For a non-negative integer-valued random variable T, the generating function of T is the expected value of  $s^T$  as a function of s

$$G(s) = \mathsf{E}[s^T] = \sum_{k=0}^{\infty} s^k \mathsf{P}(T=k),$$

in which  $s^T$  is defined as 0 if  $T=\infty.$  Since  $0\leq \mathrm{P}(T=k)\leq 1,$  the generating function is always well-defined for  $-1\leq s\leq 1$ 

#### Examples of Generating Functions

If T has a geometric distribution: P(T = k) = p(1 − p)<sup>k</sup>, k = 0, 1, 2, ..., the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^k \mathbf{P}(T=k) = \sum_{k=0}^{\infty} s^k p (1-p)^k = \frac{p}{1-(1-p)s}$$

▶ If T has a Binomial distribution  $P(T = k) = \binom{n}{k} p^k (1-p)^{n-k}$ , k = 0, 1, 2, ..., n, the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^k \mathbf{P}(T=k) = \sum_{k=0}^{\infty} s^k \binom{n}{k} p^k (1-p)^{n-k}$$
$$= (ps + (1-p))^n$$

#### Properties of Generating Function

$$G(s) = \mathsf{E}[s^T] = \sum_{k=0}^{\infty} s^k \mathsf{P}(T=k)$$

▶ G(s) is a power series converging absolutely for all  $-1 \le s \le 1$ . since  $0 \le P(T = k) \le 1$  and  $\sum_k P(T = k) \le 1$ .

• 
$$G(1) = P(T < \infty) \begin{cases} = 1 & \text{if } T \text{ is finite w/ prob. 1} \\ < 1 & \text{otherwise} \end{cases}$$

(1)

► 
$$P(T = k) = \frac{G^{(k)}(0)}{k!}$$
  
Knowing  $G(s) \Leftrightarrow$  Knowing  $P(T = k)$  for all  $k = 0, 1, 2, ...$ 

### More Properties of Generating Functions

$$G(s) = \mathsf{E}[s^T] = \sum_{k=0}^{\infty} s^k \mathsf{P}(T=k)$$

▶  $E[T] = \lim_{s \to 1^-} G'(s)$  if it exists because

$$G'(s) = \frac{d}{ds}\mathsf{E}[s^T] = \mathsf{E}[Ts^{T-1}] = \sum_{k=1}^{\infty} s^{k-1}k\mathsf{P}(T=k).$$

► 
$$\mathsf{E}[T(T-1)] = \lim_{s \to 1^{-}} G''(s)$$
 if it exists because  
 $G''(s) = \mathsf{E}[T(T-1)s^{T-2}] = \sum_{k=2}^{\infty} s^{k-2}k(k-1)\mathsf{P}(T=k)$ 

▶ If T and U are **independent** non-negative-integer-valued random variables, with generating function  $G_T(s)$  and  $G_U(s)$  respectively, then the generating function of T + U is

$$G_{T+U}(s) = \mathsf{E}[s^{T+U}] = \mathsf{E}[s^T]\mathsf{E}[s^U] = G_T(s)G_U(s)$$

## Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.

- All individuals have the same lifetime
- Each individual will produce a random number of offsprings at the end of its life

Let  $X_n$  = size of the *n*-th generation, n = 0, 1, 2, ...If  $X_{n-1} = k$ , the *k* individuals in the (n - 1)-th generation will independently produce  $Z_{n,1}, Z_{n,2}, ..., Z_{n,k}$  new offsprings, and

 $Z_{n,1}$ ,  $Z_{n,2}$ , ...,  $Z_{n,X_{n-1}}$  are i.i.d such that

$$P(Z_{n,i}=j)=P_j, \ j\geq 0.$$

We suppose that  $P_j < 1$  for all  $j \ge 0$ .

$$X_n = \sum_{i=1}^{X_{n-1}} Z_{n,i}$$
 (1)

 $\{X_n\}$  is a Markov chain with state space =  $\{0,1,2,\ldots\}$  .

## Extinction Probability of a Branching Process

Let 
$$\pi_0 = \lim_{n \to \infty} P(X_n = 0 | X_0 = 1)$$
  
= P(the population will eventually die out $|X_0 = 1)$ 

#### Mean of a Branching Process

Let 
$$\mu = \mathsf{E}[Z_{n,i}] = \sum_{j=0}^{\infty} jP_j$$
. Since  $X_n = \sum_{i=1}^{X_{n-1}} Z_{n,i}$ , we have  
 $\mathsf{E}[X_n | X_{n-1}] = \mathsf{E}\left[\sum_{i=1}^{X_{n-1}} Z_{n,i} \middle| X_{n-1}\right] = X_{n-1}\mathsf{E}[Z_{n,i}] = X_{n-1}\mu$ 

So

$$\mathsf{E}[X_n] = \mathsf{E}[\mathsf{E}[X_n|X_{n-1}]] = \mathsf{E}[X_{n-1}\mu] = \mu \mathsf{E}[X_{n-1}]$$

If  $X_0 = 1$ , then

$$\mathsf{E}[X_n] = \mu \mathsf{E}[X_{n-1}] = \mu^2 \mathsf{E}[X_{n-2}] = \dots = \mu^n$$

▶ If  $\mu < 1 \Rightarrow \mathsf{E}[X_n] \to 0$  as  $n \to \infty \Rightarrow \lim_{n \to \infty} \mathsf{P}(X_n \ge 1) = 0$  the branching processes will eventually die out.

• What if 
$$\mu = 1$$
 or  $\mu > 1$ ?

#### Variance of a Branching Process

Let  $\sigma^2 = \text{Var}[Z_{n,i}] = \sum_{j=0}^{\infty} (j - \mu)^2 P_j$ . Var $(X_n)$  may be obtained using the conditional variance formula

$$\mathsf{Var}(X_n) = \mathsf{E}[\mathsf{Var}(X_n|X_{n-1})] + \mathsf{Var}(\mathsf{E}[X_n|X_{n-1}]).$$

Again from that  $X_n = \sum_{i=1}^{X_{n-1}} Z_{n,i}$ , we have

$$\mathsf{E}[X_n|X_{n-1}] = X_{n-1}\mu, \quad \mathsf{Var}(X_n|X_{n-1}) = X_{n-1}\sigma^2$$

and hence

$$Var(E[X_n|X_{n-1}]) = Var(X_{n-1}\mu) = \mu^2 Var(X_{n-1})$$
$$E[Var(X_n|X_{n-1})] = \sigma^2 E[X_{n-1}] = \sigma^2 \mu^{n-1} E[X_0].$$

So

$$\begin{aligned} \mathsf{Var}(X_n) &= \sigma^2 \mu^{n-1} \mathsf{E}[X_0] + \mu^2 \mathsf{Var}(X_{n-1}) \\ &= \sigma^2 \mathsf{E}[X_0](\mu^{n-1} + \mu^n + \ldots + \mu^{2n-2}) + \mu^{2n} \mathsf{Var}(X_0) \\ &= \begin{cases} \sigma^2 \mu^{n-1} \left(\frac{1-\mu^n}{1-\mu}\right) \mathsf{E}[X_0] + \mu^{2n} \mathsf{Var}(X_0) & \text{if } \mu \neq 1 \\ n\sigma^2 \mathsf{E}[X_0] + \mu^{2n} \mathsf{Var}(X_0) & \text{if } \mu = 1 \end{cases} \\ & \text{Lecture 7 - 8} \end{aligned}$$

#### Generating Functions of the Branching Processes

Let  $g(s) = \mathsf{E}[s^{Z_{n,i}}] = \sum_{k=0}^{\infty} P_k s^k$  be the generating function of  $Z_{n,i}$ , and  $G_n(s)$  be the generating function of  $X_n$ ,  $n = 0, 1, 2, \ldots$ . Then  $\{G_n(s)\}$  satisfies the following two iterative equations.

$$\begin{array}{ll} \text{(i)} \ G_{n+1}(s) = G_n(g(s)) & \text{for } n = 0, 1, 2, \dots \\ \text{(ii)} \ G_{n+1}(s) = g(G_n(s)) & \text{if } X_0 = 1, \text{ for } n = 0, 1, 2, \dots \\ \\ Proof \ of \ (i). \\ \mathsf{E}[s^{X_{n+1}}|X_n] = \mathsf{E}\left[s^{\sum_{i=1}^{X_n} Z_{n,i}}\right] = \mathsf{E}\left[\prod_{i=1}^{X_n} s^{Z_{n,i}}\right] \\ & = \prod_{i=1}^{X_n} \mathsf{E}[s^{Z_{n,i}}] & \text{by indep. of } Z_{n,i}\text{'s} \\ & = \prod_{i=1}^{X_n} g(s) & \text{as } g(s) = \mathsf{E}[s^{Z_{n,i}}] \\ & = g(s)^{X_n} \end{array}$$

From which, we have

$$\begin{split} G_{n+1}(s) &= \mathsf{E}[s^{X_{n+1}}] = \mathsf{E}[\mathsf{E}[s^{X_{n+1}}|X_n]] = \mathsf{E}[g(s)^{X_n}] = G_n(g(s)) \\ \text{since } G_n(s) &= \mathsf{E}[s^{X_n}]. \\ \text{Lecture 7 - 9} \end{split}$$

# Proof of (ii) $G_{n+1}(s) = g(G_n(s))$ if $X_0 = 1$

Suppose there are k individuals in the first generation  $(X_1 = k)$ . Let  $Y_i$  be the number offspring of the *i*th individual in the first generation in the (n + 1)st generation. Obviously,

$$X_{n+1} = Y_1 + \ldots + Y_k.$$

Observe  $Y_1, \ldots, Y_k$ 's are indep and each has the same distn. as  $X_n$  since they are all the size of the *n*th generation of a single ancestor. Thus, by indep. of  $Y_i$ 's

$$\mathsf{E}[s^{X_{n+1}}|X_1 = k] = \mathsf{E}\left[s^{Y_1 + \ldots + Y_k}\right] = \mathsf{E}\left[\prod_{i=1}^k s^{Y_i}\right] = \prod_{i=1}^k \mathsf{E}[s^{Y_i}]$$

Since  $Y_i{'}{\rm s}$  have the same dist'n as  $X_n$  and  $G_n(s)={\rm E}[s^{X_n}],$  we have

$$\mathsf{E}[s^{X_{n+1}}|X_1 = k] = \prod_{i=1}^k G_n(s) = (G_n(s))^k$$

Since  $X_0 = 1$ ,  $X_1 = Z_{1,1}$ , and hence  $P(X_1 = k) = P_k$ .

$$G_{n+1}(s) = \mathsf{E}[s^{X_{n+1}}] = \sum_{k=0}^{\infty} \mathsf{E}[s^{X_{n+1}} | X_1 = k] P_k = \sum_{k=0}^{\infty} (G_n(s))^k P_k = g(G_n(s))^k P_k = g(G_n(s))^$$

where the last equality comes from that  $g(s) = \sum_{k=0}^{\infty} P_k s^k$ . Lecture 7 - 10

#### Example: calculating distributions of $X_n$

Suppose  $X_0 = 1$ , and  $(P_0, P_1, P_2) = (1/4, 1/2, 1/4)$ . Find the distribution of  $X_2$ .

Sol.

$$g(s) = \frac{1}{4}s^0 + \frac{1}{2}s^1 + \frac{1}{4}s^2 = (1+s)^2/4.$$

Since  $X_0 = 1$ ,  $G_0(s) = \mathsf{E}[s^{X_0}] = \mathsf{E}[s^1] = s$ . From (i) we have

$$G_1(s) = G_0(g(s)) = g(s) = (1+s)^2/4$$
  

$$G_2(s) = G_1(g(s)) = \frac{1}{4}(1+\frac{1}{4}(1+s)^2)^2 = \frac{1}{64}(5+2s+s^2)^2$$
  

$$= \frac{1}{64}(25+20s+14s^2+4s^3+s^4) = \sum_{k=0}^{\infty} P(X_2=k)s^k$$

### Extinction Probability of a Branching Process

Let 
$$\pi_0 = \lim_{n \to \infty} P(X_n = 0 | X_0 = 1)$$
  
= P(the population will eventually die out $|X_0 = 1$ )  
As  $G_n(s) = E[s^{X_n}] = \sum_{k=0}^{\infty} P(X_n = k)s^k$ , plugging in  $s = 0$ , we get

$$G_n(0) = P(X_n = 0) = P(\text{extinct by the } n\text{th generation}).$$

Recall that if  $X_0 = 1$ ,  $G_1(s) = g(s)$ , and  $G_{n+1}(s) = g(G_n(s))$ . We can compute  $G_n(0)$  iteratively as follows

$$G_1(0) = g(0)$$
  
 $G_{n+1}(0) = g(G_n(0)), \quad n = 1, 2, 3, \dots$ 

Finally, we can get the extinction probability by taking the limit

$$\pi_0 = \lim_{n \to \infty} G_n(0).$$

## Extinction Probability of a Branching Process

If  $X_0 = 1$ , the extinction probability  $\pi_0$  is a **smallest root** of the equation

$$g(s) = s \tag{2}$$

in the range  $0 < s \le 1$ , where  $g(s) = \sum_{k=0}^{\infty} P_k s^k$  is the generating function of  $Z_{n,i}$ . *Proof.* 



A Branching Process Will Become Extinct If  $\mu \leq 1$ Let  $\mu = \mathsf{E}[Z_{n,i}] = \sum_{j=0}^{\infty} jP_j$ . If  $\mu \leq 1$ , the extinction probability  $\pi_0$  is 1. *Proof.* 



## Formal Proof

Let 
$$h(s) = g(s) - s$$
. Since  $g(1) = 1$ ,  $g'(1) = \mu$ ,  
 $h(1) = g(1) - 1 = 0$ ,  
 $h'(s) = \left(\sum_{j=1}^{\infty} jP_j s^{j-1}\right) - 1 \le \left(\sum_{j=1}^{\infty} jP_j\right) - 1 = \mu - 1$  for  $0 \le s < 1$ 

$$\begin{aligned} \text{Thus } \mu &\leq 1 \Rightarrow h'(s) \leq 0 \text{ for } 0 \leq s < 1 \\ &\Rightarrow h(s) \text{ is non-increasing in } [0,1) \\ &\Rightarrow h(s) > h(1) = 0 \text{ for } 0 \leq s < 1 \\ &\Rightarrow g(s) > s & \text{for } 0 \leq s < 1 \\ &\Rightarrow \text{ There is no root in } [0,1). \end{aligned}$$

## Extinction Probability When $\mu > 1$

If  $\mu > 1$ , there is a unique root of the equation g(s) = s in the domain [0, 1), and that is the extinction probability. Proof.



## Formal Proof

Let 
$$h(s) = g(s) - s$$
. Observe that  
 $h(0) = g(0) = P_0 > 0$   
 $h'(0) = g'(0) - 1 = P_1 - 1 < 0$   
Then  $\mu > 1 \Rightarrow h'(1) = \mu - 1 > 0$   
 $\Rightarrow h(s)$  is increasing near 1  
 $\Rightarrow h(1 - \delta) < h(1) = 0$  for  $\delta > 0$  small enough

Since h(s) is continuous in [0,1), there must be a root to h(s) = s. The root is unique since

$$h''(s) = g''(s) = \sum_{j=2}^{\infty} j(j-1)P_j s^{j-2} \ge 0 \quad \text{for } 0 \le s < 1$$

h(s) is convex in [0,1).

4.5.3 Random Walk w/ Reflective Boundary at 0

• State Space = 
$$\{0, 1, 2, \ldots\}$$

▶  $P_{01} = 1, P_{i,i+1} = p, P_{i,i-1} = 1 - p = q$ , for  $i = 1, 2, 3 \dots$ 

- Only one class, irreducible
- ▶ For i < j, define</p>

$$N_{ij} = \min\{m > 0 : X_m = j | X_0 = i\}$$
  
= time to reach state j starting in state i

▶ Observe that N<sub>0n</sub> = N<sub>01</sub> + N<sub>12</sub> + ... + N<sub>n-1,n</sub> By the Markov property, N<sub>01</sub>, N<sub>12</sub>,..., N<sub>n-1,n</sub> are indep.
▶ Given X<sub>0</sub> = i

$$N_{i,i+1} = \begin{cases} 1 & \text{if } X_1 = i+1\\ 1 + N_{i-1,i}^* + N_{i,i+1}^* & \text{if } X_1 = i-1 \end{cases}$$
(3)

where  $N^*_{i-1,i} \sim N_{i-1,i}$ ,  $N^*_{i,i+1} \sim N_{i,i+1}$ , and  $N^*_{i-1,i}$ ,  $N^*_{i,i+1}$  are indep.

## Generating Function of $N_{i,i+1}$

Let  $G_i(s)$  be the generating function of  $N_{i,i+1}$ . From (3), and by the independence of  $N^*_{i-1,i}$  and  $N^*_{i,i+1}$ , we get that

$$G_i(s) = ps + q\mathsf{E}[s^{1+N^*_{i-1,i}+N^*_{i,i+1}}] = ps + qsG_{i-1}(s)G_i(s)$$

So

$$G_i(s) = \frac{ps}{1 - qsG_{i-1}(s)} \tag{4}$$

 $\sim$ 

 $\sim$ 

Since  $N_{01}$  is always 1, we have  $G_0(s) = s$ . Using the iterative relation (4), we can find

$$G_1(s) = \frac{ps}{1 - qsG_0(s)} = \frac{ps}{1 - qs^2} = ps \sum_{k=0}^{\infty} (qs^2)^k = \sum_{k=0}^{\infty} pq^k s^{2k+1}$$
  
So  $P(N_{12} = n) = \begin{cases} pq^k & \text{if } n = 2k+1 \text{ for } k = 0, 1, 2 \dots \\ 0 & \text{if } n \text{ is even} \end{cases}$ 

Similarly,

$$G_{2}(s) = \frac{ps}{1 - qsG_{1}(s)} = \frac{ps(1 - qs^{2})}{1 - q(1 + p)s^{2}}$$
  

$$= \frac{ps}{1 - q(1 + p)s^{2}} - \frac{pqs^{3}}{1 - q(1 + p)s^{2}}$$
  

$$= ps\sum_{k=0}^{\infty} (q(1 + p)s^{2})^{k} - pqs^{3}\sum_{k=0}^{\infty} (q(1 + p)s^{2})^{k}$$
  

$$= \sum_{k=0}^{\infty} pq^{k}(1 + p)^{k}s^{2k+1} - \sum_{k=0}^{\infty} pq^{k+1}(1 + p)^{k}s^{2k+3}$$
  

$$= ps + \sum_{k=1}^{\infty} pq^{k}[(1 + p)^{k} - (1 + p)^{k-1}]s^{2k+1}$$
  

$$= ps + \sum_{k=1}^{\infty} p^{2}q^{k}(1 + p)^{k-1}s^{2k+1}$$

So

$$\mathbf{P}(N_{23}=n) = \begin{cases} p & \text{if } n=1\\ p^2q^k(1\!+\!p)^{k-1} & \text{if } n=2k+1 \text{ for } k=1,2,\dots\\ 0 & \text{if } n \text{ is even} \end{cases}$$

## Mean of $N_{i,i+1}$

Recall that  $G'_i(1) = E(N_{i,i+1})$ . Let  $m_i = E(N_{i,i+1}) = G'_i(1)$ .  $G'_i(s) = \frac{p(1 - qsG_{i-1}(s)) + ps(qG_{i-1}(s) + qsG'_{i-1}(s))}{(1 - qsG_{i-1}(s))^2}$   $p + pqs^2G'_{i-1}(s)$ 

$$=\frac{p+pqs\,G_{i-1}(s)}{(1-qsG_{i-1}(s))^2}$$

Since  $N_{i,i+1} < \infty$ ,  $G_i(1) = 1$  for all  $i = 0, 1, \ldots, n-1$ . We have

$$m_i = G'_i(1) = \frac{p + pqG'_{i-1}(1)}{(1-q)^2} = \frac{1 + qG'_{i-1}(1)}{p} = \frac{1}{p} + \frac{q}{p}m_{i-1}$$

We get the same iterative equation as in Lecture 7.