STAT253/317 Lecture 4: Limiting theorems for Markov
chains

Recall the two questions

1. As time goes to infinity, does the fraction of time spent in a
given state converge? Mathematically, we aim to study

"X =k

n—oo n

2. As time goes to infinity, does the probability of being in a
given state converge to a limit? This is given by

lim P™.

n—oo Y
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Positive Recurrence and Null Recurrence

For a Markov chain, define the first return time to a state ¢
T, =min{n >0: X, =i| Xo =1}

We say a state i is
» positive recurrent if 7 is recurrent and E[T;] < oo.

» null recurrent if i is recurrent but E[T;] = oc.

We say a state is ergodic if it is aperiodic and positive recurrent.
Positive Recurrence is a Class Property. Similarly, Null Recurrence
is a Class Property.
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The Fundamental Limit Theorem of Markov Chain [l

For an irreducible Markov chain, it is positive recurrent if and
only if there exists a stationary distribution, i.e., a solution to the
set of equations:

mi 2 0, Zie% m=1, = Ziex miPij

Moreover, if a solution exists then it is unique, and is given by

_ b I pk
TR T dim 2D s P

Stationary distribution can be interpreted as the long run
proportion of time that the Markov chain is in state j.
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Heuristic proof

Step 1: Connecting long run proportion of time to inverse
expected return time, i.e., we aim to show that for any state j, we

have " )
P. | lim Zi:l X = j} = 1
7 [noo n E;[T;]

=1

If j is transient, both are 0.
If 7 is recurrent, see the next slide
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When j is recurrent

Consider a Markov chain started from state j. Let Sj be the time
till the k-th visit to state j. Then

Sk = Tj;(0) + Tj(1) + ... + Tj(k = 1)

Here

» Tj;(m) = the time between the mth and (m + 1)st visit to
state j.

Observe that T};(0), T;;(1),...Tj;(k — 1) are i.i.d. and have the
same distribution as T;.
For k large, the Strong Law of Large Numbers tells us

1

E[Tjj(O) +T5(1) + - -+ Tj;(k—1)] = E;(T;) almost surely

i.e., the chain visits state j about k times in kE(7}) steps.
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Heuristic proof

Step 2: Connecting long run proportion of time to stationary
probability
Consider a Markov chain starting from the stationary distribution.

Then in n steps, we expect about n7(j) visits to the state j.
Hence

T

is roughly the proportion of time we see j.
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Finite-State Markov Chains Have No Null Recurrent States

In an irreducible finite-state Markov chain all states are positive
recurrent.

Proof.

Recall an irreducible Markov chain must be recurrent. (Why?)
Also recall that positive/null recurrence is a class property. Thus if
one state is null recurrent, then all states are null recurrent.

In this case, we have for all j,

i 2= WX =0

n—00 n

Summing over j, we see the contradiction.
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The Fundamental Limit Theorem of Markov Chain |

Let {X,,} be an irreducible, positive recurrent, and aperiodic
Markov chain. Then

lim PV =m;,  foralli,j.
n—oo

Remark. For a finite state Markov chain, a limiting distribution
exists if it is irreducible and aperiodic
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Example 1: One-Dimensional Random Walk

In Lecture 4, we have shown that 1-dim symmetric random walk
has no stationary distribution.

» Conclusion from 2nd limit theorem: 1-dim symmetric random
walk is null recurrent, i.e.

E[T;] = oo for all state 4

In fact, in Lecture 3 we have shown that

p) _

2

{0 if n is odd

(nT/LQ)(%)" ~ /2 ifnis even

Thus we see lim,, s Pl(ln) = 1/E[T;].
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Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

Piit1=p foralli=0,1,2,...
Pi1=1—p foralli=1,2,...
poo=1—p

Try to solve mj = >,y mi Pij

mo = moFoo + 1 P10 = (1 — p)(mo + m1) = 11 = £-m0

p
2
71 = moPo1 + m2Po1 = pmo+ (1 —p)me = M2 = (1%) 0
3
7y = moP12 + m3P32 = pmy + (1 —p)m3 = 713 = (1%,) o
p j+1
T =prj-1+ (1= p)mjn = L= (ﬂ) o
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Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

> i i 1—p .
=T p) _ {770 (m) if p<1/2
; 0;(1—19

00 ifp>1/2
Conclusion: The process is positive recurrent iff p < 1/2, in which

case ,

1-2 i

=P P} i-012,...
1—p \1—p
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Ex 3: Ehrenfest Diffusion Model with N Balls

Recall that in Lecture 4, we show that Ehrenfest Diffusion Model is
irreducible, has period = 2, and there exists a solution to the set of
equations

m 2 0, Ziexm =1, m= Ziex i Pij

N
7ri:<N> <1> fori=0,1,2,...,N
) 2

Though the limiting distribution lim,, . Pi(jn) does not exist, we
can show that

N\ 1 n . .
lim P& = ( 4)(2)]\[, lim P2 = if i 4 j is even

which is

n—oo Y J n—oo W

n n N\ 1 P,
lim P(2 ) = =0, lim P(2 = 2< )()N if i 4 j is odd
n—00 n—00 J 2

From the above, one can verify that

Py =)@ =

hmn—m Zk 1
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Exercise 4.50 on p.284

A Markov chain has transition probability matrix

1 2 3 4

5
02 04 0 03 0 041
01 03 0 04 0 02
0 03 07 O
0 06 04 O
0 0 0 05 0.5
0

1
2
3
4
5
6 0 0 02 08

o O O O

Communicating classes:

{1,2}  {3,4y  {5,6}
T T T

transient recurrent recurrent

Find lim,,_,o, P™.
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Exercise 4.50 on p.284 (Cont'd)

Observe that lim,, o Pi(f) = 0 if j is transient, hence,

lim P =

n—o0

O OO OO
O OO OO N
0 0 D 0 0 D WO
ECEC R IR RSN
0 D 0 0 0 0 O
B R N IR RS I >

Y U W N~
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Exercise 4.50 on p.284 (Cont'd)

Observe that lim,, oo Pi(f) =0if jis NOT accessible from i

lim P =

n—0o0

O T W N~

OO OO OO
OO OO OO N
O O N 0 0 Y
~N 0 O O 0 Ot
N OO Y O

The two classes {3,4} and {5,6} do not communicate and hence
the transition probabilities in between are all 0.
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Exercise 4.50 on p.284 (Cont'd)

Recall we have shown that the limiting distribution of a two-state

) ) .. . 1-— .
Markov chain with the transition matrix < @ @ > is

g 1-p
(of%ﬂv ﬁ) . As the Markov chain restricted to the class {3,4} is
3 4
o .. . 3,03 0.7
also a Markov chain with the transition matrix 4 (0.6 0'4>.
Hence,
1 2 3 4 5 6
1/0 0 7 777
210 0 7 7?77
m_ 3|0 0 6/13 7/13 0 0
A P 40 0 6/13 7713 0 0
510 0 0 o 7 7
6\0 O 0 0 77
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Exercise 4.50 on p.284 (Cont'd)

1 2 3 4 5 6

1/02 04 0 03 0 0.1

2(01 03 0 04 0 02

p_3| 0 0 0307 0 0

4l o o 06 04 0 o0

5] o o 0o 0 05 05

6\L0 0 0 0 02 08

For the same reason,

12 3 4 5 6
1/0 0 2 A
2(0 o 2 ? 7 2
. om_ 3|0 0 613 713 0 0
Jim PO = 00 6/13 7/13 0 0
510 0 0 0 2/7 5/7
6\0 0 O 0 2/7 5/7
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