STAT253/317 Lecture 6

Cong Ma

First step analysis

Lecture 6-1

Utilize Recursive Relations of Markov Chains

Law of total expectation/variance
In many cases, we can use recursive relation to find $\mathbb{E}\left[X_{n}\right]$ and $\operatorname{Var}\left[X_{n}\right]$ without knowing the exact distribution of X_{n}.

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1}\right] & =\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right] \\
\operatorname{Var}\left(X_{n+1}\right) & =\mathbb{E}\left[\operatorname{Var}\left(X_{n+1} \mid X_{n}\right)\right]+\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right)
\end{aligned}
$$

Example 1: Simple Random Walk

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with prob } p \\ X_{n}-1 & \text { with prob } q=1-p\end{cases}
$$

So

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1} \mid X_{n}\right] & =p\left(X_{n}+1\right)+q\left(X_{n}-1\right)=X_{n}+p-q \\
\operatorname{Var}\left[X_{n+1} \mid X_{n}\right] & =4 p q
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1}\right] & =\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right]=\mathbb{E}\left[X_{n}\right]+p-q \\
\operatorname{Var}\left(X_{n+1}\right) & =\mathbb{E}\left[\operatorname{Var}\left(X_{n+1} \mid X_{n}\right)\right]+\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right) \\
& =\mathbb{E}[4 p q]+\operatorname{Var}\left(X_{n}+p-q\right)=4 p q+\operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

So

$$
\mathbb{E}\left[X_{n}\right]=n(p-q)+\mathbb{E}\left[X_{0}\right], \quad \operatorname{Var}\left(X_{n}\right)=4 n p q+\operatorname{Var}\left(X_{0}\right)
$$

Example 2: Ehrenfest Urn Model with M Balls

Recall that

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with probability } \frac{M-X_{n}}{M} \\ X_{n}-1 & \text { with probability } \frac{X_{n}}{M}\end{cases}
$$

We have
$\mathbb{E}\left[X_{n+1} \mid X_{n}\right]=\left(X_{n}+1\right) \times \frac{M-X_{n}}{M}+\left(X_{n}-1\right) \times \frac{X_{n}}{M}=1+\left(1-\frac{2}{M}\right) X_{n}$.
Thus

$$
\mathbb{E}\left[X_{n+1}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right]=1+\left(1-\frac{2}{M}\right) \mathbb{E}\left[X_{n}\right]
$$

Subtracting $M / 2$ from both sided of the equation above, we get

$$
\mathbb{E}\left[X_{n+1}\right]-\frac{M}{2}=\left(1-\frac{2}{M}\right)\left(\mathbb{E}\left[X_{n}\right]-\frac{M}{2}\right)
$$

Thus

$$
\mathbb{E}\left[X_{n}\right]-\frac{M}{2}=\underset{\text { Lecture 6-4 }}{\left(1-\frac{2}{M}\right)^{n}\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)}
$$

4.5.1 The Gambler's Ruin Problem

- A gambler repeatedly plays a game until he goes bankrupt or his fortune reaches N.
- In each game, he can win $\$ 1$ with probability p or lose $\$ 1$ with probability $q=1-p$.
- Outcomes of different games are independent
- Define $X_{n}=$ the gambler's fortune after the nth game.
- $\left\{X_{n}\right\}$ is a simple random walk $\mathrm{w} /$ absorbing boundaries at 0 and N.

$$
P_{00}=P_{N N}=1, P_{i, i+1}=p, P_{i, i-1}=q, i=1,2, \ldots, N-1
$$

- Two recurrent classes: $\{0\}$ and $\{N\}$ one transient class $\{1,2, \ldots, N-1\}$
- Regardless of the initial fortune X_{0}, eventually $\lim _{n \rightarrow \infty} X_{n}=0$ or N as all states are transient except 0 or N.
Lecture 6-5

4.5.1 The Gambler's Ruin Problem

Denote A as the event that the gambler's fortune reaches N before reaching 0 . Then

$$
P_{i}=P\left(A \mid X_{0}=i\right)
$$

Conditioning on the outcome of the first game,

$$
\begin{array}{rl}
P_{i}=P & P(A \mid X_{0}=i, \text { he wins the 1st game) } \underbrace{P(\text { he wins the 1st game })}_{=p} \\
& +P(A \mid X_{0}=i \text {, he loses the 1st game) } \underbrace{P(\text { he loses the 1st game })}_{=q}
\end{array}
$$

$$
\begin{aligned}
& =P\left(A \mid X_{0}=i, X_{1}=i+1\right) p+P\left(A \mid X_{0}=i, X_{1}=i-1\right) q \\
& =\underbrace{P\left(A \mid X_{1}=i+1\right)}_{=P_{i+1}} p+\underbrace{P\left(A \mid X_{1}=i-1\right)}_{=P_{i-1}} q(\because \text { Markov })
\end{aligned}
$$

We get a set of equations

$$
\begin{aligned}
& P_{i}=p P_{i+1}+q P_{i-1} \quad \text { for } i=1,2, \ldots, N-1 \\
& P_{0}=0, \quad P_{N}=1
\end{aligned}
$$

Solving the equations $P_{i}=p P_{i+1}+q P_{i-1}$

$$
\begin{array}{rlrl}
(p+q) P_{i} & =p P_{i+1}+q P_{i-1} & \text { since } p+q=1 \\
\Leftrightarrow & q\left(P_{i}-P_{i-1}\right) & =p\left(P_{i+1}-P_{i}\right) & \\
\Leftrightarrow \quad P_{i+1}-P_{i} & =(q / p)\left(P_{i}-P_{i-1}\right) &
\end{array}
$$

As $P_{0}=0$,

$$
\begin{aligned}
& P_{2}-P_{1}=(q / p)\left(P_{1}-P_{0}\right)=(q / p) P_{1} \\
& P_{3}-P_{2}=(q / p)\left(P_{2}-P_{1}\right)=(q / p)^{2} P_{1} \\
& \quad \vdots \\
& P_{i}-P_{i-1}=(q / p)\left(P_{i-1}-P_{i-2}\right)=(q / p)(q / p)^{i-2} P_{1}=(q / p)^{i-1} P_{1}
\end{aligned}
$$

Adding up the equations above we get

$$
P_{i}-P_{1}=\left[q / p+(q / p)^{2}+\cdots+(q / p)^{i-1}\right] P_{1}
$$

From

$$
P_{i}-P_{1}=\left[q / p+(q / p)^{2}+\cdots+(q / p)^{i-1}\right] P_{1}
$$

we get

$$
P_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)} P_{1} & \text { if } p \neq q \\ i P_{1} & \text { if } p=q\end{cases}
$$

As $P_{N}=1$, we get

$$
P_{1}= \begin{cases}\frac{1-(q / p)}{1-(q / p)^{N}} & \text { if } p \neq 0.5 \\ 1 / N & \text { if } p=0.5\end{cases}
$$

So

$$
P_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)^{N}} & \text { if } p \neq 0.5 \\ i / N & \text { if } p=0.5\end{cases}
$$

If the gambler will never quit with whatever fortune he has ($N=\infty$), then

$$
\lim _{N \rightarrow \infty} P_{i}= \begin{cases}1-(q / p)^{i} & \text { if } p>0.5 \\ 0 & \text { if } p \leq 0.5\end{cases}
$$

Lecture 6-8

4.5.3 Random Walk w/ Reflective Boundary at 0

- State Space $=\{0,1,2, \ldots\}$
- $P_{01}=1, P_{i, i+1}=p, P_{i, i-1}=1-p=q$, for $i=1,2,3 \ldots$
- Only one class, irreducible
- For $i<j$, define

$$
N_{i j}=\min \left\{m>0: X_{m}=j \mid X_{0}=i\right\}
$$

$=$ first time to reach state j when starting from state i

- Observe that $N_{0 n}=N_{01}+N_{12}+\ldots+N_{n-1, n}$ By the Markov property, $N_{01}, N_{12}, \ldots, N_{n-1, n}$ are indep.
- Given $X_{0}=i$

$$
N_{i, i+1}= \begin{cases}1 & \text { if } X_{1}=i+1 \tag{1}\\ 1+N_{i-1, i}^{*}+N_{i, i+1}^{*} & \text { if } X_{1}=i-1\end{cases}
$$

Observe that $N_{i, i+1}^{*} \sim N_{i, i+1}$, and $N_{i, i+1}^{*}$ is indep of $N_{i-1, i}^{*}$. Lecture 6-9

4.5.3 Random Walk w/ Reflective Boundary at 0 (Cont'd)

 Let $m_{i}=\mathbb{E}\left(N_{i, i+1}\right)$. Taking expected value on Equation (1), we get$$
m_{i}=\mathbb{E}\left[N_{i, i+1}\right]=1+q \mathbb{E}\left[N_{i-1, i}^{*}\right]+q \mathbb{E}\left[N_{i, i+1}^{*}\right]=1+q\left(m_{i-1}+m_{i}\right)
$$

Rearrange terms we get $p m_{i}=1+q m_{i-1}$ or

$$
\begin{aligned}
m_{i} & =\frac{1}{p}+\frac{q}{p} m_{i-1} \\
& =\frac{1}{p}+\frac{q}{p}\left(\frac{1}{p}+\frac{q}{p} m_{i-2}\right) \\
& =\frac{1}{p}\left[1+\frac{q}{p}+\left(\frac{q}{p}\right)^{2}+\ldots+\left(\frac{q}{p}\right)^{i-1}\right]+\left(\frac{q}{p}\right)^{i} m_{0}
\end{aligned}
$$

Since $N_{01}=1$, which implies $m_{0}=1$.

$$
m_{i}= \begin{cases}\frac{1-(q / p)^{i}}{p-q}+\left(\frac{q}{p}\right)^{i} & \text { if } p \neq 0.5 \\ 2 i+1 & \text { if } p=0.5\end{cases}
$$

Mean of $N_{0, n}$

Recall that $N_{0 n}=N_{01}+N_{12}+\ldots+N_{n-1, n}$

$$
\begin{aligned}
\mathbb{E}\left[N_{0 n}\right] & =m_{0}+m_{1}+\ldots+m_{n-1} \\
& = \begin{cases}\frac{n}{p-q}-\frac{2 p q}{(p-q)^{2}}\left[1-\left(\frac{q}{p}\right)^{n}\right] & \text { if } p \neq 0.5 \\
n^{2} & \text { if } p=0.5\end{cases}
\end{aligned}
$$

When

$$
\begin{array}{lll}
p>0.5 & \mathbb{E}\left[N_{0 n}\right] \approx \frac{n}{p-q}-\frac{2 p q}{(p-q)^{2}} & \text { linear in } n \\
p=0.5 & \mathbb{E}\left[N_{0 n}\right]=n^{2} & \text { quadratic in } n \\
p<0.5 & \mathbb{E}\left[N_{0 n}\right]=O\left(\frac{2 p q}{(p-q)^{2}}\left(\frac{q}{p}\right)^{n}\right) & \text { exponential in } n
\end{array}
$$

Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.

- All individuals have the same lifetime
- Each individual will produce a random number of offsprings at the end of its life
Let $X_{n}=$ size of the n-th generation, $n=0,1,2, \ldots$.
If $X_{n-1}=k$, the k individuals in the $(n-1)$-th generation will independently produce $Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, k}$ new offsprings, and $Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, X_{n-1}}$ are i.i.d such that

$$
P\left(Z_{n, i}=j\right)=P_{j}, j \geq 0
$$

We suppose that $P_{j}<1$ for all $j \geq 0$.

$$
\begin{equation*}
X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i} \tag{2}
\end{equation*}
$$

$\left\{X_{n}\right\}$ is a Markov chain with state space $=\{0,1,2, \ldots\}$.

Mean of a Branching Process

Let $\mu=\mathbb{E}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty} j P_{j}$. Since $X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}$, we have

$$
\mathbb{E}\left[X_{n} \mid X_{n-1}\right]=\mathbb{E}\left[\sum_{i=1}^{X_{n-1}} Z_{n, i} \mid X_{n-1}\right]=X_{n-1} \mathbb{E}\left[Z_{n, i}\right]=X_{n-1} \mu
$$

So

$$
\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right]=\mathbb{E}\left[X_{n-1} \mu\right]=\mu \mathbb{E}\left[X_{n-1}\right]
$$

If $X_{0}=1$, then

$$
\mathbb{E}\left[X_{n}\right]=\mu \mathbb{E}\left[X_{n-1}\right]=\mu^{2} \mathbb{E}\left[X_{n-2}\right]=\ldots=\mu^{n} \mathbb{E}\left[X_{0}\right]
$$

- If $\mu<1 \Rightarrow \mathbb{E}\left[X_{n}\right] \rightarrow 0$ as $n \rightarrow \infty \Rightarrow \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n} \geq 1\right)=0$ the branching processes will eventually die out.
- What if $\mu=1$ or $\mu>1$?

Variance of a Branching Process

Let $\sigma^{2}=\operatorname{Var}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty}(j-\mu)^{2} P_{j} . \operatorname{Var}\left(X_{n}\right)$ may be obtained using the conditional variance formula

$$
\operatorname{Var}\left(X_{n}\right)=\mathbb{E}\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]+\operatorname{Var}\left(\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right)
$$

Again from that $X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}$, we have

$$
\mathbb{E}\left[X_{n} \mid X_{n-1}\right]=X_{n-1} \mu, \quad \operatorname{Var}\left(X_{n} \mid X_{n-1}\right)=X_{n-1} \sigma^{2}
$$

and hence

$$
\begin{aligned}
& \operatorname{Var}\left(\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right)=\operatorname{Var}\left(X_{n-1} \mu\right)=\mu^{2} \operatorname{Var}\left(X_{n-1}\right) \\
& \mathbb{E}\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]=\sigma^{2} \mathbb{E}\left[X_{n-1}\right]=\sigma^{2} \mu^{n-1} \mathbb{E}\left[X_{0}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Var}\left(X_{n}\right) & =\sigma^{2} \mu^{n-1} \mathbb{E}\left[X_{0}\right]+\mu^{2} \operatorname{Var}\left(X_{n-1}\right) \\
& =\sigma^{2} \mathbb{E}\left[X_{0}\right]\left(\mu^{n-1}+\mu^{n}+\ldots+\mu^{2 n-2}\right)+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) \\
& = \begin{cases}\sigma^{2} \mu^{n-1}\left(\frac{1-\mu^{n}}{1-\mu}\right) \mathbb{E}\left[X_{0}\right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) & \text { if } \mu \neq 1 \\
n \sigma^{2} \mathbb{E}\left[X_{0}\right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) & \text { if } \mu=1\end{cases}
\end{aligned}
$$

Lecture 6-14

