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• Limiting distribution
• Stationary distribution
• Accessibility and communication
• Periodicity
• Recurrent and transient states
• Limit theorems for Markov chains
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The Two-State Markov Chain

• Setup: State space {1, 2} with transition matrix:

P =
(

1− p p
q 1− q

)
, 0 ≤ p, q ≤ 1

• Degenerate Case (p + q = 1):

◦ Matrix has identical rows: P =
(

1− p p
1− p p

)
◦ Stability: P n = P for all n ≥ 1
◦ Limiting distribution: π = (1− p, p)

• General Case (p + q ̸= 1): Goal is to compute P n explicitly.
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Explicit Derivation of P n

Focusing on entry P n
11 via the recursion P n = P n−1P :

P n
11 = P n−1

11 (1− p) + P n−1
12 q

= P n−1
11 (1− p) + (1− P n−1

11 )q (since rows sum to 1)

= q + (1− p− q)P n−1
11

Iterating the recursion/geometric sum yields the closed-form:

P n
11 = q

p + q
+ p

p + q
(1− p− q)n

The full matrix P n is then:

P n = 1
p + q

(
q + p(1− p− q)n p− p(1− p− q)n

q − q(1− p− q)n p + q(1− p− q)n

)
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Convergence and Limiting Behavior

• Eigenvalues: The behavior is governed by λ1 = 1 and
λ2 = 1− p− q.
• Limit: If |1− p− q| < 1, then limn→∞(1− p− q)n = 0:

lim
n→∞

P n = 1
p + q

(
q p
q p

)
=⇒ π =

(
q

p + q
,

p

p + q

)
• Key Takeaways:

◦ Rate: Convergence is exponential at rate |1− p− q|n.
◦ Ergodicity: The chain loses memory of its initial state.
◦ Prototype: This serves as the fundamental example for spectral

analysis in finite-state chains.
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Limiting Distribution

A probability distribution π = [π0, π1, π2, . . .] is called the limiting
distribution of a Markov chain Xn if for all i, j ∈ X ,

πj = lim
n→∞

P
(n)
ij = lim

n→∞
P(Xn = j | X0 = i)

Matrix version

i.e., lim
n→∞

P(n) =


π0 π1 π2 π3 · · ·
π0 π1 π2 π3 · · ·
π0 π1 π2 π3 · · ·
...

...
...

... . . .


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Proportion of Time in Each State

The limiting distribution gives the long-term probability that a
Markov chain hits each state. It can also be interpreted as the
long-term proportion of time that the chain visits each state.

To make this precise, let X0, X1, . . . be a Markov chain with
transition matrix P and limiting distribution π. For state j, define
indicator random variables

Ik =
{

1, if Xk = j,

0, otherwise.
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Limiting Distribution and Time Averages
For k = 0, 1, . . ., the sum

∑n−1
k=0 Ik is the number of times the chain

visits state j in the first n steps (counting X0 as the first step).
From initial state i, the long-term expected proportion of time that
the chain visits j is

lim
n→∞

E
(

1
n

n−1∑
k=0

Ik

∣∣∣∣∣X0 = i

)
= lim

n→∞
1
n

n−1∑
k=0

E(Ik | X0 = i)

= lim
n→∞

1
n

n−1∑
k=0

P(Xk = j | X0 = i)

= lim
n→∞

1
n

n−1∑
k=0

P
(k)
ij

= lim
n→∞

P
(n)
ij = πj .
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Back to Two-State Markov Chain

What happens if we assign the limiting distribution of a Markov chain
to be the initial distribution of the chain?
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Stationary distribution

It is interesting to consider what happens if we assign the limiting
distribution of a Markov chain to be the initial distribution of the
chain.

For the two-state chain, as in Example 3.1, the limiting distribution is

π =
(

q

p + q
,

p

p + q

)
.
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Invariance of the limiting distribution

Let π be the initial distribution for such a chain. Then, the
distribution of X1 is

πP =
(

q

p + q
,

p

p + q

)(1− p p
q 1− q

)
.

Carrying out the multiplication,

πP =
(

q(1− p) + pq

p + q
,

qp + p(1− q)
p + q

)
.
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Stationary distribution

Simplifying,
πP =

(
q

p + q
,

p

p + q

)
= π.

That is, πP = π.

A probability vector π that satisfies

πP = π

plays a special role for Markov chains and is called a stationary
distribution.
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Limiting Distribution is a Stationary Distribution
The limiting distribution of a Markov chain is a stationary distribution
of the Markov chain.
Proof By Chapman Kolmogorov Equation,

P
(n+1)
ij =

∑
k∈X

P
(n)
ik Pkj

Letting n→∞, we get

πj = lim
n→∞

P
(n+1)
ij = lim

n→∞

∑
k∈X

P
(n)
ik Pkj

=∗ ∑
k∈X

lim
n→∞

P
(n)
ik Pkj (needs justification)

=
∑
k∈X

πkPkj

Thus the limiting distribution πj ’s satisfies the equations
πj =

∑
k∈X πkPkj for all j ∈ X and is a stationary distribution.
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Not All MCs Have a Stationary Distribution
For one-dimensional symmetric random walk, the transition
probabilities are

Pi,i+1 = Pi,i−1 = 1/2
The stationary distribution {πj} would satisfy the equation:

πj =
∑
i∈X

πiPij = 1
2πj−1 + 1

2πj+1.

Once π0 and π1 are determined, all πj ’s can be determined from the
equations as

πj = π0 + (π1 − π0)j, for all integer j.

As πj ≥ 0 for all integer j, ⇒ π1 = π0. Thus
πj = π0 for all integer j

Impossible to make
∑∞

j=−∞ πj = 1.

Conclusion: 1-dim symmetric random walk does not have a stationary
distribution.Long-Term Behavior 1-14



Stationary Distribution May Not Be Unique

Consider a Markov chain with transition matrix P of the form

P =



0 1 2 3 4
0 ∗ ∗ 0 0 0
1 ∗ ∗ 0 0 0
2 0 0 ∗ ∗ ∗
3 0 0 ∗ ∗ ∗
4 0 0 ∗ ∗ ∗

 =
(
Px 0
0 Py

)

This Markov chain has 2 classes {0,1} and {2, 3, 4}; both are
recurrent. Note that this Markov chain can be reduced to two
sub-Markov chains, one with state space {0,1} and the other {2, 3,
4}. Their transition matrices are respectively Px and Py.
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Cont.

Say πx = (π0, π1) and πy = (π2, π3, π4) be respectively the stationary
distributions of the two sub-Markov chains, i.e.,

πx Px = πx, πy Py = πy

Verify that π = (cπ0, cπ1, (1− c)π2, (1− c)π3, (1− c)π4) is a
stationary distribution of {Xn} for any c between 0 and 1.
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Not All Markov Chains Have Limiting Distributions

Consider the simple random walk Xn on {0, 1, 2, 3, 4} with absorbing
boundary at 0 and 4. That is,

Xn+1 =


Xn + 1 with probability 0.5 if 0 < Xn < 4
Xn − 1 with probability 0.5 if 0 < Xn < 4
Xn if Xn = 0 or 4

The transition matrix is hence

P =



0 1 2 3 4
0 1 0 0 0 0
1 0.5 0 0.5 0 0
2 0 0.5 0 0.5 0
3 0 0 0.5 0 0.5
4 0 0 0 0 1


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Not All Markov Chains Have Limiting Distributions
The n-step transition matrix of the simple random walk Xn on {0, 1, 2, 3, 4}
with absorbing boundary at 0 and 4 can be shown by induction using the
Chapman-Kolmogorov Equation to be

P(2n−1) =



0 1 2 3 4

0 1 0 0 0 0
1 0.75− 0.5n+1 0 0.5n 0 0.25− 0.5n+1

2 0.5− 0.5n 0.5n 0 0.5n 0.5− 0.5n

3 0.25− 0.5n+1 0 0.5n 0 0.75− 0.5n+1

4 0 0 0 0 1



P(2n) =



0 1 2 3 4

0 1 0 0 0 0
1 0.75− 0.5n+1 0.5n+1 0 0.5n+1 0.25− 0.5n+1

2 0.5− 0.5n+1 0 0.5n 0 0.5− 0.5n+1

3 0.25− 0.5n+1 0.5n+1 0 0.5n+1 0.75− 0.5n+1

4 0 0 0 0 1

Long-Term Behavior 1-18



Not All Markov Chains Have Limiting Distributions

The limit of the n-step transition matrix as n→∞ is

P(n) →



0 1 2 3 4
0 1 0 0 0 0
1 0.75 0 0 0 0.25
2 0.5 0 0 0 0.5
3 0.25 0 0 0 0.75
4 0 0 0 0 1

.

Though limn→∞ P
(n)
ij exists but the limit depends on the initial state

i, this Markov chain has no limiting distribution.

This Markov chain has two distinct absorbing states 0 and 4. Other
transient states may be absorbed to either 0 or 4 with different
probabilities depending how close those states are to 0 or 4.
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When does a Markov chain have limiting distribution?
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Accessibility

We say that state j is accessible from state i if

P
(n)
ij > 0 for some n ≥ 0.

That is, there is positive probability of reaching j from i in a finite
number of steps.

States i and j communicate if i is accessible from j and j is
accessible from i.
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Accessibility is Transitive

Note that accessibility is transitive: for i, j, k ∈ X ,
if i→ j and j → k, then i→ k.

Proof.

i→ j ⇒ P
(m)
ij > 0 for some m

j → k ⇒ P
(n)
jk > 0 for some n

By Chapman-Kolmogorov Equation:

P
(m+n)
ik =

∑
l∈X

P
(m)
il P

(n)
lk ≥ P

(m)
ij P

(n)
jk > 0,

which shows i→ k.
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Communication is an equivalence relation

Communication is an equivalence relation, which means that it
satisfies the following three properties:

1 (Reflexive) Every state communicates with itself.
2 (Symmetric) If i communicates with j, then j communicates

with i.
3 (Transitive) If i communicates with j and j communicates with

k, then i communicates with k.
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Communicating Class

Definition. Two states that communicate with each other are in the
same class. A state that communicates with no other states itself is a
class.

Fact. Two classes are either identical or disjoint.
Proof. If two classes A and B have one state i in common, then all
states in A communicate with i and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state i). Class A and Class B must be identical.
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Example 1. Specify the classes of the following Markov chains.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1

 P2 =


1 2 3 4

1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 1/4 1/4 1/4 1/4
4 0 0 0 1


For P1, 1↔ 2→ 3↔ 4. Classes: {1,2}, {3,4}.

For P2,
1 ←→ 2
↖ ↑

4 ← 3
⟲ ⟲

. Classes: {1,2}, {3}, {4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?
All states communicate. Only one class.
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Irreducibility

Definition 1.1 (Irreducibility)
A Markov chain is called irreducible if it has exactly one
communication class. That is, all states communicate with each
other.
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Periodicity

A state of a Markov chain is said to have period d if

P
(n)
ii = 0, whenever n is not a multiple of d

In other words, d is the greatest common divisor of all the n’s such
that

P
(n)
ii > 0

We say a state is aperiodic if d = 1, and periodic if d > 1.

Fact: Periodicity is a class property.
That is, all states in the same class have the same period.

For a proof, see Problem 2&3 on p.77 of Karlin & Taylor (1975).
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Examples (Periodicity)

• All states in the Ehrenfest diffusion model are of period d = 2
since it’s impossible to move back to the initial state in odd
number of steps.
• 1-D (2-D) Simple random walk on all integers (grids on a 2-d

plane) are of period d = 2
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Example (Periodicity)
Specify the classes of a Markov chain with the following transition
matrix, and find the periodicity for each state.



1 2 3 4 5 6 7
1 0 0.5 0 0.5 0 0 0
2 0 0 1 0 0 0 0
3 0.5 0 0 0 0 0.5 0
4 0 0 0.5 0 0.5 0 0
5 1 0 0 0 0 0 0
6 0 0 0 0 0 0.1 0.9
7 0 0 0 0 0 0.7 0.3



5 → 1 → 2
↑ ↙ ↑ ↙
4 → 3

↓
7 ↔ 6

Classes: {1,2,3,4,5}, {6,7}.

Period is d = 1 for state 6 and 7.
Period is d = 3 for state 1,2,3,4,5 since
{1} → {2, 4} → {3, 5} → {1}.
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Periodic Markov Chains Have No Limiting
Distributions

For example, in the Ehrenfest diffusion model with 4 balls, it can be
shown by induction that the (2n− 1)-step transition matrix is

P(2n−1) =



0 1 2 3 4

0 0 1/2+1/22n−1 0 1/2−1/22n−1 0
1 1/8+1/22n+1 0 3/4 0 1/8−1/22n+1

2 0 1/2 0 1/2 0
3 1/8−1/22n+1 0 3/4 0 1/8+1/22n+1

4 0 1/2−1/22n−1 0 1/2+1/22n−1 0



→



0 1 2 3 4

0 0 1/2 0 1/2 0
1 1/8 0 3/4 0 1/8
2 0 1/2 0 1/2 0
3 1/8 0 3/4 0 1/8
4 0 1/2 0 1/2 0

 as n → ∞.
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Periodic Markov Chains Have No Limiting
Distributions

and the 2n-step transition matrix is

P(2n) =



0 1 2 3 4

0 1/8+1/22n+1 0 3/4 0 1/8−1/22n+1

1 0 1/2+1/22n+1 0 1/2−1/22n+1 0
2 1/8 0 3/4 0 1/8
3 0 1/2−1/22n+1 0 1/2+1/22n+1 0
4 1/8−1/22n+1 0 3/4 0 1/8+1/22n+1



→



0 1 2 3 4

0 1/8 0 3/4 0 1/8
1 0 1/2 0 1/2 0
2 1/8 0 3/4 0 1/8
3 0 1/2 0 1/2 0
4 1/8 0 3/4 0 1/8

 as n → ∞.
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Periodic Markov Chains Have No Limiting
Distributions

In general for Ehrenfest diffusion model with N balls, as n→∞,

P
(2n)
ij →

{
2
(N

j

)
(1

2)N if i + j is even
0 if i + j is odd

P
(2n+1)
ij →

{
0 if i + j is even
2
(N

j

)
(1

2)N if i + j is odd

limn→∞ P
(n)
ij doesn’t exist for all i, j ∈ X
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First passage time

Given a Markov chain X0, X1, . . ., let

Tj = min{n > 0 : Xn = j}

be the first passage time to state j. If Xn ̸= j for all n > 0, set
Tj =∞.

Let
fj = P(Tj <∞ | X0 = j)

be the probability that the chain started in j eventually returns to j.
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Recurrent and transient states

Definition 1.2 (Recurrent and transient states)
State j is said to be recurrent if the Markov chain started in j
eventually revisits j. That is,

fj = 1.

State j is said to be transient if there is positive probability that the
Markov chain started in j never returns to j. That is,

fj < 1.
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Recurrence and Transience: Another
Characterization

Theorem 1.3 (Recurrence and transience)
1 State j is recurrent if and only if

∞∑
n=0

P
(n)
jj =∞.

2 State j is transient if and only if
∞∑

n=0
P

(n)
jj <∞.
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Proof

Suppose that X0 = i, and consider the random variable
N(i) =

∑∞
n=1 1{Xn = i}

We will use two ways to calculate the expectation of N(i). First, by
definition we have

E[N(i)] = E[
∞∑

n=1
1{Xn = i}] =

∞∑
n=1

E[1{Xn = i}]

=
∞∑

n=1
P{Xn = i}] =

∞∑
n=1

P
(n)
ii

In addition, we have

E[N(i)] =
∞∑

k=0
P(N(i) ≥ k) =

∞∑
k=0

fk
i
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Recurrence and transience are class properties

Theorem 1.4 (Class property of recurrence and transience)
The states of a communication class are either all recurrent or all
transient.
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Proof

i→ j ⇒ P
(k)
ij > 0 for some k

j → i ⇒ P
(l)
ji > 0 for some l

By Chapman-Kolmogorov Equation:

P
(l+n+k)
jj ≥ P

(l)
ji P

(n)
ii P

(k)
ij , for all k = 0, 1, 2, . . .

Thus
∞∑

n=1
P

(n)
jj ≥

∞∑
n=1

P
(l+n+k)
jj ≥ P

(l)
ji︸︷︷︸

>0

∞∑
n=1

P
(n)
ii︸ ︷︷ ︸

=∞

P
(k)
ij︸︷︷︸

>0

=∞
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Consequences for accessibility

Assume that state j is recurrent and accessible from state i. Then,
for the chain started in i:
• there is positive probability of hitting j,
• starting from j, the expected number of visits to j is infinite.

It follows that the expected number of visits to j for the chain started
in i is also infinite, and thus

∞∑
n=0

P
(n)
ij =∞.
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Transient states and limiting probabilities
Assume that state j is transient and accessible from state i. By a
similar argument, the expected number of visits to j for the chain
started in i is finite, and hence

∞∑
n=0

P
(n)
ij <∞.

From this it follows that

lim
n→∞

P
(n)
ij = 0. (3.5)

Interpretation
The long-term probability that a Markov chain eventually hits a
transient state is zero.
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Finite irreducible Markov chains

Corollary 1.5
For a finite irreducible Markov chain, all states are recurrent.
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Proof

First based on the previous corollary, we know either all the states are
transient, or all the states are recurrent. Suppose that all the states
are transient. Then for all i ∈ X , we have

lim
n→∞

P
(n)
0i = 0.

Since we have a finite state space, we obtain

lim
n→∞

∑
i∈X

P
(n)
0i =

∑
i∈X

lim P
(n)
0i = 0.

However, the left hand is equal to 1. This marks a contradiction.
Hence the chain cannot be transient.
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Example: One-Dimensional Random Walk

Xn+1 =
{

Xn + 1 with prob. p

Xn − 1 with prob. 1− p

• State space {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }
• All states communicate

· · · ←→ −2←→ −1←→ 0←→ 1←→ 2←→ · · ·

Only one class⇒ Irreducible
⇒ States are all transient or all recurrent.

It suffices to check whether 0 is recurrent or transient, i.e.,
whether ∞∑

n=1
P

(n)
00 =∞ or <∞
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Example: One-Dimensional Random Walk (Cont’d)

P
(2n+1)
00 = 0 (Why?)

P
(2n)
00 =

(
2n

n

)
pn(1− p)n

= (2n)!
n! n! pn(1− p)n Stirling’s Formula: n! ≈ nn+0.5e−n

√
2π

≈ (2n)2n+0.5e−2n
√

2π

(nn+0.5e−n
√

2π)2 pn(1−p)n

= 1√
πn

[4p(1− p)]n

Thus ∞∑
n=1

P 2n
ii ≈

∞∑
n=1

1√
πn

[4p(1− p)]n
{

<∞ if p ̸= 1/2
=∞ if p = 1/2

Conclusion: One-dimensional random walk is recurrent if p = 1/2,
and transient otherwise.
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Example: Two-Dimensional Symmetric Random
Walk

Irreducible. Just check if 0 is recurrent.

P
(2n)
00 =

n∑
i=0

(2n)!
i!i!(n− i)!(n− i)!

(1
4

)2n

=
(

2n

n

)
n∑

i=0

(
n

i

)(
n

n− i

)
︸ ︷︷ ︸

=(2n
n )

(1
4

)2n

=
(

2n

n

)2 (1
4

)2n

≈ 1
πn

by Stirling’s Formula

Thus
∑∞

n=1 P
(2n)
00 =∞.Two-dimensional symmetric random walk is

recurrent.Long-Term Behavior 1-45



Example: d-Dimensional Symmetric Random Walk

In general, for a d-dimensional symmetric random walk, it can be
shown that

P
(2n)
00 ≈ (1/2)d−1

(
d

nπ

)d/2

Thus
∞∑

n=1
P

(2n)
00

{
=∞ for d = 1 or 2
<∞ for d ≥ 3

.

“A drunken man will find his way home.
A drunken bird might be lost forever.”
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Positive Recurrence and Null Recurrence

Recall the first passage time of a state i

Ti = min{n > 0 : Xn = i | X0 = i}

We say a state i is
• positive recurrent if i is recurrent and E[Ti] <∞.

• null recurrent if i is recurrent but E[Ti] =∞.
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Positive and Null Recurrence

Lemma 1.6 (Class property of positive and null recurrence)
All the states in a recurrent communication class are either positive
recurrent or null recurrent.
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The Fundamental Limit Theorem of Markov Chain II

For an irreducible Markov chain, it is positive recurrent if and only
if there exists a stationary distribution, i.e., a solution to the set of
equations:

πi ≥ 0,
∑
i∈X

πi = 1, πj =
∑
i∈X

πiPij

Moreover, if a solution exists then it is unique, and is given by

πj = 1
E[Tj ] = lim

n→∞
1
n

n∑
k=1

P
(k)
ij .

Stationary distribution can be interpreted as the long run proportion
of time that the Markov chain is in state j.
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Heuristic proof

Step 1: Connecting long run proportion of time to inverse expected
return time, i.e., we aim to show that for any state j, we have

Pj

[
lim

n→∞

∑n
i=1 1{Xi = j}

n
= 1

Ej [Tj ]

]
= 1

If j is transient, both are 0.
If j is recurrent, see the next slide

Long-Term Behavior 1-50



When j is recurrent

Consider a Markov chain started from state j. Let Sk be the time till
the k-th visit to state j. Then

Sk = Tjj(0) + Tjj(1) + . . . + Tjj(k − 1)

Here
• Tjj(m) = the time between the mth and (m + 1)st visit to state

j.
Observe that Tjj(0), Tjj(1), . . . Tjj(k − 1) are i.i.d. and have the
same distribution as Ti.
For k large, the Strong Law of Large Numbers tells us

1
k

[Tjj(0) + Tjj(1) + · · ·+ Tjj(k − 1)]→ Ej(Tj) almost surely

i.e., the chain visits state j about k times in k E(Tj) steps.
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Heuristic proof

Step 2: Connecting long run proportion of time to stationary
probability
Consider a Markov chain starting from the stationary distribution.
Then in n steps, we expect about nπ(j) visits to the state j. Hence

πj

is roughly the proportion of time we see j.
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Fundamental Limit Theorem for Ergodic Markov
Chains

Theorem 1.7 (Fundamental Limit Theorem for Ergodic Markov
Chains)
Let X0, X1, . . . be an ergodic Markov chain. There exists a unique,
positive, stationary distribution π, which is the limiting distribution of
the chain.

That is,
πj = lim

n→∞
P

(n)
ij , for all i, j.
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Example 1: One-Dimensional Random Walk

We have shown that 1-dim symmetric random walk has no stationary
distribution.
• Conclusion from 2nd limit theorem: 1-dim symmetric random

walk is null recurrent, i.e.

E[Ti] =∞ for all state i

In fact, in Lecture 3 we have shown that

P
(n)
ii =

0 if n is odd( n
n/2
)
(1

2)n ≈
√

2
πn if n is even

Thus we see limn→∞ P
(n)
ii = 1/E[Ti].
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Ex 2: 1-D Random Walk w/ Partially Reflective
Boundary

Pi,i+1 = p for all i = 0, 1, 2, . . .

Pi,i−1 = 1− p for all i = 1, 2, . . .

p00 = 1− p

Try to solve πj =
∑

i∈X πiPij

π0 = π0P00 + π1P10 = (1− p)(π0 + π1) ⇒ π1 = p
1−pπ0

π1 = π0P01 + π2P21 = pπ0 + (1− p)π2 ⇒ π2 =
(

p
1−p

)2
π0

π2 = π0P12 + π3P32 = pπ1 + (1− p)π3 ⇒ π3 =
(

p
1−p

)3
π0

...
πj = pπj−1 + (1− p)πj+1 ⇒ πj+1 =

(
p

1−p

)j+1
π0
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Ex 2: 1-D Random Walk w/ Partially Reflective
Boundary

∞∑
i=0

πi = π0

∞∑
i=0

(
p

1− p

)i

=

π0
(

1−p
1−2p

)
if p < 1/2

∞ if p ≥ 1/2

Conclusion: The process is positive recurrent iff p < 1/2, in which
case

πi = 1− 2p

1− p

(
p

1− p

)i

, i = 0, 1, 2, . . .
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Example 3: Ehrenfest Diffusion Model with N Balls

Pij =


i

N
if j = i− 1

N − i

N
if j = i + 1

0 otherwise

π0 = π1P10 = 1
N π1⇒ π1 = Nπ0 =

(N
1
)
π0

π1 = π0P01 + π2P21 = π0+ 2
N π2⇒ π2 = N(N−1)

2 π0 =
(N

2
)
π0

π2 = π1P12 + π3P32 = N−1
N π1+ 3

N π3⇒ π3 = N(N−1)(N−2)
6 π0 =

(N
3
)
π0

...
...

In general, you’ll get πi =
(N

i

)
π0.

As 1 =
∑N

i=0 πi = π0
∑N

i=0
(N

i

)
and

∑N
i=0

(N
i

)
= 2N , we have

πi =
(

N

i

)(1
2

)N

for i = 0, 1, 2, . . . , N.
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Though the limiting distribution limn→∞ P
(n)
ij does not exist, we can

show that

lim
n→∞

P
(2n)
ij = 2

(
N

j

)
(1
2)N , lim

n→∞
P

(2n+1)
ij = 0 if i + j is even

lim
n→∞

P
(2n)
ij = 0, lim

n→∞
P

(2n+1)
ij = 2

(
N

j

)
(1
2)N if i + j is odd

From the above, one can verify that
limn→∞

1
n

∑n
k=1 P

(k)
ij =

(N
j

)
(1

2)N = πj .
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Exercise 4.50 on p.284
A Markov chain has transition probability matrix

P =



1 2 3 4 5 6
1 0.2 0.4 0 0.3 0 0.1
2 0.1 0.3 0 0.4 0 0.2
3 0 0 0.3 0.7 0 0
4 0 0 0.6 0.4 0 0
5 0 0 0 0 0.5 0.5
6 0 0 0 0 0.2 0.8


Communicating classes:

{1, 2} {3, 4} {5, 6}
↑ ↑ ↑

transient recurrent recurrent

Find limn→∞ P (n).
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Exercise 4.50 on p.284 (Cont’d)

Observe that limn→∞ P
(n)
ij = 0 if j is transient, hence,

lim
n→∞

P (n) =



1 2 3 4 5 6
1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 ? ? ? ?
4 0 0 ? ? ? ?
5 0 0 ? ? ? ?
6 0 0 ? ? ? ?


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Exercise 4.50 on p.284 (Cont’d)

Observe that limn→∞ P
(n)
ij = 0 if j is NOT accessible from i

lim
n→∞

P (n) =



1 2 3 4 5 6
1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 ? ? 0 0
4 0 0 ? ? 0 0
5 0 0 0 0 ? ?
6 0 0 0 0 ? ?


The two classes {3,4} and {5,6} do not communicate and hence the
transition probabilities in between are all 0.
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Exercise 4.50 on p.284 (Cont’d)
Recall we have shown that the limiting distribution of a two-state

Markov chain with the transition matrix
(

1− α α
β 1− β

)
is(

β
α+β , α

α+β

)
. As the Markov chain restricted to the class {3,4} is also

a Markov chain with the transition matrix
( 3 4

3 0.3 0.7
4 0.6 0.4

)
. Hence,

lim
n→∞

P (n) =



1 2 3 4 5 6
1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 6/13 7/13 0 0
4 0 0 6/13 7/13 0 0
5 0 0 0 0 ? ?
6 0 0 0 0 ? ?


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Exercise 4.50 on p.284 (Cont’d)

P =



1 2 3 4 5 6
1 0.2 0.4 0 0.3 0 0.1
2 0.1 0.3 0 0.4 0 0.2
3 0 0 0.3 0.7 0 0
4 0 0 0.6 0.4 0 0
5 0 0 0 0 0.5 0.5
6 0 0 0 0 0.2 0.8


For the same reason,

lim
n→∞

P (n) =



1 2 3 4 5 6
1 0 0 ? ? ? ?
2 0 0 ? ? ? ?
3 0 0 6/13 7/13 0 0
4 0 0 6/13 7/13 0 0
5 0 0 0 0 2/7 5/7
6 0 0 0 0 2/7 5/7


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