STAT253/317 Lecture 3: Two key questions

1. As time goes to infinity, does the fraction of time spent in a
given state converge? Mathematically, we aim to study

n—1
A H{Xi =k
LTI =k

n—o0 n

2. As time goes to infinity, does the probability of being in a
given state converge to a limit? This is given by

lim P,

n—oo Y
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Stationary Distribution

Define 7\ = P(X, = i), i € X to be the marginal distribution of

i
Xn, n=1,2,..., and let 7(" be the row vector

alm = (ﬂ(()n), 7T:(ln), 71'5”), o),
From Chapman-Kolmogrov Equation, we know that
(n _ _(r-p (n) _ (n=1)p._ i
=7 P e w7 = Ziexﬂ" Pj; for all j € X,
If 7 is a distribution on X satisfying
TP=n ie m= Ziex mi Py for all j € X,

then 7(9) = 7 implies 7(" = 7 for all n.

We say 7 is a stationary distribution of the Markov chain.
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Example 1: 2-state Markov Chain

0 1
0/1—« «
o, po0(150 )

mo = (1 —a)mo + fm

{7’[‘1 =am + (1 — B)m

TP=n=

amg = fm
N 0 B
pr1 = amg

Need one more constraint: mg +m1 = 1
I} «
:}7‘(’: TT ’7'[' = —_—Yy
(0, m1) <a+,8 a+f
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Example 2: Ehrenfest Diffusion Model with N Balls

K i1
N if j=1
P,'j = N —i i .
=i+1
N Ity =1+
0 otherwise
o = mP1o = %Wl = 71 = Nmg = (,:Y)WO
N(N—
m =7oPo1 + maPu = mo+ Ema = m = M ry = (M)mg

N-—1 3 N(N—1)(N—2 N
o =M1 P12+ m3P3 = T Mt {3 = T3 = %wo = (3)mo

In general, you'll get m; = (’}’)Wo.
As 1= Z,I'V:o i = 70 Z,I'V:o (IY) and vazo (IY) = 2N we have

N
() () eimonn
i 2
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Stationary Distribution May Not Be Unique

Consider a Markov chain with transition matrix P of the form

01 2 3 4

0/« = 0 0 O

1l = 0 0 O
Pzzoo***:(ixlpf’)

310 0 % % x y

4\0 0 * =x =%

This Markov chain has 2 classes {0,1} and {2, 3, 4}; both are
recurrent. Note that this Markov chain can be reduced to two
sub-Markov chains, one with state space {0,1} and the other {2, 3,
4}. Their transition matrices are respectively P, and P, .

Say my = (mp, m1) and m, = (72,73, m4) be respectively the
stationary distributions of the two sub-Markov chains, i.e.,
TxPx = %, mP, =m,

Verify that m = (cmo, cm1, (1 — ¢)m2, (1 — ¢) w3, (1 — ¢)ma) is a

stationary distribution of {X } for 3y € between 0 and 1.
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Not All Markov Chains Have a Stationary Distribution

For one-dimensional symmetric random walk, the transition

probabilities are
Piit+1=Piji-1=1/2

The stationary distribution {7} would satisfy the equation:

1 1
m = Ziex 7T,'P,'j = §7Tj_1 + §7TJ'+1.
Once mp and 71 are determined, all 7;'s can be determined from
the equations as
mj =7+ (m1 —mo)j, for all integer j.
As m; > 0 for all integer j, = m1 = mo. Thus

mj =m for all integer j

oo

Impossible to make > 3°  m = 1.

Conclusion: 1-dim symmetric random walk does not have a
stationary distribution.
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Limiting Distribution

A probability distribution m = [m, 71, 2, .. .] is called the limiting
distribution of a Markov chain X, if for all i,j € X,

mj = lim P = lim P(X, =j | Xo = i)

n—oo
Matrix version

T ™ T2 T3
Mg M1 To T3

ie, lim P( =
€. N—00 o ™1 T2 T3
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Example: Two-State Markov Chain

0 1
0/1—« «
o 2=2(1 )

By induction, one can show that

B o no Q@ Qo i
plr) — o+ Tt i et
| B B o B
at B Tarp A i eyt h)
154 Q
— Oé“l‘ﬂ a—i_ﬁ as n — oo
I} o
a+fB a+p

The limiting distribution 7 is (0/‘%/3’ “53)

Lecture 3-8



Limiting Distribution is a Stationary Distribution

The limiting distribution of a Markov chain is a stationary
distribution of the Markov chain.

Proof (not rigorous). By Chapman Kolmogorov Equation,

(n+1) _ (n)
Pij - Zke% ik kJ

Letting n — oo, we get

mj = lim P("Jr ) = lim Zk 36P,-(kn)ij

n—oo n—oo

=* Z lim P,( )ij (needs justification)

keX n—oo
= Tk Pyj
Zkex kTki

Thus the limiting distribution ;s satisfies the equations
Tj = > wex Tk Pij for all j € X and is a stationary distribution.

See Karlin & Taylor (1975), Theorem 1.3 on p.85-86 for a rigorous proof.
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Not All Markov Chains Have Limiting Distributions

Consider the simple random walk X, on {0,1,2,3,4} with
absorbing boundary at 0 and 4. That is,

Xn+ 1 with probability 0.5 if 0 < X, < 4
Xnt1 = ¢ X, — 1 with probability 0.5if 0 < X, < 4
X, if X,=0o0r4

The transition matrix is hence

—_
o
o
o

O OO H
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Not All Markov Chains Have Limiting Distributions

The n-step transition matrix of the simple random walk X, on
{0,1,2,3,4} with absorbing boundary at 0 and 4 can by shown by
induction using the Chapman-Kolmogorov Equation to be

0 1 2 3 4
0 1 0 0 0 0
1]075—05"1 0 05" 0 025—05"1

PCD = 5| 05-05" 05" 0 05" 05-—05"
3/025-05"" 0 05" 0 0.75— 0.5
4 0 0 0 0 1

0 1 2 3 4

0 1 0 0 0 0
1] 075—05"1 0571 o 057! 0.25— 0.5
PCY = 5| 05— 0501 0 05 0  05-—05""
3 025-05"1 051 o 05"l (.75 0.5"!

4 0 0 0 0 1
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Not All Markov Chains Have Limiting Distributions

The limit of the n-step transition matrix as n — oo is

0 1 2 3 4
0/ 1 000 O
1{075 0 0 0 0.25

P~ 21 05 0 0 0 05
31025 0 0 0 075
4\ 0 00 0 1

Though lim,_ PIS-") exists but the limit depends on the initial
state /, this Markov chain has no limiting distribution.

This Markov chain has two distinct absorbing states 0 and 4. Other
transient states may be absorbed to either 0 or 4 with different
probabilities depending how close those states are to 0 or 4.
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When does a Markov chain have limiting distribution?
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Periodicity

A state of a Markov chain is said to have period d if
Pi(,-") =0, whenever nis not a multiple of d

In other words, d is the greatest common divisor of all the n's such
that -
n
P:7 >0

We say a state is aperiodic if d = 1, and periodic if d > 1.

Fact: Periodicity is a class property.
That is, all states in the same class have the same period.

For a proof, see Problem 2&3 on p.77 of Karlin & Taylor (1975).
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Examples (Periodicity)

» All states in the Ehrenfest diffusion model are of period d =2
since it's impossible to move back to the initial state in odd
number of steps.

» 1-D (2-D) Simple random walk on all integers (grids on a 2-d
plane) are of period d = 2
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Example (Periodicity)

Specify the classes of a Markov chain with the following transition
matrix, and find the periodicity for each state.

1 2 3 4 5 6 7

1/0 05 0 05 0 0 0

2o 0o 1 0 0 0 O 5 — 1 — 2
3los 0 0o 0 0 05 0 VA
4l 0 0 05 0 05 0 O 4 - 3

5/ 1 0 0o 0 0 0 o0 !

6|l o o o 0o o0 01 09 7 < 6
7\0 0 0 0 0 07 03

Classes: {1,2,3,4,5}, {6,7}.

Period is d = 1 for state 6 and 7.
Period is d = 3 for state 1,2,3,4,5 since
{1} = {2,4} — {3,5} — {1}.
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Periodic Markov Chains Have No Limiting Distributions

For example, in the Ehrenfest diffusion model with 4 balls, it can
be shown by induction that the (2n — 1)-step transition matrix is

0 1 2 3 4
0 0 1/241/2°*71 0 1/2-1/2>! 0
1| 1/8+41/2% 0 3/4 0 1/8—1/221
P = o 0 1/2 0 1/2 0
3] 1/8—1/22+! 0 3/4 0 1/84-1/221
4 0 1/2—1/2>"Y 0 1/241/2*! 0

0o 1 2 3 4
0 1/2 0 1/2 0
1/8 0 3/4 0 1/8
-2l 0 1/2 0 1/2 0 as n — oo,
1/8 0 3/4 0 1/8
4\ 0 1/2 0 1/2 0
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Periodic Markov Chains Have No Limiting Distributions

and the 2n-step transition matrix is

0 1 2 3 4
0 [1/8+1/22! 0 3/4 0 1/8—1/221
1 0 1/241/2>t 0 1/2-1/2% 0
P = 1/8 0 3/4 0 1/8
3 0 1/2—1/2>"t 0 1/241/2%H 0
4\ 1/8—1/2>"+! 0 3/4 0 1/84-1/22+!

0 1 2 3 a4
0(1/8 0 3/4 0 1/8
1l 0o 12 0 1/2 0
—2|1/8 0 3/4 0 1/8| asn— oo
31 0 1/2 0 1/2 0
4\1/8 0 3/4 0 1/8
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Periodic Markov Chains Have No Limiting Distributions

In general for Ehrenfest diffusion model with N balls, as n — oo,

p(2") - {2(7)(5),\/ if i +j is even
0

b if i +j is odd
(2n+1) 0 if i 4+ is even
P,'j — N\ /I\N  of - ..
2(1.)(5) if i+ is odd
liM p—s 00 P,.(j") doesn't exist for all i,j € X
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Summary

» Stationary distribution may not be unique if the Markov chain
is not irreducible

» Stationary distribution may not exist

> A limiting distribution is always a stationary distribution

P If it exists, limiting distribution is unique

» Limiting distribution do not exist if the Markov chain is

periodic
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