STAT253/317 Lecture 9

Cong Ma

5.3 The Poisson Processes

Lecture 9-1

Properties of Poisson Processes

Outline:

- Conditional Distribution of the Arrival Times
- Superposition \& Thinning
- "Converse" of Superposition \& Thinning

5.3.5 Conditional Distribution of Arrival Times is Uniform

Given $N(t)=1$, then T_{1}, the arrival time of the first event $\sim \operatorname{Uniform}(0, t)$
Proof. For $s<t$,

$$
\begin{aligned}
& \mathrm{P}\left(T_{1} \leq s \mid N(t)=1\right)=\frac{\mathrm{P}\left(T_{1} \leq s, N(t)=1\right)}{\mathrm{P}(N(t)=1)} \\
& =\frac{\mathrm{P}(1 \text { event in }(0, s], \text { no events in }(s, t])}{\mathrm{P}(N(t)=1)} \\
& =\frac{\mathrm{P}(N(s)=1) \mathrm{P}(N(t)-N(s)=0)}{\mathrm{P}(N(t)=1)} \text { by indep. increment } \\
& ={ }^{*} \frac{\left(\lambda s e^{-\lambda s}\right)\left(e^{-\lambda(t-s)}\right)}{\lambda t e^{-\lambda t}}=\frac{s}{t}, \quad s<t .
\end{aligned}
$$

where the step $=$ * comes from the fact that

- $N(s) \sim \operatorname{Poisson}(\lambda s), N(t)-N(s) \sim \operatorname{Poisson}(\lambda(t-s))$, and $N(t) \sim$ Poisson (λt)
- $P(N=k)=e^{-\mu} \mu^{k} / k$! if $N \sim \operatorname{Poisson}(\mu), k=0,1,2 \ldots$

Review of Order Statistics

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables with a common density $f(x)$. Their joint density would be the product of the marginal density

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right)
$$

Let $X_{(i)}$ be the i th smallest number among $X_{1}, X_{2}, \ldots, X_{n}$.
$\left(X_{(1)}, X_{(2)}, \ldots, X_{(n)}\right)$ is called the order statistics of $X_{1}, X_{2}, \ldots, X_{n}$

- $X_{(1)}$ is the minimum
- $X_{(n)}$ is the maximum
- $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$

The joint density of $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ is
$h\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}n!f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right), & \text { if } x_{1} \leq x_{2} \leq \ldots \leq x_{n} . \\ 0 & \text { otherwise }\end{cases}$

Example

If $U_{1}, U_{2}, \ldots, U_{n}$ are indep. Uniform $(0, t)$, their common density is

$$
f(u)= \begin{cases}1 / t, & \text { for } 0<u<t \\ 0 & \text { otherwise }\end{cases}
$$

The joint density of their order statistics $U_{(1)}, U_{(2)}, \ldots, U_{(n)}$ is

$$
h\left(u_{1}, u_{2}, \ldots, u_{n}\right)=n!f\left(u_{1}\right) f\left(u_{2}\right) \ldots f\left(u_{n}\right)=n!(1 / t)^{n}
$$

for $0 \leq u_{1} \leq u_{2} \leq \ldots \leq u_{n}<t$ and 0 elsewhere.

Theorem 5.2
Given $N(t)=n$,

$$
\left(S_{1}, S_{2}, \ldots, S_{n}\right) \sim\left(U_{(1)}, U_{(2)}, \ldots, U_{(n)}\right)
$$

where $\left(U_{(1)}, \ldots, U_{(n)}\right)$ are the order statistics of $\left(U_{1}, \ldots, U_{n}\right) \sim$ i.i.d Uniform $(0, t)$, i.e., the joint conditional density of S_{1}, S_{2}, \ldots, S_{n} is

$$
f\left(s_{1}, s_{2}, \ldots, s_{n} \mid N(t)=n\right)=n!/ t^{n}, 0<s_{1}<s_{2}<\ldots<s_{n}
$$

Proof. The event that $S_{1}=s_{1}, S_{2}=s_{2}, \ldots, S_{n}=s_{n}, N(t)=n$ is equivalent to the event $T_{1}=s_{1}, T_{2}=s_{2}-s_{1}, \ldots, T_{n}=s_{n}-s_{n-1}$, $T_{n+1}>t-s_{n}$. Hence, by Proposition 5.1, we have the conditional joint density of S_{1}, \ldots, S_{n} given $N(t)=n$ as follows:

$$
\begin{gathered}
f\left(s_{1}, \ldots, s_{n} \mid N(t)=n\right)=\frac{f\left(s_{1}, \ldots, s_{n}, N(t)=n\right)}{\mathrm{P}(N(t)=n)} \\
=\frac{\lambda e^{-\lambda s_{1}} \lambda e^{-\lambda\left(s_{2}-s_{1}\right)} \ldots \lambda e^{-\lambda\left(s_{n}-s_{n-1}\right)} e^{-\lambda\left(t-s_{n}\right)}}{e^{-\lambda t}(\lambda t)^{n} / n!} \\
=n!t^{-n}, \quad 0<s_{1}<\ldots<s_{n}<t \\
\text { Lecture } 9-6
\end{gathered}
$$

Example 5.21. Insurance claims comes according to a Poisson process $\{N(t)\}$ with rate λ. Let

- $S_{i}=$ the time of the i th claims
- $C_{i}=$ amount of the i th claims, i.i.d with mean μ, indep. of $\{N(t)\}$
Then the total discounted cost by time t at discount rate α is given by

$$
D(t)=\sum_{i=1}^{N(t)} C_{i} e^{-\alpha S_{i}}
$$

Then

$$
\begin{aligned}
\mathbb{E}[D(t) \mid N(t)] & =\mathbb{E}\left[\sum_{i=1}^{N(t)} C_{i} e^{-\alpha S_{i}} \mid N(t)\right] \stackrel{(5.2)}{=} \mathbb{E}\left[\sum_{i=1}^{N(t)} C_{i} e^{-\alpha U_{(i)}}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{N(t)} C_{i} e^{-\alpha U_{i}}\right]=\sum_{i=1}^{N(t)} \mathbb{E}\left[C_{i}\right] \mathbb{E}\left[e^{-\alpha U_{i}}\right] \\
& =N(t) \mu \int_{0}^{t} \frac{1}{t} e^{-\alpha x} d x=N(t) \frac{\mu}{\alpha t}\left(1-e^{-\alpha t}\right)
\end{aligned}
$$

Thus $\mathbb{E}[D(t)]=\mathbb{E}[N(t)] \frac{\mu}{\alpha t}\left(1-e^{\alpha t}\right)=\frac{\lambda \mu}{\alpha}\left(1-e^{-\alpha t}\right)$
Lecture 9-7

Superposition

The sum of two independent Poisson processes with respective rates λ_{1} and λ_{2}, called the superposition of the processes, is again a Poisson process but with rate $\lambda_{1}+\lambda_{2}$.

The proof is straight forward from Definition 5.3 and hence omitted.

Remark: By repeated application of the above arguments we can see that the superposition of k independent Poisson processes with rates $\lambda_{1}, \cdots, \lambda_{k}$ is again a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{k}$.

Thinning

Consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ.
At each arrival of events, it is classified as a

$$
\begin{cases}\text { Type } 1 \text { event with probability } & p \\ \text { Type } 2 \text { event with probability } & 1-p,\end{cases}
$$

independently of all other events. Let

$$
N_{i}(t)=\# \text { of type } i \text { events occurred during }[0, t], i=1,2 .
$$

Note that $N(t)=N_{1}(t)+N_{2}(t)$.

Proposition 5.2
$\left\{N_{1}(t), t \geq 0\right\}$ and $\left\{N_{2}(t), t \geq 0\right\}$ are both Poisson processes having respective rates λp and $\lambda(1-p)$.
Furthermore, the two processes are independent.

Proof of Proposition 5.2

First observe that given $N(t)=n+m$,

$$
\begin{equation*}
N_{1}(t) \sim \operatorname{Binomial}(n+m, p) \tag{why?}
\end{equation*}
$$

Thus $\mathrm{P}\left(N_{1}(t)=n, N_{2}(t)=m\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(N_{1}(t)=n, N_{2}(t)=m \mid N(t)=n+m\right) \mathrm{P}(N(t)=n+m) \\
& =\binom{n+m}{n} p^{n}(1-p)^{m} e^{-\lambda t} \frac{(\lambda t)^{n+m}}{(n+m)!} \\
& =e^{-\lambda t p} \frac{(\lambda p t)^{n}}{n!} e^{-\lambda t(1-p)} \frac{(\lambda(1-p) t)^{m}}{m!} \\
& =\mathrm{P}\left(N_{1}(t)=n\right) \mathrm{P}\left(N_{2}(t)=m\right) .
\end{aligned}
$$

This proves the independence of $N_{1}(t)$ and $N_{2}(t)$ and that

$$
N_{1}(t) \sim \operatorname{Poisson}(\lambda p t), \quad N_{2}(t) \sim \operatorname{Poisson}(\lambda(1-p) t)
$$

Both $\left\{N_{1}(t)\right\}$ and $\left\{N_{2}(t)\right\}$ inherit the stationary and independent increment properties from $\{N(t)\}$, and hence are both Poisson processes.

Some "Converse" of Thinning \& Superposition

Consider two indep. Poisson processes $\left\{N_{A}(t)\right\}$ and $\left\{N_{B}(t)\right\} \mathbf{w} /$ respective rates λ_{A} and λ_{B}. Let

$$
\begin{aligned}
& S_{n}^{A}=\text { arrival time of the } n \text {th } A \text { event } \\
& S_{m}^{B}=\text { arrival time of the } m \text { th } B \text { event }
\end{aligned}
$$

Find $\mathrm{P}\left(S_{n}^{A}<S_{m}^{B}\right)$.

Approach 1:

Observer that $S_{n}^{A} \sim \operatorname{Gamma}\left(n, \lambda_{A}\right), S_{m}^{B} \sim \operatorname{Gamma}\left(m, \lambda_{B}\right)$ and they are independent. Thus

$$
\mathrm{P}\left(S_{n}^{A}<S_{m}^{B}\right)=\int_{x<y} \lambda_{A} e^{-\lambda_{A} x} \frac{\left(\lambda_{A} x\right)^{n-1}}{(n-1)!} \lambda_{B} e^{-\lambda_{B} y} \frac{\left(\lambda_{B} y\right)^{m-1}}{(m-1)!} d x d y
$$

Some "Converse" of Thinning \& Superposition (Cont'd)

Let $N(t)=N_{A}(t)+N_{B}(t)$ be the superposition of the two processes. Let
$I_{i}=\left\{\begin{array}{ll}1 & \text { if the } i \text { th event in the superpositon process is an } A \text { event } \\ 0 & \text { otherwise }\end{array}\right.$.
The $I_{i}, i=1,2, \ldots$ are i.i.d. Bernoulli(p), where $p=\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}$.

Approach 2:

$\mathrm{P}\left(S_{n}^{A}<S_{1}^{B}\right)=\mathrm{P}($ the first n events are all A events $)=\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{n}$
$\mathrm{P}\left(S_{n}^{A}<S_{m}^{B}\right)=\mathrm{P}$ (at least $n A$ events occur before $m B$ events)
$=\mathrm{P}$ (at least n heads before m tails)
$=\mathrm{P}$ (at least n heads in the first $n+m-1$ tosses $)$

$$
=\sum_{k=n}^{n+m-1}\binom{n+m-1}{k}\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{k}\left(\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{n+m-1-k}
$$

Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate λ. If an event occurs at time t will be classified as a type i event with probability $p_{i}(t)$, $i=1, \ldots, k, \sum_{i} p_{i}(t)=1$, for all t, independently of all other events. then

$$
N_{i}(t)=\text { number of type } i \text { events occurring in }[0, t], i=1, \ldots, k .
$$

Note $N(t)=\sum_{i=1}^{k} N_{i}(t)$. Then $N_{i}(t), i=1, \ldots, k$ are independent Poisson random variables with means $\lambda \int_{0}^{t} p_{i}(s) p s$.

Remark: Note $\left\{N_{i}(t), t \geq 0\right\}$ are NOT Poisson processes.

Example

- Policyholders of a certain insurance company have accidents occurring according to a Poisson process with rate λ.
- The amount of time T from when the accident occurs until a claim is made has distribution $G(t)=\mathrm{P}(T \leq t)$.
- Let $N_{c}(t)$ be the number of claims made by time t.

Find the distribution of $N_{c}(t)$.
Solution. Suppose an accident occurred at time s. It is claimed by time t if $s+T \leq t$, i.e., with probability

$$
p(s)=\mathrm{P}(T \leq t-s)=G(t-s)
$$

We call an accident type I if it's completed before t, and type II otherwise. By Proposition 5.3, $N_{c}(t)$ has a Poisson distribution with mean

$$
\lambda \int_{0}^{t} p(s) p s=\lambda \int_{0}^{t} G(t-s) d s=\lambda \int_{0}^{t} G(s) d s
$$

5.4.1 Nonhomogeneous Poisson Process

Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary) Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying
(i) $N(0)=0$.
(ii) having independent increments.
(iii) $\mathrm{P}(N(t+h)-N(t)=1)=\lambda(t) h+o(h)$.
(iv) $\mathrm{P}(N(t+h)-N(t) \geq 2)=o(h)$.

Definition 5.4b. A nonhomogeneous Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying
(i) $N(0)=0$,
(ii) for $s, t \geq 0, N(t+s)-N(s)$ is independent of $N(s)$ (independent increment)
(iii) For $s, t \geq 0, N(t+s)-N(s) \sim \operatorname{Poisson}(m(t+s)-m(s))$, where $m(t)=\int_{0}^{t} \lambda(u) d u$
The two definitions are equivalent.

The Interarrival Times of a Nonhomogeneous Poisson Process Are NOT Independent

A nonhomogeneous Poisson process has independent increment but its interarrival times between events are

- neither independent
- nor identically distributed.

Proof. Homework.

Proposition 5.4

Let $\left\{N_{1}(t), t \geq 0\right\}$, and $\left\{N_{2}(t), t \geq 0\right\}$ be two independent nonhomogeneous Poisson process with respective intensity functions $\lambda_{1}(t)$ and $\lambda_{2}(t)$, and let $N(t)=N_{1}(t)+N_{2}(t)$. Then
(a) $\{N(t), t \geq 0\}$ is a nonhomogeneous Poisson process with intensity function $\lambda_{1}(t)+\lambda_{2}(t)$.
(b) Given that an event of the $\{N(t), t \geq 0\}$ process occurs at time t then, independent of what occurred prior to t, the event at t was from the $\left\{N_{1}(t)\right\}$ process with probability

$$
\frac{\lambda_{1}(t)}{\lambda_{1}(t)+\lambda_{2}(t)} .
$$

5.4.2 Compound Poisson Processes

Definition. Let $\{N(t)\}$ be a (homogeneous) Poisson process with rate λ and Y_{1}, Y_{2}, \ldots are i.i.d random variables independent of $\{N(t)\}$. The process

$$
X(t)=\sum_{i=1}^{N(t)} Y_{i}
$$

is called a compound Poisson process, in which $X(t)$ is defined as 0 if $N(t)=0$.

A compound Poisson process has

- independent increment, since

$$
\begin{aligned}
& X(t+s)-X(s)=\sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)} \text { is independent of } \\
& X(s)=\sum_{i=1}^{N(s)} Y_{i} \text {, and }
\end{aligned}
$$

- stationary increment, since
$X(t+s)-X(s)=\sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)}$ has the same distribution as $X(t)=\sum_{i=1}^{N(t)} Y_{i}$

The Mean of a Compound Poisson Process

Suppose $\mathbb{E}\left[Y_{i}\right]=\mu_{Y}, \operatorname{Var}\left(Y_{i}\right)=\sigma_{Y}^{2}$. Note that $\mathbb{E}[N(t)]=\lambda t$.

$$
\begin{aligned}
\mathbb{E}[X(t) \mid N(t)] & =\sum_{i=1}^{N(t)} \mathbb{E}\left[Y_{i} \mid N(t)\right] \\
& =\sum_{i=1}^{N(t)} \mathbb{E}\left[Y_{i}\right] \quad \text { (since } Y_{i} \text { 's are indep. of } N(t) \text {) } \\
& =N(t) \mu_{Y}
\end{aligned}
$$

Thus

$$
\mathbb{E}[X(t)]=\mathbb{E}[\mathbb{E}[X(t) \mid N(t)]]=\mathbb{E}[N(t)] \mu_{Y}=\lambda t \mu_{Y}
$$

Variance of a Compound Poisson Process (Cont'd)

Similarly, using that $\mathbb{E}[N(t)]=\operatorname{Var}(N(t))=\lambda t$, we have

$$
\begin{aligned}
\operatorname{Var}[X(t) \mid N(t)] & =\operatorname{Var}\left(\sum_{i=1}^{N(t)} Y_{i} \mid N(t)\right) \\
& =\sum_{i=1}^{N(t)} \operatorname{Var}\left(Y_{i} \mid N(t)\right) \\
& \left.=\sum_{i=1}^{N(t)} \operatorname{Var}\left(Y_{i}\right) \quad \text { (since } Y_{i} \text { 's are indep. of } N(t)\right) \\
& =N(t) \sigma_{Y}^{2}
\end{aligned}
$$

$\mathbb{E}[\operatorname{Var}(X(t) \mid N(t))]=\mathbb{E}\left[N(t) \sigma_{Y}^{2}\right]=\lambda t \sigma_{Y}^{2}$
$\operatorname{Var}(\mathbb{E}[X(t) \mid N(t)])=\operatorname{Var}\left(N(t) \mu_{Y}\right)=\operatorname{Var}(N(t)) \mu_{Y}^{2}=\lambda t \mu_{Y}^{2}$
Thus

$$
\begin{aligned}
\operatorname{Var}(X(t)) & =\mathbb{E}[\operatorname{Var}[X(t) \mid N(t)]]+\operatorname{Var}(\mathbb{E}[X(t) \mid N(t)]) \\
& =\lambda t\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)=\lambda t \mathbb{E}\left[Y_{i}^{2}\right]
\end{aligned}
$$

CLT of a Compound Poisson Process

As $t \rightarrow \infty$, the distribution of

$$
\frac{X(t)-\mathbb{E}[X(t)]}{\sqrt{\operatorname{Var}(X(t))}}=\frac{X(t)-\lambda t \mu_{Y}}{\sqrt{\lambda t\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)}}
$$

converges to a standard normal distribution $N(0,1)$.

5.4.3 Conditional Poisson Processes

Definition. A conditional (or mixed) Poisson process $\{N(t), t \geq 0\}$ is a counting process satisfying
(i) $N(0)=0$,
(ii) having stationary increment, and
(iii) there is a random variable $\Lambda>0$ with probability density $g(\lambda)$, such that given $\Lambda=\lambda$,

$$
N(t+s)-N(s) \sim \operatorname{Poisson}(\lambda t)
$$

i.e.,
$\mathrm{P}(N(t+s)-N(s)=k)=\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d \lambda, k=0,1, \ldots$

Remark: In general, a conditional Poisson process does NOT have independent increment.

$$
\begin{aligned}
& \mathrm{P}(N(s)=j, N(t+s)-N(s)=k) \\
& =\int_{0}^{\infty} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d \lambda \\
& \neq\left(\int_{0}^{\infty} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!} g(\lambda) d \lambda\right)\left(\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d \lambda\right) \\
& =\mathrm{P}(N(s)=j) \mathrm{P}(N(t+s)-N(s)=k)
\end{aligned}
$$

