STAT253/317 Lecture 10

Cong Ma

Chapter 6 Continuous-Time Markov Chains
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6.2 Continuous-Time Markov Chains (CTMC)

Definitions. A stochastic process { X (¢),t > 0} with state space
X is called a continuous-time Markov chain if for any two states 7,
je X,

P(X(t+s)=7]X(s)=1,X(u) =xz(u),for 0 <u <s)
o e
future present past
=PX({+s)=7|X(s)=1)
———— ——
future present

If P(X(t+s) = j|X(s) =) does not depend on s for all i,j € X,
then it is denoted as

Pij(t) = P(X(t + 5) = j|X(s) = i),
and we say the CTMC is homogeneous in time.

In STAT253/317, we focus on homogeneous CTMC only.
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Exponential Waiting Time

Let {X(¢),t > 0} be a homogeneous continuous-time Markov
chain. For i € X, let T; denote the amount of time that X (¢)
stays in state ¢ before making a transition into a different state.

Claim: T; has the memoryless property.
P(T; >t + s|T; > s)
X(u) =1, for s <u<s+t|X(s)=1i) (Markov property)

(
(
(X(u) =1, for 0 <u <tX(0)=1) (time homogeneity)
(T; >t) = So T; is memoryless.

Recall that the exponential distribution is the only continuous
distribution having the memoryless property.
Thus T; ~ Exp(v;) for some rate v;.
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An Alternative Definition of CTMC

A stochastic process { X (t),t > 0} with state space X is a
continuous-time Markov chain if

> (exponential waiting time) when the chain reaches a state 1,
the time it stays at state i ~ Exp(v;), where v; is the
transition rate at state ¢

» (embedded with a discrete time Markov chain) when the
process leaves state ¢, it enters anther state j with probability
P;j;, such that

P, =0, ZJEX Pj=1 foralli,jecX.

Remark: The amount of time T; the process spends in state i, and
the next state visited, must be independent. For if the next state
visited were dependent on T}, then information as to how long the
process has already been in state ¢ would be relevant to the
prediction of the next state—and this contradicts the Markovian
assumption.
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6.3 Birth and Death Processes

Let X (t) = the number of people in the system at time t.

Suppose that whenever there are n people in the system, then
(i) new arrivals enter the system at an exponential rate A, and
(ii) people leave the system at an exponential rate p,.

Such an {X(t),t > 0} is called a birth and death process.

Ao A1 A2 An—1 An
0=1=22=23 .- n-1 &2 n Z n+l
231 2 3 Hn Hn+1

Suppose the process is at state ¢ > 0 at time ¢t. Then

B; = waiting time until the next birth ~ Exp(\;)
D; = waiting time until the next death ~ Exp(u;)

Hence, the waiting time until the next transition out of state i is
min(B;, D;) ~ Exp(A; + p;), from which we can get

vi = A\ + W, fori>0
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6.3 Birth and Death Processes (Cont'd)

Moreover, given the process is at state ¢ > 0 at time ¢, the
probability that the next transition is a birth rather than a death is

s
Piiy1=P(B; < D;) = y —|—Z/,LZ-’
which implies P, ;1 = P(D; < B;) = leriu" for ¢ > 0.

As only birth is possible at state 0, we know vy = A\g and FPy; = 1.

To sum up, a birth and death process is a CTMC with state space
X =4{0,1,2,...} such that

vi =N+ pi,1 >0, 1o = A,
i = L
Nt T N
P()lzl,Pi,j:O if|i—j‘>1

P = 1>0

The parameters { A, }22, and {u, }72 , are called, respectively, the
arrival (or birth) and departure (or death) rates.
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Examples of Birth and Death Processes

» Poisson Processes: p, =0, A, = A foralln >0
» Pure Birth Process:

pn =0 = vi=XN, Piy1=1, P,; 1=0

» Yule Processes (Pure Birth Process with Linear Growth rate):
If there are n people and each independently gives birth at at
an exponential rate A, then the total rate at which births
occur is nA.

o =0, Ay =nA

Reason: Let
B; = time until the ith individual give birth ~ Exzp(\), i=1,...,n

So the time until the next (first) birth when there are n
individuals in the population is

min(B1, By, ..., By) ~ Exp(A+ A+ -+ X) = Exzp(ni)

So the rate until the next birth is A\, = nA.
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Example: Linear Growth Model with Immigration

» each individual independently gives birth at an exponential
rate A

» each individual independently die at at an exponential rate p
> new immigrants come in at an exponential rate 6
Such a process is a birth-death process with birth and death rates

Reason: Let

B; = time until the ith individual give birth ~ Exzp(\), i=1,...,n

T = time until the next new immigrant comes in ~ Exp(6)

So the time until the population size increase fromn ton + 1 is
min(By,...,Bp,T) ~ Exp(A+---+ A+ 0) = Exp(n\ + 0)

So the rate until the next birth is A\, = nA + 6.

Similarly, one can show that the death rate is u,, = nu.
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Example: M /M /s Queueing Model

P> s servers

» Poisson arrival of customers, rate = \

» Exponential service time, rate =
= a birth and death process with constant birth rate A, = A, and
death (departure)rate p,, = min(n, s)u.

Reason: Suppose, there are n customer in the system at time ¢. At
most min(n, s) of them are being served. Let S; be remaining
service time of the ith server ~ Exp(u). Then, the waiting time
until the next departure is

min(S1, .. ., Smin(s,n)) ~ Exp(min(s, n)u).
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6.4 The Transition Probability Function P;;(t)
Recall the transition probability function P;;(t) of a CTMC
{X(t),t >0} is

Pij(t) =P(X(t+s) = j|X(s) =1)
Example. (Poisson Processes with rate \)

Py(t) = P(N(t + ) = jIN(s) = )

-t (/\'t)j'_i if 7>
—P(N(t+s)—N(s)=j—i)=4° G "J=1
0 if j <i
Properties of Transition Probability Functions
» Pj(t) >0foralli,je X andt>0
> (Row sums are 1) >, P;;(t) =1 forall i€ X and t > 0
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Lemma 6.3 Chapman-Kolmogorov Equation
Forall 7,7 € X and t > 0,

Z] t+3 szk Pk]
keX

Proof.

Pij(t+8)
=P(X(t +5) = j|X(0) =)
= S P(X(t+5) = 4, X(1) = K|X(0) =)

kex
=Y P(X(t+5) = jIX(t) = k, X(0) = ))P(X(t) = k| X(0) = i)
kex

=Y P(X(t+s) = j|X(t) = k)P(X(t) = k|X(0) = i) (Markov Property)
keXx

=) Pij(s)Pi(t)

kex

Lecture 10 - 11



The matrix notation

Let P(t) = [Pi;(t)] be the transition matrix at time .
We have P(0) = I. And C-K equations read

P(t +5) = P({)P(s)

One way to specify a CTMC is through {P(#)}+>0. But this
requires an infinite number of matrices. Can we simplify it?

Key: use derivatives P’(¢)
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Transition rate matrix / infinitesimal generator Q

Assume that

P’(0) = lim P -PO exists.
h—0 h

In other words, for each 1, j,

. Pyi(h) — Py;(0)
/. — YA A
P = i S

We will denote such limit as Q = [g;;], the transition rate matrix.
How about P’(t) for ¢t > 07?

Lecture 10 - 13



Kolmogorov's equations

By definition, one has

PI(t) = Jim, h = pm h
_ . PO®PMR)-T)

This is the so-called Kolmogorov's forward equations.

Similarly you can prove backward equations

P'(t) = QP(1).

These imply P(t) = exp(tQ).
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Transition rate matrix

How to compute Q7?
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Lemma 6.2a

For any i,j € X, we have

Proof. Let T; be the amount of time the process stays in state 4
before moving to other states.

Bii(h ) P(X(h) = ! (0) =1)
( (h) = i, no transition in (0,h]| X (0) = 1)
P(X (h) = 4,2 or more transition in (0,h]| X (0) = 1)
= P(T > h) + o(h)
=e """ +o(h)
=1—vh+o(h)
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Lemma 6.2b

For any i # j € X', we have

qij = fngr(l) Pl]}fh) = lPl]
Proof.
Pij(h) = P(X(h) J1X(0) =)
(X(h) 4, 1 transition in (0,h]| X (0) = 7)

P(X(h) = 7,2 or more transition in (0,h]| X (0) = 1)
= P(Tz < h) Py + o(h)
= (1—e "M Py + o(h)
= v;Pijh + o(h)

Lecture 10 - 17



For finite state space case X = {1,2,...,m}, define the matrices

[ Pii(t) -+ Punl(t) Pli(t) - Pl,(t)
P(t)=| ol Pl = :
| Pm1(t) - Pam(t) Pra(t) -+ Ph,(t)
- . v b2 - Py
a @m Vo Py —vy - 1Py,
Q pu— . pu—
LAml 2o dmm Vuml VumQ ce —Vm

In matrix notation,
Forward equation: P’(t) = P(¢)Q
Backward equation: P’(t) = QP(t)
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