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Outline

• What is a Markov chain?
◦ State space, Markov property
◦ Stationary chains and transition matrix P

• Examples
◦ Random walk, Gambler’s ruin, Ehrenfest model (and i.i.d. as a

degenerate case)
• Basic computations

◦ n-step transition probabilities P (n)

◦ Chapman–Kolmogorov equations and matrix powers P (n) = P n

◦ πn(j) = P(Xn = j) and πn = π0P n

Discrete-Time Markov Chains 1-2



Definitions of DTMC
Consider a stochastic process {Xn : n = 0, 1, 2, . . .} taking values in
a finite or countable set X .

• X is called the state space
• If Xn = i, i ∈ X , we say the process is in state i at time n

• Since X is countable, we can label states by integers (e.g.
{0, 1, 2, . . .}, Z, or {0, . . . , n} depending on the model).

Definition
A stochastic process {Xn : n = 0, 1, 2, . . .} is called a Markov chain
if it has the following property:

P (Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X2 = i2, X1 = i1, X0 = i0)
= P (Xn+1 = j|Xn = i)

for all states i0, i1, i2, . . . , in−1, i, j ∈ X and n ≥ 0.
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Transition Probability Matrix
If P (Xn+1 = j|Xn = i) = Pij does not depend on n, then the
process {Xn} is called a stationary Markov chain. From now on,
we consider stationary Markov chains only.
{Pij} is called the transition probabilities.

P =



P00 P01 P02 · · · P0j · · ·
P10 P11 P12 · · · P1j · · ·

... ... ... . . . ... . . .
Pi0 Pi1 Pi2 · · · Pij · · ·
... ... ... . . . ... . . .


is called the transition probability matrix.
Naturally, the transition probabilities {Pij} satisfy:

• Pij ≥ 0 for all i, j
• Row sums are 1:

∑
j Pij = 1 for all i.

In other words, P1 = 1, where 1 = (1, 1, · · · , 1, · · · )T .
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Random Walk
Consider the following random walk on integers

Xn+1 =
{

Xn + 1 with prob p

Xn − 1 with prob 1 − p

This is a Markov chain because given Xn, Xn−1, Xn−2, . . ., the
distribution of Xn+1 depends only on Xn but not Xn−1, Xn−2, . . . .
The state space is

X = {· · · , −3, −2, −1, 0, 1, 2, 3, · · · } = Z = all integers

The transition probability is

Pij =


p if j = i + 1
1 − p if j = i − 1
0 otherwise
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Gambler’s Ruin

In each round of a gambling game a player either wins $1, with
probability p, or loses $1, with probability 1 − p. The gambler starts
with $k. The game stops when the player either loses all their money,
or gains a total of $n (n > k).
The gambler’s successive fortunes form a Markov chain on
{0, 1, . . . , n} with X0 = k and transition matrix given by

Pij =


p, if j = i + 1, 0 < i < n,

1 − p, if j = i − 1, 0 < i < n,

1, if i = j = 0, or i = j = n,

0, otherwise.

Discrete-Time Markov Chains 1-6



Transition Matrix

Here is the transition matrix with n = 6 and p = 1
3 :

P =



1 0 0 0 0 0 0
2
3 0 1

3 0 0 0 0
0 2

3 0 1
3 0 0 0

0 0 2
3 0 1

3 0 0
0 0 0 2

3 0 1
3 0

0 0 0 0 2
3 0 1

3
0 0 0 0 0 0 1


.

Gambler’s ruin is an example of simple random walk with absorbing
boundaries. Since P00 = Pnn = 1, when the chain reaches 0 or n, it
stays there forever.
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Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each stage,
a ball is selected at random from the totality of K balls, and move to
the other container. Let

X0 = # of balls in container A in the beginning
Xn = # of balls in container A after n movements, n = 1, 2, 3, . . .

X = {0, 1, 2, . . . , K}

Pij =



i

K
if j = i − 1

K − i

K
if j = i + 1

0 otherwise
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IID sequence
An independent and identically distributed sequence of random
variables is trivially a Markov chain. Assume that X0, X1, . . . is an
i.i.d. sequence that takes values in {1, . . . , k} with

P(Xn = j) = pj , for j = 1, . . . , k and n ≥ 0,

where
p1 + · · · + pk = 1.

By independence,
P(X1 = j | X0 = i) = P(X1 = j) = pj .

The transition matrix is

P =


p1 p2 · · · pk

p1 p2 · · · pk
... ... . . . ...

p1 p2 · · · pk

 .
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Joint Distribution of Random Variables in a Markov
Chain

Suppose {Xn : n = 0, 1, 2, . . .} is a stationary Markov chain with
• state space X and
• transition probabilities {Pij : i, j ∈ X }.

Define π0(i) = P(X0 = i), i ∈ X to be the distribution of X0.
What is the joint distribution of X0, X1, X2?
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Joint Distribution

P(X0 = i0, X1 = i1, X2 = i2)
= P(X0 = i0)P(X1 = i1|X0 = i0)P(X2 = i2|X1 = i1, X0 = i0)
= P(X0 = i0)P(X1 = i1|X0 = i0)P(X2 = i2|X1 = i1) (Markov)
= π0(i0)Pi0i1Pi1i2

In general,

P(X0 = i0, X1 = i1, X2 = i2, . . . , Xn−1 = in−1, Xn = in)
= π0(i0)Pi0i1Pi1i2 . . . Pin−1in
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n-Step Transition Probabilities

Suppose {Xn} is a stationary Markov chain with state space X .
Define the n-step transition probabilities

P
(n)
ij = P(Xn+k = j | Xk = i) for i, j ∈ X and n, k = 0, 1, 2, . . .

How to calculate P
(n)
ij ?
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Chapman-Kolmogorov Equations

Suppose {Xn} is a stationary Markov chain with state space X .
Define the n-step transition probabilities

P
(n)
ij = P(Xn+k = j|Xk = i) for i, j ∈ X and n, k = 0, 1, 2, . . .

Then for all m, n ≥ 1,

P
(m+n)
ij =

∑
k∈X

P
(m)
ik P

(n)
kj
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Proof

P
(m+n)
ij = P(Xm+n = j|X0 = i)

=
∑
k∈X

P(Xm+n = j, Xm = k|X0 = i)

=
∑
k∈X

P(Xm = k|X0 = i)P(Xm+n = j|Xm = k, X0 = i)

=
∑
k∈X

P(Xm = k|X0 = i)P(Xm+n = j|Xm = k) (Markov)

=
∑
k∈X

P
(m)
ik P

(n)
kj
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Chapman-Kolmogorov Equation in Matrix Notation
For n = 1, 2, 3, . . ., let

P (n) =



P
(n)
00 P

(n)
01 P

(n)
02 · · · P

(n)
0j · · ·

P
(n)
10 P

(n)
11 P

(n)
12 · · · P

(n)
1j · · ·

... ... ... . . . ... . . .
P

(n)
i0 P

(n)
i1 P

(n)
i2 · · · P

(n)
ij · · ·

... ... ... . . . ... . . .


be the n-step transition probability matrix.
The Chapman-Kolmogorov equation just asserts that

P (m+n) = P (m) × P (n)

Note P (1) = P , ⇒ P (2) = P (1) × P (1) = P × P = P 2.
By induction,

P (n) = P (n−1) × P (1) = P n−1 × P = P n
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Distribution of Xn

Define πn(i) = P(Xn = i), i ∈ X to be the marginal distribution of
Xn, n = 1, 2, . . . . Then again by the law of total probabilities,

πn(j) = P(Xn = j)
=

∑
k∈X

P(X0 = k)P(Xn = j|X0 = k) (1.1)

=
∑
k∈X

π0(k)P (n)
kj

Suppose the state space X is {0, 1, 2, . . .}.
If we write the marginal distribution of Xn as a row vector

πn = (πn(0), πn(1), πn(2), . . .),

then equation (1.1) is equivalent to

πn = π0P (n) = π0P n
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Ehrenfest Model with 4 Balls

P =



0 1 2 3 4
0 0 4/4 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 4/4 0


Q1 Find P

(4)
4,2 = P(X4 = 2|X0 = 4).

Q2 Find P
(10)
4,2 = P(X10 = 2|X0 = 4).

Q3 Given P(X0 = i) = 1/5 for i = 0, 1, 2, 3, 4, find P(X4 = 2)
Q4 Find P(X10 = 2, Xk ≥ 2, for 1 ≤ k ≤ 9|X0 = 4)
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Example: Ehrenfest Model, 4 Balls (Cont’d)

To find P
(10)
4,2 for Q4, it’s awful lots of work to compute P 10. . .

There are ways to save some work. By the C-K equation,

P
(10)
4,2 = P

(5)
4,0 P

(5)
0,2︸ ︷︷ ︸

=0

+ P
(5)
4,1 P

(5)
1,2 + P

(5)
4,2 P

(5)
2,2︸ ︷︷ ︸

=0

+ P
(5)
4,3 P

(5)
3,2 + P

(5)
4,4 P

(5)
4,2︸ ︷︷ ︸

=0

because it’s impossible to move between even states in odd number
of moves.

We just need to find P
(5)
4,1 , P

(5)
4,3 , P

(5)
1,2 , and P

(5)
3,2
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Example: Ehrenfest Model, 4 Balls (Cont’d)

P 5 = P 2 × P 3

=


0 1 2 3 4

0 1/4 0 3/4 0 0
1 0 5/8 0 3/8 0
2 1/8 0 3/4 0 1/8
3 0 3/8 0 5/8 0
4 0 0 3/4 0 1/4

 ×


0 1 2 3 4

0 0 5/8 0 3/8 0
1 5/32 0 3/4 0 3/32
2 0 1/2 0 1/2 0
3 3/32 0 3/4 0 5/32
4 0 3/8 0 5/8 0



=


0 1 2 3 4

0 0
1 3/4
2 0
3 3/4
4 0 15/32 0 17/32 0


P

(10)
4,2 = P

(5)
4,1 P

(5)
1,2 + P

(5)
4,3 P

(5)
3,2 = 15

32 × 3
4 + 17

32 × 3
4 = 3

4 .
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Example: Ehrenfest Model, 4 Balls (Cont’d)

π0 = (1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5).

π4 = π0P 4 = (1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5)


5/32 0 3/4 0 3/32

0 17/32 0 15/32 0
1/8 0 3/4 0 1/8
0 15/32 0 17/32 0

3/32 0 3/4 0 5/32



π4(2) = (1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5)


3/4
0

3/4
0

3/4


= 1

5 · 3
4 + 1

5 · 0 + 1
5 · 3

4 + 1
5 · 0 + 1

5 · 3
4 = 9
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Example: Ehrenfest Model, 4 Balls (Cont’d)
Q6: Find P(X10 = 2, Xk ≥ 2, for 1 ≤ k ≤ 9|X0 = 4).

Tip: Create another process {Wn, n = 0, 1, 2, . . .} with an absorbing
state A

Wn =
{

Xn if Xk ≥ 2 for all k = 0, 1, 2, . . . , n

A if Xk < 2 for some k ≤ n

What is the state space of {Wn}?

{A, 2, 3, 4}

Is {Wn} a Markov chain?

Wn+1 =


A if Wn = A

Wn + 1 with prob. 4−Wn
4 if Wn ̸= A

Wn − 1 with prob. Wn
4 if Wn = 3 or 4

A with prob. Wn
4 if Wn = 2

Yes, {Wn} is a Markov chain.
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Example: Ehrenfest Model, 4 Balls (Cont’d)
What is the transition probability of {Wn}?

PW =


A 2 3 4

A 1 0 0 0
2 2/4 0 2/4 0
3 0 3/4 0 1/4
4 0 0 1 0


Observe that PW,i,j equals the transition prob. of the original process
Pi,j for i, j ̸= A.

P =



0 1 2 3 4
0 0 4/4 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0


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Example: Ehrenfest Model, 4 Balls (Cont’d)
How does {Wn} helps us to solve Q6?

Observe that P(X10 = 2, Xk ≥ 2, for 1 ≤ k ≤ 9|X0 = 4)

=P(W10 = 2|W0 = 4) = P
(10)
W,4,2

It’s still an awful lot of work to compute P
(10)
W,4,2.

By the same way we calculate P
(10)
4,2 , using C-K equation, we know

P(10)
W,4,2 = P(5)

W,4,A P(5)
W,A,2︸ ︷︷ ︸
=0

+P(5)
W,4,2 P

(5)
W,2,2︸ ︷︷ ︸

=0

+P(5)
W,4,3 P

(5)
W,3,2 +P(5)

W,4,4 P
(5)
W,4,2︸ ︷︷ ︸

=0in which
• P(5)

W,A,2 = 0 because {Wn} will never leave A.

• P(5)
W,4,2 = P(5)

W,4,4 = 0 because {Wn} can never get from 4 to an
even numbered state in odd numbers of steps.

Just need to find P(5)
W,4,3 and P(5)

W,3,2 .
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Example: Ehrenfest Model, 4 Balls (Cont’d)

P
(2)
W =


A 2 3 4

A 1 0 0 0
2 1/2 3/8 0 1/8
3 3/8 0 5/8 0
4 0 3/4 0 1/4

, P
(3)
W =


A 2 3 4

A 1 0 0 0
2 11/16 0 5/16 0
3 3/8 15/32 0 5/32
4 3/8 0 5/8 0



P
(5)
W = P

(2)
W × P

(3)
W =


A 2 3 4

A 1 0 0 0
2 0
3 75/256
4 0 25/64


So

P(10)
W,4,2 = P(5)

W,4,3 P
(5)
W,3,2 = 25

64 × 75
256 = 1875

16384 .
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