STAT253/317 Lecture 7 Generating Functions

For a non-negative integer-valued random variable T, the
generating function of T is the expected value of s” as a function

of s
G(s) = E[sT] = Z:"ZO s*P(T = k),

in which sT'is defined as 0 if T' = cc.
Since 0 < P(T = k) < 1, the generating function is always
well-defined for —1 < s <1
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Examples of Generating Functions

» If T has a geometric distribution: P(T = k) = p(1 — p)¥,
k=0,1,2,..., the generating function of T is

Gls) = Do P =0 =307 s plp) =

> If T' has a Binomial distribution P(T = k) = (})p*(1—p)"7*,
k=0,1,2,...,n, the generating function of T is

6 = X P =1 = T ()t
=(ps+(1—p)"
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Properties of Generating Function

G(s) =E[sT] = i s*P(T = k)

» ((s) is a power series converging absolutely for all —1<s<1.
since0<P(T'=k)<land )  P(T=k)<1.

=1 if T is finite w/ prob. 1

> G(1) =P(T < ) ,
<1 otherwise
G™®)(0)
k!
Knowing G(s) < Knowing P(T = k) for all k =0,1,2,...

> P(T=k)=
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More Properties of Generating Functions
G(s) =E[s"] =) s"P(T = k)
k=0

» E[T] =lim,_,;- G'(s) if it exists because

d o
ey — Ty _ T-17 _ k-1 _
G'(s) = E[s"] =E[Ts" "] = " "hP(T = k).
k=1
> E[T(T —1)] = lim,_,;- G"(s) if it exists because

[e.9]

G"(s) =E[T(T-1)s" 2] =>" " s 2k(k — )P(T = k)

k=2

» If T and U are independent non-negative-integer-valued
random variables, with generating function Gr(s) and Gy (s)
respectively, then the generating function of T'4 U is

Griv(s) = E[s"HY] = E[s"E[s"] = Gr(s)Gu(s)
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Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.
» All individuals have the same lifetime

» Each individual will produce a random number of offsprings at
the end of its life

Let X,, = size of the n-th generation, n =0,1,2,....

If X,,—1 =k, the k individuals in the (n — 1)-th generation will
independently produce Z,, 1, Z,, 2, ..., Z, 1 new offsprings, and
Zn, Zn2, -y Znx,_, are i.i.d such that

P(Zn,;=j)=P;, j>0.

We suppose that P; < 1 for all j > 0.

Xn—
Xp=3 """ Zy; (1)

i=1
{X,} is a Markov chain with state space = {0,1,2,...} .
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Extinction Probability of a Branching Process

Let mp = lim P(Xn = 0|X0 = 1)

n—oo

= P(the population will eventually die out| Xy = 1)
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Mean of a Branching Process

Let 4 = E[Z,;] = 372y P;. Since X, = Zf(:”l’l Zp i, we have

anl
Zn,i

=1

E[X,|X, 1] =E [Z

So

Xn—1:| = Xn—lE[Zn,i] = Xn—l,uf

E[Xn] = E[E[Xn|Xn1]] = E[Xn—1p] = pE[X;—1]
If Xo =1, then

E[X,] = pE[Xp1] = p?E[Xpo] = ... = p"

> If p<1=E[X,]—>0asn—oo=lim, ,oc P(X, >1)=0
the branching processes will eventually die out.

» What if y=1o0r p> 17
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Variance of a Branching Process
Let 0% = Var[Z,,;] = >-72,(j — n)*P;. Var(X,,) may be obtained
using the conditional variance formula

Var(X,,) = E[Var(X,,| X,,—1)] + Var(E[X,,| Xp—1]).
Again from that X,, = Zfi"{l Zn,i, we have
E[Xn| X0 1] = Xpo1p, Var(Xn|Xn 1) = Xn_10°
and hence
Var(E[X,|X,,_1]) = Var(X,_1p) = p*Var(X,_1)
E[Var(X,| X,_1)] = 0%E[X,,_1] = o?u™ E[X].
So
Var(X,,) = o?u"  E[X0] + p?Var(X,,_1)
= 2E[Xo] (" " 4 P 2) 4 P MVar(Xo)
{JQ,u”_l (%) E[Xo] + p2"Var(Xo) if u# 1
no?E[Xo] + p?"Var(Xy) if =1
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Generating Functions of the Branching Processes
Let g(s) = E[sZni] = "3, Pxs" be the generating function of
Zni, and G (s) be the generating function of X,,, n=0,1,2,....
Then {G,(s)} satisfies the following two iterative equations.
(I) Gn+1(8) :Gn(g(s)) forn:071727”'
(i) Gny1(s) = g(Gn(s)) if Xog=1,forn=0,1,2,...
Proof of (i).

Bl Xa] = B [ 2| < €[ TT, 5™

X
= | | 1E[3Z”vi] by indep. of Z,;'s
1=

- Hji”l 9(s) as g(s) = E[s7m1]
=g(s)™
From which, we have
G (s) = E[s™ 1] = E[E[s" | X)) = Elg(s)*"] = Gnlg(s))

since G, (s) = E[s%n].
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Proof of (i) Ghi(s) = g(Ga(s)) if Xo = 1

Suppose there are k individuals in the first generation (X; = k). Let Y;
be the number offspring of the ith individual in the first generation in the
(n + 1)st generation. Obviously,

Xpi1 =Y1 4 ...+ Y5

Observe Y7,...,Y;'s are indep and each has the same distn. as X, since
they are all the size of the nth generation of a single ancestor. Thus, by
indep. of Y;'s

E[s*+|X; = k] = E[sy1+"‘+y’“] =E {H?_l syl} = Hllc_l E[sY7]

Since Y;'s have the same dist'n as X,, and G,,(s) = E[s%"], we have
k
Xn _ _ _ k
Bl X, = K =[] Guls) = (Gu(s)
Since Xo =1, X1 = Z11, and hence P(X; = k) = P;.

Gy1(s) = E[s¥+1] = Y E[s™ [ X1 = K]Py = ) (Gu(s)* Po = 9(Gal(9)),
k=0 k=0

where the last equality comes from that g(s) = >_p2, Pes”.
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Example: calculating distributions of X,
Suppose Xy =1, and (Fo, P1, P») = (1/4,1/2,1/4). Find the
distribution of X5.

Sol. o1, 1, )
g(s)zzs —1—53 +ZS =(1+s)7/4.
Since Xg = 1, Go(s) = E[s*°] = E[s!] = 5. From (i) we have
Gi(s) = Golg(s)) = g(s) = (1 + 5)*/4
Gals) = Gi(g(s)) = 71+ 101+ 97 = =5+ 26+ 87)?

o0
64(25+208+145 +45° + 51 = P(Xy =k)s"

k
The coefficient of s* in the polynomial of Ga(s) is the chance that

X2 =F. oo o1 2

3
PX=k) | & B H & &
and P(Xo =k) =0 for k > 5.
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Extinction Probability of a Branching Process

Let mg = li_>m P(X,=0|Xo=1)
n—0oo
= P(the population will eventually die out| Xy = 1)

As G, (s) = E[s%"] = 320 ) P(X,, = k)s*, plugging in s =0, we
get

G (0) = P(X,, = 0) = P(extinct by the nth generation).

Recall that if Xo =1, Gi(s) = g(s), and Gp41(s) = g(Gn(s)).
We can compute G,,(0) iteratively as follows

G1(0) = ¢(0)
Gri1(0) = g(Gn(0)), n=1,2,3,...

Finally, we can get the extinction probability by taking the limit
mo = lim G,(0).
n—oo

Lecture 7 - 12



Extinction Probability of a Branching Process

If Xo =1, the extinction probability 7y is a smallest root of the
equation

g(s) =s (2)

in the range 0 < s < 1, where g(s) = >_72, Pxs” is the generating
function of Z,, ;.
Proof.

9(Gu(0))=Gu(0) | omei .

Qe —

0(0)=6:(0) =) ii

(0) (G)s(O) G (0) 1
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A Branching Process Will Become Extinct If 1 <1
Let = E[Z,;] = 37720 P;. If 1 <1, the extinction probability
0 is 1.
Proof.

Gu(0) =L b a(x)

3 S —"

9(0) =G,(0)

I e

3(0)

vG)
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Formal Proof

Let h(s) = g(s) —s. Since g(1) =1, ¢'(1) = p,
ML) = g(1) 1 =0,

h’(s)z(ZjJDjsﬂ‘—l)—lg (ijj)—1:u—1 for0<s<1
j=1

j=1

Thus,u§1:>h’(s)<0for0<s<1

h(s) is non-increasing in [0,1)

= h(s)>h(l)=0for0 <s <1

:>g()>s for0<s<1
= There is no root in [0,1).
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Extinction Probability When p > 1

If v > 1, there is a unique root of the equation g(s) = s in the
domain [0, 1), and that is the extinction probability.

Proof.

a(x
i .
9(Gu(0)) = Gu(0) | oemmoeme . .
O R |
9(0) =G,(0) | ; E E E
Gl:(o)Gzi(gs:(o) Gml(o) 1
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Formal Proof

Let h(s) = g(s) — s. Observe that

h(0) = g(0) =Py >0
h0)=¢0)—1=P —-1<0
Then u>1=h(1)=p—-1>0
= h(s) is increasing near 1
= h(1 —9) < h(1) =0 for 6 > 0 small enough

Since h(s) is continuous in [0, 1), there must be a root to
h(s) = s. The root is unique since

h'(s) =g"(s) = Z:;j(j ~1)P;js?2>0 for0<s<1

h(s) is convex in [0,1).
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4.5.3 Random Walk w/ Reflective Boundary at 0
State Space = {0,1,2,...}

Only one class, irreducible

vvyyvyy

For i < j, define

Nij :min{m >0: X, :j’Xo :Z}

= time to reach state j starting in state ¢

» Observe that Ny, = Not + Nig+ ...+ Np—1

By the Markov property, No1, Ni2,..., Ny—1,, are indep.

> Given Xy =1
1 if Xy =¢+1
Nijiy1 = . . . .
T+ N2+ NSy X =i—1

where N ; ~ Ni—13, Ny ~ Niiy1, and Ny 5,
are indep.
Lecture 7 - 18

Phn=1PFPir1=p, Pijo1=1—-p=gq, fori=1,2,3...

(3)



Generating Function of N;

Let G;(s) be the generating function of N; ;1. From (3), and by
the independence of N/, ; and N/, ,, we get that

Gi(s) = ps + qE[s" N1 TNTin] = ps + qsGi_1(s)Gi(s)

So

ps
) = 6w “

Since Ny is always 1, we have G(s) = s. Using the iterative
relation (4), we can find

o0

_ bs _ k $2k+1
Gl(s) - 17(]SG0(8) 1*(]52 - kz Z:pq

pg® ifn=2k+1fork=0,1,2...

0 if n is even

So P(N12 = n) = {
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Similarly,

S s(1 — gs?
Giols) = - p __ps( Q)2
—qsGi(s)  1—q(1+p)s
_ ps B pgs’
1—¢q(1+p)s?2 1—¢q(1+p)s?
[o¢] o0
=psy (a1 +p)s*) —pes’ Y~ (a1 +p)s?)
_ o k k 2k+1 o k+1 k 2k+3
=> v +p) s Do Pd (L)t
= ps + Z (1 +p) (1 +p)k71]52k+1
_ps+zk 1 1+p)k—1$2k‘+1
So
P ifn=1
P(Nog =n) =< p?d*(1+p)F~1 ifn=2k+1fork=1,2,...
0 if n is even
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Mean of Nm‘+1

Recall that G;(l) = E(Ni,i—l-l)- Let m; = E(Ni,i—l-l) = G;(l)
p(1 — ¢sGi—1(s)) + ps(gGi-1(s) + ¢sGi_;(s))
(1 —gqsGi-1(s))?
~ p+pgs*Gi_y(s)
(1 —qsGi_1(s))?

Since Nj i1 < oo, Gi(1) =1foralli=0,1,...,n—1. We have

a(s) =

G (1) 144G (1
mi = (1) = TP Z_;( ) _14eGia ) 1 g
(1-4q) p pop

We get the same iterative equation as in Lecture 7.
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