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4.1 Introduction to Markov Chains
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Stochastic Processes

A stochastic process is a family of random variables {Xt : t ∈ T }
such that

▶ For each t ∈ T , Xt is a random variable

The index set T can be discrete or continuous

▶ T = {0, 1, 2, 3, 4}
▶ T = R,R+,R2,R3

Examples:

▶ Discrete Time Markov Chains . . . . . . . . . . . . . . . . . . . . Chapter 4

▶ Poisson Processes, Counting Processes . . . . . . . . . . . . Chapter 5

▶ Continuous Time Markov Chains . . . . . . . . . . . . . . . . . Chapter 6

▶ Renewal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 7

▶ Queuing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 8

▶ Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 10
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4.1 Introduction to Markov Chain

Consider a stochastic process {Xn : n = 0, 1, 2, . . .} taking values
in a finite or countable set X.

▶ X is called the state space

▶ If Xn = i, i ∈ X, we say the process is in state i at time n

▶ Since X is countable, there is a 1-1 map from X to the set of
non-negative integers {0, 1, 2, 3, . . .}
From now on, we assume X = {0, 1, 2, 3, . . .}

Definition
A stochastic process {Xn : n = 0, 1, 2, . . .} is called a Markov
chain if it has the following property:

P (Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X2 = i2, X1 = i1, X0 = i0)

= P (Xn+1 = j | Xn = i)

for all states i0, i1, i2, . . . , in−1, i, j ∈ X and n ≥ 0.
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Transition Probability Matrix
If P (Xn+1 = j|Xn = i) = Pij does not depend on n, then the
process {Xn : n = 0, 1, 2, . . .} is called a stationary Markov
chain. From now on, we consider stationary Markov chain only.

{Pij} is called the transition probabilities.
The matrix

P =


P00 P01 P02 · · · P0j · · ·
P10 P11 P12 · · · P1j · · ·
...

...
...

. . .
...

. . .

Pi0 Pi1 Pi2 · · · Pij · · ·
...

...
...

. . .
...

. . .


is called the transition probability matrix.
Naturally, the transition probabilities {Pij} satisfy the following
▶ Pij ≥ 0 for all i, j
▶ Rows sums are 1:

∑
j Pij = 1 for all i.

In other words, P1 = 1, where 1 = (1, 1, . . . , 1, . . .)⊤
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Example 1: construct Markov Chain from i.i.d. sequence

Let {Yn}n≥0 be an i.i.d. sequence. The following two stochastic
processes {Xn}n≥0 are Markov chains

▶ Xn = Yn

▶ Xn =
∑n

k=0 Yn
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Example 2: Random Walk
Consider the following random walk on integers

Xn+1 =

{
Xn + 1 with prob p

Xn − 1 with prob 1− p

This is a Markov chain because given Xn, Xn−1, Xn−2, . . ., the
distribution of Xn+1 depends only on Xn but not Xn−1, Xn−2, . . . .
The state space is

X = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } = Z = all integers

The transition probability is

Pij =


p if j = i+ 1

1− p if j = i− 1

0 otherwise
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Example 2: Random Walk (Cont’d)

P =



· · · −3 −2 −1 0 1 2 3 · · ·
...

. . .
. . .

−3
. . . 0 p

−2 1−p 0 p
−1 1−p 0 p
0 1−p 0 p
1 1−p 0 p
2 1−p 0 p

3 1−p 0
. . .

...
. . .

. . .
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Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each
stage, a ball is selected at random from the totality of K balls, and
move to the other container. Let

X0 = # of balls in container A in the beginning

Xn = # of balls in container A after n movements, n = 1, 2, 3, . . .

X = {0, 1, 2, . . . ,K}

Pij =


i

K
if j = i− 1

K − i

K
if j = i+ 1

0 otherwise
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Joint Distribution of Random Variables in a Markov Chain
Suppose {Xn : n = 0, 1, 2, . . .} is a stationary Markov chain with

▶ state space X and

▶ transition probabilities {Pij : i, j ∈ X}.
Define π0(i) = P(X0 = i), i ∈ X to be the distribution of X0.

What is the joint distribution of X0, X1, X2?

P(X0 = i0, X1 = i1, X2 = i2)

= P(X0 = i0)P(X1 = i1|X0 = i0)P(X2 = i2|X1 = i1, X0 = i0)

= P(X0 = i0)P(X1 = i1|X0 = i0)P(X2 = i2|X1 = i1) (Markov)

= π0(i0)Pi0i1Pi1i2

In general,

P(X0 = i0, X1 = i1, X2 = i2, . . . , Xn−1 = in−1, Xn = in)

= π0(i0)Pi0i1Pi1i2 . . . Pin−1in
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n-Step Transition Probabilities

Suppose {Xn} is a stationary Markov chain with state space X.
Define the n-step transition probabilities

P
(n)
ij = P(Xn+k = j | Xk = i) for i, j ∈ X and n, k = 0, 1, 2, . . .

How to calculate P
(n)
ij ?
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Example: Ehrenfest Model, 4 Balls

P =



0 1 2 3 4

0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0


Q1 Find P

(2)
4,2 = P(X2 = 2|X0 = 4).

Only one possible path: 4 → 3 → 2,

so P
(2)
4,2 = P4,3P3,2 = 1 · (3/4) = 3/4.

Q2 Find P
(3)
4,2 = P(X3 = 2|X0 = 4).

Impossible to go from 4 to 2 in odd number of steps,

so P
(3)
4,2 = 0.
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P =



0 1 2 3 4

0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0


Q3 Find P

(4)
4,2 = P(X4 = 2|X0 = 4).

Possible paths: 4→ 3→ 4→ 3→ 2
↘ ↗ ↗

2→ 1

P
(4)
4,2 = P4,3P3,4P4,3P3,2 + P4,3P3,2P2,3P3,2 + P4,3P3,2P2,1P1,2

= 1 · 1
4
· 1 · 3

4
+ 1 · 3

4
· 2
4
· 3
4
+ 1 · 3

4
· 2
4
· 3
4
=

3

4

Q4 Find P
(10)
4,2 = P(X10 = 2|X0 = 4).

Too many paths to list, likely to miss a few.
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Chapman-Kolmogorov Equations
Suppose {Xn} is a stationary Markov chain with state space X.
Define the n-step transition probabilities

P
(n)
ij = P(Xn+k = j|Xk = i) for i, j ∈ X and n, k = 0, 1, 2, . . .

Then for all m, n ≥ 1,

P
(m+n)
ij =

∑
k∈X

P
(m)
ik P

(n)
kj

Proof.

P
(m+n)
ij = P(Xm+n = j|X0 = i)

=
∑

k∈X
P(Xm+n = j,Xm = k|X0 = i)

=
∑

k∈X
P(Xm = k|X0 = i)P(Xm+n = j|Xm = k,X0 = i)

=
∑

k∈X
P(Xm = k|X0 = i)P(Xm+n = j|Xm = k) (Markov)

=
∑

k∈X
P

(m)
ik P

(n)
kj
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Chapman-Kolmogorov Equation in Matrix Notation
For n = 1, 2, 3, . . ., let

P(n) =



P
(n)
00 P

(n)
01 P

(n)
02 · · · P

(n)
0j · · ·

P
(n)
10 P

(n)
11 P

(n)
12 · · · P

(n)
1j · · ·

...
...

...
. . .

...
. . .

P
(n)
i0 P

(n)
i1 P

(n)
i2 · · · P

(n)
ij · · ·

...
...

...
. . .

...
. . .


be the n-step transition probability matrix.
The Chapman-Kolmogorov equation just asserts that

P(m+n) = P(m) × P(n)

Note P(1) = P, ⇒ P(2) = P(1) × P(1) = P× P = P2.
By induction,

P(n) = P(n−1) × P(1) = Pn−1 × P = Pn
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Define πn(i) = P(Xn = i), i ∈ X to be the marginal distribution of
Xn, n = 1, 2, . . . . Then again by the law of total probabilities,

πn(j) = P(Xn = j)

=
∑

k∈X
P(X0 = k)P(Xn = j|X0 = k) (1)

=
∑

k∈X
π0(k)P

(n)
kj

Suppose the state space X is {0, 1, 2, . . .}.
If we write the marginal distribution of Xn as a row vector

πn = (πn(0), πn(1), πn(2), . . .),

then equation (??) is equivalent to

πn = π0P(n) = π0Pn
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Example: Ehrenfest Model, 4 Balls

P =



0 1 2 3 4

0 0 4/4 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 4/4 0


Q3 Find P

(4)
4,2 = P(X4 = 2|X0 = 4).

Q4 Find P
(10)
4,2 = P(X10 = 2|X0 = 4).

Q5 Given P(X0 = i) = 1/5 for i = 0, 1, 2, 3, 4, find P(X4 = 2)

Q6 Find P(X10 = 2, Xk ≥ 2, for 1 ≤ k ≤ 9|X0 = 4)
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P2 = P× P =



0 1 2 3 4

0 1/4 0 3/4 0 0
1 0 5/8 0 3/8 0
2 1/8 0 3/4 0 1/8
3 0 3/8 0 5/8 0
4 0 0 3/4 0 1/4



P3 = P× P2 =



0 1 2 3 4

0 0 5/8 0 3/8 0
1 5/32 0 3/4 0 3/32
2 0 1/2 0 1/2 0
3 3/32 0 3/4 0 5/32
4 0 3/8 0 5/8 0



P4 = P2 × P2 =



0 1 2 3 4

0 5/32 0 3/4 0 3/32
1 0 17/32 0 15/32 0
2 1/8 0 3/4 0 1/8
3 0 15/32 0 5/32 0
4 3/32 0 3/4 0 5/32
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Example: Ehrenfest Model, 4 Balls (Cont’d)

P4 =



0 1 2 3 4

0 5/32 0 3/4 0 3/32

1 0 17/32 0 15/32 0

2 1/8 0 3/4 0 1/8

3 0 15/32 0 5/32 0

4 3/32 0 3/4 0 5/32



For Q3, P(X4 = 2|X0 = 4) = P
(4)
42 = 3/4.

which agrees with our previous calculation.

Lecture 1 - 18



Example: Ehrenfest Model, 4 Balls (Cont’d)

To find P
(10)
4,2 for Q4, it’s awful lots of work to compute P10. . .

There are ways to save some work. By the C-K equation,

P(10)
4,2 = P(5)

4,0P
(5)
0,2︸ ︷︷ ︸

=0

+P(5)
4,1P

(5)
1,2 + P(5)

4,2P
(5)
2,2︸ ︷︷ ︸

=0

+P(5)
4,3P

(5)
3,2 + P(5)

4,4P
(5)
4,2︸ ︷︷ ︸

=0

because it’s impossible to move between even states in odd
number of moves.

We just need to find P(5)
4,1, P

(5)
4,3, P

(5)
1,2, and P(5)

3,2.
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Example: Ehrenfest Model, 4 Balls (Cont’d)

P5 = P2 × P3

=



0 1 2 3 4

0 1/4 0 3/4 0 0

1 0 5/8 0 3/8 0

2 1/8 0 3/4 0 1/8

3 0 3/8 0 5/8 0

4 0 0 3/4 0 1/4


×



0 1 2 3 4

0 0 5/8 0 3/8 0

1 5/32 0 3/4 0 3/32

2 0 1/2 0 1/2 0

3 3/32 0 3/4 0 5/32

4 0 3/8 0 5/8 0



=



0 1 2 3 4

0 0
1 3/4

2 0
3 3/4

4 0 15/32 0 17/32 0


So

P(10)
4,2 = P(5)

4,1P
(5)
1,2 + P(5)

4,3P
(5)
3,2 =

15

32
× 3

4
+

17

32
× 3

4
=

3

4
.
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Example: Ehrenfest Model, 4 Balls (Cont’d)
Q5: Given P(X0 = i) = 1/5 for i = 0, 1, 2, 3, 4, find P(X4 = 2).

π0 = (
1

5
,
1

5
,
1

5
,
1

5
,
1

5
).

π4 = π0P4 = (
1

5
,
1

5
,
1

5
,
1

5
,
1

5
)


5/32 0 3/4 0 3/32
0 17/32 0 15/32 0
1/8 0 3/4 0 1/8
0 15/32 0 17/32 0

3/32 0 3/4 0 5/32



π4(2) = (
1

5
,
1

5
,
1

5
,
1

5
,
1

5
)


3/4
0

3/4
0

3/4


=

1

5
· 3
4
+

1

5
· 0 + 1

5
· 3
4
+

1

5
· 0 + 1

5
· 3
4
=

9

20
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Example: Ehrenfest Model, 4 Balls (Cont’d)
Q6: Find P(X10 = 2, Xk ≥ 2, for 1 ≤ k ≤ 9|X0 = 4).

Tip: Create another process {Wn, n = 0, 1, 2, . . .} with an
absorbing state A

Wn =

{
Xn if Xk ≥ 2 for all k = 0, 1, 2, . . . , n

A if Xk < 2 for some k ≤ n

What is the state space of {Wn}? {A, 2, 3, 4}
Is {Wn} a Markov chain?

Wn+1 =


A if Wn = A

Wn + 1 with prob. 4−Wn
4 if Wn ̸= A

Wn − 1 with prob. Wn
4 if Wn = 3 or 4

A with prob. Wn
4 if Wn = 2

Yes, {Wn} is a Markov chain.
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Example: Ehrenfest Model, 4 Balls (Cont’d)
What is the transition probability of {Wn}?

PW =


A 2 3 4

A 1 0 0 0
2 2/4 0 2/4 0
3 0 3/4 0 1/4
4 0 0 1 0


Observe that PW,i,j equals the transition prob. or the original
process Pi,j for i, j ̸= A.

P =



0 1 2 3 4

0 0 4/4 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0
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Example: Ehrenfest Model, 4 Balls (Cont’d)
How does {Wn} helps us to solve Q6?

Observe that P(X10 = 2, Xk ≥ 2, for 1 ≤ k ≤ 9|X0 = 4)

=P(W10 = 2|W0 = 4) = P
(10)
W,4,2

It’s still an awful lot of work to compute P
(10)
W,4,2.

By the same way we calculate P
(10)
4,2 , using C-K equation, we know

P(10)
W,4,2 = P(5)

W,4,A P(5)
W,A,2︸ ︷︷ ︸
=0

+P(5)
W,4,2P

(5)
W,2,2︸ ︷︷ ︸

=0

+P(5)
W,4,3P

(5)
W,3,2+P(5)

W,4,4P
(5)
W,4,2︸ ︷︷ ︸

=0
in which

▶ P(5)
W,A,2 = 0 because {Wn} will never leave A.

▶ P(5)
W,4,2 = P(5)

W,4,4 = 0 because {Wn} can never get from 4 to
an even numbered state in odd numbers of steps.

Just need to find P(5)
W,4,3 and P(5)

W,3,2.
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Example: Ehrenfest Model, 4 Balls (Cont’d)

P(2)
W =


A 2 3 4

A 1 0 0 0
2 1/2 3/8 0 1/8
3 3/8 0 5/8 0
4 0 3/4 0 1/4

, P(3)
W =


A 2 3 4

A 1 0 0 0
2 11/16 0 5/16 0
3 3/8 15/32 0 5/32
4 3/8 0 5/8 0



P(5)
W = P(2)

W × P(3)
W =


A 2 3 4

A 1 0 0 0
2 0
3 75/256
4 0 25/64


So

P(10)
W,4,2 = P(5)

W,4,3P
(5)
W,3,2 =

25

64
× 75

256
=

1875

16384
.
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For a generalization of Q6, see the discussion starting from the
bottom of p.202 to Example 4.14 on p.203 of the 12th edition of
the textbook (or p.192-193 of the 11th edition).
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