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Chapter 7 Renewal Processes

Recall the interarrival times of a Poisson process are i.i.d
exponential random variables.

A renewal process is a counting process of which the interarrival
times are i.i.d., but may not have an exponential distribution.
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Definition of a Renewal Process

Xy X2 X3 Xn ' Xnea
0 S S, S Si1 Si o Sy
| l | l o |
1st 2nd 3rd n-1st nth | n+1st
event event event event event event

Let X3, Xo,... be i.i.d random variables with E[X;] < co, and
P(X; =0) < 1. Let

So=0, Sp=2Xi+...+Xn, n>1

Define
N(t) = max{n : S, < t}.
Then {N(t),t > 0} is called a renewal process.
» Events are called “renewals’. The interarrival times between
events X1, Xo,... are also called “renewals”
» A more general definition allows the first renewal X to be of
a different distribution, called a delayed renewal process
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Renewal Processes Are Well-Defined

Renewal processes are well-defined in the sense that

P(max{n:S, <t} <oc)=1 forallt>0.

By SLLN = P ( lim 2" — E[X1]> =1

n—oo N

= P(lim S’n:oo>:1

n—oo

= For any t, w/ prob. 1.5,, <t for only finitely many n
= P(max{n:S, <t} <oo)=1 forallt>0
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Examples of Renewal Processes

» Replacement of light bulbs: N(t) = # of replaced light bulbs
by time ¢, is a renewal process

» Consider a homogeneous, irreducible, positive recurrent,
discrete time Markov chain, started from a state 4. Let

N;(t) = number of visits to state i by time ¢.

Then {N;(t),t > 0} is a renewal process.
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Basic Properties of Renewal Processes
» P(limy oo N(t) = 00) =1

Reason: lim;_,~, N (%) < oo can happen only when X; = co

for some 1.
{fim N(t) < oo} |J7 1=

However, as the interarrival times of a renewal process are
required to have finite means E[X;] < oo, which implies
P(X; = o0) =0, we must have

P (tlggozv(t) < oo> <p <G{X oo}> < ZP
i=1

> Not memoryless in general

= No independent or stationary increments in general
P(N(t+ h) — N(t) = 1) depends on the current lifetime
A(t) =1t — SN
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Things of Interest
» Distribution of N(t):
P(N(t)=n), n=0,1,2,...
» Renewal function:
m(t) = E[N(t)]

» Residual life (a.k.a. excess life, overshoot, excess over the
boundary):

B(t) = Syy+1 — t

» Current age (a.k.a. current life, undershoot):
Alt) =1t - SN(t)

> Total life: C(t) = A(t) + B(t)
» Inspection paradox: C(t) and the interarrival time X; have
different distributions.
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7.2. Distribution of N(t)
Let
Fo(t) = P(S, < 1)

be the CDF of the arrival time S,, = X7 +--- + X, of the nth
event. Observe that

{N({t)zn} < {S. <t}

This formula looks simple but is generally USELESS in practice
since F,,(t) is often intractable.
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The Renewal Function m(t)
Recall that if a random variable X takes non-negative integer
values {0,1,2,...}, then E[X] =", P(X > n). Therefore the
renewal function can be written as

m(t) = EN(D)] = S P(N(t) > n)
n=1

_ ip(sn <t)— iFn(t)
n=1 n=1

» It can be shown that the renewal function m(t) can uniquely
determine the interarrival distribution F'. So the only renewal
process with linear renewal function m(t) = At is the Poisson
process with rate A.

» The formula m(t) = >, F,(t) is again generally useless
since F,,(t) often times has no closed form expression. We
need more tools.
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The Renewal Equation
Conditioning on X7 = x, observe that

1+ N({t—=z) ifx<t
0 if x >t

(N(@B)| X1 =) = {

Assuming that the interarrival distribution F' is continuous with
density function f. Then

m(®) =EN@] = [ BVOX) = alf(e)ds

:/ (1+E[N(t—x)])f(x)dx+/000f(ﬂf)dx
0

— / (14 m(t —2))f(z)dz = F(t) +/ m(t — z) f(z)dx
0 0
The equation
m(t) = F(t) +/0 m(t — z) f(z)dx

is called the renewal equation.
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Example 7.3
Suppose the interarrival times X; are i.i.d. uniform on (0,1). The
density and CDF of X;'s are respectively

1 fo<ze<1 :
_ , Flx)=q¢z if0<z<1
0 otherwise 1 ifz>1.

0 ifz<O
-]

For 0 <t <1, the renewal equation is

t t
m(t) =t + / m(t —x)de =t + / m(x)dx
0 0
Differentiating the equation with respect to ¢ yields
w(t) =1+ m(t) = (0t m(E) =1+ ml) = 14 m(t) = Ke'

or m(t) = Ke! — 1. Since m(0) = 0, we can see that K = 1 and
obtain that m(t) = e’ — 1 for 0 <t < 1.

What if 1 <t <27
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For 1 <t <2, F(t) =1, the renewal equation is
¢

m(t):1+/01m(t—x)d:v:1+/t m(z)dz

-1
Differentiating the preceding equation yields
m'(t) =m(t) —m(t —1) =m(t) = [e" — 1] =m(t) +1 — !

t

Multiplying both side by e™*, we get

e tm!(t) —m(t)) =et —e?

grle=tm(t)]
Integrating over ¢ from 1 to t, we get
t
e”'m(t) = e tm(1) + e / e 7D _1ds
1

—etm(1) +e 1l —e D — (£ —1)]
=mt)=eTm1)+et -1 -t - 1)
=elfetm -1 —tet? (Note m(1) =e—1)
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In general for n <t < n+ 1, the renewal equation is
t
m(t) =1 +/ m(x)de = m/'(t)=mt)—m(t—1)
t—1
Multiplying both side by e, we get

d ¢ oty _ —t
e m(t)) = e (m'(t) —m(t)) = —e""m(t — 1)

Integrating over ¢t from 1 to t, we get

Thus we can find m(t) iteratively.
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7.3. Limit Theorems
Let {N(t),t > 0} be a renewal process with i.i.d interarrival times
XZ', 1= 1,2, ... and E[XZ] = M.

Explicit forms of N(t) and m(t) = E[N(¢)] are usually unavailable.
However the limiting behavior of N (t) and m(¢) is useful and
intuitively makes sense.

As t — oo,
N(t 1
> t() — " with probability 1 (Proposition 7.1)
) 1
> — (Thm 7.1 Elementary Renewal Theorem)
o
Remark.

» The number 1/u is called the rate of the renewal process

» Theorem 7.1 is not a simple consequence of Proposition. 7.1,
since X,, — X w/ prob. 1 does not ensure E[X,,] — E[X].
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X,, — X Does Not Ensure E[X,,] — E[X]

Example 7.8 Let U be a random variable which is uniformly
distributed on (0, 1); and define the random variables X,,, n > 1,

by
Y — 0 ifU>1/n
n ifU<1/n

Then P(X,, =0)=P(U >1/n)=1—-1/n—1asn — co. So
with probability 1
X,—X=0.

However,
1

E[X,]=0P(X, =0)+nP(X,=n)=nx—=1 foralln>1.
n

and hence lim,,_,» E[X,,] = 1 # E[X] = E[0] = 0.
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Example 7.6 (M/G/1 with no Queue)

Single-server bank
Potential customers arrive at a Poisson rate A
Customers enter the bank only if the server is free

Service times are i.i.d. with mean p¢, indep. of the arrival

vvyVvyyvyy

Let N(t) = number of customers entry the bank by time ¢
and those who arrive finding the server busy and walk away
don't count. Is {N(t) : t > 0} a (delayed) renewal process?

Ans. An interarrival time T; = G; + W; where

G; = service time, i.i.d., w/ mean g

W; = waiting time until the next customer arrives after the previous one

As potential customers arrive following a Poisson process, by the
memoryless property, W;'s are i.i.d. Exp(\).
The interarrival times {T;} = {G; + W;} are i.i.d. The events of

customers entering constitutes a renewal process
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Example 7.6 (M/G/1 with no Queue)

Q: What is the rate at which customers enter the bank?

1
> As E[T;] = E[G;] + E[W;] = pg + T by the Elementary
Renewal Theorem, the rate is

1A
E[Ti]  pe+3 Aue+1

Q: What is the proportion of potential customers that are lost?
» As potential customers arrive at rate A, and customers enter at the

A
rate ————, the proportion that actually enter the bank is
Apg +1

M (Apg +1) 1

A Mg +1

I e
Apg +1 B Mg +1°

So the proportion that is lost is 1 —
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Proof of Proposition 7.1

Since Sy <t < Sn(1)41, we know Xo X
S S Snfl Sn 3 Sn+1
N( ) t N(t)+1 . n—:itst ntih n+£st
( ) ( ) N(t) event event : event
N(t) 5
By SLLN, SN(%) Z’N%t)XZ — p as N(t) — oo, we obtain
v — p as t — oco. Furthermore, writing
N(t) ' '

Snw+1 - Snw+1 . N(t)+1
N(t)  N@t)+1 N(t)

we have that Sy 41/ (N(t) +1) — p by the same reasoning as

before and
N(t 1
](\7)(;; —1last— 0o since P(tl_igloN(t) =o00) =1

Hence, Sy()4+1/N(t) — .
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Stopping Time

Definition. Let {X,, : n > 1} be a sequence of independent

random variables. An integer-valued random variable N > 0 is said

to be a stopping time w/ respect to {X,, : n > 1} if the event

{N =n} is independent of { X} : k > n+ 1}.

Example. (I/ndependent case.)

If N is independent of {X,, : » > 1}, then N is a stopping time.

Example. (Hitting Time |.) For any set A, the first time X, hits

set A, Ng = min{n : X,, € A}, is a stopping time because
{Ng=n}={X;¢gAfori=1,2,...,n—1, but X,, € A}

is independent of {X} : k> n + 1}.

Example. (Hitting Timell.) Forn > 1, let S, =3, _; Xk.

For any set A, Ng = min{n : S,, € A}, the first time S, hits set

A, is also a stopping time w/ respect to {X,, : n > 1} because

(Na=n}={1_ Xp g Afor 1 <i<n-—1, but 37, X}, €

A}

is independent of {Xj : k P ik lds 19



Example of Non-Stopping Times
» (Last visit time) The last time that X, visit a set A
Ny = max{n: X, € A}

is NOT a stopping time.
Clearly we need to know whether A will be visited again in the
future to determine such a time.

» The time X,, reaches its maximum,

N =min{n: X,, = Ilglzai(Xk},

is NOT a stopping time since
{N=n}={X,,> Xy forl<k<mnand k>n+1}

depends on {Xj : k > n + 1}.
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Renewal Processes and Stopping Times

Consider a renewal process N (t). With respect to its interarrival
times X1, Xo,...,

» N(t) is NOT a stopping time.
Nit)=ne X1+ +X,<tand X; + -+ X1 >,

depends on X, 1.
» But N(t) + 1 is a stopping time, since

Nit)+1=n& N@Et)=n—-1
S X1+ + X <tand Xj 4+ X, > t,

is independent of X, 11, Xn1o,....
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Wald's Equation
If X1, X5...areiid. with E[X;] < co, and if N is a stopping
time for this sequence with E[N] < oo, then

E {ZN X]} = E[N]E[X1]

j=1

Proof. Let us define the indicator variable

1 ifj<N
I = .
0 ifj>N.

We have N
oo
D=2 Xl

Hence
E [ZLX]} —E[Y " 5L =Y " EXL ()
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Proof of Wald's Equation (Cont'd)
Note I; and X are independent because
;=0 & N<j & N<j-—-1

and the event {N < j — 1} depends on X1,..., X;_1 only, but not
X;. From (1), we have

E [Zjil Xj:| = Zj:l E[X; ;] = Z:; E[X;]E[L;]
=E[X)) " EIL]=EX)]) " P(N =)
= E[X4]E[N]

Here we use the alternative formula E[N] = 3772, P(N > j) to
find expected values of non-negative integer valued random
variables.
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Proposition 7.2

E[SNn()+1] = p(m(t) + 1)

Proof. Since N(t) + 1 is a stopping time, by Wald's equation, we
have

N(t)+1
E[Syiril =E | Y X;| =E[N(t) + 1E[X:] = (m(t) + 1)u
j=1

Since Sy(#)+1 =t + Y (t), where Y (¢) is the residual life at ¢,
taking expectations and using the result above yields

ElSn 1] = pm(®) +1) = t + E[Y (1),
So far we have proved Proposition 7.2 and can deduce that

m(t) _ 1 1, EY()]

t noot tp
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Proof of the Elementary Renewal Theorem

First from Proposition 7.2, we have

t 1 1 E[Y(t 1 1 t 1
m) 1 1 Ey@ 1 1o m) 1
t not tp not t—oo t o

t 1

It remains to show that lim; m}f) < —.

W

If the interarrival times X1, Xo, ... are bounded by a constant M,
then the residual life Y'(¢) is also bounded by M. Hence,

. m(t) 11 M1
Iim —<Ilim —— -4+ — = —
t—oo t=oo t  tu

The Elementary Renewal Theorem for renewal process with
bounded interarrival times is proved.
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Proof of the Elementary Renewal Theorem (Cont'd)
In general, if the interarrival times X1, Xo, ... are not bounded, we
fix a constant M and define a new renewal process Ny, (t) with the
truncated interarrival times

min(Xy, M), min(Xq, M), ..., min(X,, M),....
Because min(X;, M) < X; for all 4, it follows that Ny, (t) > N(t)

for all ¢.
om(t) . E[N(@)] _ L E[Ny(t)] 1
lim — 2 = | <1 _
e ¢ ihs ¢ Cibs ¢ E[min(X1, M)]

by the Elementary Renewal Theorem with bounded interarrival
times. Note the inequality above is valid for all M > 0. Letting
M — oo yields

lim ﬂ < l
t—oo ¢ M
Here we use the fact that E[min(X;, M)] — E[X1] = p as

M — oco.
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