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PASTA
Proposition 8.2 (PASTA Principle)

‘Eoisson Arrivals See Time Averages

If the arrival process is Poisson, then
Pn = an,

and hence P, = d,.

» By time T, the total amount of time there are n customers in
the system is about P, T

» Regardless of how many customers in the system, Poisson
arrivals always arrive at rate A\. Thus by time T, the total
number of arrivals that find n in the system is =~ AP, T.

» the overall number of customers arrived by time T is = AT

» the proportion of arrivals that find the system in state n is

AP, T
TONT
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Example 5.5 (M/M/1 Queueing w/ Finite Capacity)

> single-server service station. Service times are i.i.d. ~ Exp(u)

» Poisson arrival of customers with rate A
» Upon arrival, a customer would

> go into service if the server is free (queue length = 0)
P join the queue if 1 to N — 1 customers in the station, or
» walk away if N or more customers in the station

Q: What fraction of potential customers are lost?

Let X(t) be the number of customers in the station at time t.

{X(t), t > 0} is a birth-death process with the birth and death
rates below

0 ifn=0 A if0<n<N
Hn: . and )\n: .
poifn>1 0 ifn>N
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Example 5.5 (M/M/1 Queueing w/ Finite Capacity)

Solving A\nPn = ptny1Pny1 for the limiting distribution

P1 = (A 1)Po
P> = (A u)P1 = (A 1)?Po

P; = (A1)’ Po, i=1,2,....N

Plugging P; = (\/p)' Py into Z,,'V:o P; = 1, one can solve for P
and get
1-X\/p .
Pi=—+—"——(\ !
T (/v M
Answer: The fraction of customers lost is Py = M()\/u)

1-(\/p) N+1
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M/G/1

Lecture 15 -5



M/G/1

The M/G/1 model assumes

> Poisson arrivals at rate A;

» i.i.d service times with a general distribution G, S; ~ G;

P a single server; and

» first come, first serve
A necessary condition for an M/G/1 to be stable is that the mean
of service time E[S,] must satisfies

AE[S,] < 1.
This condition is necessary. Otherwise if

the average service time E[S,]
> the average interarrival time of customers 1/,

the queue will become longer and longer and the system will

ultimately explode.
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A Markov Chain embedded in M/G/1

Let X(t) = # of customers in the system at time t.
Unlike M/M/k or M/M /oo systems, the process {X(t),t > 0} in
a M/G/1 system is NOT a continuous time Markov chain.

Fortunately, there is a discrete-time Markov chain embedded in an
M/G/1 system.
Let

Yo=0
Y, = # of customers in the system

leaving behind at the nth departure, n > 1

‘ {Yn,n >0} is a Markov chain.
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A Markov Chain embedded in M/G/1 (Cont'd)

To see this, let us define

A, = # of customers that enter the system

during the service time of the nth customer, n > 1

Observed that {Y,,n > 0} and {A,,n > 1} are related as follows

Yo = Anig 4+ (Y, — 1), =
mi1 = An1+ (Yo = 1)y {A,,+1 ifY, =0

Example: Y1 = A1, Ya=Ax+ (Y1 —1)4

Lecture 15 - 8



A Markov Chain embedded in M/G/1 (Cont'd)

Recall that S,, denotes the length of time to serve the nth
customer.

Given S, A, is Poisson with mean AS,,. From this we can
conclude that Ay, Ao, ... are i.i.d. since
» the service times 51, 5,,... are i.i.d., and

P there is only 1 server, the service times of different customers
are disjoint, and the number of events occurred in disjoint
intervals are independent in a Poisson process.

That {A,,n > 1} are i.i.d. and Y, is independent of A,; implies
that Y, forms a Markov chain.
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Transition probabilities of the Markov chain

Moreover, as A, given S, is Poisson with mean AS,,, we can find
the distribution of A,

Qe = P(An = k) = /OOOP(An = k|5n :y)G(dy)

[e'¢) k
= /0 (A,f!)e_”G(dy)

from which we can find the transition probability Pj; for the
Markov chain {Y,,n > 0}:

Pj=P(Yoy1 =j|Ya=1)=P(Ap1=j—(i—1)")

aj, if i=0
aj_ip1, fi>1j>i—1
0 ifi>1,j<i—1

We can show that the Markov chain is irreducible and aperiodic
and has a limiting distribution if and only if AE[S;] < 1.
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Idle Periods in M/G/1

Using the equation Y11 = Apy1 + (Ys — 1)T, we can find many
properties of the Markov chain. First write the equation as

Yn+1 = An+1 +Y,—1+ 1{Yn:0}
Taking expectations we get
E[Yp1] = E[Ania] +E[Ya] — 1+ P(Y, = 0)
——
=)\E[S]

where E[Ap11] = AE[Sp+1] since Apt1 given S,41 is Poisson with
mean ASp4+1 and E[S,11] = E[S] since S;'s are i.i.d.
Let n — oo, since the MC has a limiting distribution, we have
limp— 00 E[Ynt1] = limp— 00 E[Y,] and from which we can get

Ii_)m P(Y,=0)=1- \E[S]

By the PASTA principle, lim,_,oc P(Y, =0) = dp = Py is also the
long-run proportion of time that the system is idle.
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Length of Busy Periods in M/G/1

As in a birth & death queueing model, there is a alternating
renewal process embedded in an M/G/1 system. We say a renewal
occurs if the system become empty, then the system idles for a
period of time until the next customer enters the system, and then
a busy period begins until the system become empty again.

Using the alternating renewal theory, the long-run proportion of
time that the system is empty is

E[ldle]
E[ldle] + E[Busy]’

and we just derived that it is lim;—oc P(X(t) = 0) =1 — AE[S].
Since the length of an idle period ~ Exp(\), we have
E[ldle] = 1/A. In summary, we have that

1/A
(1/X) + E[Busy]

E[S]
1 - \E[S]

1— \E[S] = = E[Busy] =
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L of M/G/1 (Cont'd)
By the PASTA principle, we know nILrQO E[Y,] = tILrgo E[X(t)] = L.
From the equation Y11 = A1 — 14+ Yo+ l{ynzo}, we have
Var(Y,+1)
= Var(App1 — 1+ Yo+ Liy,—q))
= Var(Ap11) + Var(Y, + Liy,—oy) (Ant1 and Y, are indep.)
= Var(Anp+1) + Var(Y,)

+ 2Cov(Yn, 11y,—0y) + Var(1iy,—o}). (1)
in which
Var(1lgy,—o}) = P(Yn = 0)(1 = P(Y, = 0)) (2)
Cov(Yn, 11y,—0}) = E[Yalyy,—oy] — E[Ya]P(Y, = 0)
= —E[Y,]P(Y,» = 0) (3)

Var(An) = E[Var(A,|Ss)] + Var(E[A,|Sn])
= E[AS,] + Var(AS,)

= AE[S] + A\?Var(S) (4)
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L of M/G/1 (Cont'd)

Plugging in (??) (??) (??) into (??), letting n — oo, we have
. . 2 :
n||_>rr;o Var(Yny1) = AE[S] + A“Var(S) + n||_>moo Var(Yy)

-2 nll_ET(lo E[Y,]P(Y, =0)

+ Ii_)m P(Y,=0)(1-P(Y,=0))

= AE[S] + A\?Var(S) + lim Var(Y,)

-2 Ii_}m E[Y,](1 — AE[S]) + (1 — AE[S])AE[S]
Again since the MC has a limiting distribution, we have
limp—00 Var[Yn41] = limp—o0 Var[Y;], and can get

AE[S] + A\2Var(S5) N AE[S]

A B = 0 e ) 2
= 2(1)\_1[3/[5]5[]5]) + AE[S] (since Var(S) = E[S?] — (E[S])?)
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L of M/G/1 (Cont'd)

From the cost identity L = A;W and Lg = A\;W(, and that
A; = A, we have

LI%JJE[S]
W:LM=2@?§1m+EM
WQ:W—E[SIZ%
LQZAWQ:m

Since E[S?] = (E[S])? + Var(S), from the equations above we see
for fixed mean service time E[S],

L, Lo, W, and Wy all increase as Var(S) increases.
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Example
For an M/M /1 system, we have shown that if the service time is
exponential with mean 1/u that the average waiting time is

1

W= —
w—A
If the service time is exactly 1/, the average waiting time can be
reduced to
\E[S?] M 1 M p
W = + E[S] = +1/p= -
21— agfs) T T o T A 2 )

For example, for A =1/12, 4 =1/8
W {24 for M/M/1
16 if service time is exactly 1/ =8
For A\=1/10, n=1/8
W {40 for M/M/1
24 if service time is exactly 1/u =8
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8.7 The Model G/M/1
The G/M/1 model assumes
P i.i.d times between successive arrivals with an arbitrary
distribution G
> i.i.d service times ~ Exp(u)
» a single server; and
> first come, first serve
Just like M/G /1 system, there is also a discrete-time Markov chain
embedded in an G/M/1 system. Let

Y, = # of customers in the system seen by the nth arrival, n > 1
D,, = # of customers the server can possibly serve

between the (n — 1)th and the nth arrival, n >1

Observed that {Y,,n > 0} and {D,, n > 1} are related as follows

Yn+1—Dn+1 if Yn"’lZDnJrl
Yn+1 =

. , n>1
0 if Yo+ 1< Dpya
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A Markov Chain embedded in G/M/1 (Cont'd)

» By the memoryless property of the exponential service time,
the remaining service time of the customer being served at an
arrival is also ~ Exp(u).

» Thus starting from the (n — 1)th arrival, the events of
completion of servicing a customer constitute a Poisson
process of rate y.

» Let G, be the time elapsed between the (n — 1)th and the nth
arrival.

» Then given G,, D, is Poisson with mean uG,.

» As G,'s are i.i.d ~ G, we can conclude that Dy, D,, ... are
i.i.d. with distribution

5 = P(Dy = k) = /OOOP(DH — k|G, = y)G(dy)

00 k
-/ (uky|) Y G (dy)
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A Markov Chain embedded in G/M/1 (Cont'd)

The transition probabilities Pj; for the Markov chain {Y,, n > 0}

are thus:

Pij =P(Yni1 =j|Yn =1)

P(Dpy1>i+1) =307, 6
= P(Dpp1=i+1—j)=0bi11-j

0

i.e., the transition probability matrix is

0
0 [ 210k
1 Ziozz Ok
p=2 Zioz3 Ok

3 226:4 Ok
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A Markov Chain embedded in G/M/1 (Cont'd)

To find the stationary distribution 7m; = limp_, P(Y;, = i),

i=0,1,2,..., we have to solve the equations
o o o
’R’J'ZZ’JT,'P,'J': Z 71','5,‘+1_j,j21 and Z’]TJ'ZI
i=0 i=j—1 j=0

Let us try a solution of the form 7; = ¢, j > 0. Substituting into
the equation above leads to

ch = ZZH cB'6i41—; (Divide both sides by ¢/ 1)

— o i+1-jg. - > gis.
= B=) . BT =) B
Observe that > 7, [3'6; is exactly the generating function of D,
g(s) = E[s""] taking value at s = 3.
Thus if we can find 0 < 5 < 1 such that 5 = g(), then
m=01-0F, j=0

is a stationary distribution of {Y),}.
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A Markov Chain embedded in G/M/1 (Cont'd)

Claim:
The equation

B =g(B)
has a solution between 0 and 1 iff g’(1) = E[D,] = nE[G,] > 1.

This condition is intuitive since if

the average service time 1/p

> the average interarrival time of customers E[G,],

the queue will become longer and longer and the system will
ultimately explode.

Lecture 15 - 21



PASTA Principle Does Not Apply to G/M/1

With the stationary distribution {7;, j > 0}, one might attempt to
calculate L, the average number of customers in the system as

=S ke =S k(1 gk = P
E[Y,] —Zk:o ki _Zkzo k(1 —B)sk = =5
However, the PASTA principle does not apply as the arrival process
is not Poisson. Recall

ax = m, = proportion of arrivals see k in the system

P = proportion of time having k customers in the system,
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W of G/M/1
Though we cannot use {7} to find L, we can use it to find W.
Let W, be the waiting time of nth customer in the system. If
he/she sees k customers at arrival, then W, is the total service
time of k + 1 customers. That is,
E[W,|Y, = k] = E[sum of k + 1 i.i.d. Exp(u) service times]
_k+1
o
Thus

W =S B Yo = KP(Ya = k) = 3 E[Wa|Y, = K

k=0 k=0
~ k+1 k 1
S e ——
k= M w1 =)
s 1
Here we use the identity Z(k +1)xK = 1 x2

k=0
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L, W, Lg of G/M/1

By the Little's Formula, we know L = AW, in which X\ is the

arrival rate of customers, which is the reciprocal of the mean
interarrival time E[Gj]

1
*EG
Thus 1 1 1
L=\W = -
E[G] p(1=5)  HE[GA](1 = )

Moreover,

Wgq = W — E[Service Time] = W — ; - M(lﬁ—ﬂ)

Lo =AWg = 2

ME[Gn](l - B)
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8.9.3 G/M/k

Just like G/M/1 system, G/M/k system can also be analyzed as a
Markov Chain. Let

Y, = # of customers in the system seen by the nth arrival, n > 1
D,, = # of customers the k servers can possibly serve
between the (n — 1)st and the nth arrival, n > 1

Observed again that {Y,,n > 0} and {D,, n > 1} are related as
follows

n>1

Yn+1_Dn+1 if Yn"‘lZDn-l-l
Yn+1 - . ’
0 if Yo+1< Dpy1

One can show that the distribution of D, 1 depends on Y, but not
Yn—1, Yn—2,... and hence {Y,} is a Markov chain. The transition
probabilities are given in p.544-545 (p.565-566 in 10ed)
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8.9.4 M/G/k

Unlike G/M/k, the method to analyze M/G/1 cannot be used to
analyze M/G /k. If we follow the lines as we do in M/G/1

Y, = # of customers in the system
leaving behind at the nth departure, n >1
D, = # of customers entered the system

during the service time of the nth customer, n > 1

As there are more than one server, the service times are not
disjoint, and hence D,’s are not independent.

In fact, there is NO known exact formula for L, W, Lg, Wq of an
M/G/k system.
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