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Utilize Recursive Relations of Markov Chains

Law of total expectation/variance

In many cases, we can use recursive relation to find E[Xn] and
Var[Xn] without knowing the exact distribution of Xn.

E[Xn+1] = E[E[Xn+1|Xn]]

Var(Xn+1) = E[Var(Xn+1|Xn)] + Var(E[Xn+1|Xn])
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Example 1: Simple Random Walk

Xn+1 =

{
Xn + 1 with prob p

Xn − 1 with prob q = 1− p

So

E[Xn+1|Xn] = p(Xn + 1) + q(Xn − 1) = Xn + p− q

Var[Xn+1|Xn] = 4pq

Then

E[Xn+1] = E[E[Xn+1|Xn]] = E[Xn] + p− q

Var(Xn+1) = E[Var(Xn+1|Xn)] + Var(E[Xn+1|Xn])

= E[4pq] + Var(Xn + p− q) = 4pq +Var(Xn)

So

E[Xn] = n(p− q) + E[X0], Var(Xn) = 4npq +Var(X0)
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Example 2: Ehrenfest Urn Model with M Balls
Recall that

Xn+1 =

{
Xn + 1 with probability M−Xn

M

Xn − 1 with probability Xn
M

We have

E[Xn+1|Xn] = (Xn+1)×M −Xn

M
+(Xn−1)×Xn

M
= 1+

(
1− 2

M

)
Xn.

Thus

E[Xn+1] = E[E[Xn+1|Xn]] = 1 +

(
1− 2

M

)
E[Xn]

Subtracting M/2 from both sided of the equation above, we get

E[Xn+1]−
M

2
=

(
1− 2

M

)
(E[Xn]−

M

2
)

Thus

E[Xn]−
M

2
=

(
1− 2

M

)n

(E[X0]−
M

2
)
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4.5.1 The Gambler’s Ruin Problem

▶ A gambler repeatedly plays a game until he goes bankrupt or
his fortune reaches N .

▶ In each game, he can win $1 with probability p or lose $1 with
probability q = 1− p.

▶ Outcomes of different games are independent

▶ Define Xn = the gambler’s fortune after the nth game.

▶ {Xn} is a simple random walk w/ absorbing boundaries at 0
and N .

P00 = PNN = 1, Pi,i+1 = p, Pi,i−1 = q, i = 1, 2, . . . , N − 1

▶ Two recurrent classes: {0} and {N}
one transient class {1, 2, . . . , N − 1}

▶ Regardless of the initial fortune X0, eventually
limn→∞Xn = 0 or N as all states are transient except 0 or N .
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4.5.1 The Gambler’s Ruin Problem
Denote A as the event that the gambler’s fortune reaches N before
reaching 0. Then

Pi = P (A|X0 = i).

Conditioning on the outcome of the first game,

Pi = P (A|X0 = i, he wins the 1st game)P (he wins the 1st game)︸ ︷︷ ︸
=p

+ P (A|X0 = i, he loses the 1st game)P (he loses the 1st game)︸ ︷︷ ︸
=q

= P (A|X0 = i,X1 = i+1)p+ P (A|X0 = i,X1 = i−1)q

= P (A|X1 = i+ 1)︸ ︷︷ ︸
=Pi+1

p+ P (A|X1 = i− 1)︸ ︷︷ ︸
=Pi−1

q (∵ Markov)

We get a set of equations

Pi = pPi+1 + qPi−1 for i = 1, 2, . . . , N − 1.

P0 = 0, PN = 1
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Solving the equations Pi = pPi+1 + qPi−1

(p+ q)Pi = pPi+1 + qPi−1 since p+ q = 1

⇔ q(Pi − Pi−1) = p(Pi+1 − Pi)

⇔ Pi+1 − Pi = (q/p)(Pi − Pi−1)

As P0 = 0,

P2 − P1 = (q/p)(P1 − P0) = (q/p)P1

P3 − P2 = (q/p)(P2 − P1) = (q/p)2P1

...

Pi − Pi−1 = (q/p)(Pi−1 − Pi−2) = (q/p)(q/p)i−2P1 = (q/p)i−1P1

Adding up the equations above we get

Pi − P1 =
[
q/p+ (q/p)2 + · · ·+ (q/p)i−1

]
P1
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From
Pi − P1 =

[
q/p+ (q/p)2 + · · ·+ (q/p)i−1

]
P1

we get

Pi =

{
1−(q/p)i

1−(q/p) P1 if p ̸= q

iP1 if p = q

As PN = 1, we get

P1 =

{
1−(q/p)
1−(q/p)N

if p ̸= 0.5

1/N if p = 0.5

So

Pi =

{
1−(q/p)i

1−(q/p)N
if p ̸= 0.5

i/N if p = 0.5

If the gambler will never quit with whatever fortune he has
(N = ∞), then

lim
N→∞

Pi =

{
1− (q/p)i if p > 0.5

0 if p ≤ 0.5
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4.5.3 Random Walk w/ Reflective Boundary at 0
▶ State Space = {0, 1, 2, . . .}
▶ P01 = 1, Pi,i+1 = p, Pi,i−1 = 1− p = q, for i = 1, 2, 3 . . .

▶ Only one class, irreducible

▶ For i < j, define

Nij = min{m > 0 : Xm = j|X0 = i}
= first time to reach state j when starting from state i

▶ Observe that N0n = N01 +N12 + . . .+Nn−1,n

By the Markov property, N01, N12, . . . , Nn−1,n are indep.

▶ Given X0 = i

Ni,i+1 =

{
1 if X1 = i+ 1

1 +N∗
i−1,i +N∗

i,i+1 if X1 = i− 1
(1)

Observe that N∗
i,i+1 ∼ Ni,i+1, and N∗

i,i+1 is indep of N∗
i−1,i.
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4.5.3 Random Walk w/ Reflective Boundary at 0 (Cont’d)
Let mi = E(Ni,i+1). Taking expected value on Equation (1), we
get

mi = E[Ni,i+1] = 1 + qE[N∗
i−1,i] + qE[N∗

i,i+1] = 1 + q(mi−1 +mi)

Rearrange terms we get pmi = 1 + qmi−1 or

mi =
1

p
+

q

p
mi−1

=
1

p
+

q

p
(
1

p
+

q

p
mi−2)

=
1

p

[
1 +

q

p
+ (

q

p
)2 + . . .+ (

q

p
)i−1

]
+ (

q

p
)im0

Since N01 = 1, which implies m0 = 1.

mi =

{
1−(q/p)i

p−q + ( qp)
i if p ̸= 0.5

2i+ 1 if p = 0.5
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Mean of N0,n

Recall that N0n = N01 +N12 + . . .+Nn−1,n

E[N0n] = m0 +m1 + . . .+mn−1

=

{
n

p−q −
2pq

(p−q)2
[1− ( qp)

n] if p ̸= 0.5

n2 if p = 0.5

When

p > 0.5 E[N0n] ≈ n
p−q −

2pq
(p−q)2

linear in n

p = 0.5 E[N0n] = n2 quadratic in n

p < 0.5 E[N0n] = O( 2pq
(p−q)2

( qp)
n) exponential in n
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Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.

▶ All individuals have the same lifetime

▶ Each individual will produce a random number of offsprings at
the end of its life

Let Xn = size of the n-th generation, n = 0, 1, 2, . . ..
If Xn−1 = k, the k individuals in the (n− 1)-th generation will
independently produce Zn,1, Zn,2, . . . , Zn,k new offsprings, and
Zn,1, Zn,2, . . . , Zn,Xn−1 are i.i.d such that

P (Zn,i = j) = Pj , j ≥ 0.

We suppose that Pj < 1 for all j ≥ 0.

Xn =
∑Xn−1

i=1
Zn,i (2)

{Xn} is a Markov chain with state space = {0, 1, 2, . . .} .
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Mean of a Branching Process

Let µ = E[Zn,i] =
∑∞

j=0 jPj . Since Xn =
∑Xn−1

i=1 Zn,i, we have

E[Xn|Xn−1] = E
[∑Xn−1

i=1
Zn,i

∣∣∣Xn−1

]
= Xn−1E[Zn,i] = Xn−1µ

So
E[Xn] = E[E[Xn|Xn−1]] = E[Xn−1µ] = µE[Xn−1]

If X0 = 1, then

E[Xn] = µE[Xn−1] = µ2E[Xn−2] = . . . = µnE[X0]

▶ If µ < 1 ⇒ E[Xn] → 0 as n → ∞ ⇒ limn→∞ P(Xn ≥ 1) = 0
the branching processes will eventually die out.

▶ What if µ = 1 or µ > 1?
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Variance of a Branching Process
Let σ2 = Var[Zn,i] =

∑∞
j=0(j − µ)2Pj . Var(Xn) may be obtained

using the conditional variance formula

Var(Xn) = E[Var(Xn|Xn−1)] + Var(E[Xn|Xn−1]).

Again from that Xn =
∑Xn−1

i=1 Zn,i, we have

E[Xn|Xn−1] = Xn−1µ, Var(Xn|Xn−1) = Xn−1σ
2

and hence

Var(E[Xn|Xn−1]) = Var(Xn−1µ) = µ2Var(Xn−1)

E[Var(Xn|Xn−1)] = σ2E[Xn−1] = σ2µn−1E[X0].

So

Var(Xn) = σ2µn−1E[X0] + µ2Var(Xn−1)

= σ2E[X0](µ
n−1 + µn + . . .+ µ2n−2) + µ2nVar(X0)

=

{
σ2µn−1

(
1−µn

1−µ

)
E[X0] + µ2nVar(X0) if µ ̸= 1

nσ2E[X0] + µ2nVar(X0) if µ = 1
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