STAT253/317 Lecture 2: 4.3 Classification of States

Definition. Consider a Markov chain {X,,,n > 0} with state
space X. For two states i, j € X, we say state j is accessible from
state 7 if Pi(f) > ( for some n, and we denote it as

1= 7.
Note that accessibility is transitive: for i, j, k € X,
if i — jand j — k, then 7 — k.
Proof.
i—=j = Pi(;n) > 0 for some m
j—=k = P](E) > 0 for some n
By Chapman-Kolmogorov Equation:
(m+n) _ (m) p(n) (m) p(n)
Py =) PR = PV > 0,

which shows 7 — k.
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Communicability

Definition. Consider a Markov chain {X,,,n > 0} chain with state
space X. Two states ¢, € X are said to communicate if i — j,
and j — 7. We denote it as

i .
Fact. Communicability is also transitive, meaning that

if i «<— j and j +— k, then i +— k.

The proof is straight forward from the transitivity of accessibility.
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Communicative Class

Definition. Two states that communicate with each other are in
the same class. A state that communicates with no other states
itself is a class.

Fact. Two classes are either identical or disjoint.

Proof. If two classes A and B have one state ¢ in common, then
all states in A communicate with ¢ and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state 7). Class A and Class B must be identical.

Class A

Class B
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Communicative Class

Definition. Two states that communicate with each other are in
the same class. A state that communicates with no other states
itself is a class.

Fact. Two classes are either identical or disjoint.

Proof. If two classes A and B have one state 7 in common, then
all states in A communicate with 7 and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state 7). Class A and Class B must be identical.
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Example 1. Specify the classes of the following Markov chains.

1 2 3 4 1 2 3 4

1/05 05 0 0 1/1/2 1/2 0 0
po_ 2[03 06 01 0| o _2[1/2 12 0 0
"3 0 o0 02 08 2730 1/4 1/4 1/4 1/4

4\ 0 0 09 01 4\ 0 0 0 1

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?
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Example 1. Specify the classes of the following Markov chains.

1 2 3 4 1 2 3 4
1/05 05 0 0 1/1/2 1/2 0 0
2(03 06 01 0 2(1/2 172 0 o

3l o 0o 02 08 3l 1/4 1/4 1/4 1/4
4\ 0o 0 09 01 4\ 0 0 0 1

For P;, 1 <+ 2 — 3 <> 4. Classes: {1,2}, {3,4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?
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Example 1. Specify the classes of the following Markov chains.

1 2 3 4 1 2 3 4

1/05 05 0 0 1/1/2 1/2 0 0
2(03 06 01 0 2(1/2 172 0 o0
P, = Py =

3 0 0 02 08 2730 1/4 1/4 1/4 1/4
4\ 0 0 09 01 4\ 0 0 0 1

For Py, 1 <+ 2 — 3 <» 4. Classes: {1,2}, {3,4}.

I +— 2
For Py, i g . Classes: {1,2}, {3}, {4}.
O O

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?
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Example 1. Specify the classes of the following Markov chains.

1 2 3 4 1 2 3 4
1/05 05 0 0 1/1/2 1/2 0 0
2(03 06 01 0 2(1/2 172 0 o0

P, = Py =

3l 0 0 02 08 T 3|14 1/4 1/4 1/4
4\ 0 0 09 01 4\ 0o 0 0 1

For Py, 1 <+ 2 — 3 <» 4. Classes: {1,2}, {3,4}.

I +— 2
For Py, 4 i g . Classes: {1,2}, {3}, {4}.
O O

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?

All states communicate. Only one class.
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Irreducibility

A Markov chain is said to be irreducible if it has only 1 class.
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Recurrence & Transience

Consider a Markov chain {X,,,n > 0} chain with state space X.
For i € X, define

= P(X, =i, X, Aiforv=1,2,....,n—1]| Xog=1i)

If 351 £ =1, we say state i is recurrent

If Y o, FU < 1, we say state i is transient

n

> It's generally difficult to compute > -, fi(i”) directly.
We need other tools to determine whether a state is recurrent
or transient.
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An equivalent characterization
Proposition 4.1: State 7 is

recurrent if Y _°° P(")
transient if > o0, P(n) < 00

Proof: Suppose that Xy = 4, and consider the random variable
N(i) = Z;.Lozl 1{Xn = Z}

We will use two way to calculate the expectation of N (7). First, by
definition we have

EIN()] = E[Y 1{X, = i}] = > E[1{X, = i}
n=1 n=1
=S P =ifj=) " P
n=1

In addition, we have

E[N(i)] =) P(N(i) > k) =) ( Z £
k=0 k=0 n>
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Corollary 4.2

If i <— j, and 7 is recurrent, then j is also recurrent.
Proof.

(k)
ij

@

i—j = P’ >0 forsomek

J—io = Py > () for some [
By Chapman-Kolmogorov Equation:

plnth) 5 pl )Pi(in)Pi(jk)’ forall k=0,1,2,...

17
Thus
R () e (I+n+k) Q] (n) plk) _
DR D D =N D 1Pz'z' Py =
>0 —00 >0

Corollary 4.2 implies that all states of a finite irreducible Markov

chain are recurrent.
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Finite irreducible MC

Theorem All states of a finite irreducible Markov chain are
recurrent.
Proof: First based on the previous corollary, we know either all the
states are transient, or all the states are recurrent. Suppose that
all the states are transient. Then for all ¢ € X, we have

lim P = 0.

n—oo

Since we have a finite state space, we obtain

: (n) _ . (n) _
nh_{glo Py’ = th Py’ =0.
iex iex

However, the left hand is equal to 1. This marks an contradiction.
Hence the chain cannot be transient.
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Example: One-Dimensional Random Walk

x _ JXn+1 with prob. p
") X, — 1 with prob. 1 —p

» State space {---,—-3,-2,-1,0,1,2,3,--- }
> All states communicate

-4 -2 -1 > 0 1< 2

Only one class = Irreducible
= States are all transient or all recurrent.

It suffices to check whether 0 is recurrent or transient, i.e.,
whether

ZP(%L) =00 or < oo
n=1
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Example: One-Dimensional Random Walk (Cont'd)

P =0 (Why?)
2n 2n n n
P = (n>p (1-p)
2n)! n
= 81— p)

_ (2n)2n+0.5672n o

Stirling's Formula: n! =~ n

n+0.5€fn

V2r

(nn+0.5e—n 271-) 2

= \/%[429(1 -p)"

Thus

[e.o]

n=1 n=1

p"(1-p)"

SRS g p) {<°° TrF1/2

=00 ifp=1/2

Conclusion: One-dimensional random walk is recurrent if p = 1/2,

and transient otherwise.
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Example: Two-Dimensional Symmetric Random Walk

Irreducible. Just check if O is recurrent.

oan\? (1\*" 1
= < n> () ~ — by Stirling’s Formula
n 4 ™

n) _
Thus > 2 P00 = 0.
Two-dimensional symmetric random walk is recurrent.
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Example: d-Dimensional Symmetric Random Walk

In general, for a d-dimensional symmetric random walk, it can be

shown that
(2n) a1 4\
Poy ' =~ (1/2) (>

nm

Thus

> (2n) J =00 ford=1or 2
> Foo :
ot <oo ford>3

“A drunken man will find his way home.
A drunken bird might be lost forever.”
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