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Chapter 6 Continuous-Time Markov Chains
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6.2 Continuous-Time Markov Chains (CTMC)

Definitions. A stochastic process {X(t), t ≥ 0} with state space
X is called a continuous-time Markov chain if for any two states i,
j ∈ X ,

P(X(t+ s) = j︸ ︷︷ ︸
future

|X(s) = i︸ ︷︷ ︸
present

, X(u) = x(u), for 0 ≤ u < s︸ ︷︷ ︸
past

)

= P(X(t+ s) = j︸ ︷︷ ︸
future

|X(s) = i︸ ︷︷ ︸
present

)

If P(X(t+ s) = j|X(s) = i) does not depend on s for all i, j ∈ X ,
then it is denoted as

Pij(t) = P(X(t+ s) = j|X(s) = i),

and we say the CTMC is homogeneous in time.

In STAT253/317, we focus on homogeneous CTMC only.
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Exponential Waiting Time

Let {X(t), t ≥ 0} be a homogeneous continuous-time Markov
chain. For i ∈ X , let Ti denote the amount of time that X(t)
stays in state i before making a transition into a different state.

Claim: Ti has the memoryless property.

P(Ti ≥ t+ s|Ti ≥ s)

= P(X(u) = i, for s ≤ u ≤ s+ t|X(u) = i, for 0 ≤ u ≤ s)

= P(X(u) = i, for s ≤ u ≤ s+ t|X(s) = i) (Markov property)

= P(X(u) = i, for 0 ≤ u ≤ t|X(0) = i) (time homogeneity)

= P(Ti ≥ t) ⇒ So Ti is memoryless.

Recall that the exponential distribution is the only continuous
distribution having the memoryless property.
Thus Ti ∼ Exp(νi) for some rate νi.
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An Alternative Definition of CTMC
A stochastic process {X(t), t ≥ 0} with state space X is a
continuous-time Markov chain if

▶ (exponential waiting time) when the chain reaches a state i,
the time it stays at state i ∼ Exp(νi), where νi is the
transition rate at state i

▶ (embedded with a discrete time Markov chain) when the
process leaves state i, it enters anther state j with probability
Pij , such that

Pii = 0,
∑

j∈X
Pij = 1 for all i, j ∈ X .

Remark: The amount of time Ti the process spends in state i, and
the next state visited, must be independent. For if the next state
visited were dependent on Ti, then information as to how long the
process has already been in state i would be relevant to the
prediction of the next state—and this contradicts the Markovian
assumption.
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6.3 Birth and Death Processes
Let X(t) = the number of people in the system at time t.
Suppose that whenever there are n people in the system, then

(i) new arrivals enter the system at an exponential rate λn, and

(ii) people leave the system at an exponential rate µn.

Such an {X(t), t ≥ 0} is called a birth and death process.

λ0 λ1 λ2 · · · λn−1 λn · · ·
0 ⇄ 1 ⇄ 2 ⇄ 3 · · · n−1 ⇄ n ⇄ n+1 · · ·

µ1 µ2 µ3 · · · µn µn+1 · · ·

Suppose the process is at state i > 0 at time t. Then

Bi = waiting time until the next birth ∼ Exp(λi)

Di = waiting time until the next death ∼ Exp(µi)

Hence, the waiting time until the next transition out of state i is
min(Bi, Di) ∼ Exp(λi + µi), from which we can get

νi = λi + µi, for i > 0
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6.3 Birth and Death Processes (Cont’d)
Moreover, given the process is at state i > 0 at time t, the
probability that the next transition is a birth rather than a death is

Pi,i+1 = P (Bi < Di) =
λi

λi + µi
,

which implies Pi,i−1 = P (Di < Bi) =
µi

λi+µi
, for i > 0.

As only birth is possible at state 0, we know ν0 = λ0 and P01 = 1.

To sum up, a birth and death process is a CTMC with state space
X = {0, 1, 2, . . .} such that

νi = λi + µi, i > 0, ν0 = λ0,

Pi,i+1 =
λi

λi + µi
, Pi,i−1 =

µi

λi + µi
, i > 0

P01 = 1, Pi,j = 0 if |i− j| > 1

The parameters {λn}∞n=0 and {µn}∞n=1 are called, respectively, the
arrival (or birth) and departure (or death) rates.
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Examples of Birth and Death Processes
▶ Poisson Processes: µn = 0, λn = λ for all n ≥ 0
▶ Pure Birth Process:

µn = 0 ⇒ νi = λi, Pi,i+1 = 1, Pi,i−1 = 0

▶ Yule Processes (Pure Birth Process with Linear Growth rate):
If there are n people and each independently gives birth at at
an exponential rate λ, then the total rate at which births
occur is nλ.

µn = 0, λn = nλ

Reason: Let

Bi = time until the ith individual give birth ∼ Exp(λ), i = 1, . . . , n

So the time until the next (first) birth when there are n
individuals in the population is

min(B1, B2, . . . , Bn) ∼ Exp(λ+ λ+ · · ·+ λ) = Exp(nλ)

So the rate until the next birth is λn = nλ.
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Example: Linear Growth Model with Immigration
▶ each individual independently gives birth at an exponential

rate λ

▶ each individual independently die at at an exponential rate µ

▶ new immigrants come in at an exponential rate θ

Such a process is a birth-death process with birth and death rates

µn = nµ, λn = nλ+ θ

Reason: Let

Bi = time until the ith individual give birth ∼ Exp(λ), i = 1, . . . , n

T = time until the next new immigrant comes in ∼ Exp(θ)

So the time until the population size increase from n to n+ 1 is

min(B1, . . . , Bn, T ) ∼ Exp(λ+ · · ·+ λ+ θ) = Exp(nλ+ θ)

So the rate until the next birth is λn = nλ+ θ.

Similarly, one can show that the death rate is µn = nµ.
Lecture 10 - 8



Example: M/M/s Queueing Model

▶ s servers

▶ Poisson arrival of customers, rate = λ

▶ Exponential service time, rate = µ

⇒ a birth and death process with constant birth rate λn = λ, and
death (departure)rate µn = min(n, s)µ.

Reason: Suppose, there are n customer in the system at time t. At
most min(n, s) of them are being served. Let Si be remaining
service time of the ith server ∼ Exp(µ). Then, the waiting time
until the next departure is

min(S1, . . . , Smin(s,n)) ∼ Exp(min(s, n)µ).
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6.4 The Transition Probability Function Pij(t)

Recall the transition probability function Pij(t) of a CTMC
{X(t), t ≥ 0} is

Pij(t) = P(X(t+ s) = j|X(s) = i)

Example. (Poisson Processes with rate λ)

Pij(t) = P(N(t+ s) = j|N(s) = i)

= P(N(t+ s)−N(s) = j − i) =

{
e−λt (λt)

j−i

(j−i)! if j ≥ i

0 if j < i

Properties of Transition Probability Functions

▶ Pij(t) ≥ 0 for all i, j ∈ X and t ≥ 0

▶ (Row sums are 1)
∑

j Pij(t) = 1 for all i ∈ X and t ≥ 0
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Lemma 6.3 Chapman-Kolmogorov Equation
For all i, j ∈ X and t ≥ 0,

Pij(t+ s) =
∑
k∈X

Pik(t)Pkj(s)

Proof.

Pij(t+ s)

= P(X(t+ s) = j|X(0) = i)

=
∑
k∈X

P(X(t+ s) = j,X(t) = k|X(0) = i)

=
∑
k∈X

P(X(t+ s) = j|X(t) = k,X(0) = i)P(X(t) = k|X(0) = i)

=
∑
k∈X

P(X(t+ s) = j|X(t) = k)P(X(t) = k|X(0) = i) (Markov Property)

=
∑
k∈X

Pkj(s)Pik(t)
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The matrix notation

Let P(t) = [Pij(t)] be the transition matrix at time t.
We have P(0) = I. And C-K equations read

P(t+ s) = P(t)P(s)

One way to specify a CTMC is through {P(t)}t≥0. But this
requires an infinite number of matrices. Can we simplify it?

Key: use derivatives P′(t)
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Transition rate matrix / infinitesimal generator Q

Assume that

P′(0) = lim
h→0

P(h)−P(0)

h
exists.

In other words, for each i, j,

P ′
ij(0) = lim

h→0

Pij(h)− Pij(0)

h
exists.

We will denote such limit as Q = [qij ], the transition rate matrix.
How about P′(t) for t > 0?
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Kolmogorov’s equations

By definition, one has

P′(t) = lim
h→0

P(t+ h)−P(t)

h
= lim

h→0

P(t)P(h)−P(t)

h

= lim
h→0

P(t)(P(h)− I)

h
= P(t)Q.

This is the so-called Kolmogorov’s forward equations.

Similarly you can prove backward equations

P′(t) = QP(t).

These imply P(t) = exp(tQ).
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Transition rate matrix

How to compute Q?
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Lemma 6.2a

For any i, j ∈ X , we have

qii = lim
h→0

Pii(h)− 1

h
= −νi

Proof. Let Ti be the amount of time the process stays in state i
before moving to other states.

Pii(h) = P(X(h) = i|X(0) = i)

= P(X(h) = i, no transition in (0,h]|X(0) = i)

+ P(X(h) = i, 2 or more transition in (0,h]|X(0) = i)

= P(Ti > h) + o(h)

= e−νih + o(h)

= 1− νih+ o(h)
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Lemma 6.2b

For any i ̸= j ∈ X , we have

qij = lim
h→0

Pij(h)

h
= νiPij

Proof.

Pij(h) = P(X(h) = j|X(0) = i)

= P(X(h) = j, 1 transition in (0,h]|X(0) = i)

+ P(X(h) = j, 2 or more transition in (0,h]|X(0) = i)

= P(Ti < h)Pij + o(h)

= (1−e−νih)Pij + o(h)

= νiPijh+ o(h)
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For finite state space case X = {1, 2, . . . ,m}, define the matrices

P(t) =

P11(t) · · · P1m(t)
...

...
Pm1(t) · · · Pmm(t)

 , P′(t) =

P ′
11(t) · · · P ′

1m(t)
...

...
P ′
m1(t) · · · P ′

mm(t)

 ,

Q =

 q11 · · · q1m
...

...
qm1 · · · qmm

 =


−ν1 ν1P12 · · · ν1P1m

ν2P21 −ν2 · · · ν2P2m
...

...
...

νmPm1 νmPm2 · · · −νm


In matrix notation,
Forward equation: P′(t) = P(t)Q
Backward equation: P′(t) = QP(t)
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