STAT253/317 Lecture 9

Cong Ma

5.3 The Poisson Processes
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Properties of Poisson Processes

Outline:
» Conditional Distribution of the Arrival Times
» Superposition & Thinning
> “Converse” of Superposition & Thinning
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5.3.5 Conditional Distribution of Arrival Times is Uniform
Given N(t) =1, then Ty, the arrival time of the first event
~ Uniform(0, t)
Proof. For s < t,

P(Ty < s, N(t) = 1)

P(Ty <s|N(t)=1) =

P(N(t) = 1)
_ P(1 eventin (0,s], no events in (s,1])
N P(N(t)=1)
_ P(N(s)=1)P(N(t)-N(s)=0) , . ,
= PN = 1) by indep. increment
Ase=28) (e~ A(E=9) S
=* ( )\t)e(_’\t ) =7 s <t.

where the step =* comes from the fact that
» N(s) ~ Poisson(\s), N(t) — N(s) ~ Poisson(A(t — s)), and
N(t) ~ Poisson(\t)
» P(N =k)=e#uF/k!if N ~ Poisson(u), k=0,1,2...
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Review of Order Statistics

Suppose X1, Xo,..., X, are i.i.d. random variables with a
common density f(x). Their joint density would be the product of
the marginal density

flxi,xe, ..o xn) = flx1) f(z2) ... f(zn).

Let X(;) be the ith smallest number among Xy, Xo,..., X,
(X(1), X(2); - -+, X(n)) is called the order statistics of
X1, Xo,..., Xy
> X(1) is the minimum
> X(,) is the maximum
> Xy = X@g) < < X
The joint density of X1y, X(9),..., X() is

h(x1, 22, ...

1) = {n‘f(ml)f(xg)f(:cn), ifz; <z9<...<x,.

o otherwise
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Example

If Uy,Us,...,U, are indep. Uniform(0,t), their common density is

Flu) = {1/75, for 0 <u < t.

0 otherwise
The joint density of their order statistics Uy, Ufg), ..., Uy is

h(ui,ug, ... uy) =nlf(ur)f(u) ... fuy) =n!l(1/t)"

for0<u; <wug <...<wu, <tand 0 elsewhere.
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Theorem 5.2
Given N(t) = n,
(Sl, So,. .., Sn) ~ (U(l), U(Q), ceey U(n))

where (U, ...,U,) are the order statistics of (Uy,...,Up) ~
i.i.d Uniform (0,¢), i.e., the joint conditional density of S1, Sy, ...,
Sy, is

f(s1,82,...,8,|N(t) =n) =nl/t", 0 < s1 < s9<...< 8y
Proof. The event that S = s1, So = s92,..., Sy, = sp, N(t) =nis
equivalent to the event 17 = 51, 15 = s9o — S1,..., 1y, = Sy — Sn—_1,
Ty4+1 >t — sp. Hence, by Proposition 5.1, we have the conditional
joint density of Sy,...,S, given N(t) = n as follows:

f(siy .y 8p|N(t) =n) = f(ShP(]{[S(Z)’ ];7(2)) =n)

)\e*)\sl )\67)‘(82781) o )\ef)\(snfsn_l)ef)\(tfsn)
e~ A (\t)" /n!

=nlt™, 0<s1<... <8, <t
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Example 5.21. Insurance claims comes according to a Poisson
process { N (t)} with rate A. Let

» S; = the time of the ith claims
» (C; = amount of the ith claims, i.i.d with mean p, indep. of
{N (@)}
Then the total discounted cost by time ¢ at discount rate « is
given by

Then

E[D(t)|N(t)]:E[ZjV(I } [ N CieaU(i)]
e ‘“‘“} i [

N /t1 vy — N1 L (1 = o
B A A

|
=

Thus E[D(t)] = E[N(t)] £ (1 — e) = 2(1 — e=ot)
Lecture 9 -7



Superposition

The sum of two independent Poisson processes with respective
rates A1 and Ag, called the superposition of the processes, is
again a Poisson process but with rate A\; 4+ Ao.

The proof is straight forward from Definition 5.3 and hence

omitted.

Remark: By repeated application of the above arguments we can
see that the superposition of k independent Poisson processes with
rates Ai,--- , Ag is again a Poisson process with rate A\; + - -+ + Ag.
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Thinning

Consider a Poisson process {N(t) : t > 0} with rate .
At each arrival of events, it is classified as a

Type 1 event with probability p or
{Type 2 event with probability 1 —p,
independently of all other events. Let
N;(t) = # of type i events occurred during [0,¢], i = 1,2.
Note that N(t) = Ny(t) + Na(t).

Proposition 5.2

{Ni(t),t > 0} and {Na(t),t > 0} are both Poisson processes
having respective rates Ap and A(1 — p).

Furthermore, the two processes are independent.
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Proof of Proposition 5.2
First observe that given N(t) =n + m,

Ni(t) ~ Binomial(n + m,p).

Thus P(Ni(t) =n, Nao(t) =m)

= P(Ni(t) = n, No(t) = m|N(t) = n + m)P(N(t) = n +m)

= (n + m)pn(l ) p)mei/\tw

(n+m)!

_ rp AP 1) (A — pH)"

n! m!
=P(N1(t) = n)P(Na(t) = m).

This proves the independence of Ny (t) and Ny(t) and that
Ny (t) ~ Poisson(Apt), Na(t) ~ Poisson(A(1—p)t).

Both {N1(¢)} and {N2(t)} inherit the stationary and independent
increment properties from {N(¢)}, and hence are both Poisson

processes.
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Some “Converse” of Thinning & Superposition

Consider two indep. Poisson processes {N(t)} and {Np(t)} w/
respective rates A4 and Ap. Let
SA = arrival time of the nth A event

SB — arrival time of the mth B event
Find P(S2 < SB).

Approach 1:
Observer that S ~ Gamma(n, A4), SE ~ Gamma(m, \g) and
they are independent. Thus

n—1 m—1
Q)" Q)™

P(Sy < Sp) = / Aae 4 (-1 B¢ - 1)

<y
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Some “Converse” of Thinning & Superposition (Cont'd)
Let N(t) = Na(t) + Np(t) be the superposition of the two
processes. Let

{1 if the ith event in the superpositon process is an A event
1 = .

0 otherwise
Aa

The I;, 1 =1,2,... are i.i.d. Bernoulli(p), where p = Yot
A+ AB

Approach 2:

)\ n
P(S/' < SP) = P(the first n events are all A events) = <A>
Ad+ B

P(S4 < SB) = P(at least n A events occur before m B events)
= P(at least n heads before m tails)

= P(at least n heads in the first n +m — 1 tosses)

_n%l n+m—1 >\A >k< )\B >n+m1k
N k Aa+Ap Aa+Ap

k=n
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Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate A. If an event occurs at time
t will be classified as a type i event with probability p;(¢),
i=1,...,k > . pi(t) =1, for all t, independently of all other
events. then

N;(t) = number of type i events occurring in [0,¢], i =1,... k.

Note N (t) = S°% | Ny(t). Then Ny(t), i=1,...,k are
independent Poisson random variables with means )\fg pi(s)ps.

Remark: Note {N;(t),t > 0} are NOT Poisson processes.
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Example
» Policyholders of a certain insurance company have accidents
occurring according to a Poisson process with rate \.
» The amount of time 7" from when the accident occurs until a
claim is made has distribution G(t) = P(T' < t).
» Let N.(t) be the number of claims made by time t.
Find the distribution of N,(¢).

Solution. Suppose an accident occurred at time s. It is claimed by
time t if s+ T <t, i.e., with probability

p(s) =P(T <t—s)=G(—s).

We call an accident type | if it's completed before ¢, and type Il
otherwise. By Proposition 5.3, N,(t) has a Poisson distribution
with mean

)\/ pS—)\/Gt—sds—)\/G
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5.4.1 Nonhomogeneous Poisson Process
Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary)
Poisson process with intensity function \(¢) > 0 is a counting
process { N (t),t > 0} satisfying
(i) N(0) =0.
(ii) having independent increments.
(i) P(N(t+h) = N(t) =1) = A(t)h + o(h).
(iv) P(N(t+ h) — N(t) > 2) = o(h).

Definition 5.4b. A nonhomogeneous Poisson process with

intensity function A(t) > 0 is a counting process {N(t),t > 0}

satisfying

(i) N(0) =0,

(ii) for s,t >0, N(t+ s) — N(s) is independent of N(s)
(independent increment)

(iii) For s,t >0, N(t+s) — N(s) ~ Poisson(m(t + s) — m(s)),
where m(t) = fg A(u)du

The two definitions are equivalent.
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The Interarrival Times of a Nonhomogeneous Poisson
Process Are NOT Independent

A nonhomogeneous Poisson process has independent increment
but its interarrival times between events are

» neither independent
» nor identically distributed.

Proof. Homework.
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Proposition 5.4

Let {N1(t),t > 0}, and {Na(t),t > 0} be two independent
nonhomogeneous Poisson process with respective intensity
functions A1 (t) and Aao(t), and let N(¢t) = Ni(t) + Na(t). Then

(a) {N(t),t > 0} is a nonhomogeneous Poisson process with
intensity function A1 (t) + Aa(t).

(b) Given that an event of the {N(t¢),t > 0} process occurs at
time t then, independent of what occurred prior to ¢, the
event at t was from the {Ny(¢)} process with probability

A1 (t)
A1(t) + Aa(t)
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5.4.2 Compound Poisson Processes

Definition. Let {N(¢)} be a (homogeneous) Poisson process with
rate A and Y7, Ys,... are i.i.d random variables independent of
{N(t)}. The process

i=1

is called a compound Poisson process, in which X (t) is defined as
0if N(t) =0.

A compound Poisson process has

» independent increment, since
X(t+5) - X(s) = SNV v v is independent of
X(s) =25 v, and

> stationary increment, since
X(t+s)—X(s) = Zi]\i(ﬁs)*N(s) Yin(s) has the same
distribution as X (t) = SN Dy;
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The Mean of a Compound Poisson Process

Suppose E[Y;] = puy, Var(Y;) = 2. Note that E[N(¢)] = At.

EX(0IN(0)] = Y EYIN (D)
= S""EY] (since ¥i's are indep. of N ()
= N(t)puy
Thus

E[X(8)] = EE[X @) N ()] = E[N(#)]py = Mpy
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Variance of a Compound Poisson Process (Cont'd)
Similarly, using that E[N(t)] = Var(N(t)) = At, we have

N(

Var[X(8)|N(8)] = Var (Z, Uy,

E[Var(X (t)|N(t))] = E[N(t)o3] = Mod
Var(E[X (t)|N(t)]) = Var(N(t)py) = Var(N(t))uy = Atpy,

Thus

Var(X(t)) = E[Var[X(t)|N(t)]] + Var(E[X (t)|N(t)])
= (0% + p3) = ME[Y/]
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CLT of a Compound Poisson Process

As t — o0, the distribution of
X(1) ~EX(5)] _ X(t) My
Var(X(®) \/xt(o? +pi2)

converges to a standard normal distribution N (0, 1).

Lecture 9 - 21



5.4.3 Conditional Poisson Processes

Definition. A conditional (or mixed) Poisson process
{N(t),t > 0} is a counting process satisfying
(i) N(0) =0,
(ii) having stationary increment, and
(iii) there is a random variable A > 0 with probability density
g(\), such that given A = ),

N(t+ s) — N(s) ~ Poisson(\t),

- (At)F

P(N(t+s)—N(s)=k) = /OOO e’)‘tTg()\)d)\, k=0,1,...
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Remark: In general, a conditional Poisson process does NOT have
independent increment.

P(N(s) =, N(t +s) = N(s) = k)
/ —)\s )‘8 —)\t (At)kg()\)d)\

k!
< e 28) As (A)dA) ( / b e_’\t()zl)kg(A)d)\)
— P(N )P(N(t+s) N(Es) = k)
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