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Properties of Poisson Processes

Outline:

▶ Conditional Distribution of the Arrival Times

▶ Superposition & Thinning

▶ “Converse” of Superposition & Thinning
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5.3.5 Conditional Distribution of Arrival Times is Uniform
Given N(t) = 1, then T1, the arrival time of the first event
∼ Uniform(0, t)
Proof. For s < t,

P(T1 ≤ s|N(t)=1) =
P(T1 ≤ s,N(t) = 1)

P(N(t) = 1)

=
P(1 event in (0, s], no events in (s, t])

P(N(t) = 1)

=
P(N(s)=1)P(N(t)−N(s)=0)

P(N(t) = 1)
by indep. increment

=∗ (λse−λs)(e−λ(t−s))

λte−λt
=

s

t
, s < t.

where the step =∗ comes from the fact that

▶ N(s) ∼ Poisson(λs), N(t)−N(s) ∼ Poisson(λ(t− s)), and
N(t) ∼ Poisson(λt)

▶ P (N = k) = e−µµk/k! if N ∼ Poisson(µ), k = 0, 1, 2 . . .
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Review of Order Statistics
Suppose X1, X2,. . . , Xn are i.i.d. random variables with a
common density f(x). Their joint density would be the product of
the marginal density

f(x1, x2, . . . , xn) = f(x1)f(x2) . . . f(xn).

Let X(i) be the ith smallest number among X1, X2, . . . , Xn.
(X(1), X(2), . . . , X(n)) is called the order statistics of
X1, X2, . . . , Xn

▶ X(1) is the minimum

▶ X(n) is the maximum

▶ X(1) ≤ X(2) ≤ . . . ≤ X(n)

The joint density of X(1), X(2), . . . , X(n) is

h(x1, x2, . . . , xn) =

{
n!f(x1)f(x2) . . . f(xn), if x1 ≤ x2 ≤ . . . ≤ xn.

0 otherwise
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Example

If U1, U2, . . . , Un are indep. Uniform(0, t), their common density is

f(u) =

{
1/t, for 0 < u < t.

0 otherwise

The joint density of their order statistics U(1), U(2), . . . , U(n) is

h(u1, u2, . . . , un) = n!f(u1)f(u2) . . . f(un) = n!(1/t)n

for 0 ≤ u1 ≤ u2 ≤ . . . ≤ un < t and 0 elsewhere.
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Theorem 5.2
Given N(t) = n,

(S1, S2, . . . , Sn) ∼ (U(1), U(2), . . . , U(n))

where (U(1), . . . , U(n)) are the order statistics of (U1, . . . , Un) ∼
i.i.d Uniform (0, t), i.e., the joint conditional density of S1, S2, . . .,
Sn is

f(s1, s2, . . . , sn|N(t) = n) = n!/tn, 0 < s1 < s2 < . . . < sn

Proof. The event that S1 = s1, S2 = s2, . . ., Sn = sn, N(t) = n is
equivalent to the event T1 = s1, T2 = s2 − s1, . . . , Tn = sn − sn−1,
Tn+1 > t− sn. Hence, by Proposition 5.1, we have the conditional
joint density of S1, . . . , Sn given N(t) = n as follows:

f(s1, . . . , sn|N(t) = n) =
f(s1, . . . , sn, N(t) = n)

P(N(t) = n)

=
λe−λs1λe−λ(s2−s1) . . . λe−λ(sn−sn−1)e−λ(t−sn)

e−λt(λt)n/n!

= n!t−n, 0 < s1 < . . . < sn < t
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Example 5.21. Insurance claims comes according to a Poisson
process {N(t)} with rate λ. Let

▶ Si = the time of the ith claims

▶ Ci = amount of the ith claims, i.i.d with mean µ, indep. of
{N(t)}

Then the total discounted cost by time t at discount rate α is
given by

D(t) =
∑N(t)

i=1
Cie

−αSi .

Then

E[D(t)|N(t)] = E
[∑N(t)

i=1
Cie

−αSi

∣∣∣N(t)

]
(5.2)
= E

[∑N(t)

i=1
Cie

−αU(i)

]
= E

[∑N(t)

i=1
Cie

−αUi

]
=

∑N(t)

i=1
E[Ci]E

[
e−αUi

]
= N(t)µ

∫ t

0

1

t
e−αxdx = N(t)

µ

αt
(1− e−αt)

Thus E[D(t)] = E[N(t)] µαt(1− eαt) = λµ
α (1− e−αt)
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Superposition

The sum of two independent Poisson processes with respective
rates λ1 and λ2, called the superposition of the processes, is
again a Poisson process but with rate λ1 + λ2.

The proof is straight forward from Definition 5.3 and hence
omitted.

Remark: By repeated application of the above arguments we can
see that the superposition of k independent Poisson processes with
rates λ1, · · · , λk is again a Poisson process with rate λ1 + · · ·+ λk.
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Thinning

Consider a Poisson process {N(t) : t ≥ 0} with rate λ.
At each arrival of events, it is classified as a{

Type 1 event with probability p or

Type 2 event with probability 1− p,

independently of all other events. Let

Ni(t) = # of type i events occurred during [0, t], i = 1, 2.

Note that N(t) = N1(t) +N2(t).

Proposition 5.2

{N1(t), t ≥ 0} and {N2(t), t ≥ 0} are both Poisson processes
having respective rates λp and λ(1− p).

Furthermore, the two processes are independent.
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Proof of Proposition 5.2
First observe that given N(t) = n+m,

N1(t) ∼ Binomial(n+m, p). (why?)

Thus P(N1(t) = n,N2(t) = m)

= P(N1(t) = n,N2(t) = m|N(t) = n+m)P(N(t) = n+m)

=

(
n+m

n

)
pn(1− p)me−λt (λt)

n+m

(n+m)!

= e−λtp (λpt)
n

n!
e−λt(1−p) (λ(1− p)t)m

m!
= P(N1(t) = n)P(N2(t) = m).

This proves the independence of N1(t) and N2(t) and that

N1(t) ∼ Poisson(λpt), N2(t) ∼ Poisson(λ(1− p)t).

Both {N1(t)} and {N2(t)} inherit the stationary and independent
increment properties from {N(t)}, and hence are both Poisson
processes.
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Some “Converse” of Thinning & Superposition

Consider two indep. Poisson processes {NA(t)} and {NB(t)} w/
respective rates λA and λB. Let

SA
n = arrival time of the nth A event

SB
m = arrival time of the mth B event

Find P(SA
n < SB

m).

Approach 1:
Observer that SA

n ∼ Gamma(n, λA), S
B
m ∼ Gamma(m,λB) and

they are independent. Thus

P(SA
n < SB

m) =

∫
x<y

λAe
−λAx (λAx)

n−1

(n− 1)!
λBe

−λBy (λBy)
m−1

(m− 1)!
dxdy
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Some “Converse” of Thinning & Superposition (Cont’d)
Let N(t) = NA(t) +NB(t) be the superposition of the two
processes. Let

Ii =

{
1 if the ith event in the superpositon process is an A event

0 otherwise
.

The Ii, i = 1, 2, . . . are i.i.d. Bernoulli(p), where p =
λA

λA + λB
.

Approach 2:

P(SA
n < SB

1 ) = P(the first n events are all A events) =

(
λA

λA + λB

)n

P(SA
n < SB

m) = P(at least n A events occur before m B events)

= P(at least n heads before m tails)

= P(at least n heads in the first n+m− 1 tosses)

=

n+m−1∑
k=n

(
n+m− 1

k

)(
λA

λA + λB

)k ( λB

λA + λB

)n+m−1−k

Lecture 9 - 12



Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate λ. If an event occurs at time
t will be classified as a type i event with probability pi(t),
i = 1, . . . , k,

∑
i pi(t) = 1, for all t, independently of all other

events. then

Ni(t) = number of type i events occurring in [0, t], i = 1, . . . , k.

Note N(t) =
∑k

i=1Ni(t). Then Ni(t), i = 1, . . . , k are

independent Poisson random variables with means λ
∫ t
0 pi(s)ps.

Remark: Note {Ni(t), t ≥ 0} are NOT Poisson processes.
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Example
▶ Policyholders of a certain insurance company have accidents

occurring according to a Poisson process with rate λ.
▶ The amount of time T from when the accident occurs until a

claim is made has distribution G(t) = P(T ≤ t).
▶ Let Nc(t) be the number of claims made by time t.

Find the distribution of Nc(t).

Solution. Suppose an accident occurred at time s. It is claimed by
time t if s+ T ≤ t, i.e., with probability

p(s) = P(T ≤ t− s) = G(t− s).

We call an accident type I if it’s completed before t, and type II
otherwise. By Proposition 5.3, Nc(t) has a Poisson distribution
with mean

λ

∫ t

0
p(s)ps = λ

∫ t

0
G(t− s)ds = λ

∫ t

0
G(s)ds
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5.4.1 Nonhomogeneous Poisson Process
Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary)
Poisson process with intensity function λ(t) ≥ 0 is a counting
process {N(t), t ≥ 0} satisfying

(i) N(0) = 0.

(ii) having independent increments.

(iii) P(N(t+ h)−N(t) = 1) = λ(t)h+ o(h).

(iv) P(N(t+ h)−N(t) ≥ 2) = o(h).

Definition 5.4b. A nonhomogeneous Poisson process with
intensity function λ(t) ≥ 0 is a counting process {N(t), t ≥ 0}
satisfying

(i) N(0) = 0,

(ii) for s, t ≥ 0, N(t+ s)−N(s) is independent of N(s)
(independent increment)

(iii) For s, t ≥ 0, N(t+ s)−N(s) ∼ Poisson(m(t+ s)−m(s)),
where m(t) =

∫ t
0 λ(u)du

The two definitions are equivalent.
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The Interarrival Times of a Nonhomogeneous Poisson
Process Are NOT Independent

A nonhomogeneous Poisson process has independent increment
but its interarrival times between events are

▶ neither independent

▶ nor identically distributed.

Proof. Homework.
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Proposition 5.4

Let {N1(t), t ≥ 0}, and {N2(t), t ≥ 0} be two independent
nonhomogeneous Poisson process with respective intensity
functions λ1(t) and λ2(t), and let N(t) = N1(t) +N2(t). Then

(a) {N(t), t ≥ 0} is a nonhomogeneous Poisson process with
intensity function λ1(t) + λ2(t).

(b) Given that an event of the {N(t), t ≥ 0} process occurs at
time t then, independent of what occurred prior to t , the
event at t was from the {N1(t)} process with probability

λ1(t)

λ1(t) + λ2(t)
.
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5.4.2 Compound Poisson Processes
Definition. Let {N(t)} be a (homogeneous) Poisson process with
rate λ and Y1, Y2, . . . are i.i.d random variables independent of
{N(t)}. The process

X(t) =
∑N(t)

i=1
Yi

is called a compound Poisson process, in which X(t) is defined as
0 if N(t) = 0.

A compound Poisson process has

▶ independent increment, since

X(t+ s)−X(s) =
∑N(t+s)−N(s)

i=1 Yi+N(s) is independent of

X(s) =
∑N(s)

i=1 Yi, and

▶ stationary increment, since

X(t+ s)−X(s) =
∑N(t+s)−N(s)

i=1 Yi+N(s) has the same

distribution as X(t) =
∑N(t)

i=1 Yi
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The Mean of a Compound Poisson Process

Suppose E[Yi] = µY , Var(Yi) = σ2
Y . Note that E[N(t)] = λt.

E[X(t)|N(t)] =
∑N(t)

i=1
E[Yi|N(t)]

=
∑N(t)

i=1
E[Yi] (since Yi’s are indep. of N(t))

= N(t)µY

Thus

E[X(t)] = E[E[X(t)|N(t)]] = E[N(t)]µY = λtµY
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Variance of a Compound Poisson Process (Cont’d)
Similarly, using that E[N(t)] = Var(N(t)) = λt, we have

Var[X(t)|N(t)] = Var

(∑N(t)

i=1
Yi

∣∣∣N(t)

)
=

∑N(t)

i=1
Var(Yi|N(t))

=
∑N(t)

i=1
Var(Yi) (since Yi’s are indep. of N(t))

= N(t)σ2
Y

E[Var(X(t)|N(t))] = E[N(t)σ2
Y ] = λtσ2

Y

Var(E[X(t)|N(t)]) = Var(N(t)µY ) = Var(N(t))µ2
Y = λtµ2

Y

Thus

Var(X(t)) = E[Var[X(t)|N(t)]] + Var(E[X(t)|N(t)])

= λt(σ2
Y + µ2

Y ) = λtE[Y 2
i ]
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CLT of a Compound Poisson Process

As t → ∞, the distribution of

X(t)− E[X(t)]√
Var(X(t))

=
X(t)− λtµY√
λt(σ2

Y + µ2
Y )

converges to a standard normal distribution N(0, 1).
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5.4.3 Conditional Poisson Processes

Definition. A conditional (or mixed) Poisson process
{N(t), t ≥ 0} is a counting process satisfying

(i) N(0) = 0,

(ii) having stationary increment, and

(iii) there is a random variable Λ > 0 with probability density
g(λ), such that given Λ = λ,

N(t+ s)−N(s) ∼ Poisson(λt),

i.e.,

P(N(t+ s)−N(s) = k) =

∫ ∞

0
e−λt (λt)

k

k!
g(λ)dλ, k = 0, 1, . . .
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Remark: In general, a conditional Poisson process does NOT have
independent increment.

P(N(s) = j,N(t+ s)−N(s) = k)

=

∫ ∞

0
e−λs (λs)

j

j!
e−λt (λt)

k

k!
g(λ)dλ

̸=
(∫ ∞

0
e−λs (λs)

j

j!
g(λ)dλ

)(∫ ∞

0
e−λt (λt)

k

k!
g(λ)dλ

)
= P(N(s) = j)P(N(t+ s)−N(s) = k)
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