STAT253/317 Lecture 11

6.5. Limiting Probabilities

Definition. Just like discrete-time Markov chains, if the probability that a continuous-time Markov chain will be in state j at time t, $P_{i j}(t)$, converges to a limiting value P_{j} independent of the initial state i, for all $i \in \mathcal{X}$

$$
P_{j}=\lim _{t \rightarrow \infty} P_{i j}(t)>0
$$

then we say P_{j} is the limiting probability of state j. If P_{j} exists for all $j \in \mathcal{X}$, we say $\left\{P_{j}\right\}_{j \in \mathcal{X}}$ is the limiting distribution of the process.

Remark. If $\lim _{t \rightarrow \infty} P_{i j}(t)$ exists, we must have

$$
\lim _{t \rightarrow \infty} P_{i j}^{\prime}(t)=0
$$

Balanced equations

Recall the forward equations $\mathbf{P}^{\prime}(t)=\mathbf{P}(t) \mathbf{Q}$
If you set $t \rightarrow \infty$, you have

$$
0=p^{\top} \mathbf{Q}
$$

where $p=\left(P_{1}, P_{2}, \ldots\right)^{\top}$
This is the same as saying that

$$
\nu_{j} P_{j}=\sum_{k \in \mathcal{X}, k \neq j} P_{k} q_{k j} \quad \text { for all } j \in \mathcal{X}
$$

Interpretation of the Balanced Equations

$$
\nu_{j} P_{j}=\sum_{k \in \mathcal{X}, k \neq j} P_{k} q_{k j}
$$

$$
\begin{aligned}
\nu_{j} P_{j} & =\text { rate at which the process leaves state } j \\
\sum_{k \in \mathcal{X}, k \neq j} P_{k} q_{k j} & =\text { rate at which the process enters state } j
\end{aligned}
$$

Balanced equations means that the rates at which the process enters and leaves state j are equal.

The limiting distribution $\left\{P_{j}\right\}_{j \in \mathcal{X}}$ can be obtained by solving the balanced equations along with the equation $\sum_{j \in \mathcal{X}} P_{j}=1$.

Remarks. Just like discrete-time Markov chains, a sufficient condition for the existence of a limiting distribution is that the chain is irreducible and positive recurrent.

Examples

- Poisson processes: $\mu_{n}=0, \lambda_{n}=\lambda$ for all $n \geq 0$

$$
\nu_{i}=\lambda, P_{i, i+1}=1, \quad q_{i, i+1}=\nu_{i} P_{i, i+1}=\lambda
$$

Balanced equations:

$$
\nu_{j} P_{j}=P_{j-1} q_{j-1, j} \quad \Rightarrow \quad \lambda P_{j}=\lambda P_{j-1} \quad \Rightarrow \quad P_{j}=P_{j-1}
$$

No limiting distribution exists. The chain is not irreducible. All states are transient.

- Pure birth processes with $\lambda_{n}>0$ for all n No limiting distribution exists. All states are transient.

Birth and Death Processes

For a birth and death process,

$$
\begin{aligned}
\nu_{0} & =\lambda_{0}, \\
\nu_{i} & =\lambda_{i}+\mu_{i}, i>0 \\
P_{01} & =1, \\
P_{i, i+1} & =\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}, \quad i>0 \\
P_{i, i-1} & =\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}, \quad i>0 \\
P_{i, j} & =0
\end{aligned} \quad \Rightarrow \quad \text { if }|i-j|>1 \text { 和,i+1}=\nu_{i} P_{i, i+1}=\lambda_{i}, i \geq 0
$$

Balanced Equations for Birth and Death Processes

The balanced equations $\nu_{j} P_{j}=\sum_{k \in \mathcal{X}, k \neq j} P_{k} q_{k j}$ for a birth and death process are

$$
\begin{aligned}
& \lambda_{0} P_{0}=\mu_{1} P_{1} \\
&\left(\mu_{1}+\lambda_{1}\right) P_{1}=\lambda_{0} P_{0}+\mu_{2} P_{2} \\
&\left(\mu_{2}+\lambda_{2}\right) P_{2}=\lambda_{1} P_{1}+\mu_{3} P_{3} \\
& \vdots \\
&\left(\mu_{n-1}+\lambda_{n-1}\right) P_{n-1}=\lambda_{n-2} P_{n-2}+\mu_{n} P_{n} \\
&\left(\mu_{n}+\lambda_{n}\right) P_{n}=\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1}
\end{aligned}
$$

Adding up all the equations above and eliminating the common terms on both sides, we get

$$
\lambda_{n} P_{n}=\mu_{n+1} P_{n+1} \quad n \geq 0
$$

We hence just need to solve $\lambda_{n} P_{n}=\mu_{n+1} P_{n+1}$ for the limiting distribution.

Lecture 11-6

6.6. Time Reversibility

Definition. A continuous-time Markov chain with state space \mathcal{X} is time reversible if

$$
P_{i} q_{i j}=P_{j} q_{j i}, \quad \text { for all } i, j \in \mathcal{X} \quad \text { (detailed balanced equation) }
$$

If a distribution $\left\{P_{j}\right\}$ on \mathcal{X} satisfies the detailed balanced equation, then it is a stationary distribution for the process.

Example. We have just shown that for Birth and Death processes, the balanced equations would lead to the detailed balanced equations, which are

$$
\lambda_{n} P_{n}=\mu_{n+1} P_{n+1}, \quad n \geq 0
$$

Limiting Dist'n for Birth and Death Processes

Solving $\lambda_{n} P_{n}=\mu_{n+1} P_{n+1}, n \geq 0$ for the limiting distribution, we get

$$
P_{n}=\frac{\lambda_{n-1}}{\mu_{n}} P_{n-1}=\frac{\lambda_{n-1}}{\mu_{n}} \frac{\lambda_{n-2}}{\mu_{n-1}} P_{n-2}=\ldots=\frac{\lambda_{n-1} \lambda_{n-2} \cdots \lambda_{0}}{\mu_{n} \mu_{n-1} \cdots \mu_{1}} P_{0}
$$

To meet the requirement $\sum_{n=0}^{\infty} P_{n}=1$, we need

$$
\sum_{n=0}^{\infty} P_{n}=P_{0}+P_{0} \sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \cdots \lambda_{0}}{\mu_{n} \mu_{n-1} \cdots \mu_{1}}=1
$$

In other words, to have a limiting distribution, it is necessary that

$$
\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}<\infty
$$

Limiting Dist'n for Birth and Death Processes (Cont'd)

If $\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}$ is finite, the limiting distribution is

$$
P_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}}
$$

and

$$
P_{k}=\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{k-1} /\left(\mu_{1} \mu_{2} \cdots \mu_{k}\right)}{1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}}, \quad k \geq 1
$$

Lemma: (Ratio Test) If $a_{n} \geq 0$ for all n, then

$$
\sum_{n=1}^{\infty} a_{n} \begin{cases}<\infty & \text { if } \lim _{n \rightarrow \infty} a_{n} / a_{n-1}<1 \\ =\infty & \text { if } \lim _{n \rightarrow \infty} a_{n} / a_{n-1}>1\end{cases}
$$

For $a_{n}=\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}, a_{n} / a_{n-1}=\lambda_{n-1} / \mu_{n}$. By the ratio test, if

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n-1}}{\mu_{n}}<1
$$

then $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}}<\infty$, the limiting distribution exists.
Example 6.4 Linear Growth Model with Immigration

$$
\mu_{n}=n \mu, \quad \lambda_{n}=n \lambda+\theta
$$

Using the Ratio Test,

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n-1}}{\mu_{n}}=\lim _{n \rightarrow \infty} \frac{(n-1) \lambda+\theta}{n \mu}=\frac{\lambda}{\mu}
$$

So the linear growth model has a limiting distribution if $\lambda<\mu$.

$$
\text { Lecture } 11 \text { - } 10
$$

Example 5.5 (M/M/1 Queueing w/ Finite Capacity)

- single-server service station. Service times are i.i.d. $\sim \operatorname{Exp}(\mu)$
- Poisson arrival of customers with rate λ
- Upon arrival, a customer would
- go into service if the server is free (queue length $=0$)
- join the queue if 1 to $N-1$ customers in the station, or
- walk away if N or more customers in the station

Q: What fraction of potential customers are lost?
Let $X(t)$ be the number of customers in the station at time t. $\{X(t), t \geq 0\}$ is a birth-death process with the birth and death rates below

$$
\mu_{n}=\left\{\begin{array}{ll}
0 & \text { if } n=0 \\
\mu & \text { if } n \geq 1
\end{array} \quad \text { and } \quad \lambda_{n}= \begin{cases}\lambda & \text { if } 0 \leq n<N \\
0 & \text { if } n \geq N\end{cases}\right.
$$

Example 5.5 (M/M/1 Queueing w/ Finite Capacity)

Solving $\lambda_{n} P_{n}=\mu_{n+1} P_{n+1}$ for the limiting distribution

$$
\begin{aligned}
P_{1} & =(\lambda / \mu) P_{0} \\
P_{2} & =(\lambda / \mu) P_{1}=(\lambda / \mu)^{2} P_{0} \\
& \vdots \\
P_{i} & =(\lambda / \mu)^{i} P_{0}, \quad i=1,2, \ldots, N
\end{aligned}
$$

Plugging $P_{i}=(\lambda / \mu)^{i} P_{0}$ into $\sum_{i=0}^{N} P_{i}=1$, one can solve for P_{0} and get

$$
P_{i}=\frac{1-\lambda / \mu}{1-(\lambda / \mu)^{N+1}}(\lambda / \mu)^{i}
$$

Answer: The fraction of customers lost is $P_{N}=\frac{1-\lambda / \mu}{1-(\lambda / \mu)^{N+1}}(\lambda / \mu)^{N}$

Duration Times for Birth and Death Processes

Let

$$
T_{i}=\text { time to move from state } i \text { to state } i+1, \quad i=0,1, \ldots
$$

Suppose at some moment $X(t)=i$. Let

$$
\begin{aligned}
& B_{i}=\text { time until the next birth } \sim \operatorname{Exp}\left(\lambda_{i}\right) \\
& D_{i}=\text { time until the next death } \sim \operatorname{Exp}\left(\mu_{i}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
T_{i} & = \begin{cases}B_{i} & \text { if the next step is } i \rightarrow i+1, \text { i.e., } B_{i}<D_{i} \\
D_{i}+T_{i-1}+T_{i}^{*} & \text { if the next step is } i \rightarrow i-1, \text { i.e., } D_{i}<B_{i}\end{cases} \\
& =\min \left(B_{i}, D_{i}\right)+ \begin{cases}0 & \text { if } B_{i}<D_{i}, \text { occur w/ prob. } \frac{\lambda_{i}}{\lambda_{i}+\mu_{i}} \\
T_{i-1}+T_{i}^{*} & \text { if } D_{i}<B_{i}, \text { occur w/ prob. } \frac{\mu_{i}}{\lambda_{i}+\mu_{i}}\end{cases}
\end{aligned}
$$

Note

- T_{i}^{*} has the same distribution as T_{i}
- T_{i-1} and T_{i}^{*} are indep. of B_{i} and D_{i} because it's Markov

Duration Times for Birth and Death Processes

Taking expected value of
$T_{i}=\min \left(B_{i}, D_{i}\right)+ \begin{cases}0 & \text { if } B_{i}<D_{i}, \text { occur } \mathrm{w} / \text { prob. } \frac{\lambda_{i}}{\lambda_{i}+\mu_{i}} \\ T_{i-1}+T_{i}^{*} & \text { if } D_{i}<B_{i}, \text { occur } \mathrm{w} / \text { prob. } \frac{\mu_{i}}{\lambda_{i}+\mu_{i}}\end{cases}$
we get

$$
\begin{aligned}
\mathbb{E}\left[T_{i}\right] & =\mathbb{E}\left[\min \left(B_{i}, D_{i}\right)\right]+\left(\mathbb{E}\left[T_{i-1}\right]+\mathbb{E}\left[T_{i}\right]\right) \frac{\mu_{i}}{\lambda_{i}+\mu_{i}} \\
& =\frac{1}{\lambda_{i}+\mu_{i}}+\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}\left(\mathbb{E}\left[T_{i-1}\right]+\mathbb{E}\left[T_{i}\right]\right)
\end{aligned}
$$

We obtain the recursive formula

$$
\lambda_{i} \mathbb{E}\left[T_{i}\right]=1+\mu_{i} \mathbb{E}\left[T_{i-1}\right]
$$

Duration Times for Birth and Death Processes (Cont'd)

Since $T_{0} \sim \operatorname{Exp}\left(\lambda_{0}\right), \mathbb{E}\left[T_{0}\right]=1 / \lambda_{0}$.
Using the recursive formula $\lambda_{i} \mathbb{E}\left[T_{i}\right]=1+\mu_{i} \mathbb{E}\left[T_{i-1}\right]$, we have

$$
\begin{aligned}
& \mathbb{E}\left[T_{0}\right]=\frac{1}{\lambda_{0}} \\
& \mathbb{E}\left[T_{1}\right]=\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1}} \mathbb{E}\left[T_{0}\right]=\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1} \lambda_{0}} \\
& \mathbb{E}\left[T_{2}\right]=\frac{1}{\lambda_{2}}+\frac{\mu_{2}}{\lambda_{2}}\left(\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1} \lambda_{0}}\right)=\frac{1}{\lambda_{2}}+\frac{\mu_{2}}{\lambda_{2} \lambda_{1}}+\frac{\mu_{2} \mu_{1}}{\lambda_{2} \lambda_{1} \lambda_{0}}
\end{aligned}
$$

$$
\mathbb{E}\left[T_{i}\right]=\frac{1}{\lambda_{i}}+\frac{\mu_{i}}{\lambda_{i}} \mathbb{E}\left[T_{i-1}\right]=\frac{1}{\lambda_{i}}+\frac{\mu_{i}}{\lambda_{i} \lambda_{i-1}}+\cdots+\frac{\mu_{i} \mu_{i-1} \cdots \mu_{2} \mu_{1}}{\lambda_{i} \lambda_{i-1} \cdots \lambda_{2} \lambda_{1} \lambda_{0}}
$$

$$
=\frac{1}{\lambda_{i}}\left(1+\sum_{k=1}^{i} \prod_{j=1}^{k} \frac{\mu_{i-j+1}}{\lambda_{i-j}}\right)
$$

