STAT253/317 Lecture 6

Cong Ma

First step analysis
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Utilize Recursive Relations of Markov Chains

Law of total expectation/variance

In many cases, we can use recursive relation to find E[X,,] and
Var[X,,] without knowing the exact distribution of X,.

E[Xni1] = E[E[Xn 11| X]]
Var(X,4+1) = E[Var(X,,4+1|X,)] + Var(E[X,,11|X5])
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Example 1: Simple Random Walk
X, +1 with prob p
XnJrl = .

X,—1 withprobg=1—-p

So

E[Xn-H’Xn] = p(Xn + 1) + Q(Xn - 1) =Xn+p—q
Var[Xn—i-l’Xn] = 4dpq
Then
E[Xn+1] = E[E[Xp11|X5]] = E[Xn] +p — ¢

Var(X,4+1) = E[Var(X,,1+1|X,,)] + Var(E[X,,+1| X5))
E[4pq] + Var(X, + p — q) = 4pq + Var(X,,)

So
E[X,] =n(p — q) + E[X0], Var(X,,) = 4npq + Var(Xp)
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Example 2: Ehrenfest Urn Model with M Balls
Recall that

Xyt = {Xn + 1 with probability MMX”

" X, — 1 with probability %

We have

M-X 2

X
E[Xp 1| Xn] = (X +1)x = +(Xp—1)x 57 = 14 (1 - ) X,

M M
Thus
2
BfXi] = BBl X0l = 1+ (1- 2 ) BLX)
Subtracting M /2 from both sided of the equation above, we get

E[Xn+1] — M = (1 - 2> (E[X,] — %)

2 M 2
Thus
Bl - g = (1- 7)) @EXl- )
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4.5.1 The Gambler's Ruin Problem

>

>

v

A gambler repeatedly plays a game until he goes bankrupt or
his fortune reaches N.

In each game, he can win $1 with probability p or lose $1 with
probability g =1 — p.

Outcomes of different games are independent

Define X,, = the gambler’s fortune after the nth game.

{X,} is a simple random walk w/ absorbing boundaries at 0
and N.

P()()ZPNN:1, Pi,i+1 :p,Pm‘_lzq, i:1,2,...,N—1

Two recurrent classes: {0} and {/NV}
one transient class {1,2,..., N — 1}

Regardless of the initial fortune Xg, eventually
lim,, oo X, = 0 or N as all states are transient except 0 or N.
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4.5.1 The Gambler's Ruin Problem

Denote A as the event that the gambler’s fortune reaches N before
reaching 0. Then
P, = P(A|Xo =1).

Conditioning on the outcome of the first game,

P; = P(A|Xo = i, he wins the 1st game) P(he wins the 1st game)

—p
+ P(A|Xo =1, he loses the 1st game) P(he loses the 1st game)

=q
=PAX1=i+1)p+ P(A|X1 =i—1)q (. Markov)

=Pit1 =P;_1

We get a set of equations

P, =pP . +qP_, fori=1,2,...,N—1.
Py=0, Py=1
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Solving the equations P, = pP, 1 4+ qP;_

(p+q)P; = pPiy1 + qP;_q sincep+qg=1
& q(P;— Pi1) = p(Piy1 — B)
& Py —Pi=(q/p)(P— Pi—1)

As Py =0,
Py — P = (q/p)(P1 — Po) = (a/p) 1
Py — Py = (q/p)(P2 — P1) = (¢/p)* Py
P~ Pt = (a/p)(Pios — Pra) = (a/)a/p) 2Py = (a/p)" "' P
Adding up the equations above we get
P,—Pi=[q/p+(a/p) + -+ (/)] P
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From ‘
P, — P = [q/p+ (a/p)* + -+ (a/p) '] P
we get

1— @ .
p [T ifrta
1Py ifp=gq

As Py =1, we get

1—(a/p)
p = ) ™ if p#0.5
1/N ifp=0.5

1-(¢/p)"
P, ={ 1=(a/p" ifp #0.5
i/N if p=20.5
If the gambler will never quit with whatever fortune he has
(N = 0), then

N—oo

. 1—(q/p)' ifp>0.5
lim P, = )
0 if p<0.5
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4.5.3 Random Walk w/ Reflective Boundary at 0
State Space = {0,1,2,...}
Ppn=1,PFP;y1=p P 1=1-p=gq,fori=1,23...

Only one class, irreducible

vvyyypy

For i < j, define
Nij = min{m >0: X, :j‘Xo = Z}
= first time to reach state j when starting from state 4

» Observe that Ny, = No1 + N2 + ...+ Nn—l,n
By the Markov property, No1, Ni2,..., Ny—15, are indep.

» Given Xg =1

1 if Xi=1+1
Niit1 = I ! Z.+ (1)
1+ Nitl,i + N:Hl if X1=1—-1

Observe that Nifi—f—l ~ Njit1, and N;:i—i—l is indep of Ni*_u.
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4.5.3 Random Walk w/ Reflective Boundary at 0 (Cont'd)

Let m; = E(N;;41). Taking expected value on Equation (1), we
get

m; = E[Nl ’L+1] =1+ q]E[Nz 1 z] + qE[Nz H—l] =1+ Q(ml 1 +m’£)

Rearrange terms we get pm; = 1 4+ gm;_1 or

1
z:*‘l'gmzfl
p p
1 1
=+ 2 +dm )
p pp P
1 .
=[ 2@+ O+ (Dymo
p p p p p

Since Ny1 = 1, which implies mg = 1.

1-(¢/p)* i
— -1 +() if p£0.5
2+ 1 if p=0.5
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Mean of Ny,

Recall that Nop, = Not + N2 + ...+ Np—1

E[Non] = mo +m1+ ... +my_1
_ {p"q = W[l—(ﬂ"] if p#0.5

n? if p=20.5
When
p>05 E[Non) ~ " — (p%’g)2 linear in n
p=0.5 E[Ny,|=n quadratic in n
p <05 E[No,] = O((pz_pg)Q(%)") exponential in n
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Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.
» All individuals have the same lifetime

» Each individual will produce a random number of offsprings at
the end of its life

Let X,, = size of the n-th generation, n =0,1,2,....

If X,,—1 =k, the k individuals in the (n — 1)-th generation will
independently produce Z,, 1, Z,, 2, ..., Z, 1 new offsprings, and
Zn, Zn2, -y Znx,_, are i.i.d such that

P(Zn,;=j)=P;, j>0.

We suppose that P; < 1 for all j > 0.

Xn—
Xp=3 """ Zy; (2)

i=1
{X,} is a Markov chain with state space = {0,1,2,...} .
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Mean of a Branching Process

Let p = E[Z,;] = >_72jP;. Since X,, = Zfi"l’l Zp i, we have

anl
Zn,i

=1

E[X,| X, 1] = E {Z

So

Xn—1:| = Xn—lE[Zn,i] = Xn—lﬂ

E[Xn] = E[E[Xp|Xn—1]] = E[Xp—1p] = pE[Xp ]
If Xo =1, then

E[Xn] = ME[anl] = M2E[an2] == MnE[XO]

» If u<1=E[X,] —0asn—oo=lim, ,oc P(X, >1)=0
the branching processes will eventually die out.

» Whatif y=1o0r p> 17
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Variance of a Branching Process
Let 0% = Var[Z,,;] = >-72,(j — p)*P;. Var(X,,) may be obtained
using the conditional variance formula
Var(X,) = E[Var(Xn|Xn1)] + Var(E[X,| X 1]).
Again from that X,, = Zfi"fl Zp,i, we have
E[Xn|Xn 1] = Xn_1p,  Var(X,| X, 1) = X, 102
and hence
Var(E[X,,| X, _1]) = Var(X,,_1u) = p*Var(X,,_1)
E[Var(X,|X,_1)] = 0?E[X,,_1] = o?u" ' E[Xy).
So
Var(X,,) = o?u" B[ Xo] + p?Var(X,,_1)
= ®B[Xo] (" + p" + .+ 2" 7?) 4 p?Var(Xo)

o?unt (%) E[Xo] + p?"Var(Xg) if p#1
no?E[Xo] + p*"Var(Xo) ifu=1
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