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Section 7.7 The Inspection Paradox

Given a renewal process {N(t), t ≥ 0} with interarrival times
{Xi, i ≥ 1}, the length of the current cycle,

XN(t)+1 = SN(t)+1 − SN(t)

tend to be longer than Xi, the length of an ordinary cycle.

Precisely speaking, XN(t)+1 is stochastically greater than Xi,
which means

P(XN(t)+1 > x) ≥ P(Xi > x), for all x ≥ 0.
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Heuristic Explanation of the Inspection Paradox
Suppose we pick a time t uniformly in the range [0, T ], and then
select the cycle that contains t.
▶ Possible cycles that can be selected: X1, X2, . . . , XN(T )+1

▶ These cycles are not equally likely to be selected.
The longer the cycle, the greater the chance.

P(Xi is selected) = Xi/T, for 1 ≤ i ≤ N(T )

▶ So the expected length of the selected cycle XN(t)+1 is
roughly

N(T )∑
i=1

Xi ×
Xi

T
=

∑N(T )
i=1 X2

i

T
→ E[X2

i ]

E[Xi]
≥ E[Xi] as T → ∞.

▶ Last time we have shown that if F is non-lattice,

lim
t→∞

E[Y (t)] = lim
t→∞

E[A(t)] =
E[X2

i ]

2E[Xi]
,

Since XN(t)+1 = A(t) + Y (t), limt→∞ E[XN(t)+1] =
E[X2

i ]

E[Xi]
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Example: Waiting Time for Buses

▶ Passengers arrive at a bus station at Poisson rate λ

▶ Buses arrive one after another according to a renewal process
with interarrival times Xi, i ≥ 1, independent of the arrival of
customers.

▶ If Xi is deterministic, always equals 10 mins, then on average
passengers has to wait 5 mins

▶ If Xi is random with mean 10 min, then a passenger arrives at
time t has to wait Y (t) minutes. Here Y (t) is the residual life
of the bus arrival process. We know that

E[Y (t)] → E[X2
i ]

2E[Xi]
≥ E[Xi]

2
= 5 min.

Passengers on average have to weight more than half the
mean length of interarrival times of buses.
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Class Size in U of Chicago

University of Chicago is known for its small class size, but a
majority of students feel most classes they enroll are big.
Suppose U of Chicago have five classes of size

10, 10, 10, 10, 100

respectively.

▶ Mean size of the 5 classes: (10 + 10+ 10+ 10+ 100)/5 = 28.

▶ From students’ point of view, only the 40 students in the first
four classes feel they are in a small class, the 100 students in
the big class feel they are in a large class.
Average class size students feel

40 students︷ ︸︸ ︷
10 + · · ·+ 10+

100 students︷ ︸︸ ︷
100 + . . .+ 100

140
=

10× 40 + 100× 100

140
≈ 74.3.
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Proof of the Inspection Paradox

For s > x,

P(XN(t)+1 > x|SN(t) = t− s) = 1 ≥ P(Xi > x)

For s < x,

P(XN(t)+1 > x|SN(t) = t− s)

= P(X1 > x|X1 > s)

=
P(X1 > x, X1 > s)

P(X1 > s)

=
P(X1 > x)

P(X1 > s)

≥ P(X1 > x)

Thus P(XN(t)+1 > x|SN(t) = t− s) ≥ P(Xi > x) for all N(t) and
SN(t). The claim is validated
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Limiting Distribution of XN(t)+1

If the distribution F of the interarrival times is non-lattice, we can
use an alternating renewal process argument to determine

G(x) = lim
t→∞

P(XN(t)+1 ≤ x).

We say the renewal process is ON at time t iff XN(t)+1 ≤ x, and
OFF otherwise. Thus in the ith cycle,

the length of ON time is

{
Xi if Xi ≤ x, and

0 otherwise

and hence

G(x) = lim
t→∞

P(XN(t)+1 ≤ x) =
E[On time in a cycle]

E[cycle time]

=
E[Xi1{Xi≤x}]

E[Xi]
=

∫ x
0 zf(z)dz

µ
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Chapter 8 Queueing Models

A queueing model consists “customers” arriving to receive some
service and then depart. The mechanisms involved are

▶ input mechanism: the arrival pattern of customers in time

▶ queueing mechanism: the number of servers, order of the
service

▶ service mechanism: the time to serve one or a batch of
customers

We consider queueing models that follow the most common rule of
service: first come, first served.
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Common Queueing Processes

It is often reasonable to assume

▶ the interarrival times of customers are i.i.d. (the arrival of
customers follows a renewal process),

▶ the service times for customers are i.i.d. and are independent
of the arrival of customers.

Notation: M = memoryless, or Markov, G = General

▶ M/M/1: Poisson arrival, service time ∼ Exp(µ), 1 server
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ µ

▶ M/M/∞: Poisson arrival, service time ∼ Exp(µ), ∞ servers
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ jµ

▶ M/M/k: Poisson arrival, service time ∼ Exp(µ), k servers
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ min(j, k)µ
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Common Queueing Processes (Cont’d)

▶ M/G/1: Poisson arrival, General service time ∼ G, 1 server

▶ M/G/∞: Poisson arrival, General service time ∼ G, ∞ server

▶ M/G/k: Poisson arrival, General service time ∼ G, k server

▶ G/M/1: General interarrival time, service time ∼ Exp(µ), 1
server

▶ G/G/k: General interarrival time ∼ F , General service time
∼ G, k servers

▶ . . .
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Quantities of Interest for Queueing Models
Let

X(t) = number of customers in the system at time t

Q(t) = number of customers waitng in queue at time t

Assume that {X(t), t ≥ 0} and {Q(t), t ≥ 0} has a stationary
distribution.
▶ L = the average number of customers in the system

L = lim
t→∞

∫ t
0 X(t)dt

t
;

▶ LQ = the average number of customers waiting in queue (not
being served);

LQ = lim
t→∞

∫ t
0 Q(t)dt

t
;

▶ W = the average amount of time, including the time waiting
in queue and service time, a customer spends in the system;

▶ WQ = the average amount of time a customer spends waiting
in queue (not being served).
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Little’s Formula

Let

N(t) = number of customers enter the system at or before time t.

We define λa be the arrival rate of entering customers,

λa = lim
t→∞

N(t)

t

Little’s Formula:

L = λaW

LQ = λaWQ
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Cost Identity
Many interesting and useful relationships between quantities in
queueing models can be obtained by using the cost identity.

Imagine that entering customers are forced to pay money
(according to some rule) to the system. We would then have the
following basic cost identity:

average rate at which the system earns

= λa × average amount an entering customer pays

Proof. Let R(t) be the amount of money the system has earned by
time t. Then we have

average rate at which the system earns

= lim
t→∞

R(t)

t
= lim

t→∞

N(t)

t

R(t)

N(t)
= λa lim

t→∞

R(t)

N(t)

= λa × average amount an entering customer pays,

provided that the limits exist.
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Proof of Little’s Formula
To prove L = λaW :

▶ we use the payment rule:

each customer pays $1 per unit time while in the system.

▶ the average amount a customer pay = W , the average waiting
time of customers.

▶ the amount of money the system earns during the time
interval (t, t+∆t) is X(t)∆t, where X(t) is the number of
customers in the system at time t ,

▶ and the rate the system earns is thus lim
t→∞

∫ t
0 X(s)ds

t
= L,

the formula follows from the cost identity.

To prove LQ = λaWQ, we use the payment rule:

each customer pays $1 per unit time while in queue.

The argument is similar.
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8.3.1 M/M/1 Model
Let X(t) be number of customers in the system at time t.
{X(t), t ≥ 0} is a birth and death process with

birth rates λj ≡ λ, and death rates µj ≡ µ.

Recall that (see Example 6.14 in the book) we have showed that
the stationary distribution exists when λ < µ, and the stationary
distribution is

Pn = lim
t→∞

P(X(t) = n) =

(
1− λ

µ

)(
λ

µ

)n

, n = 0, 1, . . .

Thus

L= lim
t→∞

E[X(t)]=

∞∑
n=1

nPn=
λ

µ− λ
=

1/µ

1/λ− 1/µ

=
E[service time]

E[interarrival time]−E[service time]
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8.3.1 M/M/1 Model (Cont’d)
Let T be the time of a customer spend in the system.
If there are n customers in the system while this customer arrives,
then T is the sum of the service times of the n+ 1 customers
∼ Gamma(n+ 1, µ). That is,

P(T ≤ t) =
∑∞

n=0
Pn

∫ t

0

µn+1

n!
sne−µsds

=
∑∞

n=0

(
1− λ

µ

)(
λ

µ

)n ∫ t

0

µn+1

n!
sne−µsds

= (µ− λ)

∫ t

0

(∑∞

n=0

(λs)n

n!︸ ︷︷ ︸
=eλs

)
e−µsds

= (µ− λ)

∫ t

0
e−(µ−λ)sds = 1− e−(µ−λ)t

Therefore, T ∼ Exp(µ− λ) ⇒ W = E[T ] =
1

µ− λ
.

This verifies Little’s formula, L = λW.
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8.3.1 M/M/1 Model (Cont’d)

WQ = W − E[service time] = W − 1/µ =
λ

µ(µ− λ)

Note that

# of customers in queue = max(0, # of customers in system−1).

So

LQ =
∑∞

n=1
(n− 1)Pn =

∑∞

n=1
nPn︸ ︷︷ ︸

L

−(
∑∞

n=1
Pn︸ ︷︷ ︸

1−P0

)

= L− 1 + P0

=
λ

µ− λ
− 1 +

(
1− λ

µ

)
=

λ2

µ(µ− λ)
= λWQ
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Example 8.2

Suppose customers arrive at a Poisson rate of 1 in 12 minutes, and
that the service time is exponential at a rate of one service per 8
minutes. What are L and W?
Solution. Since λ = 1/12, µ = 1/8, we have

L =
1/µ

1/λ− 1/µ
=

8

12− 8
= 2, W =

1

µ− λ
= 24

Observe if the arrival rate increases 20% to λ = 1/10, then

L = 4,W = 40

When λ/µ ≈ 1, a slight increase in λ/µ will lead to a large
increase in L and W .
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M/M/∞ Model
In this case, customers will be served immediately upon arrival.
Nobody will be in queue. We have

WQ = LQ = 0, W = average service time = 1/µ,

and hence L = λW = λ/µ.

As a verification, observe that {X(t), t ≥ 0} is a birth and death
process with

birth rates λj ≡ λ, and death rates µj ≡ jµ.

The stationary distribution is

Pn =
λn

n!µn
P0 =

λn

n!µn

1∑∞
n=0

λn

n!µn

= e−λ/µ (λ/µ)
n

n!
, n = 0, 1, . . .

Therefore X(t) ∼ Poisson(λ/µ) as t → ∞,

L = E[X(t)] = λ/µ.
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Birth & Death Queueing Models
In addition to M/M/1 and M/M/∞ models, a more general
family of birth & death queueing models is the following:

M/M/k Queueing System with Balking
Consider a M/M/k system, but suppose a customer arrives finding
n others in the system will only join the system with probability
αn, i.e., he balks (walks away) w/ prob. 1− αn. This system is a
birth and death process with

λn = λαn, n ≥ 0

µn = min(n, k)µ, n ≥ 1

A special case of M/M/k queueing system with balking is the
M/M/k system with finite capacity N , where

αn =

{
1 if n < N

0 if n ≥ N
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Birth & Death Queueing Models

For a birth & death queueing model, the stationary distribution of
the number of customers in the system is given by

Pk = lim
t→∞

P(X(t) = k) =
λ0λ1 · · ·λk−1/(µ1µ2 · · ·µk)

1 +
∑∞

n=1
λ0λ1···λn−1

µ1µ2···µn

, k ≥ 1

The necessary and sufficient condition for such a stationary
distribution to exists is that

∞∑
n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
< ∞.

With {Pn}, the average number of customers in the system is
simply

L =
∑∞

n=0
nPn.
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Birth & Death Queueing Models (Cont’d)

With balking, the rate that customers enter the system is not λ
(since not all customers enter the system), but

λa =
∑∞

n=0
λnPn.

Consequently, the average waiting time is

W = L/λa =

∑∞
n=0 nPn∑∞
n=0 λnPn

,

and the average amount of time waiting in queue (WQ) and
average number of customers in queue (LQ) are respectively

WQ = W − E[service time] = W − (1/µ),

LQ = λaWQ
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Busy Period in a Birth & Death Queueing Model
There is an alternating renewal process embedded in a birth &
death queueing model.
We say a renewal occurs if the system become empty.
Using the alternating renewal theory, the long-run proportion of

time that the system is empty is
E[Idle]

E[Idle] + E[Busy]
, where

E[Idle] = expected length of an idle period

E[Busy] = expected length of a busy period

Also note that the long-run proportion of time that the system is
empty is simply P0 = limt→∞ P(X(t) = 0). Since the length of an
idle period ∼ Exp(λ0), we have E[Idle] = 1/λ0. In summary, we
have that

P0 =
1/λ0

(1/λ0) + E[Busy]
or

E[Busy] =
1− P0

λ0P0
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8.2.2. Steady-State Probabilities
For a general queueing model, we are interested in three different
limiting probabilities:

Pn = lim
t→∞

P(X(t) = n),

where X(t) = # of customers in the system at time t

an = proportion of customers arrive finding n in the system

dn = proportion of customers depart leaving n behind in the system

Here we assume they exist.
Though the three are defined differently, the latter two are
identical in most of the queueing models.

Proposition 8.1 In any system in which customers arrive and
depart one at a time

the rate at which arrivals find n = the rate at which departures leave n

and
an = dn
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Proof of Proposition 8.1
Let

Ni,j(t) = number of times the number of customers in the system

goes from i to j by time t

A(t) = number of customers arrived by time t

D(t) = number of customers departed by time t

Note that an arrival will see n in the system whenever the number
in the system goes from n to n+ 1; similarly, a departure will leave
behind n whenever the number in the system goes from n+ 1 to
n. Thus we know

the rate at which arrivals find n = lim
t→∞

Nn,n+1(t)

t

the rate at which departures leave n = lim
t→∞

Nn+1,n(t)

t

an = lim
t→∞

Nn,n+1(t)

A(t)
, dn = lim

t→∞

Nn+1,n(t)

D(t)
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Proof of Proposition 8.1 (Cont’d)

Since between any two transitions from n to n+ 1, there must be
one from n+ 1 to n, and vice versa, we have

Nn,n+1(t) = Nn+1,n(t)± 1 for all t.

Thus

rate at which arrivals find n = lim
t→∞

Nn,n+1(t)

t

= lim
t→∞

Nn+1,n(t)± 1

t

= rate at which departures leave n

Lecture 14 - 26



Proof of Proposition 8.1 (Cont’d)

For an and dn, obviously A(t) ≥ D(t) and hence

lim
t→∞

A(t)

t
≥ lim

t→∞

D(t)

t

Combining with the fact limt→∞
Nn,n+1(t)

t = limt→∞
Nn+1,n(t)

t we
just shown, we obtain

an = lim
t→∞

Nn,n+1(t)/t

A(t)/t
≤ lim

t→∞

Nn+1,n(t)/t

D(t)/t
= dn

There are two possibilities:

▶ if lim
t→∞

A(t)/t = lim
t→∞

D(t)/t, then obviously an = dn for all n

▶ if lim
t→∞

A(t)/t > lim
t→∞

D(t)/t, then the queue size will go to

infinity, implying that an = dn = 0. The equality is still valid.
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Example 8.1

Here is an example where Pn ̸= an. Consider a queueing model in
which

▶ service times = 1, always

▶ interarrival times are always > 1 [e.g., Uniform(1.5,2)].

Hence, as every arrival finds the system empty and every departure
leaves it empty, we have

a0 = d0 = 1

However, P0 ̸= 1 as the system is not always empty of customers.
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