STAT253/317 Lecture 8

Cong Ma

Chapter 5 Poisson Processes

Lecture 8-1

5.2 Exponential Distribution

Let X follow exponential distribution with rate $\lambda: X \sim \operatorname{Exp}(\lambda)$.

- Density: $f_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$
- CDF: $F_{X}(x)=1-e^{-\lambda x}$ for $x \geq 0$
- $\mathbb{E}(X)=1 / \lambda, \operatorname{Var}(X)=1 / \lambda^{2}$
- If X_{1}, \ldots, X_{n} are i.i.d $\operatorname{Exp}(\lambda)$, then
$S_{n}=X_{1}+\cdots+X_{n} \sim \operatorname{Gamma}(n, \lambda)$, with density

$$
f_{S_{n}}(x)=\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
$$

The Exponential Distribution is Memoryless (\star ****)

Lemma: for all $s, t \geq 0$

$$
\mathrm{P}(X>t+s \mid X>t)=\mathrm{P}(X>s)
$$

Proof.

$$
\begin{aligned}
\mathrm{P}(X>t+s \mid X>t) & =\frac{\mathrm{P}(X>t+s \text { and } X>t)}{\mathrm{P}(X>t)} \\
& =\frac{\mathrm{P}(X>t+s)}{\mathrm{P}(X>t)} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}=e^{-\lambda s}=\mathrm{P}(X>s)
\end{aligned}
$$

Implication. If the lifetime of batteries has an Exponential distribution, then a used battery is as good as a new one, as long as it's not dead!

Another Important Property of the Exponential

If X_{1}, \ldots, X_{n} are independent, $X_{i}, \sim \operatorname{Exp}\left(\lambda_{i}\right)$ for $i=1, \ldots, n$ then
(i) $\min \left(X_{1}, \ldots, X_{n}\right) \sim \operatorname{Exp}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$, and
(ii) $\mathrm{P}\left(X_{j}=\min \left(X_{1}, \ldots, X_{n}\right)\right)=\frac{\lambda_{j}}{\lambda_{1}+\cdots+\lambda_{n}}$

Proof of (i)

$$
\begin{aligned}
& \mathrm{P}\left(\min \left(X_{1}, \ldots, X_{n}\right)>t\right)=\mathrm{P}\left(X_{1}>t, \ldots, X_{n}>t\right) \\
= & \mathrm{P}\left(X_{1}>t\right) \ldots \mathrm{P}\left(X_{n}>t\right)=e^{-\lambda_{1} t} \cdots e^{-\lambda_{n} t} \\
= & e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right) t}
\end{aligned}
$$

Proof of (ii)

$$
\begin{aligned}
& \mathrm{P}\left(X_{j}=\min \left(X_{1}, \ldots, X_{n}\right)\right) \\
= & \mathrm{P}\left(X_{j}<X_{i} \text { for } i=1, \ldots, n, i \neq j\right) \\
= & \int_{0}^{\infty} \mathrm{P}\left(X_{j}<X_{i} \text { for } i \neq j \mid X_{j}=t\right) \lambda_{j} e^{-\lambda_{j} t} d t \\
= & \int_{0}^{\infty} \mathrm{P}\left(t<X_{i} \text { for } i \neq j\right) \lambda_{j} e^{-\lambda_{j} t} d t \\
= & \int_{0}^{\infty} \lambda_{j} e^{-\lambda_{j} t} \prod_{i \neq j} \mathrm{P}\left(X_{i}>t\right) d t \\
= & \int_{0}^{\infty} \lambda_{j} e^{-\lambda_{j} t} \prod_{i \neq j} e^{-\lambda_{i} t} d t \\
= & \lambda_{j} \int_{0}^{\infty} e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right) t} d t \\
= & \frac{\lambda_{j}}{\lambda_{1}+\cdots+\lambda_{n}}
\end{aligned}
$$

Example 5.8: Post Office

- A post office has two clerks.
- Service times for clerk $i \sim \operatorname{Exp}\left(\lambda_{i}\right), i=1,2$
- When you arrive, both clerks are busy but no one else waiting. You will enter service when either clerk becomes free.
- Find $\mathbb{E}[T]$, where $T=$ the amount of time you spend in the post office.
Solution. Let $R_{i}=$ remaining service time of the customer with clerk $i, i=1$, 2 .
- Note R_{i} 's are indep. $\sim \operatorname{Exp}\left(\lambda_{i}\right), i=1,2$ by the memoryless property
- Observe $T=\min \left(R_{1}, R_{2}\right)+S$ where S is your service time
- Using the property of exponential distributions,

$$
\min \left(R_{1}, R_{2}\right) \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right) \quad \Rightarrow \quad \mathbb{E}\left[\min \left(R_{1}, R_{2}\right)\right]=\frac{1}{\lambda_{1}+\lambda_{2}}
$$

Example 5.8: Post Office (Cont'd)

As for your service time S, observe that

$$
S \sim\left\{\begin{array}{ll}
\operatorname{Exp}\left(\lambda_{1}\right) & \text { if } R_{1}<R_{2} \\
\operatorname{Exp}\left(\lambda_{2}\right) & \text { if } R_{2}<R_{1}
\end{array} \Rightarrow \begin{array}{l}
\mathbb{E}\left[S \mid R_{1}<R_{2}\right]=1 / \lambda_{1} \\
\mathbb{E}\left[S \mid R_{2}<R_{1}\right]=1 / \lambda_{2}
\end{array}\right.
$$

Recall that $\mathrm{P}\left(R_{1}<R_{2}\right)=\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$ So

$$
\begin{aligned}
\mathbb{E}[S] & =\mathbb{E}\left[S \mid R_{1}<R_{2}\right] \mathrm{P}\left(R_{1}<R_{2}\right)+\mathbb{E}\left[S \mid R_{2}<R_{1}\right] \mathrm{P}\left(R_{2}<R_{1}\right) \\
& =\frac{1}{\lambda_{1}} \times \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+\frac{1}{\lambda_{2}} \times \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}=\frac{2}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

Hence the expected amount of time you spend in the post office is

$$
\begin{aligned}
\mathbb{E}[T] & =\mathbb{E}\left[\min \left(R_{1}, R_{2}\right)\right]+\mathbb{E}[S] \\
& =\frac{1}{\lambda_{1}+\lambda_{2}}+\frac{2}{\lambda_{1}+\lambda_{2}}=\frac{3}{\lambda_{1}+\lambda_{2}} .
\end{aligned}
$$

5.3.1. Counting Processes

A counting process $\{N(t)\}$ is a cumulative count of number of events happened up to time t.

Definition.

A stochastic processes $\{N(t), t \geq 0\}$ is a counting process satisfying
(i) $N(t)=0,1, \ldots$ (integer valued),
(ii) If $s<t$, then $N(s) \leq N(t)$.
(iii) For $s<t, N(t)-N(s)=$ number of events that occur in the interval $(s, t]$.

Definition.

A process $\{X(t), t \geq 0\}$ is said to have stationary increments if for any $t>s$, the distribution of $X(t)-X(s)$ depends on s and t only through the difference $t-s$, for all $s<t$.
That is, $X(t+a)-X(s+a)$ has the same distribution as $X(t)-X(s)$ for any constant a.

Definition.

A process $\{X(t), t \geq 0\}$ is said to have independent increments if for any $s_{1}<t_{1} \leq s_{2}<t_{2} \leq \ldots \leq s_{k}<t_{k}$, the random variable $X\left(t_{1}\right)-X\left(s_{1}\right), X\left(t_{2}\right)-X\left(s_{2}\right), \ldots, X\left(t_{k}\right)-X\left(s_{k}\right)$ are independent, i.e. the numbers of events that occur in disjoint time intervals are independent.

Example. Modified simple random walk $\left\{X_{n}, n \geq 0\right\}$ is a process with independent and stationary increment, since $X_{n}=\sum_{k=0}^{n} \xi_{k}$ where ξ_{k} 's are i.i.d with $\mathrm{P}\left(\xi_{k}=1\right)=p$ and $\mathrm{P}\left(\xi_{k}=0\right)=1-p$.

Definition 5.1 of Poisson Processes

A Poisson process with rate $\lambda>0\{N(t), t \geq 0\}$ is a counting process satisfying
(i) $N(0)=0$,
(ii) For $s<t, N(t)-N(s)$ is independent of $N(s)$ (independent increment)
(iii) For $s<t, N(t)-N(s) \sim \operatorname{Poi}(\lambda(t-s))$, i.e.,

$$
\mathrm{P}(N(t)-N(s)=k)=e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{k}}{k!}
$$

Remark: In (iii), the distribution of $N(t)-N(s)$ depends on $t-s$ only, not s, which implies $N(t)$ has stationary increment.

Definition 5.3 of Poisson Processes

The counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process having rate $\lambda, \lambda>0$, if
(i) $N(0)=0$.
(ii) The process has stationary and independent increments.
(iii) $\mathrm{P}(N(h)=1)=\lambda h+o(h)$.
(iv) $\mathrm{P}(N(h) \geq 2)=o(h)$.

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.
[Proof of Definitions $5.1 \Rightarrow$ Definition 5.3]
From Definitions 5.1, $N(h) \sim \operatorname{Poi}(h)$. Thus

$$
\begin{aligned}
\mathrm{P}(N(h)=1) & =\lambda h e^{-\lambda h}=\lambda h+o(h) \\
\mathrm{P}(N(h) \geq 2) & =1-\mathrm{P}(N(h)=0)-\mathrm{P}(N(h)=1) \\
& =1-e^{-\lambda h}-\lambda h e^{-\lambda h}=o(h)
\end{aligned}
$$

Proof of Definitions $5.3 \Rightarrow$ Definition 5.1:
See textbook.

Arrival \& Interarrival Times of Poisson Processes

Let

$$
S_{n}=\text { Arrival time of the } n \text {-th event, } n=1,2, \ldots
$$

$$
T_{1}=S_{1}=\text { Time until the } 1 \text { st event occurs }
$$

$$
T_{n}=S_{n}-S_{n-1}
$$

$=$ time elapsed between the $(n-1)$ st and n-th event, $n=2,3, \ldots$

Proposition 5.1
The interarrival times $T_{1}, T_{2}, \ldots, T_{k}, \ldots$, are i.i.d $\sim \operatorname{Exp}(\lambda)$.

Consequently, as the distribution of the sum of n i.i.d $\operatorname{Exp}(\lambda)$ is $\operatorname{Gamma}(n, \lambda)$, the arrival time of the nth event is

$$
S_{n}=\sum_{i=1}^{n} T_{i} \sim \operatorname{Gamma}(n, \lambda)
$$

Lecture 8-12

Proof of Proposition 5.1

$$
\begin{aligned}
& \mathrm{P}\left(T_{n+1}>t \mid T_{1}=t_{1}, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right) \\
= & \mathrm{P}\left(0 \text { event in }\left(s_{n}, s_{n}+t\right] \mid T_{1}=t_{1}, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right) \\
& \quad\left(\text { where } s_{n}=t_{1}+t_{2}+\cdots+t_{n}\right) \\
= & \mathrm{P}\left(0 \text { event in }\left(s_{n}, s_{n}+t\right]\right) \quad \text { (by indep increment) } \\
= & \mathrm{P}\left(N\left(s_{n}+t\right)-N\left(s_{n}\right)=0\right) \\
= & e^{-\lambda t}
\end{aligned}
$$

where the last step comes from the fact that

- $N\left(s_{n}+t\right)-N\left(s_{n}\right) \sim$ Poisson (λt) and
- $P(N=k)=e^{-\mu} \mu^{k} / k$! if $N \sim \operatorname{Poisson}(\mu), k=0,1,2 \ldots$

This shows that T_{n+1} is $\sim \operatorname{Exp}(\lambda)$, and is independent of $T_{1}, T_{2}, \ldots, T_{n}$.

Definition 3 of the Poisson Process

A continuous-time stochastic process $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda>0$ if
(i) $N(0)=0$,
(ii) $N(t)$ counts the number of events that have occurred up to time t (i.e., it is a counting process).
(iii) The times between events are independent and identically distributed with an $\operatorname{Exp}(\lambda)$ distribution.

We have seen how Definition 5.1 implies (i), (ii) and (iii) in Definition 3. The proof of the converse is omitted.

