
STAT253/317 Lecture 2: 4.3 Classification of States

Definition. Consider a Markov chain {Xn, n ≥ 0} with state
space X. For two states i, j ∈ X, we say state j is accessible from

state i if P
(n)
ij > 0 for some n, and we denote it as

i→ j.

Note that accessibility is transitive: for i, j, k ∈ X,
if i→ j and j → k, then i→ k.

Proof.

i→ j ⇒ P
(m)
ij > 0 for some m

j → k ⇒ P
(n)
jk > 0 for some n

By Chapman-Kolmogorov Equation:

P
(m+n)
ik =

∑
l∈X

P
(m)
il P

(n)
lk ≥ P

(m)
ij P

(n)
jk > 0,

which shows i→ k.
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Communicability

Definition. Consider a Markov chain {Xn, n ≥ 0} chain with state
space X. Two states i, j ∈ X are said to communicate if i→ j,
and j → i. We denote it as

i←→ j.

Fact. Communicability is also transitive, meaning that

if i←→ j and j ←→ k, then i←→ k.

The proof is straight forward from the transitivity of accessibility.
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Communicative Class

Definition. Two states that communicate with each other are in
the same class. A state that communicates with no other states
itself is a class.

Fact. Two classes are either identical or disjoint.

Proof. If two classes A and B have one state i in common, then
all states in A communicate with i and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state i). Class A and Class B must be identical.

i
j k

Class A
Class B

Lecture 3 - 3



Communicative Class

Definition. Two states that communicate with each other are in
the same class. A state that communicates with no other states
itself is a class.

Fact. Two classes are either identical or disjoint.

Proof. If two classes A and B have one state i in common, then
all states in A communicate with i and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state i). Class A and Class B must be identical.

i
j k

Class A
Class B

Lecture 3 - 3



Communicative Class

Definition. Two states that communicate with each other are in
the same class. A state that communicates with no other states
itself is a class.

Fact. Two classes are either identical or disjoint.

Proof. If two classes A and B have one state i in common, then
all states in A communicate with i and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state i). Class A and Class B must be identical.

Lecture 3 - 3



Example 1. Specify the classes of the following Markov chains.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1

 P2 =


1 2 3 4

1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 1/4 1/4 1/4 1/4
4 0 0 0 1



For P1, 1↔ 2→ 3↔ 4. Classes: {1,2}, {3,4}.

For P2,

1 ←→ 2
↖ ↑

4 ← 3
⟲ ⟲

. Classes: {1,2}, {3}, {4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?

All states communicate. Only one class.
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Irreducibility

A Markov chain is said to be irreducible if it has only 1 class.
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Recurrence & Transience

Consider a Markov chain {Xn, n ≥ 0} chain with state space X.
For i ∈ X, define

f
(n)
ii = P(Xn = i,Xv ̸= i for v = 1, 2, . . . , n− 1 | X0 = i)

If
∑

n≥1 f
(n)
ii = 1, we say state i is recurrent

If
∑

n≥1 f
(n)
ii < 1, we say state i is transient

▶ It’s generally difficult to compute
∑

n≥1 f
(n)
ii directly.

We need other tools to determine whether a state is recurrent
or transient.
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An equivalent characterization
Proposition 4.1: State i is{

recurrent if
∑∞

n=1 P
(n)
ii =∞

transient if
∑∞

n=1 P
(n)
ii <∞

Proof: Suppose that X0 = i, and consider the random variable
N(i) =

∑∞
n=1 1{Xn = i}

We will use two way to calculate the expectation of N(i). First, by
definition we have

E[N(i)] = E[
∞∑
n=1

1{Xn = i}] =
∞∑
n=1

E[1{Xn = i}]

=

∞∑
n=1

P{Xn = i}] =
∑∞

n=1
P

(n)
ii

In addition, we have

E[N(i)] =
∞∑
k=0

P(N(i) ≥ k) =
∞∑
k=0

(
∑
n≥1

f
(n)
ii )k
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Corollary 4.2
If i←→ j, and i is recurrent, then j is also recurrent.

Proof.

i→ j ⇒ P
(k)
ij > 0 for some k

j → i ⇒ P
(l)
ji > 0 for some l

By Chapman-Kolmogorov Equation:

P
(l+n+k)
jj ≥ P

(l)
ji P

(n)
ii P

(k)
ij , for all k = 0, 1, 2, . . .

Thus∑∞

n=1
P

(n)
jj ≥

∑∞

n=1
P

(l+n+k)
jj ≥ P

(l)
ji︸︷︷︸
>0

∑∞

n=1
P

(n)
ii︸ ︷︷ ︸

=∞

P
(k)
ij︸︷︷︸
>0

=∞

Corollary 4.2 implies that all states of a finite irreducible Markov
chain are recurrent.
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Finite irreducible MC

Theorem All states of a finite irreducible Markov chain are
recurrent.
Proof: First based on the previous corollary, we know either all the
states are transient, or all the states are recurrent. Suppose that
all the states are transient. Then for all i ∈ X , we have

lim
n→∞

P
(n)
0i = 0.

Since we have a finite state space, we obtain

lim
n→∞

∑
i∈X

P
(n)
0i =

∑
i∈X

limP
(n)
0i = 0.

However, the left hand is equal to 1. This marks an contradiction.
Hence the chain cannot be transient.
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Example: One-Dimensional Random Walk

Xn+1 =

{
Xn + 1 with prob. p

Xn − 1 with prob. 1− p

▶ State space {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }
▶ All states communicate

· · · ←→ −2←→ −1←→ 0←→ 1←→ 2←→ · · ·

Only one class⇒ Irreducible

⇒ States are all transient or all recurrent.

It suffices to check whether 0 is recurrent or transient, i.e.,
whether

∞∑
n=1

P
(n)
00 =∞ or <∞
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Example: One-Dimensional Random Walk (Cont’d)

P
(2n+1)
00 = 0 (Why?)

P
(2n)
00 =

(
2n

n

)
pn(1− p)n

=
(2n)!

n!n!
pn(1− p)n Stirling’s Formula: n! ≈ nn+0.5e−n

√
2π

≈ (2n)2n+0.5e−2n
√
2π

(nn+0.5e−n
√
2π)2

pn(1−p)n

=
1√
πn

[4p(1− p)]n

Thus
∞∑
n=1

P 2n
ii ≈

∞∑
n=1

1√
πn

[4p(1− p)]n

{
<∞ if p ̸= 1/2

=∞ if p = 1/2

Conclusion: One-dimensional random walk is recurrent if p = 1/2,
and transient otherwise.
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Example: Two-Dimensional Symmetric Random Walk

Irreducible. Just check if 0 is recurrent.

P
(2n)
00 =

n∑
i=0

(2n)!

i!i!(n− i)!(n− i)!

(
1

4

)2n

=

(
2n

n

) n∑
i=0

(
n

i

)(
n

n− i

)
︸ ︷︷ ︸

=(2nn )

(
1

4

)2n

=

(
2n

n

)2(1

4

)2n

≈ 1

πn
by Stirling’s Formula

Thus
∑∞

n=1 P
(2n)
00 =∞.

Two-dimensional symmetric random walk is recurrent.
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Example: d-Dimensional Symmetric Random Walk

In general, for a d-dimensional symmetric random walk, it can be
shown that

P
(2n)
00 ≈ (1/2)d−1

(
d

nπ

)d/2

Thus
∞∑
n=1

P
(2n)
00

{
=∞ for d = 1 or 2

<∞ for d ≥ 3
.

“A drunken man will find his way home.
A drunken bird might be lost forever.”
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