STAT253/317 Lecture 5 Time Reversibility (§4.8)

4.8.1 Backward Markov Chain
If {..., Xn_1,Xn, Xpnt1,...} is @ Markov chain, the backward
chain { Xnt1, Xn, Xn—1,...} is also a Markov chain.

Proof:

P(Xm = j ‘ Xm+1 - ia Xm+27 Xm+37 .. )
:P(Xm = j7 Xm+1 - 7:7 Xm+2a Xer37 .. )
P(Xm+1 = i, Xm+Za Xm+3a .. )
P(Xm+2u Xm—i—?n cee | Xm = ja Xm+l — Z)P(Xm - ju Xm+1 - Z)
P(Xm+27Xm+3, - ’ Xm,+l == Z)P(Xm+1 == Z)
P2, Xonyss - | X1 = )P(Xm = §, Xinp1 = 1) (Markov Prope
P(Xm+27Xm+37 cee ‘ Xm+1 - Z.)P()(m—',-l - 5)

:P(Xm = j7 Xm+1 — 7)
P(Xerl - 7)

= P(Xm :] | Xerl = 7)
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Transition Probabilities of the Backward Markov Chain

Consider a Markov chain {X,, : n =0,1,2,...} with transition
probabilities {P;;}.

Let {7T](~m) = P(X,, = j)};j>0 be the marginal distribution of X,.
The transition probabilities {an)} of the backward Markov chain
are

an) =P(Xm =j | X1 =1)
P(Xm =J, Xm+1 = Z)

P(Xpni1 = 0)
_ P(Xn = )P(Xmy1 =i | X =j) _ ™ Py
P(Xpp1 = i) _(m+1)

i
We can see the backward Markov chain is NOT stationary
because the transition probabilities Q%n) depend on m.
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How to make a backward Markov chain stationary?

To make the backward Markov chain stationary, the forward chain
must start with its stationary distribution {7;} so that

P(Xy, =j)=m; forallm
the transition probabilities {@;;} of the backward Markov chain is

;i Dji

Qij =

T

which does not depend on m
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Time Reversible Markov Chains & Detailed Balanced
Equations

A Markov chain is said to be time reversible iff
Qij = Py,

i.e., it behaves exactly the same no matter running forward or
backward when in the stationary state.

Because Q);; equals ﬂiji/m-, a Markov chain is time reversible if
and only if its stationary distribution {7;} satisfies the equations

m Py = m; Py for all 4, 3.

This set of equations is called the detailed balanced equation.
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Balanced Equations v.s. Detailed Balanced Equations

Recall a distribution 7; for a Markov chain is said to be stationary
if and only if it satisfies

T = ZmPij for all j € X.
i€X

This set of equations is called the balanced equations.
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Balanced Equations v.s. Detailed Balanced Equations

Recall a distribution 7; for a Markov chain is said to be stationary
if and only if it satisfies

T = ZTF,’PM for all j € X.
i€X

This set of equations is called the balanced equations.

A solution to the detailed balanced equations must also be a
solution to the balanced equations, because

W.p..ZE W.p..:W,E P.=m 1=
Zie% Y iex T J icx 7! J J
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Balanced Equations v.s. Detailed Balanced Equations

Recall a distribution 7; for a Markov chain is said to be stationary
if and only if it satisfies

T = ZmPij for all j € X.
i€X

This set of equations is called the balanced equations.

A solution to the detailed balanced equations must also be a
solution to the balanced equations, because

W.p..ZE W.p..:W,E P.=m 1=
Zie% Y iex T J icx 7! J J

It is possible that the balanced equations have solutions but the
detailed balanced equations do not.
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Interpretation of the Balanced Equation

T = Zﬂ—’ipij forall j€ X
i€X
& m(-Pj)= Y mP; foralljex
P€X,i#]

rate of transitions out of state j = rate of transitions into state j
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Interpretation of the Detailed Balanced Equation

mi Py = 7 Pji

rate of transitions from ¢ to j = rate of transitions from j to ¢

T — ] j—1
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Balanced Eqns v.s. Detailed Balanced Eqgns.

» For balanced equations,
the # of equations = # of states = # of unknowns
» For detailed balanced equations,
# of equations = # of pairs of states > # of unknowns
» Detailed Balanced Equations are easier to solve than the
Balanced Equations as the former ones involve only two
unknowns in each equation
» One can start by solving the detailed balanced equations for
the stationary distribution. If you can find one, it'll also be
the solution for the balanced equations. That also proves the
Markov chain if positive recurrent if it's irreducible (2nd limit
theorem).
» However, if the detailed balanced equations have no solutions,
it doesn't prove the Markov chain to be null current or
transient since the balanced equations might still have a

solution.
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Example 4.35

Consider a random walk with states 0,1,..., M and transition
probabilities

Pivi=a;=1-PF;y, fori=1,...,M—1,
Pyy=ap=1-Fyp,
Pyy =oapy=1—Pyy—1

02%1 Mo M -1 Ny

N

0 €U 1E®2 M1 N

O
1—ao
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Example 4.35 (Cont'd)

The stationary distribution 7 can be solved via the detailed
balanced equation

TP i1 =m(l — o) =m1Pio1; =m0
Qi1 Q102 ... 0

1o T T A—and—ai1).. . (I—a)

Since Zéw m; = 1, one can solve 7 via

M Q_10G_2 ... Q0
1 =1
o [ T2 T ey ) (e

Lecture 5 - 10



A Non-Time-Reversible Markov Chain

In Exercise 4.34 (a flea moving around the vertices of a triangle),

1 1
p3 pP1 q1 q2
Va N N4 N where p; +¢; =1
3 &£ 2 3 £ 9

the transition probabilities, and the stationary distribution are
respectively

1 2 3
1/0
proq L —pegs 1—p3q1 1 —pige
2 q2 0 D2 ) and T = ( ) ) )
C C C
3\ps g3 O

where C' = 3 — pag3s — p3q1 — p1g2- One can easily verify that
T Pig = mip1 # maPo1 = maqe

The chain is NOT time reversible.
Lecture 5 - 11



Other Non-Time-Reversible Markov Chains

> A Markov chain with transient states cannot be
time-reversible because then running forward and backward in
time will not be equivalent.

> If there exists two states ¢ and j such that
Pij >0 but Pﬂ =0

then the Markov chain cannot be time-reversible because then
when running backward in time

Py

3

sz -

= 0# Py
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Theorem 4.2

An ergodic Markov chain for which P;; = 0 whenever Pj; =0 is
time reversible if and only if starting in state ¢, any path back to ¢
has the same probability as the reversed path. That is, if

Py Piy - Pii = P

for all states 4,11, ..., 0.
i — 1
/ AN
Tg—1 i1
N e
cee— g

Pikik—l . PZ‘”‘
i — 1
vd N
Tp—1 i1
¢ /
- — 19
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Theorem 4.2 — Proof of Necessity

If a Markov chain is time reversible, we have
miPij = mjPji, TPy = miPj.
implying (if P;; P, > 0) that

i _ il
- 7S
T PP

but m; P, = my Py; also implies m; /7, = Py;/ Pii. Thus
Py Pyj Pji = PijPj Pr;.

This proves for the case i — 7 — k — i. The general case for
longer cycle can be proved similarly
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Theorem 4.2 — Proof of Sufficiency
Consider the cycle i — i1 = i0 — ... = i = j — 1.
P’L’L1P2112 . Rkjp — P P]ZkP . P’i1i

Zk"k 1°°
Summing the preceding over all states i1, ..., yields
k) p  _ (k)
Py P = Py Py
Letting £ — oo yields

hm PZ(] ) Pj, = P;; hm P( )

=7, =T
in which limg_, P.(-k)

ij
ergodic.
This proves the theorem.

= m; for all j since the Markov chain is
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Example 4.36 Random Walk on a Weighted Graph (p.241)

A graph = a set of vertices (or nodes) + a set of arcs (or edges)
connecting some pairs of vertices. We consider random walk on a
connected graph such that

» each pair (i,7) of vertices are connected by at most one arc;
» all arcs are undirected: arc (i,j) = arc (j,1);
» there is a path consists of arcs connecting any pair of vertices;

» each arc (4, j) is associated with a weight w;; > 0

» w;; = 0 if there is not arc connecting (i, j)
| 2 Wij = Wj;
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Example 4.36 Random Walk on a Weighted Graph (p.241)

A particle moving from vertices to vertices that if at any time the
particle is at node ¢, then it will next move to node j with
probability

Wi

! Zk wik’

E.g., in the graph below, there are two arcs from vertices B with
weights wp4 = 2 and Wpo = 1 respectively. So,

P;

WBA 2 2 wae 1 1
= = -, PBC: —.
WBA + WBC 2+1 3

P = = =
BA WBA + WBC 241 3

Random walk on a graph is irreducible because the graph is
connected. Lecture 5 - 17



Random Walk on a Weighted Graph is Time Reversible
Solving the detailed balanced equation:
T Wij T Wy
TP = _
Y Dok Wik D Wik

or, equivalently, since w;; = wj;,

=m;jPj; foralli,j

uy _ ﬂ'j
Dok Wik D Wik

is a constant ¢ for all 7, i.e.,

T, = C E Wik -
k

Since 1 =3, mj =c) ;> Wik, we know ¢ = 1/(3°, > ) wik),
and hence
= Zk Wik
= ==k %
Zj >k Wik
is a solution to the detailed balanced eq. The process is therefore
time-reversible.

for all ¢, 7,

. s
which means ———
Zk Wik
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Random Walk on a Weighted Graph

Vertices 1 Dk Wik 5
A 2+2=4 174 =4/200
B 241=3 7p5=23/200
C 1+14+86=88 = =388/200
D 24+1+1=4 wp=4/200
E 14+2+486=89 =g =289/200
F 241+1=4 7p=4/200
G 143=4 7g=4/200
H 1+3=4 7y =4/200

Sum D i 2ok Wik = 200
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Random Knight on a Chessboard

» The Knight moves in an L shape in any
direction.

» At the blue square, the Knight can move
to any of the 8 red squares.

‘-ﬁ*
~HLUs

» From a square near the boundary, the
Knight has fewer possible moves as it
cannot move out of the Chessboard (see

the 3 graphs below.)
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Random Knight on a Chessboard

» A Knight moves randomly on an empty chessboard.

» In each step, it's equally like to take any of its legal moves.
E.g., at the corner, it has prob. 1/2 each to move to either of
the two red squares, from which it has prob. 1/6 each to
move to any of the 6 possible squares.

r-.

! !
= -
] - m
- ) )

» Each move is indep. of the history of moves up to that time.

» The position of on knight after nth move is a Markov chain
where states are the 64 squares on the chessboard.
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Random Knight on a Chessboard

The Knight's random walk on a Chessboard is also a random walk
on weighted graph where

P the vertices are the 64 squares on the chessboard;

» there is an arc between any two squares that Knight can move
in 1 step;

» all the arcs have weight w;; = 1.

The transition probability of a random walk on weighted graph
from square ¢ to square j is

Wy 5 . 1
>k Wik 4 of squares that connected with square i with an arc
B 1
~ # of legal moves from square i

Pl'j =

which is exactly the random walk of the knight.
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Random Knight on a Chessboard

Using the property of random walks on a graph, the stationary
distribution of the Knight's random walk is

YWk # of legal moves from square i

T 25 2ok Wik B >_;(# of legal moves from square j)

The numbers of legal moves from the squares are as follows:

The sum of the number of possible
moves over all squares is

2x44+3x8+4x%x20
+6x 164+ 8 x 16 = 336.

The long run proportion of time that the Knight is in a specific
square is simply the counts in the table above divided by 336.
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Return Time of a Random Knight

Recall that 1/m; = E[T}] is the expected time between two visits of
the Markov chain to state 7.

Starting from one of the four corners, it takes
1/m; = 336/2 = 168 moves on average for a
Knight to return to its initial position.

Starting from the center of the chessboard, it
takes 1/m; = 336/8 = 42 moves on average for
a Knight to return to its initial position
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More Questions

> |s this Markov chain irreducible? That is, can the Knight visit
every square from every square?

» What is the period of this Markov chain?
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More Questions

» s this Markov chain irreducible? That is, can the Knight visit
every square from every square?

» What is the period of this Markov chain?

Every “L" move can only from a gray square to a white square
or a white square to a gray square.
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