STAT253/317 Lecture 1

Cong Ma

4.1 Introduction to Markov Chains

Lecture 1-1

Stochastic Processes

A stochastic process is a family of random variables $\left\{X_{t}: t \in \mathcal{T}\right\}$ such that

- For each $t \in \mathcal{T}, X_{t}$ is a random variable

The index set \mathcal{T} can be discrete or continuous

- $\mathcal{T}=\{0,1,2,3,4\}$
- $\mathcal{T}=\mathbb{R}, \mathbb{R}^{+}, \mathbb{R}^{2}, \mathbb{R}^{3}$

Examples:

- Discrete Time Markov Chains Chapter 4
- Poisson Processes, Counting Processes Chapter 5
- Continuous Time Markov Chains Chapter 6
- Renewal Theory

Chapter 7

- Queuing Theory

Chapter 8

- Brownian Motion

Chapter 10

4.1 Introduction to Markov Chain

Consider a stochastic process $\left\{X_{n}: n=0,1,2, \ldots\right\}$ taking values in a finite or countable set \mathfrak{X}.

- \mathfrak{X} is called the state space
- If $X_{n}=i, i \in \mathfrak{X}$, we say the process is in state i at time n
- Since \mathfrak{X} is countable, there is a $1-1$ map from \mathfrak{X} to the set of non-negative integers $\{0,1,2,3, \ldots\}$
From now on, we assume $\mathfrak{X}=\{0,1,2,3, \ldots\}$

Definition

A stochastic process $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is called a Markov chain if it has the following property:

$$
\begin{aligned}
& P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{2}=i_{2}, X_{1}=i_{1}, X_{0}=i_{0}\right) \\
& =P\left(X_{n+1}=j \mid X_{n}=i\right)
\end{aligned}
$$

for all states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i, j \in \mathfrak{X}$ and $n \geq 0$.
Lecture 1-3

Transition Probability Matrix

If $P\left(X_{n+1}=j \mid X_{n}=i\right)=P_{i j}$ does not depend on n, then the process $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is called a stationary Markov chain. From now on, we consider stationary Markov chain only.
$\left\{P_{i j}\right\}$ is called the transition probabilities.
The matrix

$$
\mathbb{P}=\left(\begin{array}{cccccc}
P_{00} & P_{01} & P_{02} & \cdots & P_{0 j} & \cdots \\
P_{10} & P_{11} & P_{12} & \cdots & P_{1 j} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
P_{i 0} & P_{i 1} & P_{i 2} & \cdots & P_{i j} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots
\end{array}\right)
$$

is called the transition probability matrix.
Naturally, the transition probabilities $\left\{P_{i j}\right\}$ satisfy the following

- $P_{i j} \geq 0$ for all i, j
- Rows sums are 1: $\sum_{j} P_{i j}=1$ for all i.

In other words, $\mathbb{P} \mathbf{1}=\mathbf{1}$, where $\mathbf{1}=(1,1, \ldots, 1, \ldots)^{\top}$
Lecture 1-4

Example 1: construct Markov Chain from i.i.d. sequence

Let $\left\{Y_{n}\right\}_{n \geq 0}$ be an i.i.d. sequence. The following two stochastic processes $\left\{X_{n}\right\}_{n \geq 0}$ are Markov chains

- $X_{n}=Y_{n}$
- $X_{n}=\sum_{k=0}^{n} Y_{n}$

Example 2: Random Walk

Consider the following random walk on integers

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with prob } p \\ X_{n}-1 & \text { with prob } 1-p\end{cases}
$$

This is a Markov chain because given $X_{n}, X_{n-1}, X_{n-2}, \ldots$, the distribution of X_{n+1} depends only on X_{n} but not X_{n-1}, X_{n-2}, \ldots. The state space is

$$
\mathfrak{X}=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}=\mathbb{Z}=\text { all integers }
$$

The transition probability is

$$
P_{i j}= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Example 2: Random Walk (Cont'd)

$$
\begin{aligned}
& \begin{array}{lllllllll}
\cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \cdots
\end{array}
\end{aligned}
$$

Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each stage, a ball is selected at random from the totality of K balls, and move to the other container. Let
$X_{0}=\#$ of balls in container A in the beginning
$X_{n}=\#$ of balls in container A after n movements, $n=1,2,3, \ldots$

$$
\begin{gathered}
\mathfrak{X}=\{0,1,2, \ldots, K\} \\
P_{i j}= \begin{cases}\frac{i}{K} & \text { if } j=i-1 \\
\frac{K-i}{K} & \text { if } j=i+1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Joint Distribution of Random Variables in a Markov Chain

Suppose $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is a stationary Markov chain with

- state space \mathfrak{X} and
- transition probabilities $\left\{P_{i j}: i, j \in \mathfrak{X}\right\}$.

Define $\pi_{0}(i)=\mathrm{P}\left(X_{0}=i\right), i \in \mathfrak{X}$ to be the distribution of X_{0}.
What is the joint distribution of X_{0}, X_{1}, X_{2} ?

$$
\begin{aligned}
& \mathrm{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}\right) \\
& =\mathrm{P}\left(X_{0}=i_{0}\right) \mathrm{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right) \mathrm{P}\left(X_{2}=i_{2} \mid X_{1}=i_{1}, X_{0}=i_{0}\right) \\
& =\mathrm{P}\left(X_{0}=i_{0}\right) \mathrm{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right) \mathrm{P}\left(X_{2}=i_{2} \mid X_{1}=i_{1}\right) \quad \text { (Markov) } \\
& =\pi_{0}\left(i_{0}\right) P_{i_{0} i_{1}} P_{i_{1} i_{2}}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \mathrm{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}, X_{n}=i_{n}\right) \\
& \quad=\pi_{0}\left(i_{0}\right) P_{i_{0} i_{1}} P_{i_{1} i_{2}} \ldots P_{i_{n-1} i_{n}}
\end{aligned}
$$

n-Step Transition Probabilities

Suppose $\left\{X_{n}\right\}$ is a stationary Markov chain with state space \mathfrak{X}. Define the n-step transition probabilities

$$
P_{i j}^{(n)}=\mathrm{P}\left(X_{n+k}=j \mid X_{k}=i\right) \quad \text { for } i, j \in \mathfrak{X} \text { and } n, k=0,1,2, \ldots
$$

How to calculate $P_{i j}^{(n)}$?

Example: Ehrenfest Model, 4 Balls

$$
\mathbb{P}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 2 / 4 & 0 & 2 / 4 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Q1 Find $P_{4,2}^{(2)}=\mathrm{P}\left(X_{2}=2 \mid X_{0}=4\right)$.
Only one possible path: $4 \rightarrow 3 \rightarrow 2$,

$$
\text { so } P_{4,2}^{(2)}=P_{4,3} P_{3,2}=1 \cdot(3 / 4)=3 / 4
$$

Q2 Find $P_{4,2}^{(3)}=\mathrm{P}\left(X_{3}=2 \mid X_{0}=4\right)$.
Impossible to go from 4 to 2 in odd number of steps, so $P_{4,2}^{(3)}=0$.

$$
\mathbb{P}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 2 / 4 & 0 & 2 / 4 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Q3 Find $P_{4,2}^{(4)}=\mathrm{P}\left(X_{4}=2 \mid X_{0}=4\right)$.
Possible paths:

$$
4 \rightarrow 3 \rightarrow 4 \rightarrow 3 \rightarrow 2
$$

$$
2 \rightarrow 1
$$

$$
\begin{aligned}
P_{4,2}^{(4)} & =P_{4,3} P_{3,4} P_{4,3} P_{3,2}+P_{4,3} P_{3,2} P_{2,3} P_{3,2}+P_{4,3} P_{3,2} P_{2,1} P_{1,2} \\
& =1 \cdot \frac{1}{4} \cdot 1 \cdot \frac{3}{4}+1 \cdot \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{3}{4}+1 \cdot \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{3}{4}=\frac{3}{4}
\end{aligned}
$$

Q4 Find $P_{4,2}^{(10)}=\mathrm{P}\left(X_{10}=2 \mid X_{0}=4\right)$.
Too many paths to list, likely to miss a few.

Chapman-Kolmogorov Equations

Suppose $\left\{X_{n}\right\}$ is a stationary Markov chain with state space \mathfrak{X}.
Define the n-step transition probabilities

$$
P_{i j}^{(n)}=\mathrm{P}\left(X_{n+k}=j \mid X_{k}=i\right) \quad \text { for } i, j \in \mathfrak{X} \text { and } n, k=0,1,2, \ldots
$$

Then for all $m, n \geq 1$,

$$
P_{i j}^{(m+n)}=\sum_{k \in \mathfrak{X}} P_{i k}^{(m)} P_{k j}^{(n)}
$$

Proof.

$$
\begin{aligned}
P_{i j}^{(m+n)} & =\mathrm{P}\left(X_{m+n}=j \mid X_{0}=i\right) \\
& =\sum_{k \in \mathfrak{X}} \mathrm{P}\left(X_{m+n}=j, X_{m}=k \mid X_{0}=i\right) \\
& =\sum_{k \in \mathfrak{X}} \mathrm{P}\left(X_{m}=k \mid X_{0}=i\right) \mathrm{P}\left(X_{m+n}=j \mid X_{m}=k, X_{0}=i\right) \\
& =\sum_{k \in \mathfrak{X}} \mathrm{P}\left(X_{m}=k \mid X_{0}=i\right) \mathrm{P}\left(X_{m+n}=j \mid X_{m}=k\right) \quad \text { (Markov) } \\
& =\sum_{k \in \mathfrak{X}} P_{i k}^{(m)} P_{k j}^{(n)}
\end{aligned}
$$

Chapman-Kolmogorov Equation in Matrix Notation

For $n=1,2,3, \ldots$, let

$$
\mathbb{P}^{(n)}=\left(\begin{array}{cccccc}
P_{00}^{(n)} & P_{01}^{(n)} & P_{02}^{(n)} & \ldots & P_{0 j}^{(n)} & \ldots \\
P_{10}^{(n)} & P_{11}^{(n)} & P_{12}^{(n)} & \ldots & P_{1 j}^{(n)} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
P_{i 0}^{(n)} & P_{i 1}^{(n)} & P_{i 2}^{(n)} & \ldots & P_{i j}^{(n)} & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots
\end{array}\right)
$$

be the n-step transition probability matrix.
The Chapman-Kolmogorov equation just asserts that

$$
\mathbb{P}^{(m+n)}=\mathbb{P}^{(m)} \times \mathbb{P}^{(n)}
$$

Note $\mathbb{P}^{(1)}=\mathbb{P}, \Rightarrow \mathbb{P}^{(2)}=\mathbb{P}^{(1)} \times \mathbb{P}^{(1)}=\mathbb{P} \times \mathbb{P}=\mathbb{P}^{2}$.
By induction,

$$
\mathbb{P}^{(n)}=\mathbb{P}^{(n-1)} \times \mathbb{P}^{(1)}=\mathbb{P}^{n-1} \times \mathbb{P}=\mathbb{P}^{n}
$$

Lecture 1-14

Define $\pi_{n}(i)=\mathrm{P}\left(X_{n}=i\right), i \in \mathfrak{X}$ to be the marginal distribution of $X_{n}, n=1,2, \ldots$. Then again by the law of total probabilities,

$$
\begin{align*}
\pi_{n}(j) & =\mathrm{P}\left(X_{n}=j\right) \\
& =\sum_{k \in \mathfrak{X}} \mathrm{P}\left(X_{0}=k\right) \mathrm{P}\left(X_{n}=j \mid X_{0}=k\right) \tag{1}\\
& =\sum_{k \in \mathfrak{X}} \pi_{0}(k) P_{k j}^{(n)}
\end{align*}
$$

Suppose the state space \mathfrak{X} is $\{0,1,2, \ldots\}$.
If we write the marginal distribution of X_{n} as a row vector

$$
\pi_{n}=\left(\pi_{n}(0), \pi_{n}(1), \pi_{n}(2), \ldots\right)
$$

then equation (??) is equivalent to

$$
\pi_{n}=\pi_{0} \mathbb{P}^{(n)}=\pi_{0} \mathbb{P}^{n}
$$

Example: Ehrenfest Model, 4 Balls

$$
\mathbb{P}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 4 / 4 & 0 & 0 & 0 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 2 / 4 & 0 & 2 / 4 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4 \\
0 & 0 & 0 & 4 / 4 & 0
\end{array}\right)
$$

Q3 Find $P_{4,2}^{(4)}=\mathrm{P}\left(X_{4}=2 \mid X_{0}=4\right)$.
Q4 Find $P_{4,2}^{(10)}=\mathrm{P}\left(X_{10}=2 \mid X_{0}=4\right)$.
Q5 Given $\mathrm{P}\left(X_{0}=i\right)=1 / 5$ for $i=0,1,2,3,4$, find $\mathrm{P}\left(X_{4}=2\right)$
Q6 Find $\mathrm{P}\left(X_{10}=2, X_{k} \geq 2\right.$, for $\left.1 \leq k \leq 9 \mid X_{0}=4\right)$

$$
\begin{aligned}
& \mathbb{P}^{2}=\mathbb{P} \times \mathbb{P}=\begin{array}{c}
\\
0 \\
1 \\
2 \\
2 \\
3
\end{array}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 5 / 8 & 0 & 3 / 8 & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8 \\
0 & 3 / 8 & 0 & 5 / 8 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4
\end{array}\right) \\
& \mathbb{P}^{3}=\mathbb{P} \times \mathbb{P}^{2}=\begin{array}{c}
0 \\
1 \\
2 \\
3
\end{array}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 5 / 8 & 0 & 3 / 8 & 0 \\
5 / 32 & 0 & 3 / 4 & 0 & 3 / 32 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
3 / 32 & 0 & 3 / 4 & 0 & 5 / 32 \\
0 & 3 / 8 & 0 & 5 / 8 & 0
\end{array}\right) \\
& \mathbb{P}^{4}=\mathbb{P}^{2} \times \mathbb{P}^{2}=\begin{array}{c}
\\
0 \\
1 \\
2 \\
3 \\
4
\end{array}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
5 / 32 & 0 & 3 / 4 & 0 & 3 / 32 \\
0 & 17 / 32 & 0 & 15 / 32 & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8 \\
0 & 15 / 32 & 0 & 5 / 32 & 0 \\
3 / 32 & 0 & 3 / 4 & 0 & 5 / 32
\end{array}\right)
\end{aligned}
$$

Example: Ehrenfest Model, 4 Balls (Cont'd)

$\mathbb{P}^{4}=$| 0 |
| :---: |
| 0 |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |\(\left(\begin{array}{ccccc} \& 1 \& 2 \& 3 \& 4

5 / 32 \& 0 \& 3 / 4 \& 0 \& 3 / 32

0 \& 17 / 32 \& 0 \& 15 / 32 \& 0

1 / 8 \& 0 \& 3 / 4 \& 0 \& 1 / 8

0 \& 15 / 32 \& 0 \& 5 / 32 \& 0

3 / 32 \& 0 \& 3 / 4 \& 0 \& 5 / 32\end{array}\right)\)

For Q3, $\mathrm{P}\left(X_{4}=2 \mid X_{0}=4\right)=P_{42}^{(4)}=3 / 4$. which agrees with our previous calculation.

Example: Ehrenfest Model, 4 Balls (Cont'd)

To find $P_{4,2}^{(10)}$ for Q4, it's awful lots of work to compute $\mathbb{P}^{10} \ldots$
There are ways to save some work. By the C-K equation,

$$
\mathbb{P}_{4,2}^{(10)}=\underbrace{\mathbb{P}_{4,0}^{(5)} \mathbb{P}_{0,2}^{(5)}}_{=0}+\mathbb{P}_{4,1}^{(5)} \mathbb{P}_{1,2}^{(5)}+\underbrace{\mathbb{P}_{4,2}^{(5)} \mathbb{P}_{2,2}^{(5)}}_{=0}+\mathbb{P}_{4,3}^{(5)} \mathbb{P}_{3,2}^{(5)}+\underbrace{\mathbb{P}_{4,4}^{(5)} \mathbb{P}_{4,2}^{(5)}}_{=0}
$$

because it's impossible to move between even states in odd number of moves.

We just need to find $\mathbb{P}_{4,1}^{(5)}, \mathbb{P}_{4,3}^{(5)}, \mathbb{P}_{1,2}^{(5)}$, and $\mathbb{P}_{3,2}^{(5)}$.

Example: Ehrenfest Model, 4 Balls (Cont'd)

$$
\begin{aligned}
& \mathbb{P}^{5}=\mathbb{P}^{2} \times \mathbb{P}^{3} \\
& \begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 5 / 8 & 0 & 3 / 8 & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8 \\
0 & 3 / 8 & 0 & 5 / 8 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4
\end{array}\right) \times \begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 5 / 8 & 0 & 3 / 8 & 0 \\
5 / 32 & 0 & 3 / 4 & 0 & 3 / 32 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
3 / 32 & 0 & 3 / 4 & 0 & 5 / 32 \\
0 & 3 / 8 & 0 & 5 / 8 & 0
\end{array}\right) \\
& \begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
& & 0 & & 3 / 4 \\
& & 0 & & \\
& & 3 / 4 & & \\
0 & 15 / 32 & 0 & 17 / 32 & 0
\end{array}\right)
\end{aligned}
$$

So

$$
\mathbb{P}_{4,2}^{(10)}=\mathbb{P}_{4,1}^{(5)} \mathbb{P}_{1,2}^{(5)}+\mathbb{P}_{4,3}^{(5)} \mathbb{P}_{3,2}^{(5)}=\frac{15}{32} \times \frac{3}{4}+\frac{17}{32} \times \frac{3}{4}=\frac{3}{4}
$$

Lecture 1-20

Example: Ehrenfest Model, 4 Balls (Cont'd)

Q5: Given $\mathrm{P}\left(X_{0}=i\right)=1 / 5$ for $i=0,1,2,3,4$, find $\mathrm{P}\left(X_{4}=2\right)$.

$$
\begin{gathered}
\pi_{0}=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right) . \\
\pi_{4}=\pi_{0} \mathbb{P}^{4}=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)\left(\begin{array}{ccccc}
5 / 32 & 0 & 3 / 4 & 0 & 3 / 32 \\
0 & 17 / 32 & 0 & 15 / 32 & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8 \\
0 & 15 / 32 & 0 & 17 / 32 & 0 \\
3 / 32 & 0 & 3 / 4 & 0 & 5 / 32
\end{array}\right) \\
\pi_{4}(2)=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)\left(\begin{array}{c}
3 / 4 \\
0 \\
3 / 4 \\
0 \\
3 / 4
\end{array}\right) \\
=\frac{1}{5} \cdot \frac{3}{4}+\frac{1}{5} \cdot 0+\frac{1}{5} \cdot \frac{3}{4}+\frac{1}{5} \cdot 0+\frac{1}{5} \cdot \frac{3}{4}=\frac{9}{20}
\end{gathered}
$$

Example: Ehrenfest Model, 4 Balls (Cont'd)

Q6: Find $\mathrm{P}\left(X_{10}=2, X_{k} \geq 2\right.$, for $\left.1 \leq k \leq 9 \mid X_{0}=4\right)$.
Tip: Create another process $\left\{W_{n}, n=0,1,2, \ldots\right\}$ with an absorbing state A

$$
W_{n}= \begin{cases}X_{n} & \text { if } X_{k} \geq 2 \text { for all } k=0,1,2, \ldots, n \\ A & \text { if } X_{k}<2 \text { for some } k \leq n\end{cases}
$$

What is the state space of $\left\{W_{n}\right\} ?\{A, 2,3,4\}$ Is $\left\{W_{n}\right\}$ a Markov chain?

$$
W_{n+1}= \begin{cases}A & \text { if } W_{n}=A \\ W_{n}+1 & \text { with prob. } \frac{4-W_{n}}{4} \text { if } W_{n} \neq A \\ W_{n}-1 & \text { with prob. } \frac{W_{n}}{4} \text { if } W_{n}=3 \text { or } 4 \\ A & \text { with prob. } \frac{W_{n}}{4} \text { if } W_{n}=2\end{cases}
$$

Yes, $\left\{W_{n}\right\}$ is a Markov chain.
Lecture 1-22

Example: Ehrenfest Model, 4 Balls (Cont'd)

What is the transition probability of $\left\{W_{n}\right\}$?

$$
\mathbb{P}_{W}=\begin{gathered}
\\
A \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{cccc}
A & 2 & 3 & 4 \\
1 & 0 & 0 & 0 \\
2 / 4 & 0 & 2 / 4 & 0 \\
0 & 3 / 4 & 0 & 1 / 4 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Observe that $\mathbb{P}_{W, i, j}$ equals the transition prob. or the original process $\mathbb{P}_{i, j}$ for $i, j \neq A$.

$$
\mathbb{P}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 4 / 4 & 0 & 0 & 0 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 2 / 4 & 0 & 2 / 4 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Example: Ehrenfest Model, 4 Balls (Cont'd)

How does $\left\{W_{n}\right\}$ helps us to solve Q6?
Observe that $\mathrm{P}\left(X_{10}=2, X_{k} \geq 2\right.$, for $\left.1 \leq k \leq 9 \mid X_{0}=4\right)$

$$
=\mathrm{P}\left(W_{10}=2 \mid W_{0}=4\right)=P_{W, 4,2}^{(10)}
$$

It's still an awful lot of work to compute $P_{W, 4,2}^{(10)}$.
By the same way we calculate $P_{4,2}^{(10)}$, using C-K equation, we know
$\mathbb{P}_{W, 4,2}^{(10)}=\mathbb{P}_{W, 4, A}^{(5)} \underbrace{\mathbb{P}_{W, A, 2}^{(5)}}_{=0}+\underbrace{\mathbb{P}_{W, 4,2}^{(5)} \mathbb{P}_{W, 2,2}^{(5)}}_{=0}+\mathbb{P}_{W, 4,3}^{(5)} \mathbb{P}_{W, 3,2}^{(5)}+\underbrace{\mathbb{P}_{W, 4,4}^{(5)} \mathbb{P}_{W, 4,2}^{(5)}}_{=0}$
in which

- $\mathbb{P}_{W, A, 2}^{(5)}=0$ because $\left\{W_{n}\right\}$ will never leave A.
- $\mathbb{P}_{W, 4,2}^{(5)}=\mathbb{P}_{W, 4,4}^{(5)}=0$ because $\left\{W_{n}\right\}$ can never get from 4 to an even numbered state in odd numbers of steps.
Just need to find $\mathbb{P}_{W, 4,3}^{(5)}$ and $\mathbb{P}_{W, 3,2}^{(5)}$.

Example: Ehrenfest Model, 4 Balls (Cont'd)

$$
\begin{aligned}
& \mathbb{P}_{W}^{(5)}=\mathbb{P}_{W}^{(2)} \times \mathbb{P}_{W}^{(3)}=\begin{array}{c}
A \\
2 \\
3 \\
4
\end{array}\left(\begin{array}{cccc}
A & 2 & 3 & 4 \\
1 & 0 & 0 & 0 \\
& 0 & & \\
& 75 / 256 & & \\
& 0 & 25 / 64
\end{array}\right)
\end{aligned}
$$

So

$$
\mathbb{P}_{W, 4,2}^{(10)}=\mathbb{P}_{W, 4,3}^{(5)} \mathbb{P}_{W, 3,2}^{(5)}=\frac{25}{64} \times \frac{75}{256}=\frac{1875}{16384}
$$

For a generalization of Q 6 , see the discussion starting from the bottom of p. 202 to Example 4.14 on p. 203 of the 12th edition of the textbook (or p.192-193 of the 11th edition).

