

Branching Processes and Generating Functions

Cong Ma

University of Chicago, Winter 2026

Branching Processes

Consider a population of individuals.

- All individuals have the same lifetime
- Each individual will produce a random number of offsprings at the end of its life

Let X_n = size of the n -th generation, $n = 0, 1, 2, \dots$

If $X_{n-1} = k$, the k individuals in the $(n-1)$ -th generation will independently produce $Z_{n,1}, Z_{n,2}, \dots, Z_{n,k}$ new offsprings, and $Z_{n,1}, Z_{n,2}, \dots, Z_{n,X_{n-1}}$ are i.i.d such that

$$P(Z_{n,i} = j) = P_j, \quad j \geq 0.$$

We suppose that $P_j < 1$ for all $j \geq 0$.

$$X_n = \sum_{i=1}^{X_{n-1}} Z_{n,i} \tag{1.1}$$

$\{X_n\}$ is a Markov chain with state space $= \{0, 1, 2, \dots\}$.

Mean of a Branching Process

Let $\mu = E[Z_{n,i}] = \sum_{j=0}^{\infty} j P_j$. Since $X_n = \sum_{i=1}^{X_{n-1}} Z_{n,i}$, we have

$$E[X_n | X_{n-1}] = E\left[\sum_{i=1}^{X_{n-1}} Z_{n,i} \middle| X_{n-1}\right] = X_{n-1} E[Z_{n,i}] = X_{n-1} \mu$$

So

$$E[X_n] = E[E[X_n | X_{n-1}]] = E[X_{n-1} \mu] = \mu E[X_{n-1}]$$

If $X_0 = 1$, then

$$E[X_n] = \mu E[X_{n-1}] = \mu^2 E[X_{n-2}] = \dots = \mu^n$$

- If $\mu < 1 \Rightarrow E[X_n] \rightarrow 0$ as $n \rightarrow \infty \Rightarrow \lim_{n \rightarrow \infty} P(X_n \geq 1) = 0$
the branching processes will eventually die out.
- What if $\mu = 1$ or $\mu > 1$?

Variance of a Branching Process

Let $\sigma^2 = \text{Var}[Z_{n,i}] = \sum_{j=0}^{\infty} (j - \mu)^2 P_j$. $\text{Var}(X_n)$ may be obtained using the conditional variance formula

$$\text{Var}(X_n) = \mathbb{E}[\text{Var}(X_n|X_{n-1})] + \text{Var}(\mathbb{E}[X_n|X_{n-1}]).$$

Again from that $X_n = \sum_{i=1}^{X_{n-1}} Z_{n,i}$, we have

$$\mathbb{E}[X_n|X_{n-1}] = X_{n-1}\mu, \quad \text{Var}(X_n|X_{n-1}) = X_{n-1}\sigma^2$$

and hence

$$\begin{aligned}\text{Var}(\mathbb{E}[X_n|X_{n-1}]) &= \text{Var}(X_{n-1}\mu) = \mu^2 \text{Var}(X_{n-1}) \\ \mathbb{E}[\text{Var}(X_n|X_{n-1})] &= \sigma^2 \mathbb{E}[X_{n-1}] = \sigma^2 \mu^{n-1} \mathbb{E}[X_0].\end{aligned}$$

So

$$\begin{aligned}\text{Var}(X_n) &= \sigma^2 \mu^{n-1} \mathbb{E}[X_0] + \mu^2 \text{Var}(X_{n-1}) \\ &= \sigma^2 \mathbb{E}[X_0] (\mu^{n-1} + \mu^n + \dots + \mu^{2n-2}) + \mu^{2n} \text{Var}(X_0)\end{aligned}$$

$$\text{Branching Processes and Generating Functions}$$
$$\begin{cases} \sigma^2 \mu^{n-1} \left(\frac{1-\mu^n}{1-\mu} \right) \mathbb{E}[X_0] + \mu^{2n} \text{Var}(X_0) & \text{if } \mu \neq 1 \\ n\sigma^2 \mathbb{E}[X_0] + \mu^{2n} \text{Var}(X_0) & \text{if } \mu = 1 \end{cases}$$

Extinction Probability of a Branching Process

Define

$$E_n = \{X_n = 0\}, \quad n \geq 1,$$

the event that the population is extinct by generation n , and let

$$E = \{\text{population is ultimately extinct}\}.$$

Then

$$E = \{X_n = 0 \text{ for some } n \geq 1\} = \bigcup_{n=1}^{\infty} E_n.$$

Since

$$E_1 \subseteq E_2 \subseteq \dots,$$

it follows that

$$P(E) = P\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \rightarrow \infty} P(E_n) = \lim_{n \rightarrow \infty} P(X_n = 0).$$

Extinction Probability of a Branching Process

Let $\pi_0 = \lim_{n \rightarrow \infty} P(X_n = 0 | X_0 = 1)$
 $= P(\text{the population will eventually die out} | X_0 = 1)$

Extinction Probability in the Subcritical Case

Extinction by generation n

$$\begin{aligned} P(X_n = 0) &= 1 - P(X_n \geq 1) = 1 - \sum_{k=1}^{\infty} P(X_n = k) \\ &\geq 1 - \sum_{k=1}^{\infty} k P(X_n = k) = 1 - \mathbb{E}(X_n) = 1 - \mu^n. \end{aligned}$$

Taking limits

$$P(E) = \lim_{n \rightarrow \infty} P(X_n = 0) \geq \lim_{n \rightarrow \infty} (1 - \mu^n) = 1, \quad (\mu < 1).$$

Thus, $P(E) = 1$: a subcritical branching process goes extinct a.s.

Generating Functions

For a non-negative integer-valued random variable T , the generating function of T is the expected value of s^T as a function of s

$$G(s) = E[s^T] = \sum_{k=0}^{\infty} s^k P(T = k),$$

in which s^T is defined as 0 if $T = \infty$.

Since $0 \leq P(T = k) \leq 1$, the generating function is always well-defined for $-1 \leq s \leq 1$

Examples of Generating Functions

- If T has a geometric distribution: $P(T = k) = p(1 - p)^k$, $k = 0, 1, 2, \dots$, the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^k P(T = k) = \sum_{k=0}^{\infty} s^k p(1 - p)^k = \frac{p}{1 - (1 - p)s}$$

- If T has a Binomial distribution $P(T = k) = \binom{n}{k} p^k (1 - p)^{n-k}$, $k = 0, 1, 2, \dots, n$, the generating function of T is

$$\begin{aligned} G(s) &= \sum_{k=0}^{\infty} s^k P(T = k) = \sum_{k=0}^{\infty} s^k \binom{n}{k} p^k (1 - p)^{n-k} \\ &= (ps + (1 - p))^n \end{aligned}$$

Properties of Generating Function

$$G(s) = \mathbb{E}[s^T] = \sum_{k=0}^{\infty} s^k \mathbb{P}(T = k)$$

- $G(s)$ is a power series converging absolutely for all $-1 \leq s \leq 1$.
since $0 \leq \mathbb{P}(T = k) \leq 1$ and $\sum_k \mathbb{P}(T = k) \leq 1$.
- $G(1) = \mathbb{P}(T < \infty) \begin{cases} = 1 & \text{if } T \text{ is finite w/ prob. 1} \\ < 1 & \text{otherwise} \end{cases}$
- $\mathbb{P}(T = k) = \frac{G^{(k)}(0)}{k!}$
Knowing $G(s) \Leftrightarrow$ Knowing $\mathbb{P}(T = k)$ for all $k = 0, 1, 2, \dots$

More Properties of Generating Functions

$$G(s) = \mathbb{E}[s^T] = \sum_{k=0}^{\infty} s^k \mathbb{P}(T = k)$$

- $\mathbb{E}[T] = \lim_{s \rightarrow 1^-} G'(s)$ if it exists because

$$G'(s) = \frac{d}{ds} \mathbb{E}[s^T] = \mathbb{E}[Ts^{T-1}] = \sum_{k=1}^{\infty} s^{k-1} k \mathbb{P}(T = k).$$

- $\mathbb{E}[T(T-1)] = \lim_{s \rightarrow 1^-} G''(s)$ if it exists because

$$G''(s) = \mathbb{E}[T(T-1)s^{T-2}] = \sum_{k=2}^{\infty} s^{k-2} k(k-1) \mathbb{P}(T = k)$$

- If T and U are **independent** non-negative-integer-valued random variables, with generating function $G_T(s)$ and $G_U(s)$ respectively, then the generating function of $T + U$ is

$$G_{T+U}(s) = \mathbb{E}[s^{T+U}] = \mathbb{E}[s^T] \mathbb{E}[s^U] = G_T(s) G_U(s)$$

Properties of Probability Generating Function

Definition

Let

$$G(s) = \mathbb{E}(s^X)$$

be the probability generating function (PGF) of a discrete random variable X .

- ① Then:
 - ⓐ $G(1) = 1$,
 - ⓑ $P(X = k) = \frac{G^{(k)}(0)}{k!}$, $k \geq 0$,
 - ⓒ $\mathbb{E}(X) = G'(1)$,
 - ⓓ $\text{Var}(X) = G''(1) + G'(1) - (G'(1))^2$.
- ② If $G_X(s) = G_Y(s)$ for all s , then X and Y have the same distribution.
- ③ If X and Y are independent, then

Generating Functions of the Branching Processes

Let $g(s) = E[s^{Z_{n,i}}] = \sum_{k=0}^{\infty} P_k s^k$ be the generating function of $Z_{n,i}$, and $G_n(s)$ be the generating function of X_n , $n = 0, 1, 2, \dots$. Then $\{G_n(s)\}$ satisfies the following two iterative equations.

$$(i) \quad G_{n+1}(s) = G_n(g(s)) \quad \text{for } n = 0, 1, 2, \dots$$

$$(ii) \quad G_{n+1}(s) = g(G_n(s)) \quad \text{if } X_0 = 1, \text{ for } n = 0, 1, 2, \dots$$

Proof of (i).

$$\begin{aligned} E[s^{X_{n+1}} | X_n] &= E\left[s^{\sum_{i=1}^{X_n} Z_{n,i}}\right] = E\left[\prod_{i=1}^{X_n} s^{Z_{n,i}}\right] \\ &= \prod_{i=1}^{X_n} E[s^{Z_{n,i}}] \quad \text{by indep. of } Z_{n,i} \text{'s} \\ &= \prod_{i=1}^{X_n} g(s) \quad \text{as } g(s) = E[s^{Z_{n,i}}] \\ &= g(s)^{X_n} \end{aligned}$$

From which, we have

$$G_{n+1}(s) = E[s^{X_{n+1}}] = E[E[s^{X_{n+1}} | X_n]] = E[g(s)^{X_n}] = G_n(g(s))$$

Branching Processes and Generating Functions
since $G_n(s) = E[s^{X_n}]$.

Proof of (ii) $G_{n+1}(s) = g(G_n(s))$ if $X_0 = 1$

Suppose there are k individuals in the first generation ($X_1 = k$). Let Y_i be the number of offspring of the i th individual in the first generation in the $(n+1)$ st generation. Obviously,

$$X_{n+1} = Y_1 + \dots + Y_k.$$

Observe Y_1, \dots, Y_k 's are indep and each has the same distn. as X_n since they are all the size of the n th generation of a single ancestor. Thus, by indep. of Y_i 's

$$\mathbb{E}[s^{X_{n+1}} | X_1 = k] = \mathbb{E}[s^{Y_1 + \dots + Y_k}] = \mathbb{E}\left[\prod_{i=1}^k s^{Y_i}\right] = \prod_{i=1}^k \mathbb{E}[s^{Y_i}]$$

Since Y_i 's have the same dist'n as X_n and $G_n(s) = \mathbb{E}[s^{X_n}]$, we have

$$\mathbb{E}[s^{X_{n+1}} | X_1 = k] = \prod_{i=1}^k G_n(s) = (G_n(s))^k$$

Since $X_0 = 1$, $X_1 = Z_{1,1}$, and hence $\mathbb{P}(X_1 = k) = P_k$.

$$G_{n+1}(s) = \mathbb{E}[s^{X_{n+1}}] = \sum_{k=0}^{\infty} \mathbb{E}[s^{X_{n+1}} | X_1 = k] P_k = \sum_{k=0}^{\infty} (G_n(s))^k P_k = g(G_n(s)),$$

Example: calculating distributions of X_n

Suppose $X_0 = 1$, and $(P_0, P_1, P_2) = (1/4, 1/2, 1/4)$. Find the distribution of X_2 .

Sol.

$$g(s) = \frac{1}{4}s^0 + \frac{1}{2}s^1 + \frac{1}{4}s^2 = (1+s)^2/4.$$

Since $X_0 = 1$, $G_0(s) = \mathbb{E}[s^{X_0}] = \mathbb{E}[s^1] = s$. From (i) we have

$$G_1(s) = G_0(g(s)) = g(s) = (1+s)^2/4$$

$$G_2(s) = G_1(g(s)) = \frac{1}{4}(1 + \frac{1}{4}(1+s)^2)^2 = \frac{1}{64}(5 + 2s + s^2)^2$$

$$= \frac{1}{64}(25 + 20s + 14s^2 + 4s^3 + s^4) = \sum_{k=0}^{\infty} \mathbb{P}(X_2 = k) s^k$$

The coefficient of s^k in the polynomial of $G_2(s)$ is the chance that $X_2 = k$.

k	0	1	2	3	4
$\mathbb{P}(X_2 = k)$	$\frac{25}{64}$	$\frac{20}{64}$	$\frac{14}{64}$	$\frac{4}{64}$	$\frac{1}{64}$

Branching Processes and Generating Functions
and $\mathbb{P}(X_2 = k) = 0$ for $k \geq 5$.

Extinction Probability of a Branching Process

Let $\pi_0 = \lim_{n \rightarrow \infty} P(X_n = 0 | X_0 = 1)$
= $P(\text{the population will eventually die out} | X_0 = 1)$

As $G_n(s) = E[s^{X_n}] = \sum_{k=0}^{\infty} P(X_n = k) s^k$, plugging in $s = 0$, we get

$G_n(0) = P(X_n = 0) = P(\text{extinct by the } n\text{th generation}).$

Recall that if $X_0 = 1$, $G_1(s) = g(s)$, and $G_{n+1}(s) = g(G_n(s))$. We can compute $G_n(0)$ iteratively as follows

$$\begin{aligned} G_1(0) &= g(0) \\ G_{n+1}(0) &= g(G_n(0)), \quad n = 1, 2, 3, \dots \end{aligned}$$

Finally, we can get the extinction probability by taking the limit

$$\pi_0 = \lim_{n \rightarrow \infty} G_n(0).$$

Extinction Probability

Theorem 1.1 (Extinction Probability)

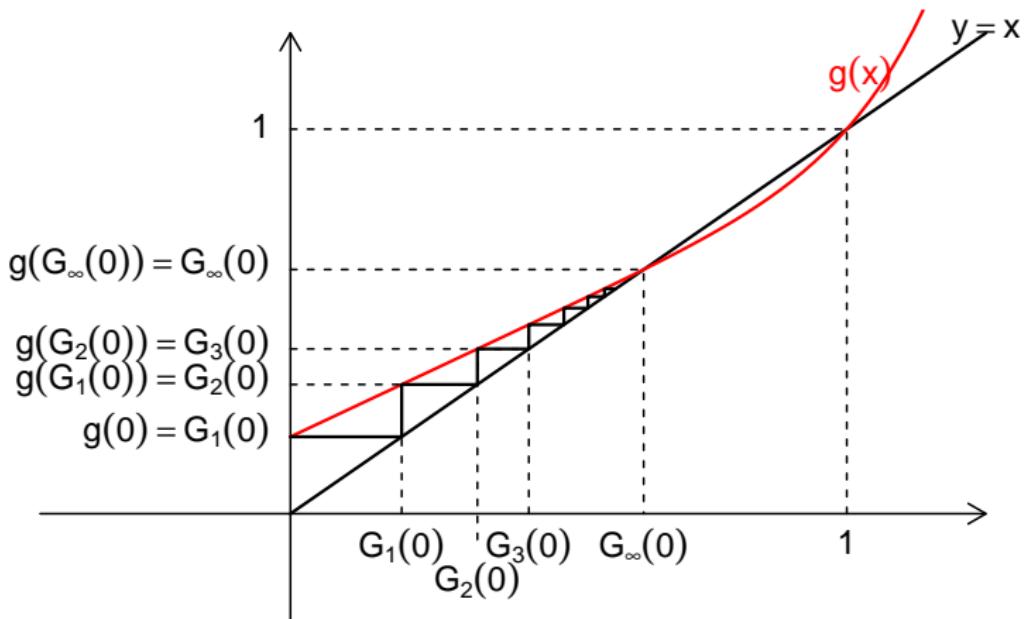
Given a branching process, let G be the probability generating function of the offspring distribution.

*Then the probability of eventual extinction is the **smallest positive root** of the equation*

$$s = G(s).$$

If $\mu \leq 1$ (the subcritical and critical cases), then the extinction probability is equal to 1.

Proof of Part 1



Proof of Extinction Probability (Step 1)

Let

$$e_n = P(Z_n = 0)$$

be the probability that the population is extinct by generation n .

Using the branching property and PGFs,

$$e_n = P(Z_n = 0) = G_n(0) = G(G_{n-1}(0)) = G(e_{n-1}), \quad n \geq 1.$$

Recursive relation

$$e_n = G(e_{n-1})$$

Proof Sketch: Fixed Point Iteration

Let $e_n := P(X_n = 0 \mid X_0 = 1) = G_n(0)$.

If $X_0 = 1$, we have the PGF recursion

$$G_{n+1}(s) = g(G_n(s)).$$

Plugging in $s = 0$ gives

$$e_{n+1} = G_{n+1}(0) = g(G_n(0)) = g(e_n).$$

Key recursion

$$e_{n+1} = g(e_n)$$

Proof of Extinction Probability (Step 2)

From earlier results,

$$e_n \rightarrow e \quad \text{as } n \rightarrow \infty,$$

where e is the eventual extinction probability.

Taking limits in

$$e_n = G(e_{n-1})$$

and using continuity of G , we obtain

$$e = G(e).$$

Conclusion

The extinction probability e is a root of

$$s = G(s).$$

Proof of Extinction Probability (Step 3)

Let $x > 0$ be any solution of

$$x = G(x).$$

We will show that

$$e \leq x.$$

Recall that

$$G(s) = \sum_{k=0}^{\infty} s^k P(X = k)$$

is an **increasing function** on $(0, 1]$.

Proof of Extinction Probability (Step 4)

Base case:

$$e_1 = P(Z_1 = 0) = G(0) \leq G(x) = x.$$

Inductive step:

Assume

$$e_k \leq x \quad \text{for all } k < n.$$

Then

$$e_n = G(e_{n-1}) \leq G(x) = x.$$

Proof of Extinction Probability (Conclusion)

Since

$$e_n \leq x \quad \text{for all } n,$$

taking limits gives

$$e \leq x.$$

Result

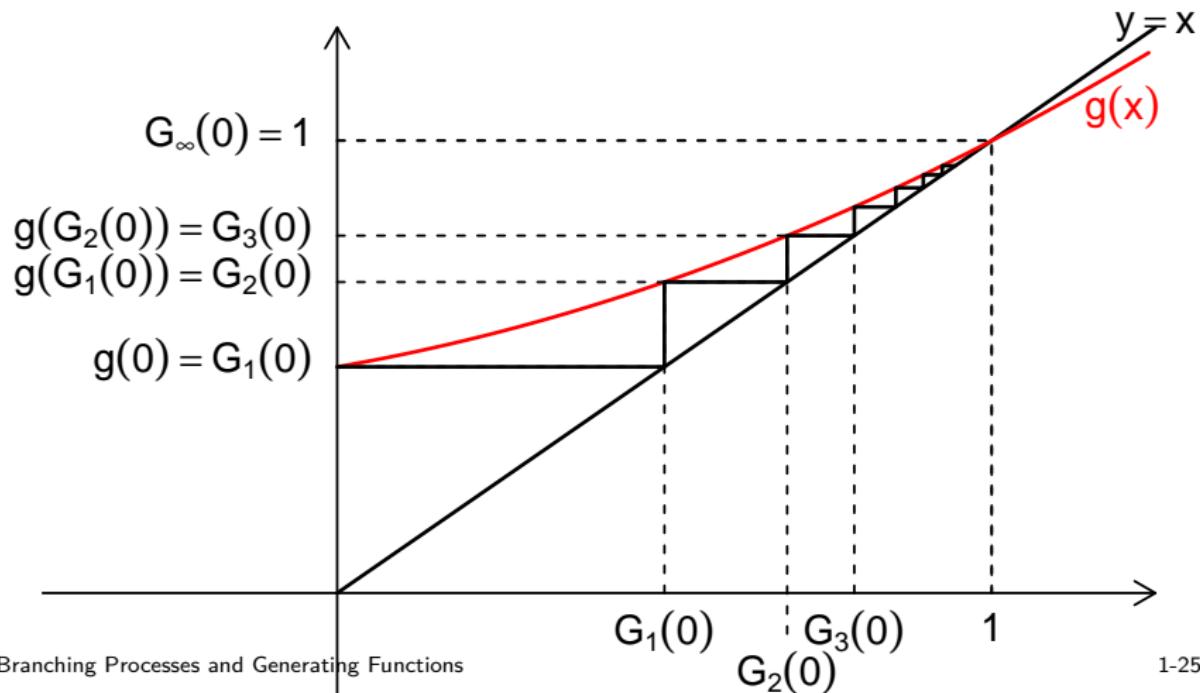
The extinction probability e is the **smallest positive solution** of

$$s = G(s).$$

Proof of Part 2

Let $\mu = E[Z_{n,i}] = \sum_{j=0}^{\infty} j P_j$. If $\mu \leq 1$, the extinction probability π_0 is 1.

Proof.



Formal Proof

Let $h(s) = g(s) - s$. Since $g(1) = 1$, $g'(1) = \mu$,

$$h(1) = g(1) - 1 = 0,$$

$$h'(s) = \left(\sum_{j=1}^{\infty} j P_j s^{j-1} \right) - 1 \leq \left(\sum_{j=1}^{\infty} j P_j \right) - 1 = \mu - 1 \quad \text{for } 0 \leq s < 1$$

Thus $\mu \leq 1 \Rightarrow h'(s) \leq 0$ for $0 \leq s < 1$

$\Rightarrow h(s)$ is non-increasing in $[0, 1)$

$\Rightarrow h(s) > h(1) = 0$ for $0 \leq s < 1$

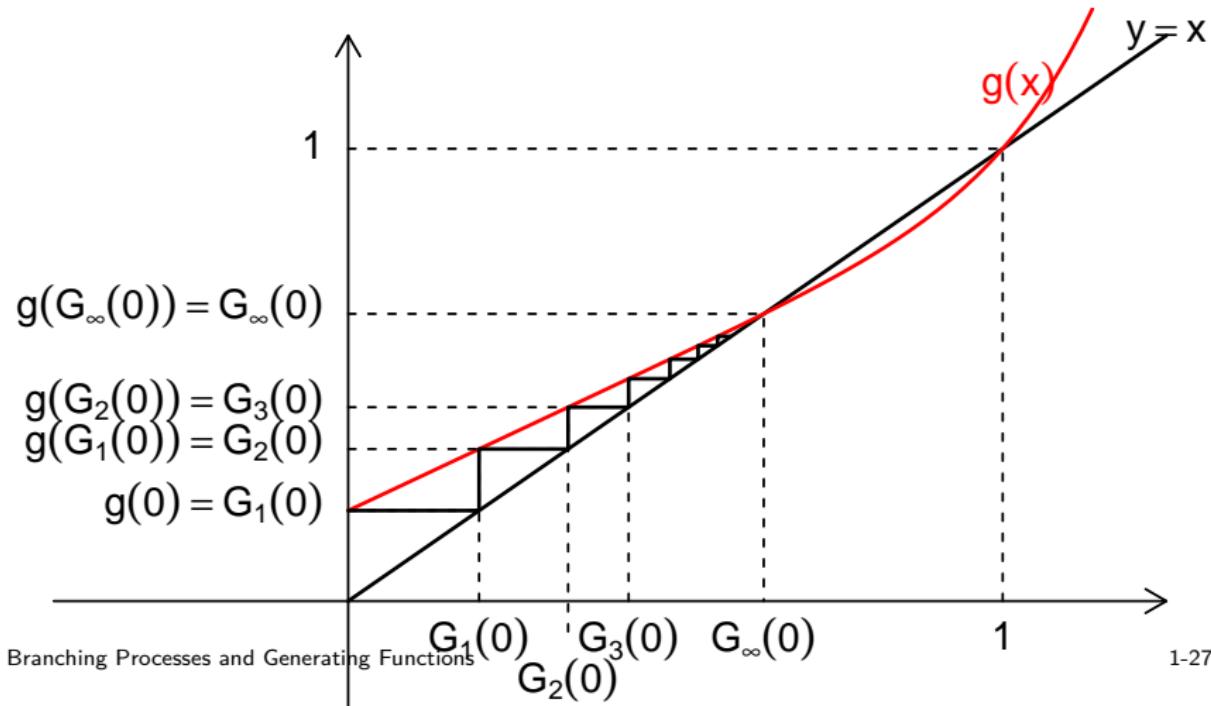
$\Rightarrow g(s) > s$ for $0 \leq s < 1$

\Rightarrow There is no root in $[0, 1)$.

Extinction Probability When $\mu > 1$

If $\mu > 1$, there is a unique root of the equation $g(s) = s$ in the domain $[0, 1)$, and that is the extinction probability.

Proof.



Formal Proof

Let $h(s) = g(s) - s$. Observe that

$$h(0) = g(0) = P_0 > 0$$

$$h'(0) = g'(0) - 1 = P_1 - 1 < 0$$

Then $\mu > 1 \Rightarrow h'(1) = \mu - 1 > 0$

$\Rightarrow h(s)$ is increasing near 1

$\Rightarrow h(1 - \delta) < h(1) = 0$ for $\delta > 0$ small enough

Since $h(s)$ is continuous in $[0, 1]$, there must be a root to $h(s) = s$.

The root is unique since

$$h''(s) = g''(s) = \sum_{j=2}^{\infty} j(j-1)P_j s^{j-2} \geq 0 \quad \text{for } 0 \leq s < 1$$

$h(s)$ is convex in $[0, 1]$.