under the assumption α ≤ c0ε0√
µ3r1r2r3r

for some sufficiently small constant c0 and the choice of ζt+1 in Theorem 1, the (t+1)-th iterate Ft+1 satisfies

dist(Ft+1,F?) ≤ ε0ρt+1σmin(X ?)

as long as η ≤ 1/4.

While Lemma 1 guarantees the contraction of the distance metric, the next Lemma 2 establishes the
contraction of the incoherence metric, so that we can repeatedly apply Lemma 1 and Lemma 2 for induction.

Lemma 2 (Incoherence contraction). Let Y = X ? + S? ∈ Rn1×n2×n3 , where X ? is µ-incoherent with
multilinear rank r = (r1, r2, r3), and S? is α-sparse. Let Ft :=

(
U

(1)
t ,U

(2)
t ,U

(3)
t ,Gt

)
be the t-th iterate of

Algorithm 1. Suppose that the induction hypothesis (19) holds at the t-th iteration. Under the assumption
that α ≤ c1

µ2r1r2r3
for some sufficiently small constant c1 and the choice of ζt+1 in Theorem 1, the (t+ 1)-th

iterate Ft+1 satisfies

max
k

{√
nk
rk

∥∥∥(U (k)
t+1Q

(k)
t+1 −U

(k)
?

)
Σ

(k)
?

∥∥∥
2,∞

}
≤ ρt+1√µσmin(X ?)

as long as 1/7 ≤ η ≤ 1/4, where {Q(k)
t }3k=1 are the optimal alignment matrices between Ft and F?.

It is worthwhile to note that, the local linear convergence of the proposed Algorithm 1, as ensured by
the above two lemmas collectively, require the corruption level to not exceed the order of 1

µ2r1r2r3
, which is

also independent of the condition number. Indeed, the range of the corruption level is mainly constrained
by the spectral initialization, as demonstrated next.

Base case: spectral initialization. To establish the induction hypothesis, we still need to check the
spectral initialization. The following lemmas state that the spectral initialization satisfies the induction
hypothesis (19) at the base case t = 0, allowing us to invoke local contraction.

Lemma 3 (Distance at initialization). Let Y = X ? +S? ∈ Rn1×n2×n3 , where X ? is µ-incoherent with rank
r = (r1, r2, r3), and S? is α-sparse. Let F0 :=

(
U

(1)
0 ,U

(2)
0 ,U

(3)
0 ,G0

)
be the output of spectral initialization

with the threshold obeying ‖X ?‖∞ ≤ ζ0 ≤ 2 ‖X ?‖∞. If α ≤ c0√
µ3r1r2r3rκ

for some constant c0 > 0, we have

dist(F0,F?) ≤ 54.1c0σmin(X ?).

Lastly, the next lemma ensures that our initialization satisfies the incoherence condition, which requires
nontrivial efforts to exploit the algebraic structures of the Tucker decomposition.

Lemma 4 (Incoherence at initialization). Let Y = X ? + S? ∈ Rn1×n2×n3 , where X ? is µ-incoherent
with rank r = (r1, r2, r3), and S? is α-sparse. Let F0 := (U

(1)
0 ,U

(2)
0 ,U

(3)
0 ,G0) be the output of spectral
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initialization with the threshold obeying ‖X ?‖∞ ≤ ζ0 ≤ 2 ‖X ?‖∞. If α ≤ c0
µ2r1r2r3κ

for some sufficiently
small constant c0, then the spectral initialization satisfies the incoherence condition

max
k

{√
nk
rk

∥∥∥(U (k)
0 Q

(k)
0 −U

(k)
?

)
Σ

(k)
?

∥∥∥
2,∞

}
≤ √µσmin(X ?),

where {Q(k)
0 }3k=1 are the optimal alignment matrices between F0 and F?.

4 Numerical experiments

4.1 Experiments on synthetic data
We begin with evaluating the phase transition performance of ScaledGD (cf. Algorithm 1) with respect
to the multilinear rank and the level of corruption. For each κ, we randomly generate an n × n × n
tensor, with n = 100, multilinear rank r = (r, r, r), r ∈ {2, 5, 10, 20, . . . , 80}, and level of corruption
α ∈ {0.1, 0.2, . . . , 0.9, 1}. The factor matrices are generated uniformly at random with orthonormal columns,
and a diagonal core tensor G? is generated such that [G?]i,i,i = κ−(i−1)/(r−1) for i = 1, 2, . . . , r. We fur-
ther randomly corrupt α-fraction of the entries, by adding uniformly sampled numbers from the range
[−
∑
i,j,k |[X ?]i,j,k|/n3,

∑
i,j,k |[X ?]i,j,k|/n3] to the selected entries, where

∑
i,j,k |[X ?]i,j,k|/n3 is the mean of

the entry-wise magnitudes of X ?. To tune the constant step size η, and the hyperparameters ζ0, ζ1, and the
decay rate ρ of the thresholding parameter for each tensor automatically, we used the Bayesian optimization
method described in [ASY+19]. Specifically, we run the toolbox [ASY+19] for 200 trials or until the tuned
parameters satisfy ‖XT−X?‖F

‖X?‖F
< 10−6 for T = 200, whichever happened first.

Figure 1 shows the log median of the relative reconstruction error ‖XT−X?‖F
‖X?‖F

when T = 200, over 20
random tensor realizations for κ = 1, 5, 10. Our results show a distinct negative linear relationship between
the corruption level and the multilinear rank with regards to the final relative loss of ScaledGD. In particular,
the performance is almost independent of the condition number κ, suggesting the performance of ScaledGD
is indeed quite insensitive to the condition number.
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0.2
0.3
0.4
0.5
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0.7
0.8
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1
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sit

y
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κ=  5
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log10 med [||X−X ⋆ ||F
||X ⋆ ||F ]

Figure 1: Log median of the relative reconstruction error of ‖XT−X?‖F
‖X?‖F

across 20 randomly generated tensors
with varying ranks and levels of corruption when the condition number is set as κ = 1, 5, 10.

We further investigate the effect of the decay rate ρ of the thresholding parameters while fixing the other
hyperparameters tuned as earlier. Using the same method, we generate a 100× 100× 100 tensor with κ = 5
and 20% of the entries corrupted. Figure 2 shows the relative reconstruction error versus the iteration count
using different decay rates ρ. It can be seen that ScaledGD enables exact recovery over a wide range of ρ as
long as it is not too small. Moreover, within the range of decay rates that still admits exact recovery, the
smaller ρ is, the faster ScaledGD converges. Note that the tuned decay rate ρ ≈ 0.931 does not achieve the
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fastest convergence rate since the stopping criteria for hyperparameter tuning were not set to optimize the
convergence rate but some accuracy-speed trade-off.
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Figure 2: The relative reconstruction error ‖XT−X?‖F
‖X?‖F

with respect to the iteration count, when varying the
decay rate ρ with other hyperparameters fixed.

Next, we also examine the performance of ScaledGD with shot noise, corruptions drawn from a Poisson
distribution, with comparisons to the Riemannian gradient descent (RiemannianGD) algorithm in [CLX21].
More specifically, if corrupted, a ground truth entry X i,j,k has noise drawn from 10−5Poisson(105|X i,j,k|)
added to itself, where the 105 scaling is to encourage draws that are nonzero. This type of noise is non-
negative and perturbs higher magnitude entries more. Note that the per-iteration cost of RiemannianGD is
significantly higher than ours, due to the fact that it requires an evaluation of a rank-r HOSVD. Therefore,
for this experiment, we generate tensors of a smaller size 50×50×50 to accommodate the high computation
need of RiemannianGD. We similarly tune the hyperparameters of RiemannianGD using the same method
mentioned earlier for 100 trials. Figure 3 shows the log median of the relative reconstruction error ‖XT−X?‖F

‖X?‖F
when T = 100, over 20 random tensor realizations when κ = 5. It can be observed that the empirical per-
formance of the two methods, indicated by the phase transition curves, are similar when tuned properly.
However, the ScaledGD method is considerably faster, the difference of which is accentuated for larger and
lower rank tensors, due to the fact that it works in the factor space and does not need to perform rank-r
HOSVD at every iteration.

4.2 Image denoising and outlier detection
In this experiment, we examine the performance of ScaledGD for imaging denoising and outlier detection,
with comparisons to the tensor RPCA algorithm proposed in [LFC+19] called TNN for their use of a newly
defined tensor nuclear norm (TNN). We consider a sequence of handwritten digits “2” from the MNIST
database [LCB10] containing 5958 images of size 28×28, leading to a 3-way tensor. We assume the tensor is
low-rank along the image sequence, but not within the image for simplicity; in other words, the multilinear
rank is assumed as r = (5, 28, 28). For both algorithms, the hyperparameters are best tuned by hands.

We examine the performance of ScaledGD and TNN when the image sequence is contaminated in the
following scenarios: 1) 70% salt and pepper noise; 2) 500 out of the total images are randomly selected and
swapped by random images from the entire MNIST training set; and 3) 50% salt and pepper noise and 500
randomly swapped images. Figure 4 demonstrates the performance of the compared algorithms on the first
100 instances for each corruption scenario. In all situations, ScaledGD recovers the low-rank component cor-
responding to the correct digit more accurately than TNN from a visual inspection. Furthermore, ScaledGD
corrected the oddly-shaped or outlying digits to make the low-rank component be more homogeneous, but
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Figure 3: Comparison between RiemannianGD [CLX21] and ScaledGD on the log median of the relative
recovery error, ‖X?−XT ‖F

‖X?‖F
, across 20 randomly generated tensors with varying ranks and levels of shot noise

corruption when the condition number is set as κ = 5.

TNN mostly preserved these cases in the low-rank output. More importantly, ScaledGD runs much faster as
a scalable nonconvex approach, while TNN is more computationally expensive using convex optimization.

4.3 Background subtraction via selective mode update
We now apply ScaledGD to the task of background subtraction using videos from the VIRAT dataset
[OHP+11], where the height and width of the videos are reduced by a factor of 4 due to hardware limitations.
The video data can be thought as a multi-way tensor spanning across the height, width, frames, as well as
different color channels of the scene. Here, the low-rank tensor corresponds to the background in the
video which is fairly static over the frames, and the sparse tensor corresponds to the foreground containing
moving objects which takes a small number of pixels. In particular, it is reasonable to assume that the
background tensor is low-rank for the mode corresponding to the frames, but full rank in other modes.
Motivated by this observation, one might be tempted to selectively only update the core tensor and the factor
matrix corresponding to the mode for frames while keeping the other factor matrices fixed after the spectral
initialization. We compare the results using this selective mode update strategy with the original ScaledGD
algorithm in Figure 5, where the same hyperparameters are used in both. It can be seen that skipping
updates of the full-rank factor matrices produced qualitatively similar results while gaining a significant
per-iteration speed-up of about 4.6 to 5 times. We expect the speed improvement to be greater for larger
tensors, as more computation can be bypassed.

5 Conclusions
In this paper, we proposed a new algorithm for tensor RPCA, which applies scaled gradient descent with
an iteration-varying thresholding operation to adaptively remove the impact of corruptions. The algorithm
is demonstrated to be fast, provably accurate, and achieve competitive performance over real-world applica-
tions. It opens several interesting directions for future research.

• Dependency with the condition number from spectral initialization. As seen from the analysis, the local
linear convergence of Algorithm 1 succeeds under a larger range of the sparsity level α independent of
the condition number κ. The constraint on α with respect to the condition number κ mainly stems
from the spectral initialization, and it is of great interest to see if it is possible to refine the analysis in
terms of the dependency with κ, which likely will require new tools.
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(a) (b) (c) (d) (e)

Figure 4: Imaging denoising and outlier removal on an image sequence of handwritten digits with various
corruption scenarios, using tensor RPCA via ScaledGD and TNN [LFC+19]. From top to bottom, the rows
show results on the first 100 images when 1) corrupted with 70% salt and pepper noise; 2) 500 randomly
swapped images; and 3) 50% salt and pepper noise and 500 randomly swapped images. From left to right,
the columns show (a) the corrupted input, (b) the low-rank output of ScaledGD, (c) the low-rank output of
TNN, (d) the sparse output of ScaledGD, and (e) the sparse output of TNN.

• Missing data. An important extension is to handle missing data in tensor RPCA, which seeks to
recover a low-rank ground truth tensor from its partially observed entries possibly corrupted by gross
errors. Our proposed algorithm can be adapted to this case in a straightforward fashion by considering
the loss function defined only over the observed entries, and understanding its performance guarantees
is a natural step.

• Streaming data. An equally interesting direction is to perform tensor RPCA over online and streaming
data, where the fibers or slices of the tensor arrive sequentially over time, a situation that is common
in data analytics [BCL18,VN18]. It is of great interest to develop low-complexity algorithms that can
estimate and track the low-rank tensor factors as quickly as possible.

• Hyperparameters. The proposed algorithm contains several hyperparameters that need to be tuned
carefully to fully unleash its potential. A recent follow-up [DSDC22] examined a learned approach
based on algorithm unfolding and self-supervised learning to enable automatic hyperparameter tuning.
In addition, understanding the performance when the rank is only imperfectly specified is also of great
importance, which is closely related to [XSCM23].
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A Proof of Lemma 1
Since dist(Ft,F?) < σmin(X ?), [TMPB+22, Lemma 6] ensures that the optimal alignment matrices

{
Q

(k)
t

}3

k=1

between Ft and F? exist. Since
{
Q

(k)
t

}3

k=1
may be a suboptimal alignment between Ft+1 and F?, we therefore

have

dist2(Ft+1,F?) ≤
3∑
k=1
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)
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t )−1, (Q
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· Gt+1 − G?

∥∥∥2

F
. (20)

Before we embark on the control of the terms on the right hand side of (20), we introduce the following
short-hand notations:

U (k) := U
(k)
t Q

(k)
t , Ŭ (k) := Ŭ

(k)
t (Q

(k)
t )−>, S := St+1,

∆U(k) := U (k) −U
(k)
? , ∆Ŭ(k) := Ŭ (k) − Ŭ

(k)
? , ∆S := S − S?, (21)

G :=
(
(Q

(1)
t )−1, (Q

(2)
t )−1, (Q

(3)
t )−1

)
· Gt, ∆G := G − G?.

In addition, Lemma 10 in conjunction with the induction hypothesis (19) tells us that

‖X t −X ?‖∞ ≤ 8

√
µ3r1r2r3

n1n2n3
ρtσmin(X ?) =: ζt+1. (22)

Step 1: bounding the first term of (20). Using the update rule (16b) for U (k)
t+1, we have(
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where the second equality follows from Y = X ? + S? as well as the matricization property (4). With the
set of notation (21) in place, simple algebraic simplifications yield(
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Detailed in Appendix A.1, we claim the following bound holds:
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Step 2: bounding the second term of (20). Using the update rule (16c) for Gt+1, we have(
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where the last two lines make use of the short-hand notation in (21), as well as the multilinear property (3).
Detailed in Appendix A.2, we claim the following bound holds:∥∥∥((Q(1)
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Step 3: putting the bounds together. Plugging the bounds (24) and (26) into (20) yields
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where (i) follows from the definition of dist2(Ft,F?) and Cauchy-Schwarz, and (ii) follows from the induction
hypothesis dist(Ft,F?) ≤ ε0ρ

tσmin(X ?). For 0 < η ≤ 1/4 and ρ = 1 − 0.45η, this simplifies to the claimed
bound
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A.1 Proof of (24)
Taking the squared norm on both sides of (23), we obtain∥∥∥(U
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(
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Ŭ(k)Ŭ
(k)
(
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In the sequel, we shall bound each term separately.

• Bounding A1,k. Since the quantity inside the norm is of rank rk, we have
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Ŭ (k)>Ŭ (k)
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where the last inequality follows from Lemma 8 (cf. (70c)). To continue, notice that the choice of ζt+1

(cf. (22)) guarantees that ∆S (and hence Mk (∆S)) is α-sparse (cf. Lemma 12). This allows us to
invoke Lemma 11 and obtain
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√
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Plugging this into the previous inequality, we arrive at
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where the second inequality follows from the choice of ζt+1 (cf. (22)). Finally, with the assumption on
the sparsity level α ≤ c0ε0√
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, we have
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for sufficiently small c0 and ε0 < 0.01.

• Bounding A2,k. This term is identical to the term that is bounded in [TMPB+22, Section B.1], which
obeys
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As long as the choice of ε0 is small enough such that C1ε0ρ
t ≤ C1ε0 < 0.01, the induction hypothesis

(19a) tells us that.
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• Bounding A3. This term is identical to the term that is bounded in [TMPB+22, Section B.2], which
obeys
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• Bounding A4,k. To control |A4,k|, we apply the definition of the matrix inner product to rewrite it as
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Ŭ (k)>Ŭ (k)
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where the second line follows from Hölder’s inequality, and the third line follows from the bound of
‖Mk (∆S)‖ from (30). To bound the remaining term, we have∥∥∥Ŭ (k)
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Ŭ (k)>Ŭ (k)

)−1(
Σ

(k)
?

)2
∆>U(k)

∥∥∥
F

≤
√
rk

∥∥∥Ŭ (k)
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where the last line follows from Lemma 8 (cf. (70c)). Plugging this into the previous inequality, we
reach
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where the second inequality follows from the choice of ζt+1 (cf. (22)). Finally, with the assumption on
the sparsity level α ≤ c0ε0√

µ3r1r2r3r
for sufficiently small c0 and ε0 < 0.01, we have
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• Bounding A5,k. Similar to A4,k, we first apply the definition of the matrix inner product and then
Hölder’s inequality, leading to

|A5,k| =
∣∣∣tr(Mk (∆S) Ŭ (k)
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where the last line follows from (30), as well as the norm relation ‖A‖∗ ≤
√
rk‖A‖F for a matrix of

rank at most rk. To continue, noting that U (k)
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(2)
?

∥∥∥
F

+
∥∥∥∆U(3)Σ

(3)
?

∥∥∥
F

+ ‖∆G‖F
)
≤

2
(
1 + ε0 + ε20/3

)
(1− ε0)6

dist(Ft,F?),

where the penultimate line follows from Lemma 8 (cf. (70c) and (70e)), and the last line follows from
Cauchy-Schwarz inequality. Plug this into the previous bound to arrive at

|A5,k| ≤
4ζt+1α

√
n1n2n3rk

(
1 + ε0 + ε20/3

)
(1− ε0)6

dist(Ft,F?) ≤
32α

√
µ3r1r2r3rk

(
1 + ε0 + ε20/3

)
(1− ε0)6

ε0ρ
2tσ2

min(X ?),

where we have used dist(Ft,F?) ≤ ε0ρ
tσmin(X ?) and the choice of ζt+1 (cf. (22)). Finally, with the

assumption on the sparsity level α ≤ c0ε0√
µ3r1r2r3r

for sufficiently small c0 and ε0 < 0.01, we have

|A5,k| ≤
32c0

(
1 + ε0 + ε20/3

)
(1− ε0)6

ε20ρ
2tσ2

min(X ?) ≤ 0.3ε20ρ
2tσ2

min(X ?). (35)

Putting things together. Summing (29) over all k, we obtain

3∑
k=1

∥∥∥(U
(k)
t+1Q

(k)
t −U

(k)
? )Σ

(k)
?

∥∥∥2

F

= (1− η)2
3∑
k=1

∥∥∥∆U(k)Σ
(k)
?

∥∥∥2

F
+ η2

3∑
k=1

(A1,k + A3,k + 2A5,k)− 2η(1− η)

3∑
k=1

(A2,k + A4,k).

Plugging in our bounds in (31)-(35), we have

3∑
k=1

∥∥∥(U
(k)
t+1Q

(k)
t −U

(k)
? )Σ

(k)
?

∥∥∥2

F
≤ (1− η)2

3∑
k=1

∥∥∥∆U(k)Σ
(k)
?

∥∥∥2

F

+ 2η2ε20ρ
2tσ2

min(X ?)− 2η(1− η)
∥∥∥K(1) +K(2) +K(3)

∥∥∥2

F
+ 0.06η(1− η)ε20ρ

2tσ2
min(X ?)

+ 3η2
∥∥∥K(1) +K(2) +K(3)

∥∥∥2

F
+ 0.15η(1− η)

3∑
k=1

∥∥∥∆U(k)Σ
(k)
?

∥∥∥
F
ε0ρ

tσmin(X ?).

Note that when 0 < η < 2/5,

−2η(1− η)
∥∥∥K(1) +K(2) +K(3)

∥∥∥2

F
+ 3η2

∥∥∥K(1) +K(2) +K(3)
∥∥∥2

F
= −η(2− 5η)

∥∥∥K(1) +K(2) +K(3)
∥∥∥2

F
< 0.

Therefore, the previous bound can be simplified to

3∑
k=1

∥∥∥(U
(k)
t+1Q

(k)
t −U

(k)
? )Σ

(k)
?

∥∥∥2

F
≤ (1− η)2

3∑
k=1

∥∥∥∆U(k)Σ
(k)
?

∥∥∥2

F
+ 0.15η(1− η)

3∑
k=1

∥∥∥∆U(k)Σ
(k)
?

∥∥∥
F
ε0ρ

tσmin(X ?)

+ 2η2ε20ρ
2tσ2

min(X ?) + 0.06η(1− η)ε20ρ
2tσ2

min(X ?).

A.2 Proof of (26)
Taking the squared Frobenius norm of (25), it follows∥∥∥((Q(1)

t )−1, (Q
(2)
t )−1, (Q

(3)
t )−1

)
· Gt+1 − G?

∥∥∥2

F
= (1− η)2 ‖∆G‖2F − 2η(1− η)B1 + η2B2, (36)

where

B1 =
〈
∆G ,

((
U (1)>U (1)

)−1
U (1)>, . . . ,

(
U (3)>U (3)

)−1
U (3)>

)
·
((

U (1),U (2),U (3)
)
· G? −X ? + ∆S

)〉
,

B2 =
∥∥∥((U (1)>U (1)

)−1
U (1)>, . . . ,

(
U (3)>U (3)

)−1
U (3)>

)
·
((

U (1),U (2),U (3)
)
· G? −X ? + ∆S

)∥∥∥2

F
.

We will now bound B1 and B2 separately.
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Bounding B1. We start by breaking up the inner product into

B1 =
〈
∆G ,

((
U (1)>U (1)

)−1
U (1)>, . . . , (U (3)>U (3))−1U (3)>

)
·
((

U (1),U (2),U (3)
)
· G? −X ?

)〉
︸ ︷︷ ︸

=:B1,1

+
〈
∆G ,

((
U (1)>U (1)

)−1
U (1)>, . . . ,

(
U (3)>U (3)

)−1
U (3)>

)
·∆S

〉
︸ ︷︷ ︸

=:B1,2

.

Note that B1,1 is identical to the term that is bounded in [TMPB+22, Section B.3], which obeys

B1,1 ≥
3∑
k=1

∥∥∥D(k)
∥∥∥2

F
− C1ε0ρ

t dist2(Ft,F?) ≥
3∑
k=1

∥∥∥D(k)
∥∥∥2

F
− 0.01ε20ρ

2tσ2
min(X ?), (37)

where we have used the induction hypothesis (19a) and C1ε0ρ
t ≤ C1ε0 < 0.01 as long as ε0 is small enough.

Here,
D(k) =

(
U (k)>U (k)

)−1/2
U (k)>∆U(k)Σ

(k)
? , k = 1, 2, 3.

Turning to B1,2, since the inner product is invariant to matricization, we flatten the tensor along the
first mode to bound it as

|B1,2| =
∣∣∣∣〈M1 (∆G) ,

(
U (1)>U (1)

)−1
U (1)>M1 (∆S)

(
(U (3)>U (3))−1(U (3))> ⊗

(
U (2)>U (2)

)−1
U (2)>

)>〉∣∣∣∣
≤ ‖M1 (∆G)‖∗

∥∥∥∥(U (1)>U (1)
)−1

U (1)>M1 (∆S)
((

U (3)>U (3)
)−1

U (3)> ⊗
(
U (2)>U (2)

)−1
U (2)>

)>∥∥∥∥
≤
√
r1 ‖∆G‖F

3∏
k=1

∥∥∥U (k)
(
U (k)>U (k)

)−1
∥∥∥ ‖M1 (∆S)‖ ,

where the second line uses Hölder’s inequality, and the last line uses ‖M1 (∆G)‖∗ ≤
√
r1 ‖∆G‖F with the

fact thatM1 (∆G) is of rank r1. To continue, invoke Lemma 8 (cf. (70b)) as well as (30) to further obtain

|B1,2| ≤
2ζt+1α

√
n1n2n3r1

(1− ε0)3
‖∆G‖F =

16α
√
µ3r2

1r2r3

(1− ε0)3
ρtσmin(X ?) ‖∆G‖F ,

where the second equality follows from the choice of ζt+1 (cf. (22)). Finally, with the assumption on the
sparsity level α ≤ c0ε0√

µ3r1r2r3r
for sufficiently small c0 and ε0 < 0.01, we have

|B1,2| ≤
16c0

(1− ε0)3
‖∆G‖F ε0ρ

tσmin(X ?) ≤ 0.15 ‖∆G‖F ε0ρ
tσmin(X ?). (38)

Put (37) and (38) together to see

B1 ≥
3∑
k=1

∥∥∥D(k)
∥∥∥2

F
− 0.01ε20ρ

2tσ2
min(X ?)− 0.15 ‖∆G‖F ε0ρ

tσmin(X ?). (39)

Bounding B2. Expanding out the square and applying Cauchy-Schwarz, we can upper bound B2 by

B2 ≤ 2
∥∥∥((U (1)>U (1)

)−1
U (1)>, . . . ,

(
U (3)>U (3)

)−1
U (3)>

)
·
((

U (1),U (2),U (3)
)
· G? −X ?

)∥∥∥2

F︸ ︷︷ ︸
=:B2,1

+ 2
∥∥∥((U (1)>U (1)

)−1
U (1)>, . . . ,

(
U (3)>U (3)

)−1
U (3)>

)
·∆S

∥∥∥2

F︸ ︷︷ ︸
=:B2,2

.
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B2,1 is identical to the term that is bounded in [TMPB+22, Section B.4], which obeys

B2,1 ≤ 3

3∑
k=1

∥∥∥D(k)
∥∥∥2

F
+ C2ε0ρ

t dist2(Ft,F?) ≤ 3

3∑
k=1

∥∥∥D(k)
∥∥∥2

F
+ 0.01ε20ρ

2tσ2
min(X ?), (40)

where we make use of the induction hypothesis (19a) and C2ε0ρ
t ≤ C2ε0 < 0.01 as long as ε0 is small enough.

For B2,2, the matricization of the term in the norm along the first mode is of rank at most r1, so

B2,2 =
∥∥∥(((U (1))>U (1))−1(U (1))>, ((U (2))>U (2))−1(U (2))>, ((U (3))>U (3))−1(U (3))>

)
·∆S

∥∥∥2

F

≤ r1

∥∥∥∥((U (1))>U (1))−1(U (1))>M1 (∆S)
(

((U (3))>U (3))−1(U (3))> ⊗ ((U (2))>U (2))−1(U (2))>
)>∥∥∥∥2

≤ r1

∥∥∥((U (1))>U (1))−1(U (1))>
∥∥∥2 ∥∥∥((U (2))>U (2))−1(U (2))>

∥∥∥2 ∥∥∥((U (3))>U (3))−1(U (3))>
∥∥∥2

‖M1 (∆S)‖2

≤ r1

(1− ε0)6
‖M1 (∆S)‖2 ,

where the last line follows from Lemma 8 (cf. (70b)). To continue, we use (30) to obtain

B2,2 ≤
4ζ2
t+1α

2n1n2n3r1

(1− ε0)6
=

128α2µ3r2
1r2r3

(1− ε0)6
ρ2tσ2

min(X ?),

where the second relation follows by the choice of ζt+1 (cf. (22)). Lastly, with the assumption on the sparsity
level α ≤ c0ε0√

µ3r1r2r3r
for sufficiently small c0 and ε0 < 0.01, we have

B2,2 ≤
128c20

(1− ε0)6
ε20ρ

2tσ2
min(X ?) ≤ 0.02ε20ρ

2tσ2
min(X ?). (41)

Combining (40) and (41), we get

B2 ≤ 6

3∑
k=1

∥∥∥D(k)
∥∥∥2

F
+ 0.06ε20ρ

2tσ2
min(X ?). (42)

Sum up. Going back to (36), we can substitute in our bounds for B1 (cf. (39)) and B2 (cf. (42)) to get∥∥∥(Q(1)
t )−1, (Q

(2)
t )−1, (Q

(3)
t )−1

)
· Gt+1 − G?

∥∥∥2

F

≤ (1− η)2 ‖∆G‖2F − 2η(1− η)

(
3∑
k=1

∥∥∥D(k)
∥∥∥2

F
− 0.01ε20ρ

2tσ2
min(X ?)− 0.15 ‖∆G‖F ε0ρ

tσmin(X ?)

)

+ η2

(
6

3∑
k=1

∥∥∥D(k)
∥∥∥2

F
+ 0.06ε20ρ

2tσ2
min(X ?)

)
.

Notice that −2η(1 − η)
∥∥D(k)

∥∥2

F
+ 6η2

∥∥D(k)
∥∥2

F
= −2η(1 − 4η)

∥∥D(k)
∥∥2

F
≤ 0 whenever 0 < η ≤ 1/4, leading

to the conclusion that∥∥∥(Q(1)
t )−1, (Q

(2)
t )−1, (Q

(3)
t )−1

)
· Gt+1 − G?

∥∥∥2

F
≤ (1− η)2 ‖∆G‖2F + 2 · 0.15η(1− η) ‖∆G‖F ε0ρ

tσmin(X ?)

+ 0.02η(1− η)ε20ρ
2tσ2

min(X ?) + 0.06η2ε20ρ
2tσ2

min(X ?).

B Proof of Lemma 2
In view of Lemma 1 and [TMPB+22, Lemma 6], the optimal alignment matrices

{
Q

(k)
t

}3

k=1
(resp.

{
Q

(k)
(t+1)

}3

k=1
))

between Ft (resp. Ft+1) and F? exist. Fix any k = 1, 2, 3. By the triangle inequality, we have∥∥∥(U (k)
t+1Q

(k)
t+1 −U

(k)
?

)
Σ

(k)
?

∥∥∥
2,∞
≤
∥∥∥(U (k)

t+1Q
(k)
t −U

(k)
?

)
Σ

(k)
?

∥∥∥
2,∞

+
∥∥∥U (k)

t+1

(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥
2,∞

. (43)

Below we control the two terms in turn.
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Step 1: controlling
∥∥∥(U (k)

t+1Q
(k)
t −U

(k)
?

)
Σ

(k)
?

∥∥∥
2,∞

. By the update rule, we have

(
U

(k)
t+1Q

(k)
t −U

(k)
?

)
Σ

(k)
? = (1− η)∆U(k)Σ

(k)
? − η

(
Mk (∆S) + U

(k)
? ∆>

Ŭ(k)

)
Ŭ (k)

(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
? .

Take the `2,∞-norm of both sides and apply the triangle inequality to see that∥∥∥(U (k)
t+1Q

(k)
t −U

(k)
?

)
Σ

(k)
?

∥∥∥
2,∞
≤ (1− η)

∥∥∥∆U(k)Σ
(k)
?

∥∥∥
2,∞︸ ︷︷ ︸

=:C1,k

+η
∥∥∥Mk (∆S) Ŭ (k)

(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
?

∥∥∥
2,∞︸ ︷︷ ︸

=:C2,k

+ η
∥∥∥U (k)

? ∆>
Ŭ(k)Ŭ

(k)
(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
?

∥∥∥
2,∞︸ ︷︷ ︸

=:C3,k

.

We then proceed to bound each term separately.

• C1,k is captured by the induction hypothesis (19b), which directly implies

C1,k ≤ ρt
√
µrk
nk

σmin(X ?). (44)

• We now move on to C2,k, which can be bounded by

C2,k ≤ ‖Mk (∆S)‖2,∞
∥∥∥Ŭ (k)

(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
?

∥∥∥ ≤ 1

(1− ε0)3
‖Mk (∆S)‖2,∞ ,

where the second inequality follows from Lemma 8 (cf. (70c)). Recall that ∆S is α-sparse following
the choice of ζt+1, which gives us

‖Mk (∆S)‖2,∞ ≤
√
αn1n2n3

nk
‖∆S‖∞ ≤ 2

√
αn1n2n3

nk
ζt+1 = 16

√
αµ3r1r2r3

nk
ρtσmin(X ?)

due to Lemma 11, (30), and the choice of ζt+1 (cf. (22)). Plug this into the previous bound to obtain

C2,k ≤
16

(1− ε0)3

√
αµ3r1r2r3

nk
ρtσmin(X ?) ≤ 0.15

√
µrk
nk

ρtσmin(X ?), (45)

where the last inequality follows from the assumption on the sparsity level α ≤ c1
µ2r1r2r3

with a suffi-
ciently small constant c1.

• Finally, for C3,k, we have the upper bound

C3,k ≤
∥∥∥U (k)

?

∥∥∥
2,∞

∥∥∆Ŭ(k)

∥∥
F

∥∥∥Ŭ (k)
(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
?

∥∥∥
≤
√

3µrk
nk

(
1 + ε0 +

ε20
3

)
1

(1− ε0)3
dist(Ft,F?),

where the second inequality follows from the incoherence assumption
∥∥∥U (k)

?

∥∥∥
2,∞
≤
√

µrk
nk

, and Lemma

8 (cf. (70c) and (70e)). Since dist(Ft,F?) ≤ ε0ρtσmin(X ?), we arrive at

C3,k ≤
1

(1− ε0)3

√
3µrk
nk

(
1 + ε0 +

ε20
3

)
ε0ρ

tσmin(X ?) ≤ 0.02

√
µrk
nk

ρtσmin(X ?) (46)

as long as ε0 < 0.01.
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Combining (44), (45), and (46) together, we reach the conclusion that∥∥∥(U
(k)
t+1Q

(k)
t −U

(k)
? )Σ

(k)
?

∥∥∥
2,∞
≤ (1− 0.83η)

√
µrk
nk

ρtσmin(X ?). (47)

In view of the basic relation∥∥∥(U
(k)
t+1Q

(k)
t −U

(k)
? )Σ

(k)
?

∥∥∥
2,∞
≥
∥∥∥U (k)

t+1Q
(k)
t −U

(k)
?

∥∥∥
2,∞

σmin(X ?),

this also implies ∥∥∥U (k)
t+1Q

(k)
t −U

(k)
?

∥∥∥
2,∞
≤ (1− 0.83η)

√
µrk
nk

ρt. (48)

Step 2: controlling
∥∥∥U (k)

t+1

(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥
2,∞

. Observe that∥∥∥U (k)
t+1

(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥
2,∞

=
∥∥∥U (k)

t+1Q
(k)
t

(
Q

(k)
t

)−1(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥
2,∞

≤
∥∥∥U (k)

t+1Q
(k)
t

∥∥∥
2,∞

∥∥∥(Q(k)
t

)−1(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥ .
For the first term

∥∥∥U (k)
t+1Q

(k)
t

∥∥∥
2,∞

, we have∥∥∥U (k)
t+1Q

(k)
t

∥∥∥
2,∞
≤
∥∥∥U (k)

t+1Q
(k)
t −U

(k)
?

∥∥∥
2,∞

+
∥∥∥U (k)

?

∥∥∥
2,∞

≤
(
(1− 0.83η)ρt + 1

)√µrk
nk
≤ (2− 0.83η)

√
µrk
nk

,

where the second line follows from (48) and the incoherence assumption
∥∥∥U (k)

?

∥∥∥
2,∞
≤
√

µrk
nk

.

Moving on to the second term
∥∥∥(Q(k)

t

)−1(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥, we plan to invoke Lemma 7. Given the
assumption of the sparsity level α satisfies the requirement of Lemma 1, following Lemma 1 as well as its
proof (cf. (20)), we have∥∥∥(U (k)

t+1Q
(k)
t+1 −U

(k)
?

)
Σ

(k)
?

∥∥∥
F
≤ dist(Ft+1,F?) ≤ ε0ρt+1σmin(X ?),∥∥∥(U (k)

t+1Q
(k)
t −U

(k)
?

)
Σ

(k)
?

∥∥∥
F
≤ ε0ρt+1σmin(X ?),

which in turn implies

max

∥∥∥U (k)
t+1Q

(k)
t −U

(k)
?

∥∥∥ ,
∥∥∥(U (k)

t+1Q
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t+1 −U

(k)
?

)
Σ

(k)
?

∥∥∥
σmin(X ?)

,

∥∥∥(U (k)
t+1Q

(k)
t −U

(k)
?

)
Σ

(k)
?

∥∥∥
σmin(X ?)

 ≤ ε0ρt+1 < 1. (49)

Setting U := U
(k)
t+1, U? := U

(k)
? , Q := Q

(k)
t+1, Q̄ := Q

(k)
t and Σ := Σ

(k)
? , (49) demonstrates that Lemma 7 is

applicable, leading to
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∥∥∥
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1− ε0

≤ 2ε0
1− ε0

ρt+1σmin(X ?),

where we used (49) in the second and third inequalities. Combining the above two bounds, we have∥∥∥U (k)
t+1

(
Q

(k)
t+1 −Q

(k)
t

)
Σ

(k)
?

∥∥∥
2,∞
≤ (2− 0.83η)

2ε0
1− ε0

√
µrk
nk

ρt+1σmin(X ?). (50)
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Step 3: combining the bounds. Plug (47) and (50) into (43) to get∥∥∥(U
(k)
t+1Q

(k)
t+1 −U

(k)
? )Σ

(k)
?

∥∥∥
2,∞
≤
[
(1− 0.83η) + (2− 0.83η)

2ρε0
1− ε0

]√
µrk
nk

ρtσmin(X ?)

≤ (1.05− 0.84η)

√
µrk
nk

ρtσmin(X ?)

≤ (1− 0.45η)

√
µrk
nk

ρtσmin(X ?) =

√
µrk
nk

ρt+1σmin(X ?)

where the last line follows from η ≥ 1
7 and ρ = 1− 0.45η.

C Proof of Lemma 3
In view of [TMPB+22, Lemma 8], one has

dist(F0,F?) ≤ (
√

2 + 1)
3
2

∥∥∥(U (1)
0 ,U

(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥
F
, (51)

where we have used the definition F0 = (U
(1)
0 ,U

(2)
0 ,U

(3)
0 ) · G0. As a result, we focus on bounding the term∥∥∥(U (1)

0 ,U
(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥
F
below.

Recall from the definition of the HOSVD that G0 = ((U
(1)
0 )>, (U

(2)
0 )>, (U

(3)
0 )>) ·(Y −Tζ0 (Y)), which in

turn implies (
U

(1)
0 ,U

(2)
0 ,U

(3)
0

)
· G0 =

(
U

(1)
0 U

(1)>
0 ,U

(2)
0 U

(2)>
0 ,U

(3)
0 U

(3)>
0

)
·
(
Y − Tζ0 (Y)

)
. (52)

Note that U
(k)
0 has orthonormal columns. We thus define P (k) := U

(k)
0 U

(k)>
0 , the orthogonal projection

onto the column space of U (k)
0 . This allows us to rewrite the squared Frobenius norm in (51) as∥∥∥(U (1)

0 ,U
(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥2

F
=
∥∥∥(P (1),P (2),P (3)

)
·
(
Y − Tζ0 (Y)

)
−X ?

∥∥∥2

F
.

Since X ? can be decomposed into a sum of orthogonal projections and its orthogonal complements, namely,

X ? =
(
P (1),P (2),P (3)

)
·X ? +

(
In1 − P (1),P (2),P (3)

)
·X ?

+
(
In1

, In2
− P (2),P (3)

)
·X ? +

(
In1

, In2
, In3

− P (3)
)
·X ?,

we have the following identity∥∥∥(U (1)
0 ,U

(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥2

F
=
∥∥∥(P (1),P (2),P (3)

)
·
(
Y − Tζ0 (Y)−X ?

)∥∥∥2

F

+
∥∥∥(In1

− P (1),P (2),P (3)
)
·X ?

∥∥∥2

F
+
∥∥∥(In1

, In2
− P (2),P (3)

)
·X ?

∥∥∥2

F
+
∥∥∥(In1

, In2
, In3

− P (3)
)
·X ?

∥∥∥2

F
.

(53)

In what follows, we bound each term respectively.

Bounding the first term. Matricize along the first mode and change to the operator norm to obtain∥∥∥(P (1),P (2),P (3)
)
·
(
Y − Tζ0 (Y)−X ?

)∥∥∥
F
≤
√
r1

∥∥∥P (1)M1 (Y − Tζ0 (Y)−X ?)
(
P (3) ⊗ P (2)

)>∥∥∥
≤
√
r1 ‖M1 (Y − Tζ0 (Y)−X ?)‖

=
√
r1 ‖M1 (S? − Tζ0 (Y))‖ , (54)

where the last relation holds due to the definition of Y .
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Bounding the remaining three terms. We present the bound on the second term, while the remaining
two can be bounded in a similar fashion. Matricize along the first mode, and in view of the fact that
‖P (k)‖ ≤ 1, we have∥∥∥(In1

− P (1),P (2),P (3)
)
·X ?

∥∥∥
F
≤
∥∥∥(In1

− P (1)
)
M1 (X ?)

∥∥∥
F

≤
√
r1

∥∥∥(In1
− P (1)

)
M1 (X ?)

∥∥∥
=
√
r1

∥∥∥(In1
− P (1)

)
M1 (Y − Tζ0 (Y)− S? + Tζ0 (Y))

∥∥∥
≤
√
r1 ‖M1 (S? − Tζ0 (Y))‖ +

√
r1

∥∥∥(In1
− P (1)

)
M1 (Y − Tζ0 (Y))

∥∥∥ .
To continue, note that P (1)M1 (Y − Tζ0 (Y)) is the best rank-r1 approximation toM1 (Y − Tζ0 (Y)), which
implies∥∥∥(In1

− P (1)
)
M1 (Y − Tζ0 (Y))

∥∥∥ ≤ σr1+1(M1 (Y − Tζ0 (Y)))

≤ σr1+1(M1 (X ?)) + ‖M1 (S? − Tζ0 (Y))‖ = ‖M1 (S? − Tζ0 (Y))‖ ,

where the last line follows from Weyl’s inequality and the fact thatM1 (X ?) has rank r1. Plug this into the
previous inequality to obtain∥∥∥(In1

− P (1),P (2),P (3)
)
·X ?

∥∥∥
F
≤ 2
√
r1 ‖M1 (S? − Tζ0 (Y))‖ . (55)

Plug our bounds (54) and (55) into (53) to obtain∥∥∥(U (1)
0 ,U

(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥2

F
≤ r1 ‖M1 (S? − Tζ0 (Y))‖2 + 4r1 ‖M1 (S? − Tζ0 (Y))‖2

+ 4r2 ‖M2 (S? − Tζ0 (Y))‖2 + 4r3 ‖M3 (S? − Tζ0 (Y))‖2 . (56)

It then boils down to controlling ‖Mk (S? − Tζ0 (Y))‖ for k = 1, 2, 3. With our choice of ζ0 (i.e. ‖X ?‖∞ ≤
ζ0 ≤ 2‖X ?‖∞), setting X = 0 in Lemma 12 guarantees thatMk (S? − Tζ0 (Y)) is α-sparse for all k. Hence,
we can apply Lemma 11 to arrive at

‖Mk (S? − Tζ0 (Y))‖ ≤ α
√
n1n2n3 ‖S? − Tζ0 (Y)‖∞ ≤ 2α

√
n1n2n3ζ0 ≤ 4α

√
n1n2n3‖X ?‖∞, (57)

where the penultimate inequality follows from Lemma 12 (cf. (76)). Plug (57) into (56) to obtain∥∥∥(U (1)
0 ,U

(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥2

F
≤ 208α2n1n2n3r‖X ?‖2∞ ≤ 208α2µ3r1r2r3rκ

2σ2
min(X ?),

where the second inequality follows from Lemma 5. Under the assumption that α ≤ c0√
µ3r1r2r3rκ

, it follows

∥∥∥(U (1)
0 ,U

(2)
0 ,U

(3)
0

)
· G0 −X ?

∥∥∥2

F
≤ 208c20σ

2
min(X ?).

This combined with (51) finishes the proof.

D Proof of Lemma 4
We provide the control on the first mode, as the other two modes can be bounded using the same arguments.

We begin with a useful decomposition of the quantity we care about, whose proof will be supplied in the
end of this section:

∆U(1)Σ
(1)
? =M1 (S? − Tζ0 (Y))M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Q

(1)
0 )−>(Ŭ (1)>Ŭ (1))−1Σ

(1)
?

+ U
(1)
? ∆>

Ŭ(1)M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
0 )−>(Ŭ (1)>Ŭ (1))−1Σ

(1)
? . (58)
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Taking the `2,∞-norm and using the triangle inequality, we obtain∥∥∥∆U(1)Σ
(1)
?

∥∥∥
2,∞
≤
∥∥∥U (1)

? ∆>
Ŭ(1)M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Q

(1)
0 )−>(Ŭ (1)>Ŭ (1))−1Σ

(1)
?

∥∥∥
2,∞︸ ︷︷ ︸

=:A1

+
∥∥∥M1 (S? − Tζ0 (Y))M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Q

(1)
0 )−>(Ŭ (1)>Ŭ (1))−1Σ

(1)
?

∥∥∥
2,∞︸ ︷︷ ︸

=:A2

. (59)

We now proceed to bound these two terms separately.

Step 1: bounding A1. To begin, note that

A1 ≤
∥∥∥U (1)

?

∥∥∥
2,∞

∥∥∆Ŭ(1)

∥∥ ∥∥∥M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
0 )−>(Ŭ (1)>Ŭ (1))−1Σ

(1)
?

∥∥∥
=
∥∥∥U (1)

?

∥∥∥
2,∞

∥∥∆Ŭ(1)

∥∥ ∥∥∥Ŭ (1)(Ŭ (1)>Ŭ (1))−1Σ
(1)
?

∥∥∥ ,
where in the second line we have used the relation

Ŭ
(1)>
0 Ŭ

(1)
0 = U

(1)>
0 M1 (Y − Tζ0 (Y))M1 (Y − Tζ0 (Y))

>
U

(1)
0

given by Lemma 6 (cf. (66)), and the short-hand notation in (21). Invoking Lemma 8 (cf. (70c)) and the
incoherence assumption

∥∥∥U (1)
?

∥∥∥
2,∞
≤
√

µr1
n1

, we arrive at

A1 ≤
1

(1− ε0)3

√
µr1

n1

∥∥∆Ŭ(1)

∥∥ .
Furthermore, by Lemma 8 (cf. (70e)), it holds that∥∥∆Ŭ(1)

∥∥ ≤ ∥∥∆Ŭ(1)

∥∥
F
≤ 2

(
1 + ε0 +

ε20
3

)
dist(F0,F?) ≤ 2

(
1 + ε0 +

ε20
3

)
ε0σmin(X ?),

leading to

A1 ≤
2ε0

(1− ε0)3

(
1 + ε0 +

ε20
3

)√
µr1

n1
σmin(X ?) ≤ 0.57

√
µr1

n1
σmin(X ?), (60)

where the last inequality holds as long as ε0 ≤ 0.15.

Step 2: bounding A2. For A2, we have

A2 ≤ ‖M1 (S? − Tζ0 (Y))‖1,∞
∥∥∥M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Q

(1)
0 )−>(Σ

(1)
? )−1

∥∥∥
2,∞

∥∥∥Σ(1)
? (Ŭ (1)>Ŭ (1))−1Σ

(1)
?

∥∥∥
≤ αn2n3

(1− ε0)6
‖S? − Tζ0 (X ? + S?)‖∞

∥∥∥M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
0 )−>(Σ

(1)
? )−1

∥∥∥
2,∞

.

where we have used the α-sparsity of M1 (S? − Tζ0 (Y)) given by Lemma 12 and Lemma 8 (cf. (70d)) in
the second line. Apply Lemma 12 with X = 0 to get

A2 ≤
2αn2n3

(1− ε0)6
ζ0

∥∥∥M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
0 )−>(Σ

(1)
? )−1

∥∥∥
2,∞

≤ 4c0
(1− ε0)6

√
n2n3

µn1r1r2r3
σmin(X ?)

∥∥∥M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
0 )−>(Σ

(1)
? )−1

∥∥∥
2,∞

, (61)

where the second line follows from ζ0 ≤ 2‖X ?‖∞ ≤ 2
√

µ3r1r2r3
n1n2n3

κσmin(X ?) (cf. Lemma 5), as well as the
assumption α ≤ c0

µ2r1r2r3κ
. To continue,∥∥∥M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Q

(1)
0 )−>(Σ

(1)
? )−1

∥∥∥
2,∞
≤ r1

∥∥∥M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
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(1)
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∥∥∥
∞
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≤ r1

∥∥∥(Σ
(1)
? )−1(Q

(1)
0 )−1U

(1)>
0 M1 (Y − Tζ0 (Y))

∥∥∥
2,∞

= r1

∥∥∥(Σ
(1)
? )−1Ŭ (1)>Ŭ (1)(Σ

(1)
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∥∥∥1/2

∞

= r1

∥∥∥Ŭ (1)(Σ
(1)
? )−1

∥∥∥
2,∞

,

where we have used Lemma 6 (cf. (66)) and the relation ‖A‖22,∞ =
∥∥AA>

∥∥
∞ in the first equality. Using

the definition of Ŭ (k) from (4), we have∥∥∥Ŭ (1)(Σ
(1)
? )−1

∥∥∥
2,∞

=
∥∥∥(U (3) ⊗U (2))M1 (G)

> (
Σ

(1)
?

)−1
∥∥∥

2,∞
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∥∥∥U (3) ⊗U (2)

∥∥∥
2,∞

∥∥∥M1 (G)
> (

Σ
(1)
?

)−1
∥∥∥

≤
∥∥∥U (3)
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2,∞

∥∥∥U (2)
∥∥∥

2,∞

(∥∥∥M1 (∆G)
>

(Σ
(1)
? )−1

∥∥∥ +
∥∥∥M1 (G?)> (Σ

(1)
? )−1

∥∥∥) .
Applying the triangle inequality on the decompositions U (k) = ∆U(k) + U

(k)
? and G = ∆G + G?, and with

Lemma 8 (cf. (70a)) and
∥∥∥M1 (G?)> (Σ

(1)
? )−1

∥∥∥ = 1, it follows from the above inequalities that∥∥∥M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Q

(1)
0 )−>(Σ

(1)
? )−1

∥∥∥
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(
‖∆U(3)‖2,∞ +
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?

∥∥∥
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)(
‖∆U(2)‖2,∞ +

∥∥∥U (2)
?

∥∥∥
2,∞

)

≤ (1 + ε0)r1


∥∥∥∆U(3)Σ

(3)
?

∥∥∥
2,∞

σmin(X ?)
+

√
µr3
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∥∥∥∆U(2)Σ

(2)
?

∥∥∥
2,∞

σmin(X ?)
+

√
µr2

n2

 ,

where the last line uses the relationship ‖∆U(k)‖2,∞ ≤
‖∆U(k)Σ

(k)
? ‖2,∞

σmin(Σ
(k)
? )

and the inequality
∥∥∥U (k)

?

∥∥∥
2,∞
≤
√

µrk
nk

.

Plug this back into (61) to arrive at

A2 ≤
0.02

σmin(X ?)

√
r1

µn1

(√
n3

r3

∥∥∥∆U(3)Σ
(3)
?

∥∥∥
2,∞

+
√
µσmin(X ?)

)(√
n2

r2

∥∥∥∆U(2)Σ
(2)
?

∥∥∥
2,∞

+
√
µσmin(X ?)

)
,

(62)

where we simplified the constants using the assumption ε0 = 54.1c0 ≤ 0.15.

Step 3: Putting things together. Combining (60), (62), and (59), we have

1

σmin(X ?)

√
n1

µr1

∥∥∥∆U(1)Σ
(1)
?

∥∥∥
2,∞

≤ 0.57 + 0.02
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1

σmin(X ?)

√
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∥∥∥∆U(3)Σ
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∥∥∥
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)(
1

σmin(X ?)

√
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µr2

∥∥∥∆U(2)Σ
(2)
?

∥∥∥
2,∞

+ 1

)
.

Similar inequalities hold for
√

n2

r2

∥∥∥∆U(2)Σ
(2)
?

∥∥∥
2,∞

and
√

n3

r3

∥∥∥∆U(3)Σ
(3)
?

∥∥∥
2,∞

. Taking the maximum as I :=

maxk
1

σmin(X?)

√
nk

µrk

∥∥∥∆U(k)Σ
(k)
?

∥∥∥
2,∞

, we have

I ≤ 0.57 + 0.02(I + 1)2 =⇒ I ≤ 0.62,

and consequently, maxk
√

nk

rk

∥∥∥∆U(k)Σ
(k)
?

∥∥∥
2,∞

<
√
µσmin(X ?) as claimed.

We are left with proving the decomposition (58).
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Proof of (58) . By the assumption

α ≤ c0
µ2r1r2r3κ

≤ c0√
µ3r1r2r3rκ

,

in view of Lemma 3, we have that

dist(F0,F?) < 54.1c0σmin(X ?) =: ε0σmin(X ?) ≤ 0.15σmin(X ?), (63)

where ε0 = 54.1c0 ≤ 0.15 as long as c0 > 0 is small enough. Given dist(F0,F?) < σmin(X ?), we know that
{Q(k)

0 }3k=1, the optimal alignment matrices between F0 and F? exist by [TMPB+22, Lemma 6].
We now aim to control the incoherence. We begin with the equality guaranteed by Lemma 6 (cf. (66)),

U
(k)
0 Ŭ

(k)>
0 Ŭ

(k)
0 =Mk (Y − Tζ0 (Y))Mk (Y − Tζ0 (Y))

>
U

(k)
0 .

Again, we will focus on the case with k = 1; the other modes will follow from the same arguments. Given
that

(
Ŭ

(1)>
0 Ŭ

(1)
0

)−1 exists since Ŭ
(1)>
0 Ŭ

(1)
0 = M1 (G0)M1 (G0)

> is positive definite, right-multiplying(
Ŭ

(1)>
0 Ŭ

(1)
0

)−1 on both sides of the above equation yields

U
(1)
0 =M1 (Y − Tζ0 (Y))M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1.

Plug in the relation Y = X ? + S? to get

U
(1)
0 =M1 (S? − Tζ0 (Y))M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1

+M1 (X ?)M1 (Y − Tζ0 (Y))
>
U
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0 (Ŭ
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0 Ŭ

(1)
0 )−1

=M1 (S? − Tζ0 (Y))M1 (Y − Tζ0 (Y))
>
U

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1

+ U
(1)
? Ŭ

(1)>
? M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1.

Subtracting U
(1)
? (Q

(1)
0 )−1 on both sides gets us

U
(1)
0 −U

(1)
? (Q

(1)
0 )−1 =M1 (S? − Tζ0 (Y))M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1

+ U
(1)
? Ŭ
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U
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0 (Ŭ
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0 Ŭ
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0 )−1 −U

(1)
? (Q
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0 )−1. (64)

Observe that

U
(1)
? (Q

(1)
0 )−1 = U

(1)
? (Q

(1)
0 )−1Ŭ

(1)>
0 Ŭ

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1

= U
(1)
? (Q

(1)
0 )−1Ŭ

(1)>
0 M1 (Y − Tζ0 (Y))

>
U

(1)
0 (Ŭ

(1)>
0 Ŭ

(1)
0 )−1,

where we have used Lemma 6 (cf. (65)) in the second step. Plug this result into (64), multiply both sides with
Q

(1)
0 Σ

(1)
? , and recall the short-hand notation in (21) initiated at t = 0 to arrive at the claimed decomposition.

E Technical lemmas
This section collects several technical lemmas that are useful in the main proofs.

E.1 Tensor algebra
We start with a simple bound on the element-wise maximum norm of an incoherent tensor.

Lemma 5. Suppose that X ? = (U
(1)
? ,U

(2)
? ,U

(3)
? ) · G? ∈ Rn1×n2×n3 have multilinear rank r = (r1, r2, r3)

and is µ-incoherent. Then one has ‖X ?‖∞ ≤
√

µ3r1r2r3
n1n2n3

κσmin(X ?).
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Proof. By the property of matricizations (cf. (4)), we have Mk (X ?) = U
(k)
? Ŭ

(k)>
? for any k = 1, 2, 3.

Furthermore, ‖·‖∞ is invariant to matricizations, so

‖X ?‖∞ = ‖Mk (X ?)‖∞ =
∥∥∥U (k)

? Ŭ
(k)>
?

∥∥∥
∞
.

Without loss of generality, we choose k = 1. It then follows that
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∥∥∥
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?

∥∥∥
2,∞

∥∥∥U (3)
?

∥∥∥
2,∞

∥∥∥U (2)
?

∥∥∥
2,∞
‖M1 (G?)‖

≤

√
µ3r1r2r3

n1n2n3
σmax(M1 (X ?)),

where the second line follows from the definition of incoherence of X ?, i.e.,
∥∥∥U (k)

?

∥∥∥
2,∞

≤
√

µrk
nk

, and

‖M1 (G?)‖ = σmax(M1 (X ?)). Applying the above bound for any k and taking the tightest bound, we
have

‖X ?‖∞ ≤

√
µ3r1r2r3

n1n2n3
min
k
σmax(Mk (X ?)) =

√
µ3r1r2r3

n1n2n3
κσmin(X ?),

where we have used the definition of κ.

We next show a key tensor algebraic result that is crucial in establishing the incoherence property of the
spectral initialization.

Lemma 6. Given a tensor T ∈ Rn1×n2×n3 , suppose its rank-r truncated HOSVD is (U (1),U (2),U (3)) · G
with U (k) ∈ Rnk×rk and G ∈ Rr1×r2×r3 , and rk ≤ nk for k = 1, 2, 3. Then,

U (k)>Mk (T ) Ŭ (k) = Ŭ (k)>Ŭ (k), (65)

Mk (T )Mk (T )
>
U (k) = U (k)Ŭ (k)>Ŭ (k), (66)

where Ŭ (k) is defined in (4).

Proof. Set the full HOSVD of T to be
(
U

(1)
T ,U

(2)
T ,U

(3)
T
)
· GT . Since U

(k)
T contains all the left singular

vectors ofMk (T ), it can be decomposed into the following block structure:

U
(k)
T =

[
U (k) Ū (k)

]
, (67)

where Ū (k) ∈ Rnk×(nk−rk) contains the bottom (nk − rk) left singular vectors. The rest of the proof focuses
on the first mode (i.e., k = 1), while other modes follow from similar arguments.

Let us begin with proving (65). Plugging in the definition of Ŭ (1) from (4a), we see that

U (1)>M1 (T ) Ŭ (1) = U (1)>U
(1)
T M1 (GT )

(
U

(3)
T ⊗U

(2)
T
)>(

U (3) ⊗U (2)
)
M1 (G)

>

= U (1)> [U (1) Ū (1)
]
M1 (GT )

([
U (3)>

Ū (3)>

]
⊗
[
U (2)>

Ū (2)>

]) (
U (3) ⊗U (2)

)
M1 (G)

>
,

where the second line uses the block structure (67). By the mixed product property of Kronecker products,
we have

U (1)>M1 (T ) Ŭ (1) =
[
Ir1 0

]
M1 (GT )

([
U (3)>U (3)

Ū (3)>U (3)

]
⊗
[
U (2)>U (2)

Ū (2)>U (2)

])
M1 (G)

>

=
[
Ir1 0

]
M1 (GT )

([
Ir3
0

]
⊗
[
Ir2
0

])
M1 (G)

>
, (68)
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where we used the fact that the singular vectors are orthonormal. Note that

[
Ir1 0

]
M1 (GT )

([
Ir3
0

]
⊗
[
Ir2
0

])
=M1

(([
Ir1 0

]
,
[
Ir2 0

]
,
[
Ir3 0

])
· GT

)
∈ Rr1×r2r3 ,

where
([
Ir1 0

]
,
[
Ir2 0

]
,
[
Ir3 0

])
· GT is equivalent to trimming off the entries [GT ]i1,i2,i3 for all i1 > r1,

i2 > r2, or i3 > r3. Since G is the section of [GT ]i1,i2,i3 where 1 ≤ i1 ≤ r1, 1 ≤ i2 ≤ r2, 1 ≤ i3 ≤ r3 [VVM12],
we have ([

Ir1 0
]
,
[
Ir2 0

]
,
[
Ir3 0

])
· GT = G.

This allows us to simplify (68) as

U (1)>M1 (T ) Ŭ (1) =M1 (G)M1 (G)
>

= Ŭ (1)>Ŭ (1),

where the last equality follows from the definition of Ŭ (1) from (4) and (U (3)⊗U (2))>(U (3)⊗U (2)) = I by
construction of the HOSVD. This completes the proof of (65).

Turning to (66), we begin with the observation

M1 (T )M1 (T )
>

= U
(1)
T M1 (GT )

(
U

(3)
T ⊗U

(2)
T
)>(

U
(3)
T ⊗U

(2)
T
)
M1 (GT )

>
U

(1)>
T

= U
(1)
T M1 (GT )M1 (GT )

>
U

(1)>
T . (69)

By the “all-orthogonal” property in [DLDMV00],M1 (GT )M1 (GT )
>

= (Σ
(1)
T )2, the squared singular value

matrix ofM1 (T ). By assigning Σ
(1)
T with the block representation

Σ
(1)
T =

[
Σ(1) 0

0 Σ̄(1)

]
,

where Σ(1) =

√
M1 (G)M1 (G)

> and Σ̄(1) contain the top r1 singular values and bottom n1 − r1 singular
values, respectively, ofM1 (T ). Coupled with same block structure as in (67), (69) becomes

M1 (T )M1 (T )
>

=
[
U (1) Ū (1)

] [(Σ(1))2 0
0 (Σ̄(1))2

] [
U (1)>

Ū (1)>

]
.

Multiply by U (1) on the right to arrive atM1 (T )M1 (T )
>
U (1) = U (1)(Σ(1))2 = U (1)Ŭ (1)>Ŭ (1).

E.2 Perturbation bounds
Below is a useful perturbation bound for matrices.

Lemma 7. Given two matrices U ,U? ∈ Rn×r that have full column rank, two invertible matrices Q̄,Q ∈
Rr×r, and a positive definite matrix Σ ∈ Rr×r. Suppose that σmin(U?) >

∥∥UQ̄−U?

∥∥. Then the following
holds true

∥∥Q̄−1(Q− Q̄)Σ
∥∥ ≤ ∥∥U(Q− Q̄)Σ

∥∥
σmin(U?)−

∥∥UQ̄−U?

∥∥ .
Proof. It follows that ∥∥Q̄−1(Q− Q̄)Σ

∥∥ =
∥∥Q̄−1(U>U)−1U>U(Q− Q̄)Σ

∥∥
≤
∥∥Q̄−1(U>U)−1U>

∥∥ ∥∥U(Q− Q̄)Σ
∥∥

=

∥∥U(Q− Q̄)Σ
∥∥

σmin(UQ̄)
,
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where the last equality comes from the fact that Q̄−1(U>U)−1U> and UQ̄ are pseudoinverses. By Weyl’s
inequality, we know |σi(M)− σi(M + ∆M )| ≤ ‖∆M‖. Taking M := U? and ∆M := UQ̄−U?, we have∥∥Q̄−1(Q− Q̄)Σ

∥∥ ≤ ∥∥U(Q− Q̄)Σ
∥∥

σmin(U?)−
∥∥UQ̄−U?

∥∥
as long as σmin(U?) >

∥∥UQ̄−U?

∥∥.
We also collect a useful lemma regarding perturbation bounds for tensors from [TMPB+22].

Lemma 8 ( [TMPB+22, Lemma 10]). Suppose F = (U (1),U (2),U (3),G) and F = (U
(1)
? ,U

(2)
? ,U

(3)
? ,G?)

are aligned, and dist(F ,F?) ≤ εσmin(X ?) for some 0 < ε < 1. Then, the following bounds are true:∥∥∥Mk (∆G)
>

(Σ
(k)
? )−1

∥∥∥ ≤ ε; (70a)∥∥∥U (k)
(
U (k)>U (k)

)−1
∥∥∥ ≤ 1

1− ε
; (70b)∥∥∥Ŭ (k)

(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
?

∥∥∥ ≤ 1

(1− ε)3
; (70c)∥∥∥Σ(k)

?

(
Ŭ (k)>Ŭ (k)

)−1
Σ

(k)
?

∥∥∥ ≤ 1

(1− ε)6
; (70d)∥∥∥Ŭ (1) − Ŭ

(1)
?

∥∥∥
F
≤
(

1 + ε+
ε2

3

)(∥∥∥(U (2) −U
2)
?

)
Σ

(2)
?

∥∥∥
F

+
∥∥∥(U (3) −U

3)
?

)
Σ

(3)
?

∥∥∥
F

+ ‖G − G?‖F
)
. (70e)

For (70e), similar bounds exist for the other modes. Furthermore, if 0 < ε ≤ 0.2,∥∥∥(U (1),U (2),U (3)
)
· G −X ?

∥∥∥
F
≤ 3 dist(F ,F?). (71)

The next set of lemmas, which is crucial in our analysis, deals with perturbation bounds when relating a
tensor X =

(
U (1),U (2),U (3)

)
· G to the ground truth X ?, where the tensor tuples F = (U (1),U (2),U (3),G)

and F? = (U
(1)
? ,U

(2)
? ,U

(3)
? ,G?) are aligned.

Lemma 9. Let X ? ∈ Rn1×n2×n3 be µ-incoherent with the Tucker decomposition X ? =
(
U

(1)
? ,U

(2)
? ,U

(3)
?

)
· G?

of rank r = (r1, r2, r3), and
{
Σ

(k)
?

}
k=1,2,3

be the set of singular value matrices of different matricizations

of X ?. In addition, let F := (U (1),U (2),U (3),G) and F? := (U
(1)
? ,U

(2)
? ,U

(3)
? ,G?) be aligned, where X =(

U (1),U (2),U (3)
)
· G. Suppose

max
k

{√
nk
rk

∥∥∥(U (k) −U
(k)
?

)
Σ

(k)
?

∥∥∥
2,∞

}
≤ c√µσmin(X ?) (72)

for some 0 < c ≤ 1. Then for k = 1, 2, 3,∥∥∥U (k) −U
(k)
?

∥∥∥
2,∞
≤ c
√
µrk
nk

, and
∥∥∥U (k)

∥∥∥
2,∞
≤ 2

√
µrk
nk

. (73)

Proof. It follows that for all k,∥∥∥U (k) −U
(k)
?

∥∥∥
2,∞
≤ 1

σmin(Σ
(k)
? )

∥∥∥(U (k) −U
(k)
?

)
Σ

(k)
?

∥∥∥
2,∞
≤ c
√
µrk
nk

,

where the second inequality follows from (72) and σmin(X ?) ≤ σmin(Σ
(k)
? ). This completes the proof for the

first part of (73). With this and the incoherence assumption
∥∥∥U (k)

?

∥∥∥
2,∞
≤
√

µrk
nk

, after applying triangle

inequality, we arrive at ∥∥∥U (k)
∥∥∥

2,∞
≤
∥∥∥U (k) −U

(k)
?

∥∥∥
2,∞

+
∥∥∥U (k)

?

∥∥∥
2,∞
≤ 2

√
µrk
nk

,

which completes the proof.
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Lemma 10. Let X ? ∈ Rn1×n2×n3 be µ-incoherent with the Tucker decomposition X ? =
(
U

(1)
? ,U

(2)
? ,U

(3)
?

)
· G?

of rank r = (r1, r2, r3). In addition, let F := (U (1),U (2),U (3),G) and F? := (U
(1)
? ,U

(2)
? ,U

(3)
? ,G?) be aligned,

where X =
(
U (1),U (2),U (3)

)
· G. For 0 < ε0 < 0.1 and 0 < c ≤ 1, if

dist(F ,F?) ≤ ε0cσmin(X ?), (74a)

max
k

{√
nk
rk

∥∥∥(U (k) −U
(k)
?

)
Σ

(k)
?

∥∥∥
2,∞

}
≤ c√µσmin(X ?) (74b)

are satisfied, then

‖X −X ?‖∞ ≤

√
µ3r1r2r3

n1n2n3
(8ε0 + 7) cσmin(X ?) ≤ 8

√
µ3r1r2r3

n1n2n3
cσmin(X ?).

Proof. We can decompose X −X ? into

X −X ? =
(
U (1),U (2),U (3)

)
·(G − G?) +

(
U (1) −U

(1)
? ,U (2),U (3)

)
· G?

+
(
U

(1)
? ,U (2) −U

(2)
? ,U (3)

)
· G? +

(
U

(1)
? ,U

(2)
? ,U (3) −U

(3)
?

)
· G?. (75)

Then by the triangle inequality,

‖X −X ?‖∞ ≤
∥∥∥(U (1),U (2),U (3)

)
·(G − G?)

∥∥∥
∞

+
∥∥∥(U (1) −U

(1)
? ,U (2),U (3)

)
· G?

∥∥∥
∞

+
∥∥∥(U (1)

? ,U (2) −U
(2)
? ,U (3)

)
· G?

∥∥∥
∞

+
∥∥∥(U (1)

? ,U
(2)
? ,U (3) −U

(3)
?

)
· G?

∥∥∥
∞

=
∥∥∥U (1)M1 (G − G?) (U (3) ⊗U (2))>

∥∥∥
∞︸ ︷︷ ︸

=:Acore

+
∥∥∥(U (1) −U

(1)
?

)
M1 (G?) (U (3) ⊗U (2))>

∥∥∥
∞︸ ︷︷ ︸

=:A1

+
∥∥∥(U (2) −U

(2)
?

)
M2 (G?) (U (3) ⊗U

(1)
? )>

∥∥∥
∞︸ ︷︷ ︸

=:A2

+
∥∥∥(U (3) −U

(3)
?

)
M3 (G?) (U

(2)
? ⊗U

(1)
? )>

∥∥∥
∞︸ ︷︷ ︸

=:A3

,

where the second inequality follows from the invariance of `∞ norm to matricizations. We will bound each
term separately.

• For Acore, it follows from basic norm relations that

Acore ≤
∥∥∥U (1)

∥∥∥
2,∞
‖M1 (G − G?)‖

∥∥∥U (3) ⊗U (2)
∥∥∥

2,∞

≤
∥∥∥U (1)

∥∥∥
2,∞

∥∥∥U (2)
∥∥∥

2,∞

∥∥∥U (3)
∥∥∥

2,∞
‖G − G?‖F ≤ 8

√
µ3r1r2r3

n1n2n3
ε0cσmin(X ?),

where the last inequality follows from ‖G − G?‖F ≤ dist(F ,F?) ≤ ε0cσmin(X ?) by assumption (74a)
and Lemma 9 by assumption (74b).

• Next, for A1,

A1 ≤
∥∥∥(U (1) −U

(1)
?

)
Σ

(1)
?

∥∥∥
2,∞

∥∥∥U (2)
∥∥∥

2,∞

∥∥∥U (3)
∥∥∥

2,∞

∥∥∥M1 (G?)>
(
Σ

(1)
?

)−1
∥∥∥

=
∥∥∥(U (1) −U

(1)
?

)
Σ

(1)
?

∥∥∥
2,∞

∥∥∥U (2)
∥∥∥

2,∞

∥∥∥U (3)
∥∥∥

2,∞
≤ 4

√
µ3r1r2r3

n1n2n3
cσmin(X ?),

where the equality follows from
∥∥∥Mk (G?)>

(
Σ

(k)
?

)−1
∥∥∥ = 1 sinceMk (G?)Mk (G?)> =

(
Σ

(k)
?

)2

, and
the last inequality follows from the assumption (74b) and Lemma 9 by assumption (74b).
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• Similarly, for A2, it follows

A2 ≤
∥∥∥(U (2) −U

(2)
?

)
Σ

(2)
?

∥∥∥
2,∞

∥∥∥U (3)
∥∥∥

2,∞

∥∥∥U (1)
?

∥∥∥
2,∞

∥∥∥M2 (G?)>
(
Σ

(2)
?

)−1
∥∥∥

≤ 2

√
µ3r1r2r3

n1n2n3
cσmin(X ?).

• Finally, repeat the same approach for A3 to get

A3 ≤
∥∥∥(U (3) −U

(3)
?

)
Σ

(3)
?

∥∥∥
2,∞

∥∥∥U (2)
?

∥∥∥
2,∞

∥∥∥U (1)
?

∥∥∥
2,∞

∥∥∥M3 (G?)>
(
Σ

(3)
?

)−1
∥∥∥

≤

√
µ3r1r2r3

n1n2n3
cσmin(X ?).

Putting these together, we have the advertised bound.

E.3 Sparse outliers
The following two lemmas are useful to control the sparse corruption term, of which the second lemma follows
directly from translating [CLY21, Lemma 5] to the tensor case.

Lemma 11 ( [YPCC16, Lemma 1] [CLY21, Lemma 6]). Suppose that S ∈ Rm×n is α-sparse. Then one has

‖S‖ ≤ α
√
mn ‖S‖∞ , ‖S‖2,∞ ≤

√
αn ‖S‖∞ , and ‖S‖1,∞ ≤ αn ‖S‖∞ .

Lemma 12 ( [CLY21, Lemma 5]). Suppose that Y = X ? +S? for some α-sparse S?. Fix a tensor X , and
let S = Tζ (Y −X ) where the threshold satisfies ζ ≥ ‖X −X ?‖∞. We then have

‖S − S?‖∞ ≤ ‖X −X ?‖∞ + ζ ≤ 2ζ (76)

and
supp(S) ⊆ supp(S?). (77)

The relation (77) also implies that S − S? is α-sparse.
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