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Branching Processes
Consider a population of individuals.

• All individuals have the same lifetime
• Each individual will produce a random number of offsprings at

the end of its life
Let Xn = size of the n-th generation, n = 0, 1, 2, . . ..
If Xn−1 = k, the k individuals in the (n − 1)-th generation will
independently produce Zn,1, Zn,2, . . . , Zn,k new offsprings, and Zn,1,
Zn,2, . . . , Zn,Xn−1 are i.i.d such that

P (Zn,i = j) = Pj , j ≥ 0.

We suppose that Pj < 1 for all j ≥ 0.

Xn =
∑Xn−1

i=1
Zn,i (1.1)

{Xn} is a Markov chain with state space = {0, 1, 2, . . .} .
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Mean of a Branching Process

Let µ = E[Zn,i] =
∑∞

j=0 jPj . Since Xn =
∑Xn−1

i=1 Zn,i, we have

E[Xn|Xn−1] = E
[∑Xn−1

i=1
Zn,i

∣∣∣Xn−1

]
= Xn−1E[Zn,i] = Xn−1µ

So
E[Xn] = E[E[Xn|Xn−1]] = E[Xn−1µ] = µE[Xn−1]

If X0 = 1, then

E[Xn] = µE[Xn−1] = µ2E[Xn−2] = . . . = µn

• If µ < 1 ⇒ E[Xn] → 0 as n → ∞ ⇒ limn→∞ P(Xn ≥ 1) = 0
the branching processes will eventually die out.

• What if µ = 1 or µ > 1?
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Variance of a Branching Process
Let σ2 = Var[Zn,i] =

∑∞
j=0(j − µ)2Pj . Var(Xn) may be obtained

using the conditional variance formula
Var(Xn) = E[Var(Xn|Xn−1)] + Var(E[Xn|Xn−1]).

Again from that Xn =
∑Xn−1

i=1 Zn,i, we have
E[Xn|Xn−1] = Xn−1µ, Var(Xn|Xn−1) = Xn−1σ2

and hence
Var(E[Xn|Xn−1]) = Var(Xn−1µ) = µ2Var(Xn−1)
E[Var(Xn|Xn−1)] = σ2E[Xn−1] = σ2µn−1E[X0].

So
Var(Xn) = σ2µn−1E[X0] + µ2Var(Xn−1)

= σ2E[X0](µn−1 + µn + . . . + µ2n−2) + µ2nVar(X0)

=

σ2µn−1
(

1−µn

1−µ

)
E[X0] + µ2nVar(X0) if µ ̸= 1

nσ2E[X0] + µ2nVar(X0) if µ = 1
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Extinction Probability of a Branching Process
Define

En = {Xn = 0}, n ≥ 1,

the event that the population is extinct by generation n, and let
E = {population is ultimately extinct}.

Then
E = {Xn = 0 for some n ≥ 1} =

∞⋃
n=1

En.

Since
E1 ⊆ E2 ⊆ · · · ,

it follows that

P (E) = P

( ∞⋃
n=1

En

)
= lim

n→∞
P (En) = lim

n→∞
P (Xn = 0).
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Extinction Probability of a Branching Process

Let π0 = lim
n→∞

P(Xn = 0|X0 = 1)

= P(the population will eventually die out|X0 = 1)
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Extinction Probability in the Subcritical Case

Extinction by generation n

P (Xn = 0) = 1 − P (Xn ≥ 1) = 1 −
∞∑

k=1
P (Xn = k)

≥ 1 −
∞∑

k=1
k P (Xn = k) = 1 − E(Xn) = 1 − µn.

Taking limits

P (E) = lim
n→∞

P (Xn = 0) ≥ lim
n→∞

(1 − µn) = 1, (µ < 1).

Thus, P (E) = 1: a subcritical branching process goes extinct a.s.
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Generating Functions

For a non-negative integer-valued random variable T , the generating
function of T is the expected value of sT as a function of s

G(s) = E[sT ] =
∑∞

k=0
skP(T = k),

in which sT is defined as 0 if T = ∞.
Since 0 ≤ P(T = k) ≤ 1, the generating function is always
well-defined for −1 ≤ s ≤ 1
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Examples of Generating Functions

• If T has a geometric distribution: P (T = k) = p(1 − p)k,
k = 0, 1, 2, . . ., the generating function of T is

G(s) =
∑∞

k=0
skP(T = k) =

∑∞
k=0

skp(1 − p)k = p

1 − (1 − p)s

• If T has a Binomial distribution P (T = k) =
(n

k

)
pk(1 − p)n−k,

k = 0, 1, 2, . . . , n, the generating function of T is

G(s) =
∑∞

k=0
skP(T = k) =

∑∞
k=0

sk

(
n

k

)
pk(1 − p)n−k

= (ps + (1 − p))n
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Properties of Generating Function

G(s) = E[sT ] =
∞∑

k=0
skP(T = k)

• G(s) is a power series converging absolutely for all −1≤s≤1.
since 0 ≤ P(T = k) ≤ 1 and

∑
k P(T = k) ≤ 1.

• G(1) = P(T < ∞)
{

= 1 if T is finite w/ prob. 1
< 1 otherwise

• P (T = k) = G(k)(0)
k!

Knowing G(s) ⇔ Knowing P(T = k) for all k = 0, 1, 2, . . .
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More Properties of Generating Functions

G(s) = E[sT ] =
∞∑

k=0
skP(T = k)

• E[T ] = lims→1− G′(s) if it exists because

G′(s) = d

ds
E[sT ] = E[TsT −1] =

∞∑
k=1

sk−1kP(T = k).

• E[T (T − 1)] = lims→1− G′′(s) if it exists because

G′′(s) = E[T (T − 1)sT −2] =
∑∞

k=2
sk−2k(k − 1)P(T = k)

• If T and U are independent non-negative-integer-valued
random variables, with generating function GT (s) and GU (s)
respectively, then the generating function of T + U is

GT +U (s) = E[sT +U ] = E[sT ]E[sU ] = GT (s)GU (s)
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Properties of Probability Generating Function

Definition
Let

G(s) = E(sX)

be the probability generating function (PGF) of a discrete random
variable X.

1 Then:
(a) G(1) = 1,
(b) P (X = k) = G(k)(0)

k! , k ≥ 0,
(c) E(X) = G′(1),
(d) Var(X) = G′′(1) + G′(1) − (G′(1))2.

2 If GX(s) = GY (s) for all s, then X and Y have the same
distribution.

3 If X and Y are independent, then
GX+Y (s) = GX(s)GY (s).Branching Processes and Generating Functions 1-12



Generating Functions of the Branching Processes
Let g(s) = E[sZn,i ] =

∑∞
k=0 Pksk be the generating function of Zn,i,

and Gn(s) be the generating function of Xn, n = 0, 1, 2, . . .. Then
{Gn(s)} satisfies the following two iterative equations.

(i) Gn+1(s) = Gn(g(s)) for n = 0, 1, 2, . . .

(ii) Gn+1(s) = g(Gn(s)) if X0 = 1, for n = 0, 1, 2, . . .

Proof of (i).
E[sXn+1 |Xn] = E

[
s
∑Xn

i=1 Zn,i

]
= E

[∏Xn

i=1
sZn,i

]
=
∏Xn

i=1
E[sZn,i ] by indep. of Zn,i’s

=
∏Xn

i=1
g(s) as g(s) = E[sZn,i ]

= g(s)Xn

From which, we have
Gn+1(s) = E[sXn+1 ] = E[E[sXn+1 |Xn]] = E[g(s)Xn ] = Gn(g(s))

since Gn(s) = E[sXn ].
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Proof of (ii) Gn+1(s) = g(Gn(s)) if X0 = 1
Suppose there are k individuals in the first generation (X1 = k). Let Yi be
the number offspring of the ith individual in the first generation in the
(n + 1)st generation. Obviously,

Xn+1 = Y1 + . . . + Yk.

Observe Y1, . . . , Yk’s are indep and each has the same distn. as Xn since
they are all the size of the nth generation of a single ancestor. Thus, by
indep. of Yi’s

E[sXn+1 |X1 = k] = E
[
sY1+...+Yk

]
= E

[∏k

i=1
sYi

]
=
∏k

i=1
E[sYi ]

Since Yi’s have the same dist’n as Xn and Gn(s) = E[sXn ], we have

E[sXn+1 |X1 = k] =
∏k

i=1
Gn(s) = (Gn(s))k

Since X0 = 1, X1 = Z1,1, and hence P(X1 = k) = Pk.

Gn+1(s) = E[sXn+1 ] =
∞∑

k=0
E[sXn+1 |X1 = k]Pk =

∞∑
k=0

(Gn(s))kPk = g(Gn(s)),

where the last equality comes from that g(s) =
∑∞

k=0 Pksk.
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Example: calculating distributions of Xn

Suppose X0 = 1, and (P0, P1, P2) = (1/4, 1/2, 1/4). Find the
distribution of X2.
Sol.

g(s) = 1
4s0 + 1

2s1 + 1
4s2 = (1 + s)2/4.

Since X0 = 1, G0(s) = E[sX0 ] = E[s1] = s. From (i) we have
G1(s) = G0(g(s)) = g(s) = (1 + s)2/4

G2(s) = G1(g(s)) = 1
4(1 + 1

4(1 + s)2)2 = 1
64(5 + 2s + s2)2

= 1
64(25 + 20s + 14s2 + 4s3 + s4) =

∞∑
k=0

P(X2 = k)sk

The coefficient of sk in the polynomial of G2(s) is the chance that
X2 = k.

k 0 1 2 3 4
P(X2 = k) 25

64
20
64

14
64

4
64

1
64

and P(X2 = k) = 0 for k ≥ 5.
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Extinction Probability of a Branching Process

Let π0 = lim
n→∞

P(Xn = 0|X0 = 1)

= P(the population will eventually die out|X0 = 1)

As Gn(s) = E[sXn ] =
∑∞

k=0 P (Xn = k)sk, plugging in s = 0, we get

Gn(0) = P (Xn = 0) = P (extinct by the nth generation).

Recall that if X0 = 1, G1(s) = g(s), and Gn+1(s) = g(Gn(s)). We
can compute Gn(0) iteratively as follows

G1(0) = g(0)
Gn+1(0) = g(Gn(0)), n = 1, 2, 3, . . .

Finally, we can get the extinction probability by taking the limit

π0 = lim
n→∞

Gn(0).
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Extinction Probability

Theorem 1.1 (Extinction Probability)
Given a branching process, let G be the probability generating
function of the offspring distribution.

Then the probability of eventual extinction is the smallest positive
root of the equation

s = G(s).

If µ ≤ 1 (the subcritical and critical cases), then the extinction
probability is equal to 1.
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Proof of Part 1

1

1

y = x
g(x)

g(0) = G1(0)
g(G1(0)) = G2(0)
g(G2(0)) = G3(0)

g(G∞(0)) = G∞(0)

G1(0)
G2(0)

G3(0) G∞(0)
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Proof of Extinction Probability (Step 1)

Let
en = P (Zn = 0)

be the probability that the population is extinct by generation n.

Using the branching property and PGFs,

en = P (Zn = 0) = Gn(0) = G(Gn−1(0)) = G(en−1), n ≥ 1.

Recursive relation

en = G(en−1)
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Proof Sketch: Fixed Point Iteration

Let en := P(Xn = 0 | X0 = 1) = Gn(0).
If X0 = 1, we have the PGF recursion

Gn+1(s) = g(Gn(s)).

Plugging in s = 0 gives

en+1 = Gn+1(0) = g(Gn(0)) = g(en).

Key recursion

en+1 = g(en)
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Proof of Extinction Probability (Step 2)
From earlier results,

en → e as n → ∞,

where e is the eventual extinction probability.

Taking limits in
en = G(en−1)

and using continuity of G, we obtain

e = G(e).

Conclusion
The extinction probability e is a root of

s = G(s).
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Proof of Extinction Probability (Step 3)

Let x > 0 be any solution of

x = G(x).

We will show that
e ≤ x.

Recall that
G(s) =

∞∑
k=0

skP (X = k)

is an increasing function on (0, 1].
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Proof of Extinction Probability (Step 4)

Base case:
e1 = P (Z1 = 0) = G(0) ≤ G(x) = x.

Inductive step:
Assume

ek ≤ x for all k < n.

Then
en = G(en−1) ≤ G(x) = x.
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Proof of Extinction Probability (Conclusion)

Since
en ≤ x for all n,

taking limits gives
e ≤ x.

Result
The extinction probability e is the smallest positive solution of

s = G(s).
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Proof of Part 2
Let µ = E[Zn,i] =

∑∞
j=0 jPj . If µ ≤ 1, the extinction probability π0 is

1.
Proof.

1

y = x

g(x)

g(0) = G1(0)

g(G1(0)) = G2(0)
g(G2(0)) = G3(0)

G∞(0) = 1

G1(0)
G2(0)

G3(0)
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Formal Proof

Let h(s) = g(s) − s. Since g(1) = 1, g′(1) = µ,

h(1) = g(1) − 1 = 0,

h′(s) =
( ∞∑

j=1
jPjsj−1

)
− 1 ≤

( ∞∑
j=1

jPj

)
− 1 = µ − 1 for 0 ≤ s < 1

Thus µ ≤ 1 ⇒ h′(s) ≤ 0 for 0 ≤ s < 1
⇒ h(s) is non-increasing in [0, 1)
⇒ h(s) > h(1) = 0 for 0 ≤ s < 1
⇒ g(s) > s for 0 ≤ s < 1
⇒ There is no root in [0,1).
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Extinction Probability When µ > 1
If µ > 1, there is a unique root of the equation g(s) = s in the
domain [0, 1), and that is the extinction probability.
Proof.

1

1

y = x
g(x)

g(0) = G1(0)
g(G1(0)) = G2(0)
g(G2(0)) = G3(0)

g(G∞(0)) = G∞(0)

G1(0)
G2(0)

G3(0) G∞(0)Branching Processes and Generating Functions 1-27



Formal Proof

Let h(s) = g(s) − s. Observe that

h(0) = g(0) = P0 > 0
h′(0) = g′(0) − 1 = P1 − 1 < 0

Then µ > 1 ⇒ h′(1) = µ − 1 > 0
⇒ h(s) is increasing near 1
⇒ h(1 − δ) < h(1) = 0 for δ > 0 small enough

Since h(s) is continuous in [0, 1), there must be a root to h(s) = s.
The root is unique since

h′′(s) = g′′(s) =
∑∞

j=2
j(j − 1)Pjsj−2 ≥ 0 for 0 ≤ s < 1

h(s) is convex in [0,1).
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