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Chapter 7 Renewal Processes

Recall the interarrival times of a Poisson process are i.i.d
exponential random variables.

A renewal process is a counting process of which the interarrival
times are i.i.d., but may not have an exponential distribution.
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Definition of a Renewal Process

0 S1 S2 S3 Sn−1 Sn Sn+1

X1 X2 X3 Xn Xn+1

1st 
event

2nd 
event

3rd 
event

n−1st 
event

nth 
event

n+1st 
event

t

Let X1, X2, . . . be i.i.d random variables with E[Xi] < ∞, and
P(Xi = 0) < 1. Let

S0 = 0, Sn = X1 + . . .+Xn, n ≥ 1.

Define
N(t) = max{n : Sn ≤ t}.

Then {N(t), t ≥ 0} is called a renewal process.
▶ Events are called “renewals”. The interarrival times between

events X1, X2, . . . are also called “renewals”
▶ A more general definition allows the first renewal X1 to be of

a different distribution, called a delayed renewal process
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Renewal Processes Are Well-Defined

Renewal processes are well-defined in the sense that

P(max{n : Sn ≤ t} < ∞) = 1 for all t > 0.

By SLLN ⇒ P

(
lim
n→∞

Sn

n
= E[X1]

)
= 1

⇒ P
(
lim
n→∞

Sn = ∞
)
= 1

⇒ For any t, w/ prob. 1 Sn < t for only finitely many n

⇒ P(max{n : Sn ≤ t} < ∞) = 1 for all t > 0
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Examples of Renewal Processes

▶ Replacement of light bulbs: N(t) = # of replaced light bulbs
by time t, is a renewal process

▶ Consider a homogeneous, irreducible, positive recurrent,
discrete time Markov chain, started from a state i. Let

Ni(t) = number of visits to state i by time t.

Then {Ni(t), t ≥ 0} is a renewal process.
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Basic Properties of Renewal Processes
▶ P(limt→∞N(t) = ∞) = 1

Reason: limt→∞N(t) < ∞ can happen only when Xi = ∞
for some i. {

lim
t→∞

N(t) < ∞
}
⊆
⋃∞

i=1
{Xi = ∞}

However, as the interarrival times of a renewal process are
required to have finite means E[Xi] < ∞, which implies
P(Xi = ∞) = 0, we must have

P
(
lim
t→∞

N(t) < ∞
)
≤ P

( ∞⋃
i=1

{Xi = ∞}

)
≤

∞∑
i=1

P(Xi = ∞) = 0.

▶ Not memoryless in general

⇒ No independent or stationary increments in general
P(N(t+ h)−N(t) = 1) depends on the current lifetime
A(t) = t− SN(t)
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Things of Interest

▶ Distribution of N(t):

P(N(t) = n), n = 0, 1, 2, . . .

▶ Renewal function:
m(t) = E[N(t)]

▶ Residual life (a.k.a. excess life, overshoot, excess over the
boundary):

B(t) = SN(t)+1 − t

▶ Current age (a.k.a. current life, undershoot):

A(t) = t− SN(t)

▶ Total life: C(t) = A(t) +B(t)

▶ Inspection paradox: C(t) and the interarrival time Xi have
different distributions.
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7.2. Distribution of N(t)

Let
Fn(t) = P(Sn ≤ t)

be the CDF of the arrival time Sn = X1 + · · ·+Xn of the nth
event. Observe that

{N(t) ≥ n} ⇔ {Sn ≤ t}

Thus P(N(t) = n) = P(N(t) ≥ n)− P(N(t) ≥ n+ 1)

= P(Sn ≤ t)− P(Sn+1 ≤ t)

= Fn(t)− Fn+1(t)

This formula looks simple but is generally USELESS in practice
since Fn(t) is often intractable.
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The Renewal Function m(t)

Recall that if a random variable X takes non-negative integer
values {0, 1, 2, . . .}, then E[X] =

∑∞
n=1 P(X ≥ n). Therefore the

renewal function can be written as

m(t) = E[N(t)] =

∞∑
n=1

P(N(t) ≥ n)

=

∞∑
n=1

P(Sn ≤ t) =

∞∑
n=1

Fn(t)

▶ It can be shown that the renewal function m(t) can uniquely
determine the interarrival distribution F . So the only renewal
process with linear renewal function m(t) = λt is the Poisson
process with rate λ.

▶ The formula m(t) =
∑∞

n=1 Fn(t) is again generally useless
since Fn(t) often times has no closed form expression. We
need more tools.
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The Renewal Equation
Conditioning on X1 = x, observe that

(N(t)|X1 = x) =

{
1 +N(t− x) if x ≤ t

0 if x > t

Assuming that the interarrival distribution F is continuous with
density function f . Then

m(t) = E[N(t)] =

∫ ∞

0
E[N(t)|X1 = x]f(x)dx

=

∫ t

0
(1 + E[N(t− x)])f(x)dx+

∫ ∞

t
0f(x)dx

=

∫ t

0
(1 +m(t− x))f(x)dx = F (t) +

∫ t

0
m(t− x)f(x)dx

The equation

m(t) = F (t) +

∫ t

0
m(t− x)f(x)dx

is called the renewal equation.
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Example 7.3
Suppose the interarrival times Xi are i.i.d. uniform on (0, 1). The
density and CDF of Xi’s are respectively

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
, F (x) =

0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1.

For 0 ≤ t ≤ 1, the renewal equation is

m(t) = t+

∫ t

0
m(t− x)dx = t+

∫ t

0
m(x)dx

Differentiating the equation with respect to t yields

m′(t) = 1 +m(t) ⇒ d

dt
(1 +m(t)) = 1 +m(t) ⇒ 1 +m(t) = Ket.

or m(t) = Ket − 1. Since m(0) = 0, we can see that K = 1 and
obtain that m(t) = et − 1 for 0 ≤ t ≤ 1.

What if 1 ≤ t ≤ 2?
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For 1 ≤ t ≤ 2, F (t) = 1, the renewal equation is

m(t) = 1 +

∫ 1

0
m(t− x)dx = 1 +

∫ t

t−1
m(x)dx

Differentiating the preceding equation yields

m′(t) = m(t)−m(t− 1) = m(t)− [et−1 − 1] = m(t) + 1− et−1

Multiplying both side by e−t, we get

e−t(m′(t)−m(t))︸ ︷︷ ︸
d
dt
[e−tm(t)]

= e−t − e−1

Integrating over t from 1 to t, we get

e−tm(t) = e−1m(1) + e−1

∫ t

1
e−(s−1) − 1ds

= e−1m(1) + e−1[1− e−(t−1) − (t− 1)]

⇒ m(t) = et−1m(1) + et−1 − 1− et−1(t− 1)

= et + et−1 − 1− tet−1 (Note m(1) = e− 1)
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In general for n ≤ t ≤ n+ 1, the renewal equation is

m(t) = 1 +

∫ t

t−1
m(x)dx ⇒ m′(t) = m(t)−m(t− 1)

Multiplying both side by e−t, we get

d

dt
(e−tm(t)) = e−t(m′(t)−m(t)) = −e−tm(t− 1)

Integrating over t from 1 to t, we get

e−tm(t) = e−nm(n)−
∫ t

n
e−sm(s− 1)ds

Thus we can find m(t) iteratively.
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7.3. Limit Theorems
Let {N(t), t ≥ 0} be a renewal process with i.i.d interarrival times
Xi, i = 1, 2, . . . and E[Xi] = µ.

Explicit forms of N(t) and m(t) = E[N(t)] are usually unavailable.
However the limiting behavior of N(t) and m(t) is useful and
intuitively makes sense.

As t → ∞,

▶
N(t)

t
→ 1

µ
with probability 1 (Proposition 7.1)

▶
m(t)

t
→ 1

µ
(Thm 7.1 Elementary Renewal Theorem)

Remark.

▶ The number 1/µ is called the rate of the renewal process

▶ Theorem 7.1 is not a simple consequence of Proposition. 7.1,
since Xn → X w/ prob. 1 does not ensure E[Xn] → E[X].
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Xn → X Does Not Ensure E[Xn] → E[X]

Example 7.8 Let U be a random variable which is uniformly
distributed on (0, 1); and define the random variables Xn, n ≥ 1,
by

Xn =

{
0 if U > 1/n

n if U ≤ 1/n

Then P(Xn = 0) = P (U > 1/n) = 1− 1/n → 1 as n → ∞. So
with probability 1

Xn → X = 0.

However,

E[Xn] = 0P(Xn = 0) + nP(Xn = n) = n× 1

n
= 1 for all n ≥ 1.

and hence limn→∞ E[Xn] = 1 ̸= E[X] = E[0] = 0.
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Example 7.6 (M/G/1 with no Queue)
▶ Single-server bank

▶ Potential customers arrive at a Poisson rate λ

▶ Customers enter the bank only if the server is free

▶ Service times are i.i.d. with mean µG, indep. of the arrival

▶ Let N(t) = number of customers entry the bank by time t
and those who arrive finding the server busy and walk away
don’t count. Is {N(t) : t ≥ 0} a (delayed) renewal process?

Ans. An interarrival time Ti = Gi +Wi where

Gi = service time, i.i.d., w/ mean µG

Wi = waiting time until the next customer arrives after the previous one is done.

As potential customers arrive following a Poisson process, by the
memoryless property, Wi’s are i.i.d. Exp(λ).

The interarrival times {Ti} = {Gi +Wi} are i.i.d. The events of
customers entering constitutes a renewal process
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Example 7.6 (M/G/1 with no Queue)

Q: What is the rate at which customers enter the bank?

▶ As E[Ti] = E[Gi] + E[Wi] = µG +
1

λ
, by the Elementary

Renewal Theorem, the rate is

1

E[Ti]
=

1

µG + 1
λ

=
λ

λµG + 1

Q: What is the proportion of potential customers that are lost?

▶ As potential customers arrive at rate λ, and customers enter at the

rate
λ

λµG + 1
, the proportion that actually enter the bank is

λ/(λµG + 1)

λ
=

1

λµG + 1

So the proportion that is lost is 1− 1

λµG + 1
=

λµG

λµG + 1
.
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Proof of Proposition 7.1

0 S1 S2 S3 Sn−1 Sn Sn+1

X1 X2 X3 Xn Xn+1

1st 
event

2nd 
event

3rd 
event

n−1st 
event

nth 
event

n+1st 
event

t
Since SN(t) ≤ t < SN(t)+1, we know

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)
.

By SLLN,
SN(t)

N(t) =
∑N(t)

i=1 Xi

N(t) → µ as N(t) → ∞, we obtain

SN(t)

N(t)
→ µ as t → ∞. Furthermore, writing

SN(t)+1

N(t)
=

SN(t)+1

N(t) + 1
× N(t) + 1

N(t)

we have that SN(t)+1/(N(t) + 1) → µ by the same reasoning as
before and

N(t) + 1

N(t)
→ 1 as t → ∞ since P ( lim

t→∞
N(t) = ∞) = 1

Hence, SN(t)+1/N(t) → µ.
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Stopping Time
Definition. Let {Xn : n ≥ 1} be a sequence of independent
random variables. An integer-valued random variable N > 0 is said
to be a stopping time w/ respect to {Xn : n ≥ 1} if the event
{N = n} is independent of {Xk : k ≥ n+ 1}.
Example. (Independent case.)
If N is independent of {Xn : n ≥ 1}, then N is a stopping time.

Example. (Hitting Time I.) For any set A, the first time Xn hits
set A, NA = min{n : Xn ∈ A}, is a stopping time because

{NA = n} = {Xi ̸∈ A for i = 1, 2, . . . , n− 1, but Xn ∈ A}
is independent of {Xk : k ≥ n+ 1}.
Example. (Hitting Time II.) For n ≥ 1, let Sn =

∑n
k=1Xk.

For any set A, NA = min{n : Sn ∈ A}, the first time Sn hits set
A, is also a stopping time w/ respect to {Xn : n ≥ 1} because

{NA = n} = {
∑i

k=1Xk ̸∈ A for 1 ≤ i ≤ n− 1, but
∑n

k=1Xk ∈
A}
is independent of {Xk : k ≥ n+ 1}.Lecture 12 - 19



Example of Non-Stopping Times

▶ (Last visit time) The last time that Xn visit a set A

NA = max{n : Xn ∈ A}

is NOT a stopping time.
Clearly we need to know whether A will be visited again in the
future to determine such a time.

▶ The time Xn reaches its maximum,

N = min{n : Xn = max
k≥1

Xk},

is NOT a stopping time since

{N = n} = {Xn > Xk for 1 ≤ k < n and k ≥ n+ 1}

depends on {Xk : k ≥ n+ 1}.
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Renewal Processes and Stopping Times

Consider a renewal process N(t). With respect to its interarrival
times X1, X2, . . .,

▶ N(t) is NOT a stopping time.

N(t) = n ⇔ X1 + · · ·+Xn ≤ t and X1 + · · ·+Xn+1 > t,

depends on Xn+1.

▶ But N(t) + 1 is a stopping time, since

N(t) + 1 = n ⇔ N(t) = n− 1
⇔ X1 + · · ·+Xn−1 ≤ t and X1 + · · ·+Xn > t,

is independent of Xn+1, Xn+2, . . . .
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Wald’s Equation
If X1, X2 . . . are i.i.d. with E[Xi] < ∞, and if N is a stopping
time for this sequence with E[N ] < ∞, then

E
[∑N

j=1
Xj

]
= E[N ]E[X1]

Proof. Let us define the indicator variable

Ij =

{
1 if j ≤ N

0 if j > N.

We have ∑N

j=1
Xj =

∑∞

j=1
XjIj

Hence

E
[∑N

j=1
Xj

]
= E

[∑∞

j=1
XjIj

]
=
∑∞

j=1
E[XjIj ] (1)
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Proof of Wald’s Equation (Cont’d)

Note Ij and Xj are independent because

Ij = 0 ⇔ N < j ⇔ N ≤ j − 1

and the event {N ≤ j − 1} depends on X1, . . . , Xj−1 only, but not
Xj . From (1), we have

E
[∑N

j=1
Xj

]
=
∑∞

j=1
E[XjIj ] =

∑∞

j=1
E[Xj ]E[Ij ]

= E[X1]
∑∞

j=1
E[Ij ] = E[X1]

∑∞

j=1
P(N ≥ j)

= E[X1]E[N ]

Here we use the alternative formula E[N ] =
∑∞

j=1 P(N ≥ j) to
find expected values of non-negative integer valued random
variables.
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Proposition 7.2

E[SN(t)+1] = µ(m(t) + 1)

Proof: Since N(t) + 1 is a stopping time, by Wald’s equation, we
have

E[SN(t)+1] = E

N(t)+1∑
j=1

Xj

 = E[N(t) + 1]E[X1] = (m(t) + 1)µ

Since SN(t)+1 = t+ Y (t), where Y (t) is the residual life at t,
taking expectations and using the result above yields

E[SN(t)+1] = µ(m(t) + 1) = t+ E[Y (t)].

So far we have proved Proposition 7.2 and can deduce that

m(t)

t
=

1

µ
− 1

t
+

E[Y (t)]

tµ
.
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Proof of the Elementary Renewal Theorem

First from Proposition 7.2, we have

m(t)

t
=

1

µ
− 1

t
+

E[Y (t)]

tµ
≥ 1

µ
− 1

t
⇒ lim

t→∞

m(t)

t
≥ 1

µ
.

It remains to show that limt→∞
m(t)

t
≤ 1

µ
.

If the interarrival times X1, X2, . . . are bounded by a constant M ,
then the residual life Y (t) is also bounded by M . Hence,

lim
t→∞

m(t)

t
≤ lim

t→∞

1

µ
− 1

t
+

M

tµ
=

1

µ

The Elementary Renewal Theorem for renewal process with
bounded interarrival times is proved.
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Proof of the Elementary Renewal Theorem (Cont’d)
In general, if the interarrival times X1, X2, . . . are not bounded, we
fix a constant M and define a new renewal process NM (t) with the
truncated interarrival times

min(X1,M),min(X2,M), . . . ,min(Xn,M), . . . .

Because min(Xi,M) ≤ Xi for all i, it follows that NM (t) ≥ N(t)
for all t.

lim
t→∞

m(t)

t
= lim

t→∞

E[N(t)]

t
≤ lim

t→∞

E[NM (t)]

t
=

1

E[min(X1,M)]

by the Elementary Renewal Theorem with bounded interarrival
times. Note the inequality above is valid for all M > 0. Letting
M → ∞ yields

lim
t→∞

m(t)

t
≤ 1

µ
.

Here we use the fact that E[min(X1,M)] → E[X1] = µ as
M → ∞.
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