
STAT253/317 Lecture 3: Two key questions

1. As time goes to infinity, does the fraction of time spent in a
given state converge? Mathematically, we aim to study

lim
n→∞

∑n−1
i=0 1{Xi = k}

n
.

2. As time goes to infinity, does the probability of being in a
given state converge to a limit? This is given by

lim
n→∞

P
(n)
ij .
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Stationary Distribution

Define π
(n)
i = P(Xn = i), i ∈ X to be the marginal distribution of

Xn, n = 1, 2, . . . , and let π(n) be the row vector

π(n) = (π
(n)
0 , π

(n)
1 , π

(n)
2 , . . .),

From Chapman-Kolmogrov Equation, we know that

π(n) = π(n−1)P i.e. π
(n)
j =

∑
i∈X

π
(n−1)
i Pij for all j ∈ X,

If π is a distribution on X satisfying

πP = π i.e. πj =
∑

i∈X
πiPij for all j ∈ X,

then π(0) = π implies π(n) = π for all n.

We say π is a stationary distribution of the Markov chain.
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Example 1: 2-state Markov Chain

X = {0, 1}, P =

( 0 1

0 1− α α
1 β 1− β

)

πP = π ⇒

{
π0 = (1− α)π0 + βπ1

π1 = απ0 + (1− β)π1

⇒

{
απ0 = βπ1

βπ1 = απ0

Need one more constraint: π0 + π1 = 1

⇒ π = (π0, π1) =

(
β

α+ β
,

α

α+ β

)
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Example 2: Ehrenfest Diffusion Model with N Balls

Pij =


i

N
if j = i − 1

N − i

N
if j = i + 1

0 otherwise

π0 = π1P10 =
1
Nπ1 ⇒ π1 = Nπ0 =

(N
1

)
π0

π1 = π0P01 + π2P21 = π0+
2
Nπ2 ⇒ π2 =

N(N−1)
2 π0 =

(N
2

)
π0

π2 = π1P12 + π3P32 =
N−1
N π1+

3
Nπ3 ⇒ π3 =

N(N−1)(N−2)
6 π0 =

(N
3

)
π0

...
...

In general, you’ll get πi =
(N
i

)
π0.

As 1 =
∑N

i=0 πi = π0
∑N

i=0

(N
i

)
and

∑N
i=0

(N
i

)
= 2N , we have

πi =

(
N

i

)(
1

2

)N

for i = 0, 1, 2, . . . ,N.
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Stationary Distribution May Not Be Unique
Consider a Markov chain with transition matrix P of the form

P =



0 1 2 3 4

0 ∗ ∗ 0 0 0
1 ∗ ∗ 0 0 0
2 0 0 ∗ ∗ ∗
3 0 0 ∗ ∗ ∗
4 0 0 ∗ ∗ ∗

 =

(
Px 0
0 Py

)

This Markov chain has 2 classes {0,1} and {2, 3, 4}; both are
recurrent. Note that this Markov chain can be reduced to two
sub-Markov chains, one with state space {0,1} and the other {2, 3,
4}. Their transition matrices are respectively Px and Py .

Say πx = (π0, π1) and πy = (π2, π3, π4) be respectively the
stationary distributions of the two sub-Markov chains, i.e.,

πxPx = πx , πyPy = πy

Verify that π = (cπ0, cπ1, (1− c)π2, (1− c)π3, (1− c)π4) is a
stationary distribution of {Xn} for any c between 0 and 1.
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Not All Markov Chains Have a Stationary Distribution
For one-dimensional symmetric random walk, the transition
probabilities are

Pi ,i+1 = Pi ,i−1 = 1/2

The stationary distribution {πj} would satisfy the equation:

πj =
∑

i∈X
πiPij =

1

2
πj−1 +

1

2
πj+1.

Once π0 and π1 are determined, all πj ’s can be determined from
the equations as

πj = π0 + (π1 − π0)j , for all integer j .

As πj ≥ 0 for all integer j , ⇒ π1 = π0. Thus

πj = π0 for all integer j

Impossible to make
∑∞

j=−∞ πj = 1.

Conclusion: 1-dim symmetric random walk does not have a
stationary distribution.
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Limiting Distribution

A probability distribution π = [π0, π1, π2, . . .] is called the limiting
distribution of a Markov chain Xn if for all i , j ∈ X,

πj = lim
n→∞

P
(n)
ij = lim

n→∞
P(Xn = j | X0 = i)

Matrix version

i.e., lim
n→∞

P(n) =


π0 π1 π2 π3 · · ·
π0 π1 π2 π3 · · ·
π0 π1 π2 π3 · · ·
...

...
...

...
. . .
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Example: Two-State Markov Chain

X = {0, 1}, P =

( 0 1

0 1− α α
1 β 1− β

)
By induction, one can show that

P(n) =


β

α+ β
+

α

α+ β
(1−α−β)n

α

α+ β
− α

α+ β
(1−α−β)n

β

α+ β
+

β

α+ β
(1−α−β)n

α

α+ β
− β

α+ β
(1−α−β)n



→


β

α+ β

α

α+ β
β

α+ β

α

α+ β

 as n → ∞

The limiting distribution π is ( β
α+β ,

α
α+β ).
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Limiting Distribution is a Stationary Distribution
The limiting distribution of a Markov chain is a stationary
distribution of the Markov chain.

Proof (not rigorous). By Chapman Kolmogorov Equation,

P
(n+1)
ij =

∑
k∈X

P
(n)
ik Pkj

Letting n → ∞, we get

πj = lim
n→∞

P
(n+1)
ij = lim

n→∞

∑
k∈X

P
(n)
ik Pkj

=∗
∑

k∈X
lim
n→∞

P
(n)
ik Pkj (needs justification)

=
∑

k∈X
πkPkj

Thus the limiting distribution πj ’s satisfies the equations
πj =

∑
k∈X πkPkj for all j ∈ X and is a stationary distribution.

See Karlin & Taylor (1975), Theorem 1.3 on p.85-86 for a rigorous proof.
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Not All Markov Chains Have Limiting Distributions

Consider the simple random walk Xn on {0, 1, 2, 3, 4} with
absorbing boundary at 0 and 4. That is,

Xn+1 =


Xn + 1 with probability 0.5 if 0 < Xn < 4

Xn − 1 with probability 0.5 if 0 < Xn < 4

Xn if Xn = 0 or 4

The transition matrix is hence

P =



0 1 2 3 4

0 1 0 0 0 0
1 0.5 0 0.5 0 0
2 0 0.5 0 0.5 0
3 0 0 0.5 0 0.5
4 0 0 0 0 1
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Not All Markov Chains Have Limiting Distributions
The n-step transition matrix of the simple random walk Xn on
{0, 1, 2, 3, 4} with absorbing boundary at 0 and 4 can by shown by
induction using the Chapman-Kolmogorov Equation to be

P(2n−1) =



0 1 2 3 4

0 1 0 0 0 0

1 0.75− 0.5n+1 0 0.5n 0 0.25− 0.5n+1

2 0.5− 0.5n 0.5n 0 0.5n 0.5− 0.5n

3 0.25− 0.5n+1 0 0.5n 0 0.75− 0.5n+1

4 0 0 0 0 1



P(2n) =



0 1 2 3 4

0 1 0 0 0 0

1 0.75− 0.5n+1 0.5n+1 0 0.5n+1 0.25− 0.5n+1

2 0.5− 0.5n+1 0 0.5n 0 0.5− 0.5n+1

3 0.25− 0.5n+1 0.5n+1 0 0.5n+1 0.75− 0.5n+1

4 0 0 0 0 1
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Not All Markov Chains Have Limiting Distributions

The limit of the n-step transition matrix as n → ∞ is

P(n) →



0 1 2 3 4

0 1 0 0 0 0
1 0.75 0 0 0 0.25
2 0.5 0 0 0 0.5
3 0.25 0 0 0 0.75
4 0 0 0 0 1

.

Though limn→∞ P
(n)
ij exists but the limit depends on the initial

state i , this Markov chain has no limiting distribution.

This Markov chain has two distinct absorbing states 0 and 4. Other
transient states may be absorbed to either 0 or 4 with different
probabilities depending how close those states are to 0 or 4.
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When does a Markov chain have limiting distribution?
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Periodicity

A state of a Markov chain is said to have period d if

P
(n)
ii = 0, whenever n is not a multiple of d

In other words, d is the greatest common divisor of all the n’s such
that

P
(n)
ii > 0

We say a state is aperiodic if d = 1, and periodic if d > 1.

Fact: Periodicity is a class property.
That is, all states in the same class have the same period.

For a proof, see Problem 2&3 on p.77 of Karlin & Taylor (1975).
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Examples (Periodicity)

▶ All states in the Ehrenfest diffusion model are of period d = 2
since it’s impossible to move back to the initial state in odd
number of steps.

▶ 1-D (2-D) Simple random walk on all integers (grids on a 2-d
plane) are of period d = 2
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Example (Periodicity)

Specify the classes of a Markov chain with the following transition
matrix, and find the periodicity for each state.



1 2 3 4 5 6 7

1 0 0.5 0 0.5 0 0 0
2 0 0 1 0 0 0 0
3 0.5 0 0 0 0 0.5 0
4 0 0 0.5 0 0.5 0 0
5 1 0 0 0 0 0 0
6 0 0 0 0 0 0.1 0.9
7 0 0 0 0 0 0.7 0.3



5 → 1 → 2
↑ ↙ ↑ ↙
4 → 3

↓
7 ↔ 6

Classes: {1,2,3,4,5}, {6,7}.
Period is d = 1 for state 6 and 7.
Period is d = 3 for state 1,2,3,4,5 since
{1} → {2, 4} → {3, 5} → {1}.
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Periodic Markov Chains Have No Limiting Distributions

For example, in the Ehrenfest diffusion model with 4 balls, it can
be shown by induction that the (2n − 1)-step transition matrix is

P(2n−1) =



0 1 2 3 4

0 0 1/2+1/22n−1 0 1/2−1/22n−1 0

1 1/8+1/22n+1 0 3/4 0 1/8−1/22n+1

2 0 1/2 0 1/2 0

3 1/8−1/22n+1 0 3/4 0 1/8+1/22n+1

4 0 1/2−1/22n−1 0 1/2+1/22n−1 0



→



0 1 2 3 4

0 0 1/2 0 1/2 0

1 1/8 0 3/4 0 1/8

2 0 1/2 0 1/2 0

3 1/8 0 3/4 0 1/8

4 0 1/2 0 1/2 0


as n → ∞.
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Periodic Markov Chains Have No Limiting Distributions

and the 2n-step transition matrix is

P(2n) =



0 1 2 3 4

0 1/8+1/22n+1 0 3/4 0 1/8−1/22n+1

1 0 1/2+1/22n+1 0 1/2−1/22n+1 0

2 1/8 0 3/4 0 1/8

3 0 1/2−1/22n+1 0 1/2+1/22n+1 0

4 1/8−1/22n+1 0 3/4 0 1/8+1/22n+1



→



0 1 2 3 4

0 1/8 0 3/4 0 1/8

1 0 1/2 0 1/2 0

2 1/8 0 3/4 0 1/8

3 0 1/2 0 1/2 0

4 1/8 0 3/4 0 1/8


as n → ∞.
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Periodic Markov Chains Have No Limiting Distributions

In general for Ehrenfest diffusion model with N balls, as n → ∞,

P
(2n)
ij →

{
2
(N
j

)
(12)

N if i + j is even

0 if i + j is odd

P
(2n+1)
ij →

{
0 if i + j is even

2
(N
j

)
(12)

N if i + j is odd

limn→∞ P
(n)
ij doesn’t exist for all i , j ∈ X
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Summary

▶ Stationary distribution may not be unique if the Markov chain
is not irreducible

▶ Stationary distribution may not exist

▶ A limiting distribution is always a stationary distribution

▶ If it exists, limiting distribution is unique

▶ Limiting distribution do not exist if the Markov chain is
periodic
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