STAT253/317 Lecture 7 Generating Functions

For a non-negative integer-valued random variable T, the generating function of T is the expected value of s^{T} as a function of s

$$
G(s)=\mathrm{E}\left[s^{T}\right]=\sum_{k=0}^{\infty} s^{k} \mathrm{P}(T=k)
$$

in which s^{T} is defined as 0 if $T=\infty$.
Since $0 \leq \mathrm{P}(T=k) \leq 1$, the generating function is always well-defined for $-1 \leq s \leq 1$

Examples of Generating Functions

- If T has a geometric distribution: $P(T=k)=p(1-p)^{k}$, $k=0,1,2, \ldots$, the generating function of T is

$$
G(s)=\sum_{k=0}^{\infty} s^{k} \mathrm{P}(T=k)=\sum_{k=0}^{\infty} s^{k} p(1-p)^{k}=\frac{p}{1-(1-p) s}
$$

- If T has a Binomial distribution $P(T=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$, $k=0,1,2, \ldots, n$, the generating function of T is

$$
\begin{aligned}
G(s)=\sum_{k=0}^{\infty} s^{k} \mathrm{P}(T=k) & =\sum_{k=0}^{\infty} s^{k}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =(p s+(1-p))^{n}
\end{aligned}
$$

Properties of Generating Function

$$
G(s)=\mathrm{E}\left[s^{T}\right]=\sum_{k=0}^{\infty} s^{k} \mathrm{P}(T=k)
$$

- $G(s)$ is a power series converging absolutely for all $-1 \leq s \leq 1$. since $0 \leq \mathrm{P}(T=k) \leq 1$ and $\sum_{k} \mathrm{P}(T=k) \leq 1$.
- $G(1)=\mathrm{P}(T<\infty) \begin{cases}=1 & \text { if } T \text { is finite } \mathrm{w} / \text { prob. } 1 \\ <1 & \text { otherwise }\end{cases}$
- $P(T=k)=\frac{G^{(k)}(0)}{k!}$

Knowing $G(s) \Leftrightarrow$ Knowing $\mathrm{P}(T=k)$ for all $k=0,1,2, \ldots$

More Properties of Generating Functions

$$
G(s)=\mathrm{E}\left[s^{T}\right]=\sum_{k=0}^{\infty} s^{k} \mathrm{P}(T=k)
$$

- $\mathrm{E}[T]=\lim _{s \rightarrow 1^{-}} G^{\prime}(s)$ if it exists because

$$
G^{\prime}(s)=\frac{d}{d s} \mathrm{E}\left[s^{T}\right]=\mathrm{E}\left[T s^{T-1}\right]=\sum_{k=1}^{\infty} s^{k-1} k \mathrm{P}(T=k) .
$$

- $\mathrm{E}[T(T-1)]=\lim _{s \rightarrow 1^{-}} G^{\prime \prime}(s)$ if it exists because

$$
G^{\prime \prime}(s)=\mathrm{E}\left[T(T-1) s^{T-2}\right]=\sum_{k=2}^{\infty} s^{k-2} k(k-1) \mathrm{P}(T=k)
$$

- If T and U are independent non-negative-integer-valued random variables, with generating function $G_{T}(s)$ and $G_{U}(s)$ respectively, then the generating function of $T+U$ is

$$
G_{T+U}(s)=\mathrm{E}\left[s^{T+U}\right]=\mathrm{E}\left[s^{T}\right] \mathrm{E}\left[s^{U}\right]=G_{T}(s) G_{U}(s)
$$

Lecture 7-4

Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.

- All individuals have the same lifetime
- Each individual will produce a random number of offsprings at the end of its life
Let $X_{n}=$ size of the n-th generation, $n=0,1,2, \ldots$.
If $X_{n-1}=k$, the k individuals in the $(n-1)$-th generation will independently produce $Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, k}$ new offsprings, and $Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, X_{n-1}}$ are i.i.d such that

$$
P\left(Z_{n, i}=j\right)=P_{j}, j \geq 0
$$

We suppose that $P_{j}<1$ for all $j \geq 0$.

$$
\begin{equation*}
X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i} \tag{1}
\end{equation*}
$$

$\left\{X_{n}\right\}$ is a Markov chain with state space $=\{0,1,2, \ldots\}$.

Extinction Probability of a Branching Process

Let $\pi_{0}=\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=0 \mid X_{0}=1\right)$
$=\mathrm{P}\left(\right.$ the population will eventually die out $\left.\mid X_{0}=1\right)$

Mean of a Branching Process

Let $\mu=\mathrm{E}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty} j P_{j}$. Since $X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}$, we have

$$
\mathrm{E}\left[X_{n} \mid X_{n-1}\right]=\mathrm{E}\left[\sum_{i=1}^{X_{n-1}} Z_{n, i} \mid X_{n-1}\right]=X_{n-1} \mathrm{E}\left[Z_{n, i}\right]=X_{n-1} \mu
$$

So

$$
\mathrm{E}\left[X_{n}\right]=\mathrm{E}\left[\mathrm{E}\left[X_{n} \mid X_{n-1}\right]\right]=\mathrm{E}\left[X_{n-1} \mu\right]=\mu \mathrm{E}\left[X_{n-1}\right]
$$

If $X_{0}=1$, then

$$
\mathrm{E}\left[X_{n}\right]=\mu \mathrm{E}\left[X_{n-1}\right]=\mu^{2} \mathrm{E}\left[X_{n-2}\right]=\ldots=\mu^{n}
$$

- If $\mu<1 \Rightarrow \mathrm{E}\left[X_{n}\right] \rightarrow 0$ as $n \rightarrow \infty \Rightarrow \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n} \geq 1\right)=0$ the branching processes will eventually die out.
- What if $\mu=1$ or $\mu>1$?

Variance of a Branching Process

Let $\sigma^{2}=\operatorname{Var}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty}(j-\mu)^{2} P_{j} . \operatorname{Var}\left(X_{n}\right)$ may be obtained using the conditional variance formula

$$
\operatorname{Var}\left(X_{n}\right)=\mathrm{E}\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]+\operatorname{Var}\left(\mathrm{E}\left[X_{n} \mid X_{n-1}\right]\right)
$$

Again from that $X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}$, we have

$$
\mathrm{E}\left[X_{n} \mid X_{n-1}\right]=X_{n-1} \mu, \quad \operatorname{Var}\left(X_{n} \mid X_{n-1}\right)=X_{n-1} \sigma^{2}
$$

and hence

$$
\begin{aligned}
& \operatorname{Var}\left(\mathrm{E}\left[X_{n} \mid X_{n-1}\right]\right)=\operatorname{Var}\left(X_{n-1} \mu\right)=\mu^{2} \operatorname{Var}\left(X_{n-1}\right) \\
& \mathrm{E}\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]=\sigma^{2} \mathrm{E}\left[X_{n-1}\right]=\sigma^{2} \mu^{n-1} \mathrm{E}\left[X_{0}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Var}\left(X_{n}\right) & =\sigma^{2} \mu^{n-1} \mathrm{E}\left[X_{0}\right]+\mu^{2} \operatorname{Var}\left(X_{n-1}\right) \\
& =\sigma^{2} \mathrm{E}\left[X_{0}\right]\left(\mu^{n-1}+\mu^{n}+\ldots+\mu^{2 n-2}\right)+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) \\
& = \begin{cases}\sigma^{2} \mu^{n-1}\left(\frac{1-\mu^{n}}{1-\mu}\right) \mathrm{E}\left[X_{0}\right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) & \text { if } \mu \neq 1 \\
n \sigma^{2} \mathrm{E}\left[X_{0}\right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) & \text { if } \mu=1\end{cases}
\end{aligned}
$$

Lecture 7-8

Generating Functions of the Branching Processes

Let $g(s)=\mathrm{E}\left[s^{Z_{n, i}}\right]=\sum_{k=0}^{\infty} P_{k} s^{k}$ be the generating function of $Z_{n, i}$, and $G_{n}(s)$ be the generating function of $X_{n}, n=0,1,2, \ldots$
Then $\left\{G_{n}(s)\right\}$ satisfies the following two iterative equations.
(i) $G_{n+1}(s)=G_{n}(g(s)) \quad$ for $n=0,1,2, \ldots$
(ii) $G_{n+1}(s)=g\left(G_{n}(s)\right)$ if $X_{0}=1$, for $n=0,1,2, \ldots$

Proof of (i).
$\mathrm{E}\left[s^{X_{n+1}} \mid X_{n}\right]=\mathrm{E}\left[s^{\sum_{i=1}^{X_{n}} Z_{n, i}}\right]=\mathrm{E}\left[\prod_{i=1}^{X_{n}} s^{Z_{n, i}}\right]$

$$
\begin{array}{lr}
=\prod_{i=1}^{X_{n}} \mathrm{E}\left[s^{Z_{n, i}}\right] & \text { by indep. of } Z_{n, i} \text { 's } \\
=\prod_{i=1}^{X_{n}} g(s) & \text { as } g(s)=\mathrm{E}\left[s^{Z_{n, i}}\right] \\
=g(s)^{X_{n}} &
\end{array}
$$

From which, we have

$$
G_{n+1}(s)=\mathrm{E}\left[s^{X_{n+1}}\right]=\mathrm{E}\left[\mathrm{E}\left[s^{X_{n+1}} \mid X_{n}\right]\right]=\mathrm{E}\left[g(s)^{X_{n}}\right]=G_{n}(g(s))
$$

since $G_{n}(s)=\mathrm{E}\left[s^{X_{n}}\right]$.
Lecture 7-9

Proof of (ii) $G_{n+1}(s)=g\left(G_{n}(s)\right)$ if $X_{0}=1$

Suppose there are k individuals in the first generation ($X_{1}=k$). Let Y_{i} be the number offspring of the i th individual in the first generation in the $(n+1)$ st generation. Obviously,

$$
X_{n+1}=Y_{1}+\ldots+Y_{k}
$$

Observe Y_{1}, \ldots, Y_{k} 's are indep and each has the same distn. as X_{n} since they are all the size of the nth generation of a single ancestor. Thus, by indep. of Y_{i} 's

$$
\mathrm{E}\left[s^{X_{n+1}} \mid X_{1}=k\right]=\mathrm{E}\left[s^{Y_{1}+\ldots+Y_{k}}\right]=\mathrm{E}\left[\prod_{i=1}^{k} s^{Y_{i}}\right]=\prod_{i=1}^{k} \mathrm{E}\left[s^{Y_{i}}\right]
$$

Since Y_{i} 's have the same dist'n as X_{n} and $G_{n}(s)=\mathrm{E}\left[s^{X_{n}}\right]$, we have

$$
\mathrm{E}\left[s^{X_{n+1}} \mid X_{1}=k\right]=\prod_{i=1}^{k} G_{n}(s)=\left(G_{n}(s)\right)^{k}
$$

Since $X_{0}=1, X_{1}=Z_{1,1}$, and hence $\mathrm{P}\left(X_{1}=k\right)=P_{k}$.
$G_{n+1}(s)=\mathrm{E}\left[s^{X_{n+1}}\right]=\sum_{k=0}^{\infty} \mathrm{E}\left[s^{X_{n+1}} \mid X_{1}=k\right] P_{k}=\sum_{k=0}^{\infty}\left(G_{n}(s)\right)^{k} P_{k}=g\left(G_{n}(s)\right)$,
where the last equality comes from that $g(s)=\sum_{k=0}^{\infty} P_{k} s^{k}$.
Lecture 7-10

Example: calculating distributions of X_{n}

Suppose $X_{0}=1$, and $\left(P_{0}, P_{1}, P_{2}\right)=(1 / 4,1 / 2,1 / 4)$. Find the distribution of X_{2}.
Sol.

$$
g(s)=\frac{1}{4} s^{0}+\frac{1}{2} s^{1}+\frac{1}{4} s^{2}=(1+s)^{2} / 4 .
$$

Since $X_{0}=1, G_{0}(s)=\mathrm{E}\left[s^{X_{0}}\right]=\mathrm{E}\left[s^{1}\right]=s$. From (i) we have

$$
\begin{aligned}
G_{1}(s) & =G_{0}(g(s))=g(s)=(1+s)^{2} / 4 \\
G_{2}(s) & =G_{1}(g(s))=\frac{1}{4}\left(1+\frac{1}{4}(1+s)^{2}\right)^{2}=\frac{1}{64}\left(5+2 s+s^{2}\right)^{2} \\
& =\frac{1}{64}\left(25+20 s+14 s^{2}+4 s^{3}+s^{4}\right)=\sum_{k=0}^{\infty} \mathrm{P}\left(X_{2}=k\right) s^{k}
\end{aligned}
$$

The coefficient of s^{k} in the polynomial of $G_{2}(s)$ is the chance that $X_{2}=k$.

k	0	1	2	3	4
$\mathrm{P}\left(X_{2}=k\right)$	$\frac{25}{64}$	$\frac{20}{64}$	$\frac{14}{64}$	$\frac{4}{64}$	$\frac{1}{64}$

and $\mathrm{P}\left(X_{2}=k\right)=0$ for $k \geq 5$.

Extinction Probability of a Branching Process

$$
\text { Let } \begin{aligned}
\pi_{0} & =\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=0 \mid X_{0}=1\right) \\
& =\mathrm{P}\left(\text { the population will eventually die out } \mid X_{0}=1\right)
\end{aligned}
$$

As $G_{n}(s)=\mathrm{E}\left[s^{X_{n}}\right]=\sum_{k=0}^{\infty} P\left(X_{n}=k\right) s^{k}$, plugging in $s=0$, we get

$$
G_{n}(0)=P\left(X_{n}=0\right)=P(\text { extinct by the } n \text {th generation }) .
$$

Recall that if $X_{0}=1, G_{1}(s)=g(s)$, and $G_{n+1}(s)=g\left(G_{n}(s)\right)$. We can compute $G_{n}(0)$ iteratively as follows

$$
\begin{aligned}
G_{1}(0) & =g(0) \\
G_{n+1}(0) & =g\left(G_{n}(0)\right), \quad n=1,2,3, \ldots
\end{aligned}
$$

Finally, we can get the extinction probability by taking the limit

$$
\pi_{0}=\lim _{n \rightarrow \infty} G_{n}(0)
$$

Extinction Probability of a Branching Process

If $X_{0}=1$, the extinction probability π_{0} is a smallest root of the equation

$$
\begin{equation*}
g(s)=s \tag{2}
\end{equation*}
$$

in the range $0<s \leq 1$, where $g(s)=\sum_{k=0}^{\infty} P_{k} s^{k}$ is the generating function of $Z_{n, i}$.
Proof.

A Branching Process Will Become Extinct If $\mu \leq 1$

Let $\mu=\mathrm{E}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty} j P_{j}$. If $\mu \leq 1$, the extinction probability π_{0} is 1 .
Proof.

Lecture 7-14

Formal Proof

Let $h(s)=g(s)-s$. Since $g(1)=1, g^{\prime}(1)=\mu$,
$h(1)=g(1)-1=0$,
$h^{\prime}(s)=\left(\sum_{j=1}^{\infty} j P_{j} s^{j-1}\right)-1 \leq\left(\sum_{j=1}^{\infty} j P_{j}\right)-1=\mu-1 \quad$ for $0 \leq s<1$

Thus $\mu \leq 1 \Rightarrow h^{\prime}(s) \leq 0$ for $0 \leq s<1$

$$
\begin{aligned}
& \Rightarrow h(s) \text { is non-increasing in }[0,1) \\
& \Rightarrow h(s)>h(1)=0 \text { for } 0 \leq s<1 \\
& \Rightarrow g(s)>s \quad \text { for } 0 \leq s<1
\end{aligned}
$$

\Rightarrow There is no root in $[0,1)$.

Extinction Probability When $\mu>1$

If $\mu>1$, there is a unique root of the equation $g(s)=s$ in the domain $[0,1)$, and that is the extinction probability.
Proof.

Lecture 7-16

Formal Proof

Let $h(s)=g(s)-s$. Observe that

$$
\begin{aligned}
h(0) & =g(0)=P_{0}>0 \\
h^{\prime}(0) & =g^{\prime}(0)-1=P_{1}-1<0
\end{aligned}
$$

Then $\mu>1 \Rightarrow h^{\prime}(1)=\mu-1>0$

$$
\begin{aligned}
& \Rightarrow h(s) \text { is increasing near } 1 \\
& \Rightarrow h(1-\delta)<h(1)=0 \text { for } \delta>0 \text { small enough }
\end{aligned}
$$

Since $h(s)$ is continuous in $[0,1)$, there must be a root to $h(s)=s$. The root is unique since

$$
h^{\prime \prime}(s)=g^{\prime \prime}(s)=\sum_{j=2}^{\infty} j(j-1) P_{j} s^{j-2} \geq 0 \quad \text { for } 0 \leq s<1
$$

$h(s)$ is convex in $[0,1)$.

4.5.3 Random Walk w/ Reflective Boundary at 0

- State Space $=\{0,1,2, \ldots\}$
- $P_{01}=1, P_{i, i+1}=p, P_{i, i-1}=1-p=q$, for $i=1,2,3 \ldots$
- Only one class, irreducible
- For $i<j$, define

$$
\begin{aligned}
N_{i j} & =\min \left\{m>0: X_{m}=j \mid X_{0}=i\right\} \\
& =\text { time to reach state } j \text { starting in state } i
\end{aligned}
$$

- Observe that $N_{0 n}=N_{01}+N_{12}+\ldots+N_{n-1, n}$ By the Markov property, $N_{01}, N_{12}, \ldots, N_{n-1, n}$ are indep.
- Given $X_{0}=i$

$$
N_{i, i+1}= \begin{cases}1 & \text { if } X_{1}=i+1 \tag{3}\\ 1+N_{i-1, i}^{*}+N_{i, i+1}^{*} & \text { if } X_{1}=i-1\end{cases}
$$

where $N_{i-1, i}^{*} \sim N_{i-1, i}, N_{i, i+1}^{*} \sim N_{i, i+1}$, and $N_{i-1, i}^{*}, N_{i, i+1}^{*}$ are indep.

Generating Function of $N_{i, i+1}$

Let $G_{i}(s)$ be the generating function of $N_{i, i+1}$. From (3), and by the independence of $N_{i-1, i}^{*}$ and $N_{i, i+1}^{*}$, we get that

$$
G_{i}(s)=p s+q \mathrm{E}\left[s^{1+N_{i-1, i}^{*}+N_{i, i+1}^{*}}\right]=p s+q s G_{i-1}(s) G_{i}(s)
$$

So

$$
\begin{equation*}
G_{i}(s)=\frac{p s}{1-q s G_{i-1}(s)} \tag{4}
\end{equation*}
$$

Since N_{01} is always 1 , we have $G_{0}(s)=s$. Using the iterative relation (4), we can find

$$
\begin{aligned}
& G_{1}(s)=\frac{p s}{1-q s G_{0}(s)}=\frac{p s}{1-q s^{2}}=p s \sum_{k=0}^{\infty}\left(q s^{2}\right)^{k}=\sum_{k=0}^{\infty} p q^{k} s^{2 k+1} \\
& \text { So } \mathrm{P}\left(N_{12}=n\right)= \begin{cases}p q^{k} & \text { if } n=2 k+1 \text { for } k=0,1,2 \ldots \\
0 & \text { if } n \text { is even }\end{cases} \\
& \text { Lecture } 7-19
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
G_{2}(s) & =\frac{p s}{1-q s G_{1}(s)}=\frac{p s\left(1-q s^{2}\right)}{1-q(1+p) s^{2}} \\
& =\frac{p s}{1-q(1+p) s^{2}}-\frac{p q s^{3}}{1-q(1+p) s^{2}} \\
& =p s \sum_{k=0}^{\infty}\left(q(1+p) s^{2}\right)^{k}-p q s^{3} \sum_{k=0}^{\infty}\left(q(1+p) s^{2}\right)^{k} \\
& =\sum_{k=0}^{\infty} p q^{k}(1+p)^{k} s^{2 k+1}-\sum_{k=0}^{\infty} p q^{k+1}(1+p)^{k} s^{2 k+3} \\
& =p s+\sum_{k=1}^{\infty} p q^{k}\left[(1+p)^{k}-(1+p)^{k-1}\right] s^{2 k+1} \\
& =p s+\sum_{k=1}^{\infty} p^{2} q^{k}(1+p)^{k-1} s^{2 k+1}
\end{aligned}
$$

So

$$
\mathrm{P}\left(N_{23}=n\right)= \begin{cases}p & \text { if } n=1 \\ p^{2} q^{k}(1+p)^{k-1} & \text { if } n=2 k+1 \text { for } k=1,2, \ldots \\ 0 & \text { if } n \text { is even }\end{cases}
$$

Mean of $N_{i, i+1}$

Recall that $G_{i}^{\prime}(1)=E\left(N_{i, i+1}\right)$. Let $m_{i}=E\left(N_{i, i+1}\right)=G_{i}^{\prime}(1)$.

$$
\begin{aligned}
G_{i}^{\prime}(s) & =\frac{p\left(1-q s G_{i-1}(s)\right)+p s\left(q G_{i-1}(s)+q s G_{i-1}^{\prime}(s)\right)}{\left(1-q s G_{i-1}(s)\right)^{2}} \\
& =\frac{p+p q s^{2} G_{i-1}^{\prime}(s)}{\left(1-q s G_{i-1}(s)\right)^{2}}
\end{aligned}
$$

Since $N_{i, i+1}<\infty, G_{i}(1)=1$ for all $i=0,1, \ldots, n-1$. We have

$$
m_{i}=G_{i}^{\prime}(1)=\frac{p+p q G_{i-1}^{\prime}(1)}{(1-q)^{2}}=\frac{1+q G_{i-1}^{\prime}(1)}{p}=\frac{1}{p}+\frac{q}{p} m_{i-1}
$$

We get the same iterative equation as in Lecture 7 .

