
STAT253/317 Lecture 4: Limiting theorems for Markov
chains

Recall the two questions

1. As time goes to infinity, does the fraction of time spent in a
given state converge? Mathematically, we aim to study

lim
n→∞

∑n
i=1 1{Xi = k}

n
.

2. As time goes to infinity, does the probability of being in a
given state converge to a limit? This is given by

lim
n→∞

P
(n)
ij .
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Positive Recurrence and Null Recurrence

For a Markov chain, define the first return time to a state i

Ti = min{n > 0 : Xn = i | X0 = i}

We say a state i is

▶ positive recurrent if i is recurrent and E[Ti] < ∞.

▶ null recurrent if i is recurrent but E[Ti] = ∞.

We say a state is ergodic if it is aperiodic and positive recurrent.
Positive Recurrence is a Class Property. Similarly, Null Recurrence
is a Class Property.
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The Fundamental Limit Theorem of Markov Chain II

For an irreducible Markov chain, it is positive recurrent if and
only if there exists a stationary distribution, i.e., a solution to the
set of equations:

πi ≥ 0,
∑

i∈X
πi = 1, πj =

∑
i∈X

πiPij

Moreover, if a solution exists then it is unique, and is given by

πj =
1

E[Tj ]
= lim

n→∞

1

n

∑n

k=1
P

(k)
ij .

Stationary distribution can be interpreted as the long run
proportion of time that the Markov chain is in state j.
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Heuristic proof

Step 1: Connecting long run proportion of time to inverse
expected return time, i.e., we aim to show that for any state j, we
have

Pj

[
lim
n→∞

∑n
i=1 1{Xi = j}

n
=

1

Ej [Tj ]

]
= 1

If j is transient, both are 0.
If j is recurrent, see the next slide
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When j is recurrent

Consider a Markov chain started from state j. Let Sk be the time
till the k-th visit to state j. Then

Sk = Tjj(0) + Tjj(1) + . . .+ Tjj(k − 1)

Here

▶ Tjj(m) = the time between the mth and (m+ 1)st visit to
state j.

Observe that Tjj(0), Tjj(1), . . . Tjj(k − 1) are i.i.d. and have the
same distribution as Ti.
For k large, the Strong Law of Large Numbers tells us

1

k
[Tjj(0) + Tjj(1) + · · ·+ Tjj(k − 1)] → Ej(Tj) almost surely

i.e., the chain visits state j about k times in kE(Tj) steps.
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Heuristic proof

Step 2: Connecting long run proportion of time to stationary
probability
Consider a Markov chain starting from the stationary distribution.
Then in n steps, we expect about nπ(j) visits to the state j.
Hence

πj

is roughly the proportion of time we see j.
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Finite-State Markov Chains Have No Null Recurrent States

In an irreducible finite-state Markov chain all states are positive
recurrent.

Proof.

Recall an irreducible Markov chain must be recurrent. (Why?)
Also recall that positive/null recurrence is a class property. Thus if
one state is null recurrent, then all states are null recurrent.
In this case, we have for all j,

lim
n→∞

∑n
i=1 1{Xi = j}

n
= 0.

Summing over j, we see the contradiction.
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The Fundamental Limit Theorem of Markov Chain I

Let {Xn} be an irreducible, positive recurrent, and aperiodic
Markov chain. Then

lim
n→∞

P
(n)
ij = πj , for all i, j.

Remark. For a finite state Markov chain, a limiting distribution
exists if it is irreducible and aperiodic
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Example 1: One-Dimensional Random Walk

In Lecture 4, we have shown that 1-dim symmetric random walk
has no stationary distribution.

▶ Conclusion from 2nd limit theorem: 1-dim symmetric random
walk is null recurrent, i.e.

E[Ti] = ∞ for all state i

In fact, in Lecture 3 we have shown that

P
(n)
ii =

{
0 if n is odd(

n
n/2

)
(12)

n ≈
√

2
πn if n is even

Thus we see limn→∞ P
(n)
ii = 1/E[Ti].
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Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

Pi,i+1 = p for all i = 0, 1, 2, . . .

Pi,i−1 = 1− p for all i = 1, 2, . . .

p00 = 1− p

Try to solve πj =
∑

i∈X πiPij

π0 = π0P00 + π1P10 = (1− p)(π0 + π1) ⇒ π1 =
p

1−pπ0

π1 = π0P01 + π2P21 = pπ0 + (1− p)π2 ⇒ π2 =
(

p
1−p

)2
π0

π2 = π0P12 + π3P32 = pπ1 + (1− p)π3 ⇒ π3 =
(

p
1−p

)3
π0

...

πj = pπj−1 + (1− p)πj+1 ⇒ πj+1 =
(

p
1−p

)j+1
π0
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Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

∞∑
i=0

πi = π0

∞∑
i=0

(
p

1− p

)i

=

{
π0

(
1−p
1−2p

)
if p < 1/2

∞ if p ≥ 1/2

Conclusion: The process is positive recurrent iff p < 1/2, in which
case

πi =
1− 2p

1− p

(
p

1− p

)i

, i = 0, 1, 2, . . .
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Ex 3: Ehrenfest Diffusion Model with N Balls
Recall that in Lecture 4, we show that Ehrenfest Diffusion Model is
irreducible, has period = 2, and there exists a solution to the set of
equations

πi ≥ 0,
∑

i∈X
πi = 1, πj =

∑
i∈X

πiPij

which is

πi =

(
N

i

)(
1

2

)N

for i = 0, 1, 2, . . . , N

Though the limiting distribution limn→∞ P
(n)
ij does not exist, we

can show that

lim
n→∞

P
(2n)
ij = 2

(
N

j

)
(
1

2
)N , lim

n→∞
P

(2n+1)
ij = 0 if i+ j is even

lim
n→∞

P
(2n)
ij = 0, lim

n→∞
P

(2n+1)
ij = 2

(
N

j

)
(
1

2
)N if i+ j is odd

From the above, one can verify that

limn→∞
1
n

∑n
k=1 P

(k)
ij =

(
N
j

)
(12)

N = πj .
Lecture 4 - 12



Exercise 4.50 on p.284

A Markov chain has transition probability matrix

P =



1 2 3 4 5 6

1 0.2 0.4 0 0.3 0 0.1
2 0.1 0.3 0 0.4 0 0.2
3 0 0 0.3 0.7 0 0
4 0 0 0.6 0.4 0 0
5 0 0 0 0 0.5 0.5
6 0 0 0 0 0.2 0.8


Communicating classes:

{1, 2} {3, 4} {5, 6}
↑ ↑ ↑

transient recurrent recurrent

Find limn→∞ P (n).
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Exercise 4.50 on p.284 (Cont’d)

Observe that limn→∞ P
(n)
ij = 0 if j is transient, hence,

lim
n→∞

P (n) =



1 2 3 4 5 6

1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 ? ? ? ?
4 0 0 ? ? ? ?
5 0 0 ? ? ? ?
6 0 0 ? ? ? ?


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Exercise 4.50 on p.284 (Cont’d)

Observe that limn→∞ P
(n)
ij = 0 if j is NOT accessible from i

lim
n→∞

P (n) =



1 2 3 4 5 6

1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 ? ? 0 0
4 0 0 ? ? 0 0
5 0 0 0 0 ? ?
6 0 0 0 0 ? ?


The two classes {3,4} and {5,6} do not communicate and hence
the transition probabilities in between are all 0.
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Exercise 4.50 on p.284 (Cont’d)
Recall we have shown that the limiting distribution of a two-state

Markov chain with the transition matrix

(
1− α α
β 1− β

)
is(

β
α+β ,

α
α+β

)
. As the Markov chain restricted to the class {3,4} is

also a Markov chain with the transition matrix

( 3 4

3 0.3 0.7
4 0.6 0.4

)
.

Hence,

lim
n→∞

P (n) =



1 2 3 4 5 6

1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 6/13 7/13 0 0
4 0 0 6/13 7/13 0 0
5 0 0 0 0 ? ?
6 0 0 0 0 ? ?


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Exercise 4.50 on p.284 (Cont’d)

P =



1 2 3 4 5 6

1 0.2 0.4 0 0.3 0 0.1
2 0.1 0.3 0 0.4 0 0.2
3 0 0 0.3 0.7 0 0
4 0 0 0.6 0.4 0 0
5 0 0 0 0 0.5 0.5
6 0 0 0 0 0.2 0.8


For the same reason,

lim
n→∞

P (n) =



1 2 3 4 5 6

1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 6/13 7/13 0 0
4 0 0 6/13 7/13 0 0
5 0 0 0 0 2/7 5/7
6 0 0 0 0 2/7 5/7


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