STAT253/317 Lecture 1

Cong Ma

4.1 Introduction to Markov Chains
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Stochastic Processes

A stochastic process is a family of random variables {X; : t € T}
such that

» For each t € T, X; is a random variable
The index set 7 can be discrete or continuous

» 7 =14{0,1,2,3,4}

» 7 =R,RT,R?,R?

Examples:
» Discrete Time Markov Chains .................... Chapter 4
» Poisson Processes, Counting Processes ............ Chapter 5
» Continuous Time Markov Chains ................. Chapter 6
> Renewal Theory ......... . ... i it Chapter 7
» Queuing Theory ....... ... .. ... ... .. Chapter 8
» Brownian Motion ........... ... Chapter 10
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4.1 Introduction to Markov Chain
Consider a stochastic process {X,, : n =0,1,2,...} taking values
in a finite or countable set X.
> X is called the state space
> If X,, =1, i € X, we say the process is in state i at time n

» Since X is countable, there is a 1-1 map from X to the set of
non-negative integers {0,1,2,3,...}
From now on, we assume X = {0, 1,2,3,...}

Definition
A stochastic process {X,, : n=0,1,2,...} is called a Markov
chain if it has the following property:

PXp1 =7 Xn=10,Xn 1 =tip1,...,X2 =12, X1 = i1, Xo = ip)
=P(Xpp1=J|Xp=1)

for all states g, i1, i2,...,9n—1, ¢, j € X and n > 0.
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Transition Probability Matrix
If P(X,+1 = j|X, =1i)= P;; does not depend on n, then the
process { X, : n=0,1,2,...} is called a stationary Markov
chain. From now on, we consider stationary Markov chain only.

{Pi;} is called the transition probabilities.

The matrix
Po Po1 Poe -+ Py
Py P P -+ Py
P=| : : e
Po Pa Po - P

is called the transition probability matrix.
Naturally, the transition probabilities { P;;} satisfy the following
> Pij >0 for all Z,]
> Rows sums are 1: °; P;; =1 for all i.
In other words, P1 =1, where 1 = (1,1,...,1,.. .)—r
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Example 1: construct Markov Chain from i.i.d. sequence

Let {Y,,}n>0 be an i.i.d. sequence. The following two stochastic
processes { X, },>0 are Markov chains

> X, =Y,
> Xn=>r_oYn
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Example 2: Random Walk

Consider the following random walk on integers

X _ JXn+1 with prob p
(aa X,—1 withprobl—0p

This is a Markov chain because given X,,, X;,—1, Xn—2,..., the

distribution of X, 11 depends only on X,, but not X,,_1, X;,_o,....

The state space is

X={-,-3,-2,-1,0,1,2,3,--- } = Z = all integers

The transition probability is

P ifj=i+1
Pij: 1—p Ifj:’L—l
0 otherwise
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Example 2: Random Walk (Cont'd)

-3 0 P

-2 1-p O D

—1 1-p O P
P=0 1-p 0

1 1-p

2
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Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each
stage, a ball is selected at random from the totality of K balls, and
move to the other container. Let

Xo = # of balls in container A in the beginning

X, = # of balls in container A after n movements, n =1,2,3,...

x={0,1,2,...,K}

%; ifj=i—1
Py={K—i
u - =it
0 otherwise
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Joint Distribution of Random Variables in a Markov Chain
Suppose {X,, : n=0,1,2,...} is a stationary Markov chain with
> state space X and
> transition probabilities {P;; : 4,5 € X}.
Define my(i) = P(Xop =), i € X to be the distribution of Xj.
What is the joint distribution of Xy, X7, X7
P(Xo = ip, X1 = i1, Xo = i9)
= P(Xo = ig)P(X1 = i1|Xo = i0)P(Xs = is| X1 = i1, Xo = io)
= P(XO = Zo)P(Xl = i1|X0 = Zo)P(XQ = ’i2|X1 = ’Ll) (Markov)
= m0(40) Pigiy Piyis

In general,

P(XO = iOle = il,XQ = 7;2’ . 7X'n,—1 — in—laXn — ’Ln)
= 7o (i0) Pigi, Piyis - - - P

in—1%n
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n-Step Transition Probabilities

Suppose { X} is a stationary Markov chain with state space X.
Define the n-step transition probabilities

Py = P(Xpup = | Xx=1i) fori,jeXandn k=012

How to calculate Pz-(f)?
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Example: Ehrenfest Model, 4 Balls

Q1 Find P{3) = P(Xs = 2| X, = 4).
Only one possible path: 4 — 3 — 2,
so Py = PyPss = 1-(3/4) = 3/4.
Q2 Find Py = P(X3 = 2| X, = 4).
Impossible to go from 4 to 2 in odd number of steps,
so P13 =0
42 = Y-

)
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Q3 Find Py = P(Xy = 2| X, = 4).
Possible paths: 4335433392

N S
2—1

P4(742) = Py3P34Py3P30 + Py3P30P3P30 + Py3P32P 1P 2
1 3 3 2 3 3 2 3 3

—-1.-.1.-241.2.2.2417.2. 2.2 = °
4 4+ 4 4 4+ 4 4 4 4

. 10
Q4 Find Py = P(X10 = 2| X, = 4).
Too many paths to list, likely to miss a few.
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Chapman-Kolmogorov Equations
Suppose {X,,} is a stationary Markov chain with state space X.
Define the n-step transition probabilities

P = P(Xpsp = j|Xp =) fori,jeXandnk=0,12,...

Then for all m, n > 1,
(mA4n) _ (m) p(n)
P =) Pu P
Proof.
PI = P(Xyin = X0 = i)
P
kex
P

D e PX
D ex P
D e P
Z (m

man = J, Xm = k|X0 = Z)
Xm = k|Xo = 1)P(Xinin = j|X;m =k, Xo = 1)

P(X,, = k:\XO = i)P(Xmin = j| Xm = k) (Markov)
)p

keXx

P
kex ik
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Chapman-Kolmogorov Equation in Matrix Notation
Forn=1,2,3,..., let

A o
Plg 1:)1711 Plg e Pl?
P(n) P(") P(n) P(")

be the n-step transition probability matrix.
The Chapman-Kolmogorov equation just asserts that

p(m+n) — p(m) o pn)

Note P() = P, = P2 = P x PN = P x P = P2,
By induction,

P =P~ x pPO) = pn~! x P = P"
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Define m, (i) = P( n =1), i € X to be the marginal distribution of
Xn, n=1,2,.... Then again by the law of total probabilities,

7rn(j) :P(X":-])
:Zk P(Xo=k)P(X, = j|Xo = k) (1)

- Zkex P(n)

Suppose the state space X is {0,1,2,...}.
If we write the marginal distribution of X,, as a row vector

Tn = (10 (0), T (1), ™ (2), .. .),
then equation (?7?) is equivalent to

Tt = moP™) = moP™
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Example: Ehrenfest Model, 4 Balls

o 1 2 3 4

0/0 44 0 0 0
1{1/4 0 3/4 0 0
P=2| 0 2/4 0 2/4 0
3l o 0o 3/4 0 1/4

4\ o 0 0 4/4 0

Q3 Find Py = P(Xy = 2 X, = 4).

Q4 Find Py = P(X19 = 2| X, = 4).

Q5 Given P(Xp=1i)=1/5fori=0,1,2,3,4, find P(Xy =2)
Q6 Find P(X19 =2, X, > 2, for 1 < k < 9|X, = 4)
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o 1 2 3 4
0/1/4 0 3/4 0 0
1f o 58 0 38 0
PP=PxP=2|1/8 0 3/4 0 1/8
31 0 38 0 5/8 0
4\ 0 0 3/4 0 1/4

o 1 2 3 4
o/ 0 5/8 0 3/8 0
115/32 0 3/4 0 3/32

PP=PxP*=2| 0 1/2 0 1/2 0
3(3/32 0 3/4 0 5/32
4\ 0 3/8 0 5/8 0

0 1 2 3 4
0/5/32 0 3/4 0 3/32
1{ 0o 17/32 0 15/32 0

PP=P*xP*=2[1/8 0 3/4 0 1/8
31 0 15/32 0 5/32 0
4\3/32 0 3/4 0 5/32
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Example: Ehrenfest Model, 4 Balls (Cont'd)

0 1 2 3 4

0(/5/32 0 3/4 0  3/32
1l 0o 17/32 0 15/32 0
Pt= 2| 1/8 0 3/4 0 1/8
31 0 15/32 0 5/32 0
4\3/32 0 3/4 0 5/32

For Q3, P(Xy =2|Xp=4) = P42 = 3/4.
which agrees with our previous calculation.
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Example: Ehrenfest Model, 4 Balls (Cont'd)

To find P4(7120) for Q4, it's awful lots of work to compute PO

There are ways to save some work. By the C-K equation,

29, 43132 4,454 2

N—— S——

PLY = PO)RS) +POIPE) + POPS) OIS + POIPY)
——

because it's impossible to move between even states in odd
number of moves.

We just need to find IP’S), IP’Z(S%, P%, and Pg
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Example: Ehrenfest Model, 4 Balls (Cont'd)

]P>5

So

=P2 xp3
0 1
0(1/4 0
11 0 5/8
211/8 o0
31 o 3/8
4 0 0
0 1
0
1
2
3
4 \0 15/32

iy = POPC) + PO)P

0

3 4
0 0
3/8 0
0 1/8
5/8 0
0 1/4

3 4
17/32 0

0 1 2 3 4

o/ 0o 58 0 3/8 0
1]5/32 0 3/4 0 3/32
2 0 1/2 0 1/2 0
313/32 0 3/4 0 5/32
4\ o 3/8 0 5/8 0
15 3 17 3
7X*+7 - = —
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Example: Ehrenfest Model, 4 Balls (Cont'd)
Q5: Given P(Xo=1i)=1/5fori=0,1,2,3,4, find P(X, = 2).

o = (57 ga 37 57 5)

5/32 0 3/4 0 3/32
. 0 17/32 0 15/32 0
W4::n0P4::(5,7,g,3,7) 1/8 0 3/4 0 1/8
0 15/32 0 17/32 0
3/32 0 3/4 0 5/32

3/4
0
11111
2 =55 555 |
0
3/4
13 118 1 13 9
5 4 5 5 4 5 5 4 20
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Example: Ehrenfest Model, 4 Balls (Cont'd)
Q6: Find P(X1o = 2, Xy > 2, for 1 <k < 9|Xg = 4).

Tip: Create another process {W,,,n =0,1,2,...} with an
absorbing state A

W — X, ifX,>2foralk=0,1,2,...,n
"4 if X <2forsomek<n

What is the state space of {W,,}? {A,2,3,4}
Is {W,} a Markov chain?

A if W, = A

W, +1 with prob. == if W, # A
W, —1 with prob. % if W, =3or4
A with prob. %z if W, =2

Wn+1 -

Yes, {W,} is a Markov chain.
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Example: Ehrenfest Model, 4 Balls (Cont'd)
What is the transition probability of {W,,}?

A 2 3 4

A/1 0 0 0
po_ 2|24 0 24 0
W3l o 3/4 0 1/4
4

0 0 1 0

Observe that Pyy; ; equals the transition prob. or the original
process IP; ; for i,j # A.
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Example: Ehrenfest Model, 4 Balls (Cont'd)
How does {W,,} helps us to solve Q67

Observe that P(X19 =2, X} > 2, for 1 <k <9|Xy=14)
=P(Wio = 2|Wo = 4) = P},

It's still an awful lot of work to compute PIEI}BL),Z'

By the same way we calculate P4(7120), using C-K equation, we know

(10)  _ m(5) (5) (5) (5) (5) (5) (5) (5)
Pyao =PwaalPywao+PwaoPwos +PwasPiis o TPy 4Py o
—_—— N———— —_———

. . =0 =0 -0
in which

> IP’%:’/)A 5 = 0 because {W,,} will never leave A.
> IP’S,)4 g = IP’(WS,)44 = 0 because {WW,,} can never get from 4 to
an even numbered state in odd numbers of steps.
Just need to find P%?/)“ and ]P’E,‘B,)3 9-
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Example: Ehrenfest Model, 4 Balls (Cont'd)

A 2 3 4 A 2 3 4

A/1 0 0 0 A/l 1 0 0 0

p@ _ 2 [1/2 38 0 18 p® _ 2 [11/16 0 516 0
W =338 0 58 0| "W T 3| 38 1532 0 5/32

4\ 0 34 0 1/4 4 \ 3/8 0 5/8 0

A2 3 4
A/1 0 0 0
(5) _ mw(2) (3) _ 2 0
Py =Py x Py =3 75/256
4 0 25/64

So
(10) _ ) pG) _ 250 75 _ 1875
P = PwasPwse = 64 256 16334
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For a generalization of Q6, see the discussion starting from the
bottom of p.202 to Example 4.14 on p.203 of the 12th edition of
the textbook (or p.192-193 of the 11th edition).
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