STAT253/317 Winter 2024 Lecture 15

Cong Ma

8.2.2PASTA8.5The System M/G/1Section 8.7The Model G/M/1

PASTA

Proposition 8.2 (PASTA Principle)

Poisson <u>Arrivals See Time Averages</u>

If the arrival process is Poisson, then

$$P_n = a_n,$$

and hence $P_n = d_n$.

- By time T, the total amount of time there are n customers in the system is about P_nT
- ▶ Regardless of how many customers in the system, Poisson arrivals always arrive at rate λ . Thus by time *T*, the total number of arrivals that find *n* in the system is $\approx \lambda P_n T$.
- the overall number of customers arrived by time T is $\approx \lambda T$
- the proportion of arrivals that find the system in state n is

$$a_n = \frac{\lambda P_n T}{\lambda T} = P_n$$

Example 5.5 (M/M/1 Queueing w/ Finite Capacity)

- single-server service station. Service times are i.i.d. $\sim Exp(\mu)$
- Poisson arrival of customers with rate λ
- Upon arrival, a customer would
 - go into service if the server is free (queue length = 0)
 - ▶ join the queue if 1 to N − 1 customers in the station, or
 - walk away if N or more customers in the station

Q: What fraction of potential customers are lost?

Let X(t) be the number of customers in the station at time t. $\{X(t), t \ge 0\}$ is a birth-death process with the birth and death rates below

$$\mu_n = \begin{cases} 0 & \text{if } n = 0 \\ \mu & \text{if } n \ge 1 \end{cases} \quad \text{and} \quad \lambda_n = \begin{cases} \lambda & \text{if } 0 \le n < N \\ 0 & \text{if } n \ge N \end{cases}$$

Example 5.5 (M/M/1 Queueing w/ Finite Capacity)

Solving
$$\lambda_n P_n = \mu_{n+1} P_{n+1}$$
 for the limiting distribution
 $P_1 = (\lambda/\mu) P_0$
 $P_2 = (\lambda/\mu) P_1 = (\lambda/\mu)^2 P_0$
 \vdots
 $P_i = (\lambda/\mu)^i P_0, \qquad i = 1, 2, ..., N$

Plugging $P_i = (\lambda/\mu)^i P_0$ into $\sum_{i=0}^N P_i = 1$, one can solve for P_0 and get

$$P_i = rac{1-\lambda/\mu}{1-(\lambda/\mu)^{N+1}} (\lambda/\mu)^i$$

Answer: The fraction of customers lost is $P_N = \frac{1-\lambda/\mu}{1-(\lambda/\mu)^{N+1}} (\lambda/\mu)^N$

M/G/1

M/G/1

The M/G/1 model assumes

- Poisson arrivals at rate λ ;
- i.i.d service times with a general distribution G, $S_i \sim G$;
- a single server; and
- first come, first serve

A necessary condition for an M/G/1 to be stable is that the mean of service time $\mathbb{E}[S_n]$ must satisfies

$$\lambda \mathbb{E}[S_n] < 1.$$

This condition is necessary. Otherwise if

the average service time $\mathbb{E}[S_n]$

> the average interarrival time of customers $1/\lambda$,

the queue will become longer and longer and the system will ultimately explode.

A Markov Chain embedded in M/G/1

Let X(t) = # of customers in the system at time t. Unlike M/M/k or $M/M/\infty$ systems, the process $\{X(t), t \ge 0\}$ in a M/G/1 system is NOT a continuous time Markov chain.

Fortunately, there is a discrete-time Markov chain embedded in an M/G/1 system.

Let

 $Y_0 = 0$ $Y_n = \#$ of customers in the system leaving behind at the *n*th departure, $n \ge 1$

 $\{Y_n, n \ge 0\}$ is a Markov chain.

To see this, let us define

 $A_n = \#$ of customers that enter the system during the service time of the *n*th customer, $n \ge 1$

Observed that $\{Y_n, n \ge 0\}$ and $\{A_n, n \ge 1\}$ are related as follows

$$Y_{n+1} = A_{n+1} + (Y_n - 1)_+ = \begin{cases} Y_n - 1 + A_{n+1} & \text{if } Y_n > 0\\ A_{n+1} & \text{if } Y_n = 0 \end{cases}$$

Example: $Y_1 = A_1$, $Y_2 = A_2 + (Y_1 - 1)_+$

Recall that S_n denotes the length of time to serve the *n*th customer.

Given S_n , A_n is Poisson with mean λS_n . From this we can conclude that A_1, A_2, \ldots are i.i.d. since

- the service times S_1, S_2, \ldots are i.i.d., and
- there is only 1 server, the service times of different customers are disjoint, and the number of events occurred in disjoint intervals are independent in a Poisson process.

That $\{A_n, n \ge 1\}$ are i.i.d. and Y_n is independent of A_{n+1} implies that Y_n forms a Markov chain.

Transition probabilities of the Markov chain

Moreover, as A_n given S_n is Poisson with mean λS_n , we can find the distribution of A_n

$$\alpha_{k} = P(A_{n} = k) = \int_{0}^{\infty} P(A_{n} = k | S_{n} = y) G(dy)$$
$$= \int_{0}^{\infty} \frac{(\lambda y)^{k}}{k!} e^{-\lambda y} G(dy)$$

from which we can find the transition probability P_{ij} for the Markov chain $\{Y_n, n \ge 0\}$:

$$P_{ij} = P(Y_{n+1} = j | Y_n = i) = P(A_{n+1} = j - (i - 1)^+)$$
$$= \begin{cases} \alpha_j, & \text{if } i = 0\\ \alpha_{j-i+1}, & \text{if } i \ge 1, j \ge i - 1\\ 0 & \text{if } i \ge 1, j < i - 1 \end{cases}$$

We can show that the Markov chain is irreducible and aperiodic and has a limiting distribution if and only if $\lambda \mathbb{E}[S_1] < 1$.

Idle Periods in M/G/1

Using the equation $Y_{n+1} = A_{n+1} + (Y_n - 1)^+$, we can find many properties of the Markov chain. First write the equation as

$$Y_{n+1} = A_{n+1} + Y_n - 1 + \mathbf{1}_{\{Y_n = 0\}}$$

Taking expectations we get

$$\mathbb{E}[Y_{n+1}] = \underbrace{\mathbb{E}[A_{n+1}]}_{=\lambda \mathbb{E}[S]} + \mathbb{E}[Y_n] - 1 + P(Y_n = 0)$$

where $\mathbb{E}[A_{n+1}] = \lambda \mathbb{E}[S_{n+1}]$ since A_{n+1} given S_{n+1} is Poisson with mean λS_{n+1} and $\mathbb{E}[S_{n+1}] = \mathbb{E}[S]$ since S_i 's are i.i.d.

Let $n \to \infty$, since the MC has a limiting distribution, we have $\lim_{n\to\infty} \mathbb{E}[Y_{n+1}] = \lim_{n\to\infty} \mathbb{E}[Y_n]$ and from which we can get

$$\lim_{n\to\infty} \mathrm{P}(Y_n=0) = 1 - \lambda \mathbb{E}[S]$$

By the PASTA principle, $\lim_{n\to\infty} P(Y_n = 0) = d_0 = P_0$ is also the long-run proportion of time that the system is idle.

Length of Busy Periods in M/G/1

As in a birth & death queueing model, there is a alternating renewal process embedded in an M/G/1 system. We say a renewal occurs if the system become empty, then the system idles for a period of time until the next customer enters the system, and then a busy period begins until the system become empty again. Using the alternating renewal theory, the long-run proportion of time that the system is empty is

$$\frac{\mathbb{E}[\mathsf{Idle}]}{\mathbb{E}[\mathsf{Idle}] + \mathbb{E}[\mathsf{Busy}]},$$

and we just derived that it is $\lim_{t\to\infty} P(X(t) = 0) = 1 - \lambda \mathbb{E}[S]$. Since the length of an idle period $\sim Exp(\lambda)$, we have $\mathbb{E}[\text{Idle}] = 1/\lambda$. In summary, we have that

$$1 - \lambda \mathbb{E}[S] = \frac{1/\lambda}{(1/\lambda) + \mathbb{E}[\mathsf{Busy}]} \quad \Rightarrow \quad \mathbb{E}[\mathsf{Busy}] = \frac{\mathbb{E}[S]}{1 - \lambda \mathbb{E}[S]}$$

L of M/G/1 (Cont'd)

By the PASTA principle, we know $\lim_{n \to \infty} \mathbb{E}[Y_n] = \lim_{t \to \infty} \mathbb{E}[X(t)] = L.$ From the equation $Y_{n+1} = A_{n+1} - 1 + Y_n + \mathbf{1}_{\{Y_n=0\}}$, we have $\operatorname{Var}(Y_{n+1})$ $= \operatorname{Var}(A_{n+1} - 1 + Y_n + \mathbf{1}_{\{Y_n=0\}})$ $= \operatorname{Var}(A_{n+1}) + \operatorname{Var}(Y_n + \mathbf{1}_{\{Y_n=0\}}) \quad (A_{n+1} \text{ and } Y_n \text{ are indep.})$ $= \operatorname{Var}(A_{n+1}) + \operatorname{Var}(Y_n)$ $+ 2\operatorname{Cov}(Y_n, \mathbf{1}_{\{Y_n=0\}}) + \operatorname{Var}(\mathbf{1}_{\{Y_n=0\}}), \qquad (1)$

in which

$$Var(\mathbf{1}_{\{Y_n=0\}}) = P(Y_n = 0)(1 - P(Y_n = 0))$$
(2)

$$Cov(Y_n, \mathbf{1}_{\{Y_n=0\}}) = \mathbb{E}[Y_n \mathbf{1}_{\{Y_n=0\}}] - \mathbb{E}[Y_n] P(Y_n = 0)$$

$$= -\mathbb{E}[Y_n] P(Y_n = 0)$$
(3)
$$Var(A_n) = \mathbb{E}[Var(A_n|S_n)] + Var(\mathbb{E}[A_n|S_n])$$

$$= \mathbb{E}[\lambda S_n] + Var(\lambda S_n)$$

$$= \lambda \mathbb{E}[S] + \lambda^2 Var(S)$$
(4)
Lecture 15 - 13

L of M/G/1 (Cont'd)

Plugging in (??) (??) into (??), letting $n \to \infty$, we have

$$\lim_{n \to \infty} \operatorname{Var}(Y_{n+1}) = \lambda \mathbb{E}[S] + \lambda^2 \operatorname{Var}(S) + \lim_{n \to \infty} \operatorname{Var}(Y_n) - 2 \lim_{n \to \infty} \mathbb{E}[Y_n] \operatorname{P}(Y_n = 0) + \lim_{n \to \infty} \operatorname{P}(Y_n = 0)(1 - \operatorname{P}(Y_n = 0)) = \lambda \mathbb{E}[S] + \lambda^2 \operatorname{Var}(S) + \lim_{n \to \infty} \operatorname{Var}(Y_n) - 2 \lim_{n \to \infty} \mathbb{E}[Y_n](1 - \lambda \mathbb{E}[S]) + (1 - \lambda \mathbb{E}[S])\lambda \mathbb{E}[S]$$

Again since the MC has a limiting distribution, we have $\lim_{n\to\infty} \operatorname{Var}[Y_{n+1}] = \lim_{n\to\infty} \operatorname{Var}[Y_n]$, and can get

$$\lim_{n \to \infty} \mathbb{E}[Y_n] = \frac{\lambda \mathbb{E}[S] + \lambda^2 \operatorname{Var}(S)}{2(1 - \lambda \mathbb{E}[S])} + \frac{\lambda \mathbb{E}[S]}{2}$$
$$= \frac{\lambda^2 \mathbb{E}[S^2]}{2(1 - \lambda \mathbb{E}[S])} + \lambda \mathbb{E}[S] \quad (\text{since } \operatorname{Var}(S) = \mathbb{E}[S^2] - (\mathbb{E}[S])^2)$$

L of M/G/1 (Cont'd)

From the cost identity $L = \lambda_a W$ and $L_Q = \lambda_a W_Q$, and that $\lambda_a = \lambda$, we have

$$L = \frac{\lambda^{2}\mathbb{E}[S^{2}]}{2(1 - \lambda\mathbb{E}[S])} + \lambda\mathbb{E}[S]$$
$$W = L/\lambda = \frac{\lambda\mathbb{E}[S^{2}]}{2(1 - \lambda\mathbb{E}[S])} + \mathbb{E}[S]$$
$$W_{Q} = W - \mathbb{E}[S] = \frac{\lambda\mathbb{E}[S^{2}]}{2(1 - \lambda\mathbb{E}[S])}$$
$$L_{Q} = \lambda W_{Q} = \frac{\lambda^{2}\mathbb{E}[S^{2}]}{2(1 - \lambda\mathbb{E}[S])}$$

Since $\mathbb{E}[S^2] = (\mathbb{E}[S])^2 + Var(S)$, from the equations above we see for fixed mean service time $\mathbb{E}[S]$,

L, L_Q , W, and W_Q all increase as Var(S) increases.

Example

For an M/M/1 system, we have shown that if the service time is exponential with mean $1/\mu$ that the average waiting time is

$$W = \frac{1}{\mu - \lambda}$$

If the service time is exactly $1/\mu,$ the average waiting time can be reduced to

$$W = \frac{\lambda \mathbb{E}[S^2]}{2(1 - \lambda \mathbb{E}[S])} + \mathbb{E}[S] = \frac{\lambda/\mu^2}{2(1 - \lambda/\mu)} + 1/\mu = \frac{1}{\mu - \lambda} - \frac{\lambda/\mu}{2(\mu - \lambda)}$$

For example, for $\lambda = 1/12$, $\mu = 1/8$
$$W = \begin{cases} 24 & \text{for } M/M/1 \\ 16 & \text{if service time is exactly } 1/\mu = 8 \end{cases}$$

For $\lambda = 1/10$, $\mu = 1/8$
$$W = \begin{cases} 40 & \text{for } M/M/1 \\ 24 & \text{if service time is exactly } 1/\mu = 8 \end{cases}$$

8.7 The Model ${\rm G}/{\rm M}/{\rm 1}$

The G/M/1 model assumes

- i.i.d times between successive arrivals with an arbitrary distribution G
- i.i.d service times $\sim \mathsf{Exp}(\mu)$
- a single server; and
- first come, first serve

Just like M/G/1 system, there is also a discrete-time Markov chain embedded in an G/M/1 system. Let

 $Y_n = \#$ of customers in the system seen by the *n*th arrival, $n \ge 1$ $D_n = \#$ of customers the server can possibly serve

between the (n-1)th and the *n*th arrival, $n \ge 1$

Observed that $\{Y_n, n \geq 0\}$ and $\{D_n, n \geq 1\}$ are related as follows

$$Y_{n+1} = \begin{cases} Y_n + 1 - D_{n+1} & \text{if } Y_n + 1 \ge D_{n+1} \\ 0 & \text{if } Y_n + 1 < D_{n+1} \end{cases}, \quad n \ge 1$$

- By the memoryless property of the exponential service time, the remaining service time of the customer being served at an arrival is also ~ Exp(µ).
- ► Thus starting from the (n − 1)th arrival, the events of completion of servicing a customer constitute a Poisson process of rate µ.
- Let G_n be the time elapsed between the (n-1)th and the *n*th arrival.
- Then given G_n , D_n is Poisson with mean μG_n .
- ► As G_n's are i.i.d ~ G, we can conclude that D₁, D₂,... are i.i.d. with distribution

$$\delta_k = P(D_n = k) = \int_0^\infty P(D_n = k | G_n = y) G(dy)$$
$$= \int_0^\infty \frac{(\mu y)^k}{k!} e^{-\mu y} G(dy)$$

The transition probabilities P_{ij} for the Markov chain $\{Y_n, n \ge 0\}$ are thus:

$$P_{ij} = P(Y_{n+1} = j | Y_n = i)$$

$$= \begin{cases} P(D_{n+1} \ge i+1) = \sum_{k=i+1}^{\infty} \delta_k & \text{if } j = 0\\ P(D_{n+1} = i+1-j) = \delta_{i+1-j}, & \text{if } j \ge 1, i+1 \ge j\\ 0 & \text{if } i+1 < j \end{cases}$$

i.e., the transition probability matrix is

To find the stationary distribution $\pi_i = \lim_{n \to \infty} P(Y_n = i)$, i = 0, 1, 2, ..., we have to solve the equations

$$\pi_j = \sum_{i=0}^\infty \pi_i P_{ij} = \sum_{i=j-1}^\infty \pi_i \delta_{i+1-j}, \ j \ge 1 \quad \text{and} \quad \sum_{j=0}^\infty \pi_j = 1$$

Let us try a solution of the form $\pi_j = c\beta^j$, $j \ge 0$. Substituting into the equation above leads to

$$c\beta^{j} = \sum_{i=j-1}^{\infty} c\beta^{i} \delta_{i+1-j} \quad (\text{Divide both sides by } c\beta^{j-1})$$

$$\Rightarrow \quad \beta = \sum_{i=j-1}^{\infty} \beta^{i+1-j} \delta_{i+1-j} = \sum_{i=0}^{\infty} \beta^{i} \delta_{i}$$

Observe that $\sum_{i=0}^{\infty} \beta^i \delta_i$ is exactly the generating function of D_n $g(s) = \mathbb{E}[s^{D_n}]$ taking value at $s = \beta$. Thus if we can find $0 < \beta < 1$ such that $\beta = g(\beta)$, then

$$\pi_j = (1-eta)eta^j, \quad j \ge 0$$

is a stationary distribution of $\{Y_n\}$.

Claim: The equation

$$\beta = g(\beta)$$

has a solution between 0 and 1 iff $g'(1) = E[D_n] = \mu \mathbb{E}[G_n] > 1$.

This condition is intuitive since if

the average service time $1/\mu$

> the average interarrival time of customers $\mathbb{E}[G_n]$,

the queue will become longer and longer and the system will ultimately explode.

PASTA Principle Does Not Apply to G/M/1

With the stationary distribution $\{\pi_j, j \ge 0\}$, one might attempt to calculate *L*, the average number of customers in the system as

$$\mathbb{E}[Y_n] = \sum_{k=0}^{\infty} k\pi_k = \sum_{k=0}^{\infty} k(1-\beta)\beta^k = \frac{\beta}{1-\beta}$$

However, the PASTA principle does not apply as the arrival process is not Poisson. Recall

 $a_k = \pi_k =$ proportion of arrivals see k in the system $P_k =$ proportion of time having k customers in the system,

W of G/M/1

Though we cannot use $\{\pi_j\}$ to find L, we can use it to find W. Let W_n be the waiting time of *n*th customer in the system. If he/she sees k customers at arrival, then W_n is the total service time of k + 1 customers. That is,

 $\mathbb{E}[W_n|Y_n = k] = \mathbb{E}[\text{sum of } k+1 \text{ i.i.d. } \mathsf{Exp}(\mu) \text{ service times}]$ $= \frac{k+1}{\mu}.$

Thus

$$W = \sum_{k=0}^{\infty} \mathbb{E}[W_n | Y_n = k] P(Y_n = k) = \sum_{k=0}^{\infty} \mathbb{E}[W_n | Y_n = k] \pi_k$$
$$= \sum_{k=0}^{\infty} \frac{k+1}{\mu} (1-\beta) \beta^k = \frac{1}{\mu(1-\beta)}$$

Here we use the identity $\sum_{k=0}^{\infty} (k+1)x^k = \frac{1}{(1-x)^2}$. Lecture 15 - 23

L, W_Q , L_Q of G/M/1

By the Little's Formula, we know $L = \lambda W$, in which λ is the arrival rate of customers, which is the reciprocal of the mean interarrival time $\mathbb{E}[G_n]$

$$\lambda = \frac{1}{\mathbb{E}[G_n]}$$

Thus

$$L = \lambda W = \frac{1}{\mathbb{E}[G_n]} \frac{1}{\mu(1-\beta)} = \frac{1}{\mu \mathbb{E}[G_n](1-\beta)}$$

Moreover,

$$W_Q = W - \mathbb{E}[\text{Service Time}] = W - \frac{1}{\mu} = \frac{\beta}{\mu(1-\beta)}$$
$$L_Q = \lambda W_Q = \frac{\beta}{\mu \mathbb{E}[G_n](1-\beta)}$$

8.9.3 *G*/*M*/*k*

Just like G/M/1 system, G/M/k system can also be analyzed as a Markov Chain. Let

 $Y_n = \#$ of customers in the system seen by the *n*th arrival, $n \ge 1$ $D_n = \#$ of customers the *k* servers can possibly serve between the (n - 1)st and the *n*th arrival, $n \ge 1$

Observed again that $\{Y_n, n \ge 0\}$ and $\{D_n, n \ge 1\}$ are related as follows

$$Y_{n+1} = \begin{cases} Y_n + 1 - D_{n+1} & \text{if } Y_n + 1 \ge D_{n+1} \\ 0 & \text{if } Y_n + 1 < D_{n+1} \end{cases}, \quad n \ge 1$$

One can show that the distribution of D_{n+1} depends on Y_n but not Y_{n-1}, Y_{n-2}, \ldots and hence $\{Y_n\}$ is a Markov chain. The transition probabilities are given in p.544-545 (p.565-566 in 10ed)

8.9.4 *M/G/k*

Unlike G/M/k, the method to analyze M/G/1 cannot be used to analyze M/G/k. If we follow the lines as we do in M/G/1

 $Y_n = \#$ of customers in the system leaving behind at the *n*th departure, $n \ge 1$ $D_n = \#$ of customers entered the system during the service time of the *n*th customer, $n \ge 1$

As there are more than one server, the service times are not disjoint, and hence D_n 's are not independent.

In fact, there is NO known exact formula for L, W, L_Q , W_Q of an M/G/k system.