

Poisson Processes

Cong Ma

University of Chicago, Winter 2026

Exponential Distribution

Let X follow exponential distribution with rate λ : $X \sim \text{Exp}(\lambda)$.

- Density: $f_X(x) = \lambda e^{-\lambda x}$ for $x \geq 0$
- CDF: $F_X(x) = 1 - e^{-\lambda x}$ for $x \geq 0$
- $\mathbb{E}(X) = 1/\lambda$, $\text{Var}(X) = 1/\lambda^2$
- If X_1, \dots, X_n are i.i.d $\text{Exp}(\lambda)$, then

$S_n = X_1 + \dots + X_n \sim \text{Gamma}(n, \lambda)$, with density

$$f_{S_n}(x) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}$$

The Exponential Distribution is Memoryless (★★★★★)

Lemma: for all $s, t \geq 0$

$$\mathrm{P}(X > t + s \mid X > t) = \mathrm{P}(X > s)$$

Proof.

$$\begin{aligned}\mathrm{P}(X > t + s \mid X > t) &= \frac{\mathrm{P}(X > t + s \text{ and } X > t)}{\mathrm{P}(X > t)} \\ &= \frac{\mathrm{P}(X > t + s)}{\mathrm{P}(X > t)} \\ &= \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = \mathrm{P}(X > s)\end{aligned}$$

Implication. If the lifetime of batteries has an Exponential distribution, then *a used battery is as good as a new one, as long as it's not dead!*

Another Important Property of the Exponential

If X_1, \dots, X_n are independent, $X_i \sim \text{Exp}(\lambda_i)$ for $i = 1, \dots, n$ then

(i) $\min(X_1, \dots, X_n) \sim \text{Exp}(\lambda_1 + \dots + \lambda_n)$, and

(ii) $\text{P}(X_j = \min(X_1, \dots, X_n)) = \frac{\lambda_j}{\lambda_1 + \dots + \lambda_n}$

Proof of (i)

$$\begin{aligned}\text{P}(\min(X_1, \dots, X_n) > t) &= \text{P}(X_1 > t, \dots, X_n > t) \\ &= \text{P}(X_1 > t) \dots \text{P}(X_n > t) = e^{-\lambda_1 t} \dots e^{-\lambda_n t} \\ &= e^{-(\lambda_1 + \dots + \lambda_n)t}.\end{aligned}$$

Proof of (ii)

$$\begin{aligned} & \text{P}(X_j = \min(X_1, \dots, X_n)) \\ &= \text{P}(X_j < X_i \text{ for } i = 1, \dots, n, i \neq j) \\ &= \int_0^\infty \text{P}(X_j < X_i \text{ for } i \neq j | X_j = t) \lambda_j e^{-\lambda_j t} dt \\ &= \int_0^\infty \text{P}(t < X_i \text{ for } i \neq j) \lambda_j e^{-\lambda_j t} dt \\ &= \int_0^\infty \lambda_j e^{-\lambda_j t} \prod_{i \neq j} \text{P}(X_i > t) dt \\ &= \int_0^\infty \lambda_j e^{-\lambda_j t} \prod_{i \neq j} e^{-\lambda_i t} dt \\ &= \lambda_j \int_0^\infty e^{-(\lambda_1 + \dots + \lambda_n)t} dt \\ &= \frac{\lambda_j}{\lambda_1 + \dots + \lambda_n} \end{aligned}$$

Post Office

- A post office has two clerks.
- Service times for clerk $i \sim \text{Exp}(\lambda_i)$, $i = 1, 2$
- When you arrive, both clerks are busy but no one else waiting.
You will enter service when either clerk becomes free.
- Find $\mathbb{E}[T]$, where T = the amount of time you spend in the post office.

Solution. Let R_i = remaining service time of the customer with clerk i , $i = 1, 2$.

- Note R_i 's are indep. $\sim \text{Exp}(\lambda_i)$, $i = 1, 2$ by the memoryless property
- Observe $T = \min(R_1, R_2) + S$ where S is your service time
- Using the property of exponential distributions,

$$\min(R_1, R_2) \sim \text{Exp}(\lambda_1 + \lambda_2) \quad \Rightarrow \quad \mathbb{E}[\min(R_1, R_2)] = \frac{1}{\lambda_1 + \lambda_2}$$

Post Office (Cont'd)

As for your service time S , observe that

$$S \sim \begin{cases} \text{Exp}(\lambda_1) & \text{if } R_1 < R_2 \\ \text{Exp}(\lambda_2) & \text{if } R_2 < R_1 \end{cases} \Rightarrow \begin{aligned} \mathbb{E}[S|R_1 < R_2] &= 1/\lambda_1 \\ \mathbb{E}[S|R_2 < R_1] &= 1/\lambda_2 \end{aligned}$$

Recall that $\mathbb{P}(R_1 < R_2) = \lambda_1/(\lambda_1 + \lambda_2)$ So

$$\begin{aligned} \mathbb{E}[S] &= \mathbb{E}[S|R_1 < R_2]\mathbb{P}(R_1 < R_2) + \mathbb{E}[S|R_2 < R_1]\mathbb{P}(R_2 < R_1) \\ &= \frac{1}{\lambda_1} \times \frac{\lambda_1}{\lambda_1 + \lambda_2} + \frac{1}{\lambda_2} \times \frac{\lambda_2}{\lambda_1 + \lambda_2} = \frac{2}{\lambda_1 + \lambda_2} \end{aligned}$$

Hence the expected amount of time you spend in the post office is

$$\begin{aligned} \mathbb{E}[T] &= \mathbb{E}[\min(R_1, R_2)] + \mathbb{E}[S] \\ &= \frac{1}{\lambda_1 + \lambda_2} + \frac{2}{\lambda_1 + \lambda_2} = \frac{3}{\lambda_1 + \lambda_2}. \end{aligned}$$

5.3.1. Counting Processes

A counting process $\{N(t)\}$ is a cumulative count of number of events happened up to time t .

Definition.

A stochastic processes $\{N(t), t \geq 0\}$ is a *counting process* satisfying

- (i) $N(t) = 0, 1, \dots$ (integer valued),
- (ii) If $s < t$, then $N(s) \leq N(t)$.
- (iii) For $s < t$, $N(t) - N(s) =$ number of events that occur in the interval $(s, t]$.

Definition.

A process $\{X(t), t \geq 0\}$ is said to have *stationary increments* if for any $t > s$, the distribution of $X(t) - X(s)$ depends on s and t only through the difference $t - s$, for all $s < t$.

That is, $X(t + a) - X(s + a)$ has the same distribution as $X(t) - X(s)$ for any constant a .

Definition.

A process $\{X(t), t \geq 0\}$ is said to have *independent increments* if for any $s_1 < t_1 \leq s_2 < t_2 \leq \dots \leq s_k < t_k$, the random variable $X(t_1) - X(s_1), X(t_2) - X(s_2), \dots, X(t_k) - X(s_k)$ are independent, i.e. the numbers of events that occur in **disjoint** time intervals are **independent**.

Example. Modified simple random walk $\{X_n, n \geq 0\}$ is a process with independent and stationary increment, since $X_n = \sum_{k=0}^n \xi_k$ where ξ_k 's are i.i.d with $P(\xi_k = 1) = p$ and $P(\xi_k = 0) = 1 - p$.

Definition 5.1 of Poisson Processes

A Poisson process with rate $\lambda > 0$ $\{N(t), t \geq 0\}$ is a counting process satisfying

- (i) $N(0) = 0$,
- (ii) For $s < t$, $N(t) - N(s)$ is independent of $N(s)$ (independent increment)
- (iii) For $s < t$, $N(t) - N(s) \sim Poi(\lambda(t - s))$, i.e.,

$$P(N(t) - N(s) = k) = e^{-\lambda(t-s)} \frac{(\lambda(t-s))^k}{k!}$$

Remark: In (iii), the distribution of $N(t) - N(s)$ depends on $t - s$ only, not s , which implies $N(t)$ has stationary increment.

Definition 5.3 of Poisson Processes

The counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process having rate λ , $\lambda > 0$, if

- (i) $N(0) = 0$.
- (ii) The process has stationary and independent increments.
- (iii) $P(N(h) = 1) = \lambda h + o(h)$.
- (iv) $P(N(h) \geq 2) = o(h)$.

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.

[Proof of Definitions 5.1 \Rightarrow Definition 5.3]

From Definitions 5.1, $N(h) \sim Poi(h)$. Thus

$$P(N(h) = 1) = \lambda h e^{-\lambda h} = \lambda h + o(h)$$

$$\begin{aligned} P(N(h) \geq 2) &= 1 - P(N(h) = 0) - P(N(h) = 1) \\ &= 1 - e^{-\lambda h} - \lambda h e^{-\lambda h} = o(h) \end{aligned}$$

Proof of Definitions 5.3 \Rightarrow Definition 5.1:

See textbook.

Arrival & Interarrival Times of Poisson Processes

Let

S_n = Arrival time of the n -th event, $n = 1, 2, \dots$

$T_1 = S_1$ = Time until the 1st event occurs

$T_n = S_n - S_{n-1}$
= time elapsed between the $(n-1)$ st and n -th event,
 $n = 2, 3, \dots$

Proposition 5.1

The interarrival times $T_1, T_2, \dots, T_k, \dots$, are i.i.d $\sim \text{Exp}(\lambda)$.

Consequently, as the distribution of the sum of n i.i.d $\text{Exp}(\lambda)$ is $\text{Gamma}(n, \lambda)$, the arrival time of the n th event is

$$S_n = \sum_{i=1}^n T_i \sim \text{Gamma}(n, \lambda)$$

Proof of Proposition 5.1

$$\begin{aligned} & \Pr(T_{n+1} > t | T_1 = t_1, T_2 = t_2, \dots, T_n = t_n) \\ &= \Pr(0 \text{ event in } (s_n, s_n + t] | T_1 = t_1, T_2 = t_2, \dots, T_n = t_n) \\ &\quad (\text{where } s_n = t_1 + t_2 + \dots + t_n) \\ &= \Pr(0 \text{ event in } (s_n, s_n + t]) \quad (\text{by indep increment}) \\ &= \Pr(N(s_n + t) - N(s_n) = 0) \\ &= e^{-\lambda t} \end{aligned}$$

where the last step comes from the fact that

- $N(s_n + t) - N(s_n) \sim \text{Poisson}(\lambda t)$ and
- $P(N = k) = e^{-\mu} \mu^k / k!$ if $N \sim \text{Poisson}(\mu)$, $k = 0, 1, 2 \dots$

This shows that T_{n+1} is $\sim \text{Exp}(\lambda)$, and is independent of T_1, T_2, \dots, T_n .

Definition 3 of the Poisson Process

A continuous-time stochastic process $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

- (i) $N(0) = 0$,
- (ii) $N(t)$ counts the number of events that have occurred up to time t (i.e., it is a counting process).
- (iii) The times between events are independent and identically distributed with an $\text{Exp}(\lambda)$ distribution.

We have seen how Definition 5.1 implies (i), (ii) and (iii) in Definition 3. The proof of the converse is omitted.

Properties of Poisson Processes

Outline:

- Conditional Distribution of the Arrival Times
- Superposition & Thinning
- “Converse” of Superposition & Thinning

Conditional Distribution of Arrival Times is Uniform

Given $N(t) = 1$, then T_1 , the arrival time of the first event $\sim \text{Uniform}(0, t)$

Proof. For $s < t$,

$$\begin{aligned} \text{P}(T_1 \leq s | N(t) = 1) &= \frac{\text{P}(T_1 \leq s, N(t) = 1)}{\text{P}(N(t) = 1)} \\ &= \frac{\text{P}(\text{1 event in } (0, s], \text{ no events in } (s, t])}{\text{P}(N(t) = 1)} \\ &= \frac{\text{P}(N(s) = 1) \text{P}(N(t) - N(s) = 0)}{\text{P}(N(t) = 1)} \text{ by indep. increment} \\ &=^* \frac{(\lambda s e^{-\lambda s})(e^{-\lambda(t-s)})}{\lambda t e^{-\lambda t}} = \frac{s}{t}, \quad s < t. \end{aligned}$$

where the step $=^*$ comes from the fact that

- $N(s) \sim \text{Poisson}(\lambda s)$, $N(t) - N(s) \sim \text{Poisson}(\lambda(t - s))$, and $N(t) \sim \text{Poisson}(\lambda t)$
- $\text{P}(N = k) = e^{-\mu} \mu^k / k!$ if $N \sim \text{Poisson}(\mu)$, $k = 0, 1, 2 \dots$

Review of Order Statistics

Suppose X_1, X_2, \dots, X_n are i.i.d. random variables with a common density $f(x)$. Their joint density would be the product of the marginal density

$$f(x_1, x_2, \dots, x_n) = f(x_1)f(x_2) \dots f(x_n).$$

Let $X_{(i)}$ be the i th smallest number among X_1, X_2, \dots, X_n .
 $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ is called the order statistics of X_1, X_2, \dots, X_n

- $X_{(1)}$ is the minimum
- $X_{(n)}$ is the maximum
- $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$

The joint density of $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ is

$$h(x_1, x_2, \dots, x_n) = \begin{cases} n!f(x_1)f(x_2) \dots f(x_n), & \text{if } x_1 \leq x_2 \leq \dots \leq x_n. \\ 0 & \text{otherwise} \end{cases}$$

Example

If U_1, U_2, \dots, U_n are indep. Uniform(0, t), their common density is

$$f(u) = \begin{cases} 1/t, & \text{for } 0 < u < t. \\ 0 & \text{otherwise} \end{cases}$$

The joint density of their order statistics $U_{(1)}, U_{(2)}, \dots, U_{(n)}$ is

$$h(u_1, u_2, \dots, u_n) = n! f(u_1) f(u_2) \dots f(u_n) = n! (1/t)^n$$

for $0 \leq u_1 \leq u_2 \leq \dots \leq u_n < t$ and 0 elsewhere.

Theorem 5.2

Given $N(t) = n$,

$$(S_1, S_2, \dots, S_n) \sim (U_{(1)}, U_{(2)}, \dots, U_{(n)})$$

where $(U_{(1)}, \dots, U_{(n)})$ are the order statistics of $(U_1, \dots, U_n) \sim \text{i.i.d Uniform}(0, t)$, i.e., the joint conditional density of S_1, S_2, \dots, S_n is

$$f(s_1, s_2, \dots, s_n | N(t) = n) = n! / t^n, \quad 0 < s_1 < s_2 < \dots < s_n$$

Proof. The event that $S_1 = s_1, S_2 = s_2, \dots, S_n = s_n, N(t) = n$ is equivalent to the event $T_1 = s_1, T_2 = s_2 - s_1, \dots, T_n = s_n - s_{n-1}, T_{n+1} > t - s_n$. Hence, by Proposition 5.1, we have the conditional joint density of S_1, \dots, S_n given $N(t) = n$ as follows:

$$\begin{aligned} f(s_1, \dots, s_n | N(t) = n) &= \frac{f(s_1, \dots, s_n, N(t) = n)}{P(N(t) = n)} \\ &= \frac{\lambda e^{-\lambda s_1} \lambda e^{-\lambda(s_2 - s_1)} \dots \lambda e^{-\lambda(s_n - s_{n-1})} e^{-\lambda(t - s_n)}}{e^{-\lambda t} (\lambda t)^n / n!} \\ &= n! t^{-n}, \quad 0 < s_1 < \dots < s_n < t \end{aligned}$$

Example 5.21. Insurance claims comes according to a Poisson process $\{N(t)\}$ with rate λ . Let

- $S_i =$ the time of the i th claims
- $C_i =$ amount of the i th claims, i.i.d with mean μ , indep. of $\{N(t)\}$

Then the total discounted cost by time t at discount rate α is given by

$$D(t) = \sum_{i=1}^{N(t)} C_i e^{-\alpha S_i}.$$

Then

$$\begin{aligned} \mathbb{E}[D(t)|N(t)] &= \mathbb{E}\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha S_i} \middle| N(t)\right] \stackrel{(5.2)}{=} \mathbb{E}\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha U_{(i)}}\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha U_i}\right] = \sum_{i=1}^{N(t)} \mathbb{E}[C_i] \mathbb{E}\left[e^{-\alpha U_i}\right] \\ &= N(t) \mu \int_0^t \frac{1}{t} e^{-\alpha x} dx = N(t) \frac{\mu}{\alpha t} (1 - e^{-\alpha t}) \end{aligned}$$

$$\text{Thus } \mathbb{E}[D(t)] = \mathbb{E}[N(t)] \frac{\mu}{\alpha t} (1 - e^{-\alpha t}) = \frac{\lambda \mu}{\alpha} (1 - e^{-\alpha t})$$

Superposition

The sum of two independent Poisson processes with respective rates λ_1 and λ_2 , called the **superposition** of the processes, is again a Poisson process but with rate $\lambda_1 + \lambda_2$.

The proof is straight forward from Definition 5.3 and hence omitted.

Remark: By repeated application of the above arguments we can see that the superposition of k independent Poisson processes with rates $\lambda_1, \dots, \lambda_k$ is again a Poisson process with rate $\lambda_1 + \dots + \lambda_k$.

Thinning

Consider a Poisson process $\{N(t) : t \geq 0\}$ with rate λ .

At each arrival of events, it is classified as a

$$\begin{cases} \text{Type 1 event with probability } p & \text{or} \\ \text{Type 2 event with probability } 1 - p, \end{cases}$$

independently of all other events. Let

$$N_i(t) = \# \text{ of type } i \text{ events occurred during } [0, t], \quad i = 1, 2.$$

Note that $N(t) = N_1(t) + N_2(t)$.

Proposition 5.2

$\{N_1(t), t \geq 0\}$ and $\{N_2(t), t \geq 0\}$ are both Poisson processes having respective rates λp and $\lambda(1 - p)$.

Furthermore, the two processes are independent.

Proof of Proposition 5.2

First observe that given $N(t) = n + m$,

$$N_1(t) \sim \text{Binomial}(n + m, p). \quad (\text{why?})$$

$$\begin{aligned} \text{Thus } \quad & \text{P}(N_1(t) = n, N_2(t) = m) \\ &= \text{P}(N_1(t) = n, N_2(t) = m | N(t) = n + m) \text{P}(N(t) = n + m) \\ &= \binom{n+m}{n} p^n (1-p)^m e^{-\lambda t} \frac{(\lambda t)^{n+m}}{(n+m)!} \\ &= e^{-\lambda t p} \frac{(\lambda p t)^n}{n!} e^{-\lambda t (1-p)} \frac{(\lambda (1-p)t)^m}{m!} \\ &= \text{P}(N_1(t) = n) \text{P}(N_2(t) = m). \end{aligned}$$

This proves the independence of $N_1(t)$ and $N_2(t)$ and that

$$N_1(t) \sim \text{Poisson}(\lambda p t), \quad N_2(t) \sim \text{Poisson}(\lambda (1-p)t).$$

Both $\{N_1(t)\}$ and $\{N_2(t)\}$ inherit the stationary and independent increment properties from $\{N(t)\}$, and hence are both Poisson processes.

Some “Converse” of Thinning & Superposition

Consider two indep. Poisson processes $\{N_A(t)\}$ and $\{N_B(t)\}$ w/
respective rates λ_A and λ_B . Let

S_n^A = arrival time of the n th A event

S_m^B = arrival time of the m th B event

Find $P(S_n^A < S_m^B)$.

Approach 1:

Observer that $S_n^A \sim \text{Gamma}(n, \lambda_A)$, $S_m^B \sim \text{Gamma}(m, \lambda_B)$ and
they are independent. Thus

$$P(S_n^A < S_m^B) = \int_{x < y} \lambda_A e^{-\lambda_A x} \frac{(\lambda_A x)^{n-1}}{(n-1)!} \lambda_B e^{-\lambda_B y} \frac{(\lambda_B y)^{m-1}}{(m-1)!} dx dy$$

Some “Converse” of Thinning & Superposition (Cont'd)

Let $N(t) = N_A(t) + N_B(t)$ be the superposition of the two processes. Let

$$I_i = \begin{cases} 1 & \text{if the } i\text{th event in the superpositon process is an } A \text{ event} \\ 0 & \text{otherwise} \end{cases}.$$

The I_i , $i = 1, 2, \dots$ are i.i.d. $\text{Bernoulli}(p)$, where $p = \frac{\lambda_A}{\lambda_A + \lambda_B}$.

Approach 2:

$$P(S_n^A < S_1^B) = P(\text{the first } n \text{ events are all } A \text{ events}) = \left(\frac{\lambda_A}{\lambda_A + \lambda_B} \right)^n$$

$$P(S_n^A < S_m^B) = P(\text{at least } n \text{ } A \text{ events occur before } m \text{ } B \text{ events})$$

$$= P(\text{at least } n \text{ heads before } m \text{ tails})$$

$$= P(\text{at least } n \text{ heads in the first } n + m - 1 \text{ tosses})$$

$$= \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} \left(\frac{\lambda_A}{\lambda_A + \lambda_B} \right)^k \left(\frac{\lambda_B}{\lambda_A + \lambda_B} \right)^{n+m-1-k}$$

Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate λ . If an event occurs at time t will be classified as a type i event with probability $p_i(t)$, $i = 1, \dots, k$, $\sum_i p_i(t) = 1$, for all t , independently of all other events. then

$$N_i(t) = \text{number of type } i \text{ events occurring in } [0, t], \quad i = 1, \dots, k.$$

Note $N(t) = \sum_{i=1}^k N_i(t)$. Then $N_i(t)$, $i = 1, \dots, k$ are independent Poisson random variables with means $\lambda \int_0^t p_i(s)ps$.

Remark: Note $\{N_i(t), t \geq 0\}$ are NOT Poisson processes.

Example

- Policyholders of a certain insurance company have accidents occurring according to a Poisson process with rate λ .
- The amount of time T from when the accident occurs until a claim is made has distribution $G(t) = P(T \leq t)$.
- Let $N_c(t)$ be the number of claims made by time t .

Find the distribution of $N_c(t)$.

Solution. Suppose an accident occurred at time s . It is claimed by time t if $s + T \leq t$, i.e., with probability

$$p(s) = P(T \leq t - s) = G(t - s).$$

We call an accident type I if it's completed before t , and type II otherwise. By Proposition 5.3, $N_c(t)$ has a Poisson distribution with mean

$$\lambda \int_0^t p(s)ps = \lambda \int_0^t G(t - s)ds = \lambda \int_0^t G(s)ds$$

5.4.1 Nonhomogeneous Poisson Process

Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary) Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying

- (i) $N(0) = 0$.
- (ii) having independent increments.
- (iii) $P(N(t+h) - N(t) = 1) = \lambda(t)h + o(h)$.
- (iv) $P(N(t+h) - N(t) \geq 2) = o(h)$.

Definition 5.4b. A nonhomogeneous Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying

- (i) $N(0) = 0$,
- (ii) for $s, t \geq 0$, $N(t+s) - N(s)$ is independent of $N(s)$ (independent increment)
- (iii) For $s, t \geq 0$, $N(t+s) - N(s) \sim Poisson(m(t+s) - m(s))$, where $m(t) = \int_0^t \lambda(u)du$

The two definitions are equivalent.

The Interarrival Times of a Nonhomogeneous Poisson Process Are NOT Independent

A nonhomogeneous Poisson process **has independent increment** but its **interarrival times** between events are

- neither independent
- nor identically distributed.

Proof. Homework.

Proposition 5.4

Let $\{N_1(t), t \geq 0\}$, and $\{N_2(t), t \geq 0\}$ be two independent nonhomogeneous Poisson process with respective intensity functions $\lambda_1(t)$ and $\lambda_2(t)$, and let $N(t) = N_1(t) + N_2(t)$. Then

- (a) $\{N(t), t \geq 0\}$ is a nonhomogeneous Poisson process with intensity function $\lambda_1(t) + \lambda_2(t)$.
- (b) Given that an event of the $\{N(t), t \geq 0\}$ process occurs at time t then, independent of what occurred prior to t , the event at t was from the $\{N_1(t)\}$ process with probability

$$\frac{\lambda_1(t)}{\lambda_1(t) + \lambda_2(t)}.$$

5.4.2 Compound Poisson Processes

Definition. Let $\{N(t)\}$ be a (homogeneous) Poisson process with rate λ and Y_1, Y_2, \dots are i.i.d random variables independent of $\{N(t)\}$. The process

$$X(t) = \sum_{i=1}^{N(t)} Y_i$$

is called a *compound Poisson process*, in which $X(t)$ is defined as 0 if $N(t) = 0$.

A compound Poisson process has

- **independent increment**, since

$X(t+s) - X(s) = \sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)}$ is independent of

$X(s) = \sum_{i=1}^{N(s)} Y_i$, and

- **stationary increment**, since

$X(t+s) - X(s) = \sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)}$ has the same distribution as $X(t) = \sum_{i=1}^{N(t)} Y_i$

The Mean of a Compound Poisson Process

Suppose $\mathbb{E}[Y_i] = \mu_Y$, $\text{Var}(Y_i) = \sigma_Y^2$. Note that $\mathbb{E}[N(t)] = \lambda t$.

$$\begin{aligned}\mathbb{E}[X(t)|N(t)] &= \sum_{i=1}^{N(t)} \mathbb{E}[Y_i|N(t)] \\ &= \sum_{i=1}^{N(t)} \mathbb{E}[Y_i] \quad (\text{since } Y_i \text{'s are indep. of } N(t)) \\ &= N(t)\mu_Y\end{aligned}$$

Thus

$$\mathbb{E}[X(t)] = \mathbb{E}[\mathbb{E}[X(t)|N(t)]] = \mathbb{E}[N(t)]\mu_Y = \lambda t\mu_Y$$

Variance of a Compound Poisson Process (Cont'd)

Similarly, using that $\mathbb{E}[N(t)] = \text{Var}(N(t)) = \lambda t$, we have

$$\begin{aligned}\text{Var}[X(t)|N(t)] &= \text{Var}\left(\sum_{i=1}^{N(t)} Y_i | N(t)\right) \\ &= \sum_{i=1}^{N(t)} \text{Var}(Y_i | N(t)) \\ &= \sum_{i=1}^{N(t)} \text{Var}(Y_i) \quad (\text{since } Y_i \text{'s are indep. of } N(t)) \\ &= N(t)\sigma_Y^2\end{aligned}$$

$$\mathbb{E}[\text{Var}(X(t)|N(t))] = \mathbb{E}[N(t)\sigma_Y^2] = \lambda t\sigma_Y^2$$

$$\text{Var}(\mathbb{E}[X(t)|N(t)]) = \text{Var}(N(t)\mu_Y) = \text{Var}(N(t))\mu_Y^2 = \lambda t\mu_Y^2$$

Thus

$$\begin{aligned}\text{Var}(X(t)) &= \mathbb{E}[\text{Var}[X(t)|N(t)]] + \text{Var}(\mathbb{E}[X(t)|N(t)]) \\ &= \lambda t(\sigma_Y^2 + \mu_Y^2) = \lambda t\mathbb{E}[Y_i^2]\end{aligned}$$

CLT of a Compound Poisson Process

As $t \rightarrow \infty$, the distribution of

$$\frac{X(t) - \mathbb{E}[X(t)]}{\sqrt{\text{Var}(X(t))}} = \frac{X(t) - \lambda t \mu_Y}{\sqrt{\lambda t (\sigma_Y^2 + \mu_Y^2)}}$$

converges to a standard normal distribution $N(0, 1)$.

5.4.3 Conditional Poisson Processes

Definition. A *conditional* (or *mixed*) *Poisson process* $\{N(t), t \geq 0\}$ is a counting process satisfying

- (i) $N(0) = 0$,
- (ii) having stationary increment, and
- (iii) there is a random variable $\Lambda > 0$ with probability density $g(\lambda)$, such that given $\Lambda = \lambda$,

$$N(t + s) - N(s) \sim \text{Poisson}(\lambda t),$$

i.e.,

$$\Pr(N(t + s) - N(s) = k) = \int_0^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!} g(\lambda) d\lambda, \quad k = 0, 1, \dots$$

Remark: In general, a conditional Poisson process does NOT have independent increment.

$$\begin{aligned} & \mathbb{P}(N(s) = j, N(t+s) - N(s) = k) \\ &= \int_0^\infty e^{-\lambda s} \frac{(\lambda s)^j}{j!} e^{-\lambda t} \frac{(\lambda t)^k}{k!} g(\lambda) d\lambda \\ &\neq \left(\int_0^\infty e^{-\lambda s} \frac{(\lambda s)^j}{j!} g(\lambda) d\lambda \right) \left(\int_0^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!} g(\lambda) d\lambda \right) \\ &= \mathbb{P}(N(s) = j) \mathbb{P}(N(t+s) - N(s) = k) \end{aligned}$$