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5.2 Exponential Distribution

Let X follow exponential distribution with rate λ: X ∼ Exp(λ).

▶ Density: fX(x) = λe−λx for x ≥ 0

▶ CDF: FX(x) = 1− e−λx for x ≥ 0

▶ E(X) = 1/λ, Var(X) = 1/λ2

▶ If X1, . . . , Xn are i.i.d Exp(λ), then
Sn = X1 + · · ·+Xn ∼ Gamma(n, λ), with density

fSn(x) = λe−λt (λt)
n−1

(n− 1)!
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The Exponential Distribution is Memoryless (⋆ ⋆ ⋆ ⋆ ⋆)

Lemma: for all s, t ≥ 0

P(X > t+ s | X > t) = P(X > s)

Proof.

P(X > t+ s|X > t) =
P(X > t+ s and X > t)

P(X > t)

=
P(X > t+ s)

P(X > t)

=
e−λ(t+s)

e−λt
= e−λs = P(X > s)

Implication. If the lifetime of batteries has an Exponential
distribution, then a used battery is as good as a new one, as long
as it’s not dead!
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Another Important Property of the Exponential

If X1, . . . , Xn are independent, Xi,∼ Exp(λi) for i = 1, . . . , n
then

(i) min(X1, . . . , Xn) ∼ Exp(λ1 + · · ·+ λn), and

(ii) P
(
Xj = min(X1, . . . , Xn)

)
=

λj

λ1 + · · ·+ λn

Proof of (i)

P(min(X1, . . . , Xn) > t) = P(X1 > t, . . . ,Xn > t)

= P(X1 > t) . . .P(Xn > t) = e−λ1t · · · e−λnt

= e−(λ1+···+λn)t.
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Proof of (ii)

P
(
Xj = min(X1, . . . , Xn)

)
= P(Xj < Xi for i = 1, . . . , n, i ̸= j)

=

∫ ∞

0
P(Xj < Xi for i ̸= j|Xj = t)λje

−λjtdt

=

∫ ∞

0
P(t < Xi for i ̸= j)λje

−λjtdt

=

∫ ∞

0
λje

−λjt
∏
i ̸=j

P(Xi > t)dt

=

∫ ∞

0
λje

−λjt
∏
i ̸=j

e−λitdt

= λj

∫ ∞

0
e−(λ1+···+λn)tdt

=
λj

λ1 + · · ·+ λn
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Example 5.8: Post Office
▶ A post office has two clerks.

▶ Service times for clerk i ∼ Exp(λi), i = 1, 2

▶ When you arrive, both clerks are busy but no one else waiting.
You will enter service when either clerk becomes free.

▶ Find E[T ], where T = the amount of time you spend in the
post office.

Solution. Let Ri = remaining service time of the customer with
clerk i, i = 1, 2.

▶ Note Ri’s are indep. ∼ Exp(λi), i = 1, 2 by the memoryless
property

▶ Observe T = min(R1, R2) + S where S is your service time

▶ Using the property of exponential distributions,

min(R1, R2) ∼ Exp(λ1+λ2) ⇒ E[min(R1, R2)] =
1

λ1 + λ2
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Example 5.8: Post Office (Cont’d)

As for your service time S, observe that

S ∼

{
Exp(λ1) if R1 < R2

Exp(λ2) if R2 < R1

⇒ E[S|R1 < R2] = 1/λ1

E[S|R2 < R1] = 1/λ2

Recall that P(R1 < R2) = λ1/(λ1 + λ2) So

E[S] = E[S|R1 < R2]P(R1 < R2) + E[S|R2 < R1]P(R2 < R1)

=
1

λ1
× λ1

λ1 + λ2
+

1

λ2
× λ2

λ1 + λ2
=

2

λ1 + λ2

Hence the expected amount of time you spend in the post office is

E[T ] = E[min(R1, R2)] + E[S]

=
1

λ1 + λ2
+

2

λ1 + λ2
=

3

λ1 + λ2
.
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5.3.1. Counting Processes

A counting process {N(t)} is a cumulative count of number of
events happened up to time t.

Definition.
A stochastic processes {N(t), t ≥ 0} is a counting process
satisfying

(i) N(t) = 0, 1, . . . (integer valued),

(ii) If s < t, then N(s) ≤ N(t).

(iii) For s < t, N(t)−N(s) = number of events that occur in the
interval (s, t].
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Definition.
A process {X(t), t ≥ 0} is said to have stationary increments if for
any t > s, the distribution of X(t)−X(s) depends on s and t only
through the difference t− s, for all s < t.
That is, X(t+ a)−X(s+ a) has the same distribution as
X(t)−X(s) for any constant a.

Definition.
A process {X(t), t ≥ 0} is said to have independent increments if
for any s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sk < tk, the random variable
X(t1)−X(s1), X(t2)−X(s2), . . . , X(tk)−X(sk) are
independent, i.e. the numbers of events that occur in disjoint time
intervals are independent.

Example. Modified simple random walk {Xn, n ≥ 0} is a process
with independent and stationary increment, since Xn =

∑n
k=0 ξk

where ξk’s are i.i.d with P(ξk = 1) = p and P(ξk = 0) = 1− p.
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Definition 5.1 of Poisson Processes

A Poisson process with rate λ > 0 {N(t), t ≥ 0} is a counting
process satisfying

(i) N(0) = 0,

(ii) For s < t, N(t)−N(s) is independent of N(s) (independent
increment)

(iii) For s < t, N(t)−N(s) ∼ Poi(λ(t− s)), i.e.,

P(N(t)−N(s) = k) = e−λ(t−s) (λ(t− s))k

k!

Remark: In (iii), the distribution of N(t)−N(s) depends on t− s
only, not s, which implies N(t) has stationary increment.
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Definition 5.3 of Poisson Processes
The counting process {N(t), t ≥ 0} is said to be a Poisson process
having rate λ, λ > 0, if

(i) N(0) = 0.

(ii) The process has stationary and independent increments.

(iii) P(N(h) = 1) = λh+ o(h).

(iv) P(N(h) ≥ 2) = o(h).

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.
[Proof of Definitions 5.1 ⇒ Definition 5.3]
From Definitions 5.1, N(h) ∼ Poi(h). Thus

P(N(h) = 1) = λhe−λh = λh+ o(h)

P(N(h) ≥ 2) = 1− P(N(h) = 0)− P(N(h) = 1)

= 1− e−λh − λhe−λh = o(h)

Proof of Definitions 5.3 ⇒ Definition 5.1:
See textbook.
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Arrival & Interarrival Times of Poisson Processes
Let

Sn = Arrival time of the n-th event, n = 1, 2, . . .

T1 = S1 = Time until the 1st event occurs

Tn = Sn − Sn−1

= time elapsed between the (n− 1)st and n-th event,

n = 2, 3, . . .

Proposition 5.1

The interarrival times T1, T2, . . . , Tk, . . . , are i.i.d ∼ Exp(λ).

Consequently, as the distribution of the sum of n i.i.d Exp(λ) is
Gamma(n, λ), the arrival time of the nth event is

Sn =

n∑
i=1

Ti ∼ Gamma(n, λ)
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Proof of Proposition 5.1

P(Tn+1 > t|T1 = t1, T2 = t2, . . . , Tn = tn)

= P(0 event in (sn, sn + t]|T1 = t1, T2 = t2, . . . , Tn = tn)

(where sn = t1 + t2 + · · ·+ tn)

= P(0 event in (sn, sn + t]) (by indep increment)

= P(N(sn + t)−N(sn) = 0)

= e−λt

where the last step comes from the fact that

▶ N(sn + t)−N(sn) ∼ Poisson(λt) and

▶ P (N = k) = e−µµk/k! if N ∼ Poisson(µ), k = 0, 1, 2 . . .

This shows that Tn+1 is ∼ Exp(λ), and is independent of
T1, T2, . . . , Tn.
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Definition 3 of the Poisson Process

A continuous-time stochastic process {N(t), t ≥ 0} is a Poisson
process with rate λ > 0 if

(i) N(0) = 0,

(ii) N(t) counts the number of events that have occurred up to
time t (i.e., it is a counting process).

(iii) The times between events are independent and identically
distributed with an Exp(λ) distribution.

We have seen how Definition 5.1 implies (i), (ii) and (iii) in
Definition 3. The proof of the converse is omitted.
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