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Exponential Distribution

Let X follow exponential distribution with rate λ: X ∼ Exp(λ).
• Density: fX(x) = λe−λx for x ≥ 0
• CDF: FX(x) = 1 − e−λx for x ≥ 0
• E(X) = 1/λ, Var(X) = 1/λ2

• If X1, . . . , Xn are i.i.d Exp(λ), then
Sn = X1 + · · · + Xn ∼ Gamma(n, λ), with density

fSn(x) = λe−λt (λt)n−1

(n − 1)!
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The Exponential Distribution is Memoryless (⋆ ⋆ ⋆ ⋆ ⋆)
Lemma: for all s, t ≥ 0

P(X > t + s | X > t) = P(X > s)

Proof.

P(X > t + s|X > t) = P(X > t + s and X > t)
P(X > t)

= P(X > t + s)
P(X > t)

= e−λ(t+s)

e−λt
= e−λs = P(X > s)

Implication. If the lifetime of batteries has an Exponential
distribution, then a used battery is as good as a new one, as long as
it’s not dead!
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Another Important Property of the Exponential

If X1, . . . , Xn are independent, Xi, ∼ Exp(λi) for i = 1, . . . , n then
(i) min(X1, . . . , Xn) ∼ Exp(λ1 + · · · + λn), and

(ii) P
(
Xj = min(X1, . . . , Xn)

)
= λj

λ1 + · · · + λn

Proof of (i)

P(min(X1, . . . , Xn) > t) = P(X1 > t, . . . , Xn > t)
= P(X1 > t) . . . P(Xn > t) = e−λ1t · · · e−λnt

= e−(λ1+···+λn)t.
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Proof of (ii)

P
(
Xj = min(X1, . . . , Xn)

)
= P(Xj < Xi for i = 1, . . . , n, i ̸= j)

=
∫ ∞

0
P(Xj < Xi for i ̸= j|Xj = t)λje−λjtdt

=
∫ ∞

0
P(t < Xi for i ̸= j)λje−λjtdt

=
∫ ∞

0
λje−λjt

∏
i ̸=j

P(Xi > t)dt

=
∫ ∞

0
λje−λjt

∏
i ̸=j

e−λitdt

= λj

∫ ∞

0
e−(λ1+···+λn)tdt

= λj

λ1 + · · · + λnPoisson Processes 1-5



Post Office

• A post office has two clerks.
• Service times for clerk i ∼ Exp(λi), i = 1, 2
• When you arrive, both clerks are busy but no one else waiting.

You will enter service when either clerk becomes free.
• Find E[T ], where T = the amount of time you spend in the post

office.
Solution. Let Ri = remaining service time of the customer with clerk
i, i = 1, 2.

• Note Ri’s are indep. ∼ Exp(λi), i = 1, 2 by the memoryless
property

• Observe T = min(R1, R2) + S where S is your service time
• Using the property of exponential distributions,

min(R1, R2) ∼ Exp(λ1 + λ2) ⇒ E[min(R1, R2)] = 1
λ1 + λ2
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Post Office (Cont’d)
As for your service time S, observe that

S ∼
{

Exp(λ1) if R1 < R2

Exp(λ2) if R2 < R1
⇒ E[S|R1 < R2] = 1/λ1

E[S|R2 < R1] = 1/λ2

Recall that P(R1 < R2) = λ1/(λ1 + λ2) So

E[S] = E[S|R1 < R2]P(R1 < R2) + E[S|R2 < R1]P(R2 < R1)

= 1
λ1

× λ1
λ1 + λ2

+ 1
λ2

× λ2
λ1 + λ2

= 2
λ1 + λ2

Hence the expected amount of time you spend in the post office is

E[T ] = E[min(R1, R2)] + E[S]

= 1
λ1 + λ2

+ 2
λ1 + λ2

= 3
λ1 + λ2

.
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5.3.1. Counting Processes

A counting process {N(t)} is a cumulative count of number of events
happened up to time t.

Definition.
A stochastic processes {N(t), t ≥ 0} is a counting process satisfying
(i) N(t) = 0, 1, . . . (integer valued),
(ii) If s < t, then N(s) ≤ N(t).
(iii) For s < t, N(t) − N(s) = number of events that occur in the

interval (s, t].
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Definition.
A process {X(t), t ≥ 0} is said to have stationary increments if for
any t > s, the distribution of X(t) − X(s) depends on s and t only
through the difference t − s, for all s < t.
That is, X(t + a) − X(s + a) has the same distribution as
X(t) − X(s) for any constant a.

Definition.
A process {X(t), t ≥ 0} is said to have independent increments if for
any s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sk < tk, the random variable
X(t1) − X(s1), X(t2) − X(s2), . . . , X(tk) − X(sk) are independent,
i.e. the numbers of events that occur in disjoint time intervals are
independent.

Example. Modified simple random walk {Xn, n ≥ 0} is a process
with independent and stationary increment, since Xn =

∑n
k=0 ξk

where ξk’s are i.i.d with P(ξk = 1) = p and P(ξk = 0) = 1 − p.
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Definition 5.1 of Poisson Processes

A Poisson process with rate λ > 0 {N(t), t ≥ 0} is a counting process
satisfying
(i) N(0) = 0,
(ii) For s < t, N(t) − N(s) is independent of N(s) (independent

increment)
(iii) For s < t, N(t) − N(s) ∼ Poi(λ(t − s)), i.e.,

P(N(t) − N(s) = k) = e−λ(t−s) (λ(t − s))k

k!

Remark: In (iii), the distribution of N(t) − N(s) depends on t − s
only, not s, which implies N(t) has stationary increment.

Poisson Processes 1-10



Definition 5.3 of Poisson Processes
The counting process {N(t), t ≥ 0} is said to be a Poisson process
having rate λ, λ > 0, if
(i) N(0) = 0.
(ii) The process has stationary and independent increments.
(iii) P(N(h) = 1) = λh + o(h).
(iv) P(N(h) ≥ 2) = o(h).

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.
[Proof of Definitions 5.1 ⇒ Definition 5.3]
From Definitions 5.1, N(h) ∼ Poi(h). Thus

P(N(h) = 1) = λhe−λh = λh + o(h)
P(N(h) ≥ 2) = 1 − P(N(h) = 0) − P(N(h) = 1)

= 1 − e−λh − λhe−λh = o(h)
Proof of Definitions 5.3 ⇒ Definition 5.1:
See textbook.
Poisson Processes 1-11



Arrival & Interarrival Times of Poisson Processes
Let

Sn = Arrival time of the n-th event, n = 1, 2, . . .

T1 = S1 = Time until the 1st event occurs
Tn = Sn − Sn−1

= time elapsed between the (n − 1)st and n-th event,
n = 2, 3, . . .

Proposition 5.1
The interarrival times T1, T2, . . . , Tk, . . . , are i.i.d ∼ Exp(λ).

Consequently, as the distribution of the sum of n i.i.d Exp(λ) is
Gamma(n, λ), the arrival time of the nth event is

Sn =
n∑

i=1
Ti ∼ Gamma(n, λ)
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Proof of Proposition 5.1

P(Tn+1 > t|T1 = t1, T2 = t2, . . . , Tn = tn)
= P(0 event in (sn, sn + t]|T1 = t1, T2 = t2, . . . , Tn = tn)

(where sn = t1 + t2 + · · · + tn)
= P(0 event in (sn, sn + t]) (by indep increment)
= P(N(sn + t) − N(sn) = 0)
= e−λt

where the last step comes from the fact that
• N(sn + t) − N(sn) ∼ Poisson(λt) and
• P (N = k) = e−µµk/k! if N ∼ Poisson(µ), k = 0, 1, 2 . . .

This shows that Tn+1 is ∼ Exp(λ), and is independent of
T1, T2, . . . , Tn.
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Definition 3 of the Poisson Process

A continuous-time stochastic process {N(t), t ≥ 0} is a Poisson
process with rate λ > 0 if
(i) N(0) = 0,
(ii) N(t) counts the number of events that have occurred up to time

t (i.e., it is a counting process).
(iii) The times between events are independent and identically

distributed with an Exp(λ) distribution.

We have seen how Definition 5.1 implies (i), (ii) and (iii) in Definition
3. The proof of the converse is omitted.
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Properties of Poisson Processes

Outline:
• Conditional Distribution of the Arrival Times
• Superposition & Thinning
• “Converse” of Superposition & Thinning
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Conditional Distribution of Arrival Times is Uniform
Given N(t) = 1, then T1, the arrival time of the first event ∼ Uniform(0, t)
Proof. For s < t,

P(T1 ≤ s|N(t)=1) = P(T1 ≤ s, N(t) = 1)
P(N(t) = 1)

= P(1 event in (0, s], no events in (s, t])
P(N(t) = 1)

= P(N(s)=1)P(N(t)−N(s)=0)
P(N(t) = 1) by indep. increment

=∗ (λse−λs)(e−λ(t−s))
λte−λt

= s

t
, s < t.

where the step =∗ comes from the fact that
• N(s) ∼ Poisson(λs), N(t) − N(s) ∼ Poisson(λ(t − s)), and

N(t) ∼ Poisson(λt)
• P (N = k) = e−µµk/k! if N ∼ Poisson(µ), k = 0, 1, 2 . . .
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Review of Order Statistics
Suppose X1, X2,. . . , Xn are i.i.d. random variables with a common
density f(x). Their joint density would be the product of the
marginal density

f(x1, x2, . . . , xn) = f(x1)f(x2) . . . f(xn).

Let X(i) be the ith smallest number among X1, X2, . . . , Xn.
(X(1), X(2), . . . , X(n)) is called the order statistics of X1, X2, . . . , Xn

• X(1) is the minimum
• X(n) is the maximum
• X(1) ≤ X(2) ≤ . . . ≤ X(n)

The joint density of X(1), X(2), . . . , X(n) is

h(x1, x2, . . . , xn) =
{

n!f(x1)f(x2) . . . f(xn), if x1 ≤ x2 ≤ . . . ≤ xn.

0 otherwise
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Example

If U1, U2, . . . , Un are indep. Uniform(0, t), their common density is

f(u) =
{

1/t, for 0 < u < t.

0 otherwise

The joint density of their order statistics U(1), U(2), . . . , U(n) is

h(u1, u2, . . . , un) = n!f(u1)f(u2) . . . f(un) = n!(1/t)n

for 0 ≤ u1 ≤ u2 ≤ . . . ≤ un < t and 0 elsewhere.
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Theorem 5.2
Given N(t) = n,

(S1, S2, . . . , Sn) ∼ (U(1), U(2), . . . , U(n))

where (U(1), . . . , U(n)) are the order statistics of (U1, . . . , Un) ∼ i.i.d
Uniform (0, t), i.e., the joint conditional density of S1, S2, . . ., Sn is

f(s1, s2, . . . , sn|N(t) = n) = n!/tn, 0 < s1 < s2 < . . . < sn

Proof. The event that S1 = s1, S2 = s2, . . ., Sn = sn, N(t) = n is
equivalent to the event T1 = s1, T2 = s2 − s1, . . . , Tn = sn − sn−1,
Tn+1 > t − sn. Hence, by Proposition 5.1, we have the conditional joint
density of S1, . . . , Sn given N(t) = n as follows:

f(s1, . . . , sn|N(t) = n) = f(s1, . . . , sn, N(t) = n)
P(N(t) = n)

= λe−λs1λe−λ(s2−s1) . . . λe−λ(sn−sn−1)e−λ(t−sn)

e−λt(λt)n/n!
= n!t−n, 0 < s1 < . . . < sn < t
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Example 5.21. Insurance claims comes according to a Poisson
process {N(t)} with rate λ. Let

• Si = the time of the ith claims
• Ci = amount of the ith claims, i.i.d with mean µ, indep. of

{N(t)}
Then the total discounted cost by time t at discount rate α is given by

D(t) =
∑N(t)

i=1
Cie

−αSi .

Then

E[D(t)|N(t)] = E
[∑N(t)

i=1
Cie

−αSi

∣∣∣N(t)
]

(5.2)= E
[∑N(t)

i=1
Cie

−αU(i)

]
= E

[∑N(t)
i=1

Cie
−αUi

]
=
∑N(t)

i=1
E[Ci]E

[
e−αUi

]
= N(t)µ

∫ t

0

1
t
e−αxdx = N(t) µ

αt
(1 − e−αt)

Thus E[D(t)] = E[N(t)] µ
αt(1 − eαt) = λµ

α (1 − e−αt)
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Superposition

The sum of two independent Poisson processes with respective rates
λ1 and λ2, called the superposition of the processes, is again a
Poisson process but with rate λ1 + λ2.

The proof is straight forward from Definition 5.3 and hence omitted.

Remark: By repeated application of the above arguments we can see
that the superposition of k independent Poisson processes with rates
λ1, · · · , λk is again a Poisson process with rate λ1 + · · · + λk.
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Thinning
Consider a Poisson process {N(t) : t ≥ 0} with rate λ.
At each arrival of events, it is classified as a{

Type 1 event with probability p or
Type 2 event with probability 1 − p,

independently of all other events. Let

Ni(t) = # of type i events occurred during [0, t], i = 1, 2.

Note that N(t) = N1(t) + N2(t).

Proposition 5.2
{N1(t), t ≥ 0} and {N2(t), t ≥ 0} are both Poisson processes having
respective rates λp and λ(1 − p).
Furthermore, the two processes are independent.
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Proof of Proposition 5.2
First observe that given N(t) = n + m,

N1(t) ∼ Binomial(n + m, p). (why?)

Thus P(N1(t) = n, N2(t) = m)
= P(N1(t) = n, N2(t) = m|N(t) = n + m)P(N(t) = n + m)

=
(

n + m

n

)
pn(1 − p)me−λt (λt)n+m

(n + m)!

= e−λtp (λpt)n

n! e−λt(1−p) (λ(1 − p)t)m

m!
= P(N1(t) = n)P(N2(t) = m).

This proves the independence of N1(t) and N2(t) and that

N1(t) ∼ Poisson(λpt), N2(t) ∼ Poisson(λ(1 − p)t).

Both {N1(t)} and {N2(t)} inherit the stationary and independent increment
properties from {N(t)}, and hence are both Poisson processes.
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Some “Converse” of Thinning & Superposition

Consider two indep. Poisson processes {NA(t)} and {NB(t)} w/
respective rates λA and λB. Let

SA
n = arrival time of the nth A event

SB
m = arrival time of the mth B event

Find P(SA
n < SB

m).

Approach 1:
Observer that SA

n ∼ Gamma(n, λA), SB
m ∼ Gamma(m, λB) and

they are independent. Thus

P(SA
n < SB

m) =
∫

x<y
λAe−λAx (λAx)n−1

(n − 1)! λBe−λBy (λBy)m−1

(m − 1)! dxdy
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Some “Converse” of Thinning & Superposition
(Cont’d)

Let N(t) = NA(t) + NB(t) be the superposition of the two processes. Let

Ii =
{

1 if the ith event in the superpositon process is an A event
0 otherwise

.

The Ii, i = 1, 2, . . . are i.i.d. Bernoulli(p), where p = λA

λA + λB
.

Approach 2:

P(SA
n < SB

1 ) = P(the first n events are all A events) =
(

λA

λA + λB

)n

P(SA
n < SB

m) = P(at least n A events occur before m B events)
= P(at least n heads before m tails)
= P(at least n heads in the first n + m − 1 tosses)

=
n+m−1∑

k=n

(
n + m − 1

k

)(
λA

λA + λB

)k (
λB

λA + λB

)n+m−1−k
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Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate λ. If an event occurs at time t
will be classified as a type i event with probability pi(t), i = 1, . . . , k,∑

i pi(t) = 1, for all t, independently of all other events. then

Ni(t) = number of type i events occurring in [0, t], i = 1, . . . , k.

Note N(t) =
∑k

i=1 Ni(t). Then Ni(t), i = 1, . . . , k are independent
Poisson random variables with means λ

∫ t
0 pi(s)ps.

Remark: Note {Ni(t), t ≥ 0} are NOT Poisson processes.
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Example
• Policyholders of a certain insurance company have accidents

occurring according to a Poisson process with rate λ.
• The amount of time T from when the accident occurs until a

claim is made has distribution G(t) = P(T ≤ t).
• Let Nc(t) be the number of claims made by time t.

Find the distribution of Nc(t).

Solution. Suppose an accident occurred at time s. It is claimed by
time t if s + T ≤ t, i.e., with probability

p(s) = P(T ≤ t − s) = G(t − s).

We call an accident type I if it’s completed before t, and type II
otherwise. By Proposition 5.3, Nc(t) has a Poisson distribution with
mean

λ

∫ t

0
p(s)ps = λ

∫ t

0
G(t − s)ds = λ

∫ t

0
G(s)ds
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5.4.1 Nonhomogeneous Poisson Process
Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary) Poisson
process with intensity function λ(t) ≥ 0 is a counting process
{N(t), t ≥ 0} satisfying
(i) N(0) = 0.
(ii) having independent increments.
(iii) P(N(t + h) − N(t) = 1) = λ(t)h + o(h).
(iv) P(N(t + h) − N(t) ≥ 2) = o(h).

Definition 5.4b. A nonhomogeneous Poisson process with intensity
function λ(t) ≥ 0 is a counting process {N(t), t ≥ 0} satisfying
(i) N(0) = 0,
(ii) for s, t ≥ 0, N(t + s) − N(s) is independent of N(s)

(independent increment)
(iii) For s, t ≥ 0, N(t + s) − N(s) ∼ Poisson(m(t + s) − m(s)),

where m(t) =
∫ t

0 λ(u)du

The two definitions are equivalent.
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The Interarrival Times of a Nonhomogeneous
Poisson Process Are NOT Independent

A nonhomogeneous Poisson process has independent increment but
its interarrival times between events are

• neither independent
• nor identically distributed.

Proof. Homework.
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Proposition 5.4

Let {N1(t), t ≥ 0}, and {N2(t), t ≥ 0} be two independent
nonhomogeneous Poisson process with respective intensity functions
λ1(t) and λ2(t), and let N(t) = N1(t) + N2(t). Then

(a) {N(t), t ≥ 0} is a nonhomogeneous Poisson process with
intensity function λ1(t) + λ2(t).

(b) Given that an event of the {N(t), t ≥ 0} process occurs at time
t then, independent of what occurred prior to t , the event at t
was from the {N1(t)} process with probability

λ1(t)
λ1(t) + λ2(t) .
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5.4.2 Compound Poisson Processes
Definition. Let {N(t)} be a (homogeneous) Poisson process with
rate λ and Y1, Y2, . . . are i.i.d random variables independent of
{N(t)}. The process

X(t) =
∑N(t)

i=1
Yi

is called a compound Poisson process, in which X(t) is defined as 0 if
N(t) = 0.

A compound Poisson process has
• independent increment, since

X(t + s) − X(s) =
∑N(t+s)−N(s)

i=1 Yi+N(s) is independent of
X(s) =

∑N(s)
i=1 Yi, and

• stationary increment, since
X(t + s) − X(s) =

∑N(t+s)−N(s)
i=1 Yi+N(s) has the same

distribution as X(t) =
∑N(t)

i=1 Yi
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The Mean of a Compound Poisson Process

Suppose E[Yi] = µY , Var(Yi) = σ2
Y . Note that E[N(t)] = λt.

E[X(t)|N(t)] =
∑N(t)

i=1
E[Yi|N(t)]

=
∑N(t)

i=1
E[Yi] (since Yi’s are indep. of N(t))

= N(t)µY

Thus
E[X(t)] = E[E[X(t)|N(t)]] = E[N(t)]µY = λtµY
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Variance of a Compound Poisson Process (Cont’d)
Similarly, using that E[N(t)] = Var(N(t)) = λt, we have

Var[X(t)|N(t)] = Var

(∑N(t)
i=1

Yi

∣∣∣N(t)
)

=
∑N(t)

i=1
Var(Yi|N(t))

=
∑N(t)

i=1
Var(Yi) (since Yi’s are indep. of N(t))

= N(t)σ2
Y

E[Var(X(t)|N(t))] = E[N(t)σ2
Y ] = λtσ2

Y

Var(E[X(t)|N(t)]) = Var(N(t)µY ) = Var(N(t))µ2
Y = λtµ2

Y

Thus

Var(X(t)) = E[Var[X(t)|N(t)]] + Var(E[X(t)|N(t)])
= λt(σ2

Y + µ2
Y ) = λtE[Y 2

i ]
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CLT of a Compound Poisson Process

As t → ∞, the distribution of

X(t) − E[X(t)]√
Var(X(t))

= X(t) − λtµY√
λt(σ2

Y + µ2
Y )

converges to a standard normal distribution N(0, 1).
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5.4.3 Conditional Poisson Processes

Definition. A conditional (or mixed) Poisson process {N(t), t ≥ 0} is
a counting process satisfying
(i) N(0) = 0,
(ii) having stationary increment, and
(iii) there is a random variable Λ > 0 with probability density g(λ),

such that given Λ = λ,

N(t + s) − N(s) ∼ Poisson(λt),

i.e.,

P(N(t + s) − N(s) = k) =
∫ ∞

0
e−λt (λt)k

k! g(λ)dλ, k = 0, 1, . . .
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Remark: In general, a conditional Poisson process does NOT have
independent increment.

P(N(s) = j, N(t + s) − N(s) = k)

=
∫ ∞

0
e−λs (λs)j

j! e−λt (λt)k

k! g(λ)dλ

̸=
(∫ ∞

0
e−λs (λs)j

j! g(λ)dλ

)(∫ ∞

0
e−λt (λt)k

k! g(λ)dλ

)
= P(N(s) = j)P(N(t + s) − N(s) = k)
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