STAT253/317 Lecture 4: Limiting theorems for Markov

 chainsRecall the two questions

1. As time goes to infinity, does the fraction of time spent in a given state converge? Mathematically, we aim to study

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} 1\left\{X_{i}=k\right\}}{n}
$$

2. As time goes to infinity, does the probability of being in a given state converge to a limit? This is given by

$$
\lim _{n \rightarrow \infty} P_{i j}^{(n)}
$$

Positive Recurrence and Null Recurrence

For a Markov chain, define the first return time to a state i

$$
T_{i}=\min \left\{n>0: X_{n}=i \mid X_{0}=i\right\}
$$

We say a state i is

- positive recurrent if i is recurrent and $\mathbb{E}\left[T_{i}\right]<\infty$.
- null recurrent if i is recurrent but $\mathbb{E}\left[T_{i}\right]=\infty$.

We say a state is ergodic if it is aperiodic and positive recurrent. Positive Recurrence is a Class Property. Similarly, Null Recurrence is a Class Property.

The Fundamental Limit Theorem of Markov Chain II

For an irreducible Markov chain, it is positive recurrent if and only if there exists a stationary distribution, i.e., a solution to the set of equations:

$$
\pi_{i} \geq 0, \quad \sum_{i \in \mathfrak{X}} \pi_{i}=1, \quad \pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}
$$

Moreover, if a solution exists then it is unique, and is given by

$$
\pi_{j}=\frac{1}{\mathbb{E}\left[T_{j}\right]}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} P_{i j}^{(k)}
$$

Stationary distribution can be interpreted as the long run proportion of time that the Markov chain is in state j.

Heuristic proof

Step 1: Connecting long run proportion of time to inverse expected return time, i.e., we aim to show that for any state j, we have

$$
\mathbb{P}_{j}\left[\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} 1\left\{X_{i}=j\right\}}{n}=\frac{1}{\mathbb{E}_{j}\left[T_{j}\right]}\right]=1
$$

If j is transient, both are 0 .
If j is recurrent, see the next slide

When j is recurrent

Consider a Markov chain started from state j. Let S_{k} be the time till the k-th visit to state j. Then

$$
S_{k}=T_{j j}(0)+T_{j j}(1)+\ldots+T_{j j}(k-1)
$$

Here

- $T_{j j}(m)=$ the time between the m th and $(m+1)$ st visit to state j.
Observe that $T_{j j}(0), T_{j j}(1), \ldots T_{j j}(k-1)$ are i.i.d. and have the same distribution as T_{i}.
For k large, the Strong Law of Large Numbers tells us

$$
\frac{1}{k}\left[T_{j j}(0)+T_{j j}(1)+\cdots+T_{j j}(k-1)\right] \rightarrow \mathbb{E}_{j}\left(T_{j}\right) \quad \text { almost surely }
$$

i.e., the chain visits state j about k times in $k \mathbb{E}\left(T_{j}\right)$ steps.

Heuristic proof

Step 2: Connecting long run proportion of time to stationary probability
Consider a Markov chain starting from the stationary distribution. Then in n steps, we expect about $n \pi(j)$ visits to the state j. Hence

$$
\pi_{j}
$$

is roughly the proportion of time we see j.

Finite-State Markov Chains Have No Null Recurrent States

In an irreducible finite-state Markov chain all states are positive recurrent.
Proof.
Recall an irreducible Markov chain must be recurrent. (Why?) Also recall that positive/null recurrence is a class property. Thus if one state is null recurrent, then all states are null recurrent. In this case, we have for all j,

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} 1\left\{X_{i}=j\right\}}{n}=0
$$

Summing over j, we see the contradiction.

The Fundamental Limit Theorem of Markov Chain I

Let $\left\{X_{n}\right\}$ be an irreducible, positive recurrent, and aperiodic Markov chain. Then

$$
\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\pi_{j}, \quad \text { for all } i, j
$$

Remark. For a finite state Markov chain, a limiting distribution exists if it is irreducible and aperiodic

Example 1: One-Dimensional Random Walk

In Lecture 4, we have shown that 1-dim symmetric random walk has no stationary distribution.

- Conclusion from 2nd limit theorem: 1-dim symmetric random walk is null recurrent, i.e.

$$
\mathbb{E}\left[T_{i}\right]=\infty \quad \text { for all state } i
$$

In fact, in Lecture 3 we have shown that

$$
P_{i i}^{(n)}= \begin{cases}0 & \text { if } n \text { is odd } \\ \binom{n}{n / 2}\left(\frac{1}{2}\right)^{n} \approx \sqrt{\frac{2}{\pi n}} & \text { if } n \text { is even }\end{cases}
$$

Thus we see $\lim _{n \rightarrow \infty} P_{i i}^{(n)}=1 / \mathbb{E}\left[T_{i}\right]$.

Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

$$
\begin{aligned}
P_{i, i+1} & =p \quad \text { for all } i=0,1,2, \ldots \\
P_{i, i-1} & =1-p \quad \text { for all } i=1,2, \ldots \\
p_{00} & =1-p
\end{aligned}
$$

Try to solve $\pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}$

$$
\begin{aligned}
& \pi_{0}=\pi_{0} P_{00}+\pi_{1} P_{10}=(1-p)\left(\pi_{0}+\pi_{1}\right) \Rightarrow \pi_{1}=\frac{p}{1-p} \pi_{0} \\
& \pi_{1}=\pi_{0} P_{01}+\pi_{2} P_{21}=p \pi_{0}+(1-p) \pi_{2} \Rightarrow \pi_{2}=\left(\frac{p}{1-p}\right)^{2} \pi_{0} \\
& \pi_{2}=\pi_{0} P_{12}+\pi_{3} P_{32}=p \pi_{1}+(1-p) \pi_{3} \Rightarrow \pi_{3}=\left(\frac{p}{1-p}\right)^{3} \pi_{0}
\end{aligned}
$$

$$
\pi_{j}=p \pi_{j-1}+(1-p) \pi_{j+1} \quad \Rightarrow \pi_{j+1}=\left(\frac{p}{1-p}\right)^{j+1} \pi_{0}
$$

Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

$$
\sum_{i=0}^{\infty} \pi_{i}=\pi_{0} \sum_{i=0}^{\infty}\left(\frac{p}{1-p}\right)^{i}= \begin{cases}\pi_{0}\left(\frac{1-p}{1-2 p}\right) & \text { if } p<1 / 2 \\ \infty & \text { if } p \geq 1 / 2\end{cases}
$$

Conclusion: The process is positive recurrent iff $p<1 / 2$, in which case

$$
\pi_{i}=\frac{1-2 p}{1-p}\left(\frac{p}{1-p}\right)^{i}, \quad i=0,1,2, \ldots
$$

Ex 3: Ehrenfest Diffusion Model with N Balls

Recall that in Lecture 4, we show that Ehrenfest Diffusion Model is irreducible, has period $=2$, and there exists a solution to the set of equations

$$
\pi_{i} \geq 0, \quad \sum_{i \in \mathfrak{X}} \pi_{i}=1, \quad \pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}
$$

which is

$$
\pi_{i}=\binom{N}{i}\left(\frac{1}{2}\right)^{N} \quad \text { for } i=0,1,2, \ldots, N
$$

Though the limiting distribution $\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ does not exist, we can show that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P_{i j}^{(2 n)}=2\binom{N}{j}\left(\frac{1}{2}\right)^{N}, \quad \lim _{n \rightarrow \infty} P_{i j}^{(2 n+1)}=0 \quad \text { if } i+j \text { is even } \\
& \lim _{n \rightarrow \infty} P_{i j}^{(2 n)}=0, \quad \lim _{n \rightarrow \infty} P_{i j}^{(2 n+1)}=2\binom{N}{j}\left(\frac{1}{2}\right)^{N} \quad \text { if } i+j \text { is odd }
\end{aligned}
$$

From the above, one can verify that
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} P_{i j}^{(k)}=\left(\begin{array}{c}N \\ j \\ \text { Lecture 4-12 }\end{array}\right)\left(\begin{array}{l}\left.\frac{1}{2}\right)^{N}=\pi_{j} . \\ \hline\end{array}\right.$

Exercise 4.50 on p. 284

A Markov chain has transition probability matrix

$$
P=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0.2 & 0.4 & 0 & 0.3 & 0 & 0.1 \\
0.1 & 0.3 & 0 & 0.4 & 0 & 0.2 \\
0 & 0 & 0.3 & 0.7 & 0 & 0 \\
0 & 0 & 0.6 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.2 & 0.8
\end{array}\right)
$$

Communicating classes:

Find $\lim _{n \rightarrow \infty} P^{(n)}$.

Exercise 4.50 on p. 284 (Cont'd)

Observe that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ if j is transient, hence,

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
\\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
5 \\
0
\end{gathered}\left(\begin{array}{llllll}
1 & 0 & ? & ? & ? & 6 \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ?
\end{array}\right)
$$

Exercise 4.50 on p. 284 (Cont'd)

Observe that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ if j is NOT accessible from i

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
\\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & ? & ?
\end{array}\right)
$$

The two classes $\{3,4\}$ and $\{5,6\}$ do not communicate and hence the transition probabilities in between are all 0 .

Exercise 4.50 on p. 284 (Cont'd)

Recall we have shown that the limiting distribution of a two-state Markov chain with the transition matrix $\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$ is $\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$. As the Markov chain restricted to the class $\{3,4\}$ is

$$
3 \quad 4
$$

also a Markov chain with the transition matrix $\begin{aligned} & 3 \\ & 4\end{aligned}\left(\begin{array}{ll}0.3 & 0.7 \\ 0.6 & 0.4\end{array}\right)$. Hence,

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & 0 & ? & ?
\end{array}\right)
$$

Lecture 4-16

Exercise 4.50 on p. 284 (Cont'd)

$$
P=\begin{gathered}
1 \\
1 \\
1 \\
2 \\
3 \\
4 \\
5 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
0.2 & 3 & 4 & 5 & 6 \\
0.1 & 0.3 & 0 & 0.3 & 0 & 0.1 \\
0 & 0 & 0.3 & 0.7 & 0 & 0 \\
0 & 0.2 \\
0 & 0 & 0.6 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.2 & 0.8
\end{array}\right)
$$

For the same reason,

Lecture 4-17

