STAT 253: Introduction to Probability Models
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Branching Processes

Consider a population of individuals.
e All individuals have the same lifetime

e Each individual will produce a random number of offsprings at
the end of its life

Let X,, = size of the n-th generation, n =0,1,2,....

If X,,—1 =k, the k individuals in the (n — 1)-th generation will
independently produce Z,, 1, Z,, 2, ..., Z,  new offsprings, and Z,, 1,
Zn2, -, Znx,_, arei.i.d such that

P(Zn,i:j):Pj7jZO-

We suppose that P; < 1 for all j > 0.

Xn-1
Xn= " Zng (1.1)

{X,} is a Markov chain with state space = {0,1,2,...} .
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Mean of a Branching Process

Let = E[Z;] = 32720 jPj. Since X, = Zgi"fl Zp i, we have

X
E[Xn|Xn—1] =E |:Zi=1 ' Zn,i Xn—1:| = Xn—lE[Zn,i] = Xp_1p

So
E[Xn] = E[E[Xn|Xn-1]] = E[Xn-14] = pE[Xp-1]

If Xo =1, then

E[Xn] = ME[Xn—l] = N2E[Xn—2] == /’Ln

o If u<1=E[X,]—>0asn—oo=lim, oo P(X,>1)=0
the branching processes will eventually die out.

e Whatif u=1or pu>17?
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Variance of a Branching Process

Let 02 = Var[Z,;] = od — w)?P;. Var(X,) may be obtained
using the conditional variance formula

Var(X,,) = E[Var(X,,|X,,—1)] + Var(E[X,| X—1]).
Again from that X,, = Zi}i"fl Zn,i, we have
E[Xn|Xn 1] = Xp_1pt, Var(X,|X, 1) = X, 10>
and hence
Var(E[X,,| Xn_1]) = Var(X,_1p) = p?Var(X,_1)
E[Var(X,| Xn_1)] = 0%E[X,_1] = 02" E[X].
So
Var(X,,) = " L E[Xo] + p®Var(X,_1)
= 2E[Xo] (" + 1" + ..+ 1P 2) + 4®Var(Xo)

{ o2t (A ) E[Xo] + 2 "Var(Xo) if £ 1
'[3{001 + 12"Var(X)) ifu=1
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Extinction Probability of a Branching Process

Define
E,={X,=0}, n>1,

the event that the population is extinct by generation n, and let

E = {population is ultimately extinct}.

Then -
E ={X, =0forsomen>1}= U E,.

n=1

Since
EiCEyC---

it follows that

:P<fj En) = lim P(E,) = lim P(X,
n=1

n—oo n—oo
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Extinction Probability of a Branching Process

Let 7o = lim P(X, =0/Xo=1)
n—0o0

= P(the population will eventually die out| Xy = 1)
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Extinction Probability in the Subcritical Case

Extinction by generation n

P(an()):l—P(an1)=1—iP(Xn=k)
k=1

(e}
>1-Y kP(Xn=k)=1-E(X,)=1-p"
k=1

Taking limits

P(E) = lim P(X,=0)> lim (1—-x") =1, (u<1).

Thus, P(E) = 1: a subcritical branching process goes extinct a.s.
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Generating Functions

For a non-negative integer-valued random variable T', the generating
function of T is the expected value of s as a function of s

_ Ty _ k o
G(s) =E[s'] = Zk:os P(T = k),
in which sT is defined as 0 if T = co.

Since 0 < P(T = k) < 1, the generating function is always
well-defined for —1 < s <1
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Examples of Generating Functions

e If T has a geometric distribution: P(T = k) = p(1 — p)*,
k=0,1,2,..., the generating function of T is

G(s) = ZZ‘;O S*P(T = k) = Z;Zo s*p(1 —p)* = ﬁ

e If T has a Binomial distribution P(T = k) = (})p*(1 — p)"7*,
k=0,1,2,...,n, the generating function of T is

Gls) =Y, SPT =k =" s (Z)pk(l —p)" "

=(ps+(1-p)"
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Properties of Generating Function

G(s) = E[sT] = i sPP(T =
k=0

e (i(s) is a power series converging absolutely for all —1<s<1.
since 0 <P(T'=k)<land )}, P(T'=k)<1

=1 if T is finite w/ prob. 1

G(1)=P(T <
* G) ( %) {< 1 otherwise

G*)(0)
k!
Knowing G(s) < Knowing P(T' = k) for all k =0,1,2,...

o P(T'=k)=
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More Properties of Generating Functions

G(s) = E[sT] = i S*P(T = k)
k=0

e E[T] =lim,_,;- G'(s) if it exists because

d

- gE[ST] =E[Ts" 1) =Y " kP(T = k).

k=1
e E[T(T —1)] =lim,_,;- G"(s) if it exists because
G"(s) =E[T(T = 1)s" 2] =" " " k(k = 1)P(T = k)
e If T and U are independent non-negative-integer-valued

random variables, with generating function Gr(s) and Gy (s)
respectively, then the generating function of T'4+ U is

Griv(s) = E[s"Y] = E[s"E[s"] = Gr(s)Gu(s)
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Properties of Probability Generating Function

Definition
Let

G(s) = E(s™)
be the probability generating function (PGF) of a discrete random
variable X.

(1] Then
G(1) =1,
P(X =k) = GU:,(O), k>0,
E(X)=G'(1),
@) Var(X) = G"(1) + G'(1) — (G'(1))%.

@ If Gx(s) = Gy(s) for all s, then X and Y have the same
distribution.

@ If X and Y are independent, then
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Generating Functions of the Branching Processes

Let g(s) = E[s%mi] = 372, Pys* be the generating function of Z,, ;,
and G, (s) be the generating function of X,,, n =0,1,2,.... Then
{Gp(s)} satisfies the following two iterative equations.

(i) Gny1(s) = Gn(g(s)) forn=0,1,2,...

(ii) Gnyi1(s) = g(Gp(s)) if Xo=1,forn=0,1,2,...
Proof of (i).
E[sX1|X,] =E [st{:’? Zw‘]

|
m

BT

Xn Z’n,z]

by indep. of Z,;'s

[ Els
H;inl 9(s) as g(s) = E[s%m]
Xn

q(s)

From which, we have

Grr1(s) = E[s™+!] = E[E[s*" | X,]] = E[g(s)™"] = Gulg(s))
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Proof of (ii) G,11(s) = g(G,(s)) if Xo=1

Suppose there are k individuals in the first generation (X; = k). Let Y; be
the number offspring of the ith individual in the first generation in the
(n + 1)st generation. Obviously,

Xps1=Y1+...+ Y

Observe Y7,...,Y;'s are indep and each has the same distn. as X, since
they are all the size of the nth generation of a single ancestor. Thus, by
indep. of Y;'s
k k :
E[s™ Xy = K] = E[s" -] = E [H Sﬂ =1L B
Since Y;'s have the same dist'n as X,, and G,,(s) = E[s%"], we have

X o TT" _ k
E[sX 1%, = 1] =[] Guls) = (Culs))
Since Xo =1, X1 = Z11, and hence P(X; = k) = P,

Grii1(s) = Els™ 1] = Y E[s 1 Xy = kP, = ) (Gn(5))* Py = g(Gul(s)),
Branching Processes and Generating licu?c(gions h=0 1-14
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Example: calculating distributions of X,

Suppose Xo =1, and (P, P, P) = (1/4,1/2,1/4). Find the
distribution of Xs.
Sol.

1 1 1
g(s) = ZSO + 551 + ZS2 = (1+s)?/4.

Since Xo =1, Go(s) = E[s*°] = E[s'] = 5. From (i) we have
Gi(s) = Golg(s)) = g(s) = (1 +5)° /4

Cals) = Calg(s)) = (14 31+ )2 = 6i4(5 12+ 52)?

1 : >
= @(25 + 205 + 145% 4 453 + 1) = > P(Xy = k)s®
k=0

The coefficient of s* in the polynomial of Ga(s) is the chance that

X, = k.
k \01234

_ 25 20 14 4 1
P(X2—k)‘64 64 64 64 64
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Extinction Probability of a Branching Process

Let mp = lim P(Xn = 0|XQ = 1)
n—o0
= P(the population will eventually die out| Xy = 1)
As G, (s) = E[s"n] = o024 P(X,, = k)s¥, plugging in s = 0, we get
G,(0) = P(X, = 0) = P(extinct by the nth generation).

Recall that if Xo =1, G1(s) = g(s), and G,41(s) = g(Gn(s)). We
can compute G, (0) iteratively as follows

G1(0) = 9(0)
Gn+1(0) = g(Gn(0)), n=1,2,3,...
Finally, we can get the extinction probability by taking the limit
mo = lim G, (0).
n— o0
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Extinction Probability

Theorem 1.1 (Extinction Probability)

Given a branching process, let G be the probability generating
function of the offspring distribution.

Then the probability of eventual extinction is the smallest positive
root of the equation

s = G(s).

If p < 1 (the subcritical and critical cases), then the extinction
probability is equal to 1.
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Proof of Part 1

Y= X
a(x
T
o (S (0)) oy e (¢) 1 s .
O R
5(0) = 64(0) :
eko)G 5(3)3:(0) X0 .
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Proof of Extinction Probability (Step 1)

Let
en = P(Z, =0)

be the probability that the population is extinct by generation n.

Using the branching property and PGFs,

€n = P(Zn == O) == Gn(O) = G(Gn_l(O)) == G(en_l), n > 1.

Recursive relation

en = G(ep—1)
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Proof Sketch: Fixed Point Iteration

Let e, :==P(X, =0 Xp=1) = G,(0).
If Xo =1, we have the PGF recursion

Gn11(s) = g(Gn(s)).

Plugging in s = 0 gives

ent1 = Gni1(0) = g(Gn(0)) = g(en).

Key recursion

ent1 = g(en)
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Proof of Extinction Probability (Step 2)

From earlier results,
én — € asn — oo,

where e is the eventual extinction probability.

Taking limits in
€n = G(enfl)

and using continuity of G, we obtain

e =G(e).

The extinction probability e is a root of

s =G(s).

Branching Processes and Generating Functions 1-21



Proof of Extinction Probability (Step 3)

Let £ > 0 be any solution of
x = G(x).

We will show that

Recall that -
G(s) = Z s*P(X =k)
k=0

is an increasing function on (0, 1].
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Proof of Extinction Probability (Step 4)

Base case:

Inductive step:
Assume
er <ax forall k <n.

Then
en = Glen—1) < G(x) = z.
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Proof of Extinction Probability (Conclusion)

Since
en < x forall n,

taking limits gives
e <.

The extinction probability e is the smallest positive solution of

s =G(s).
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Proof of Part 2

Let = E[Z;:] = >720 P If p <1, the extinction probability m is

1.
Proof.
Y~ X
Gu0) =1 | e A9
g Gz 0))= G3 [0 I | i
g Gl 0))= G2 (0]) [ ' !
9(0) =G4(0) ; E E i
| | Gi(0) 1Gs(0) 1
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Formal Proof

Let h(s) = g(s) —s. Since g(1) =1, ¢'(1) = p,
h(1) = g(1) — 1 =0,

h'(s) = (ijljjsjA)—lg (iij) —1=p—-1 for0<s<1
j=1 j=1

Thus p<1=h'(s)<0for0<s<1

= h(s) is non-increasing in [0,1)
= h(s) >h(l)=0for0<s <1
=g(s) >s for0<s<1

= There is no root in [0,1).
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Extinction Probability When ;4 > 1

If > 1, there is a unique root of the equation g(s) = s in the
domain [0, 1), and that is the extinction probability.

Proof.

g(x
i
o (e (6) ) o e (o) I : ;
9(G2(0)) =G3(0) |--------- , E E
g Gl 0)) = G2 0) b----- | ' ! '
9(0) = G4(0) A ;
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Formal Proof

Let h(s) = g(s) — s. Observe that

h(0) = g(0) = Py >0
H'(0)=¢0)—1=P -1<0
Then u>1=h'(1)=p—-1>0
= h(s) is increasing near 1
= h(1 =) < h(1) =0 for 6 > 0 small enough

Since h(s) is continuous in [0, 1), there must be a root to h(s) = s.
The root is unique since

K'(s) = g"(s) = Z;:Qj(j — )P 2>0 for0<s<1

h(s) is convex in [0,1).
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