STAT 253: Introduction to Probability Models

Reversible Markov Chains
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Backward Markov Chain

If {..., Xn—1,Xn, Xn+t1,...} is a Markov chain, the backward chain
{.. ,XnH,Xn,Xn,l, ...} is also a Markov chain.

Proof:
P(Xm - ] | Xerl — 7:7 Xm+27 Xm+3a .. )

P(Xm - j7 X7n,+1 - iy Xm+27 Xm+37 .- )
P(Xm+1 - /1./7 Xm+27 Xm+37 c )
IP>(AXm+27 Xm+37 R ’ Xm = ja Xm+1 - I)P(Xm = ja Xm+1 — 7)
P(Xm—l—% Xm43,. - | Xmy1 = 7:)]P)()('rrH»l = L)
:P(Xm+2a Xm+3a o | Xm+1 = 7)P(Xm = ja Xm+1 )
P(Xm+2a Xm+3; cee | Xm+1 = Z.)]P)(AXVerl = Z)
:P(Xm = ja Xm+1 - Z)
P(X771,+1 - Z)

(Markov Propert

- P(Xm =7 ’ Xm41 = i)
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Transition Probabilities of the Backward Markov
Chain

Consider a Markov chain {X,, : n =0,1,2,...} with transition
probabilities {P;;}.

Let {wj(m) = P(Xp, = j)}j>0 be the marginal distribution of X,.
The transition probabilities {an)} of the backward Markov chain are

QU =P(Xy = j | X1 = i)
_ P(Xin =, X1 = 1)

P(Xm+1 - ’L)
_ P(Xm :j)IP(Xm—i—l =1 | Xm = ) _ Wj(m)Pj'
P(Xmi1 =1) amth

We can see the backward Markov chain is NOT stationary because
the transition probabilities an) depend on m.
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How to make a backward Markov chain stationary?

To make the backward Markov chain stationary, the forward chain
must start with its stationary distribution {;} so that

P(Xpy, =j)=m; foralm
the transition probabilities {Q;;} of the backward Markov chain is

7TP
Qij =

T

which does not depend on m
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Time Reversible Markov Chains & Detailed
Balanced Equations

A Markov chain is said to be time reversible iff
Qij = Py,

i.e., it behaves exactly the same no matter running forward or
backward when in the stationary state.

Because Q;; equals m;P;j;/m;, a Markov chain is time reversible if and
only if its stationary distribution {;} satisfies the equations

TFiPij = Wj})j'i for all ’L,]

This set of equations is called the detailed balanced equation.
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Balanced Equations v.s. Detailed Balanced
Equations

Recall a distribution 7; for a Markov chain is said to be stationary if
and only if it satisfies

T =Y mbPy; foralljeX.
1eX

This set of equations is called the balanced equations.
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Balanced Equations v.s. Detailed Balanced
Equations

Recall a distribution 7; for a Markov chain is said to be stationary if
and only if it satisfies

T =Y mbPy; foralljeX.
1eX

This set of equations is called the balanced equations.

A solution to the detailed balanced equations must also be a
solution to the balanced equations, because

Y miPy =) miPy=m) Pi=m-1=m;

1€X ieX 1€X
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Balanced Equations v.s. Detailed Balanced
Equations

Recall a distribution 7; for a Markov chain is said to be stationary if
and only if it satisfies

T =Y mbPy; foralljeX.
1eX

This set of equations is called the balanced equations.

A solution to the detailed balanced equations must also be a
solution to the balanced equations, because

Y miPy =) miPy=m) Pi=m-1=m;

1€X ieX 1€X

It is possible that the balanced equations have solutions but the

detailed balanced equations do not.
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Interpretation of the Balanced Equation

T =Y mbPy; foralljeX
1eX
& m(l-Py)= > mPy; foralljeX
I€X i)

rate of transitions out of state j = rate of transitions into state j
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Interpretation of the Detailed Balanced Equation

miPij = m;Pji

rate of transitions from ¢ to j = rate of transitions from j to 4

T —> ] Jg—>1
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Balanced Eqns v.s. Detailed Balanced Eqns.

e For balanced equations,
the # of equations = # of states = # of unknowns
e For detailed balanced equations,
# of equations = # of pairs of states > # of unknowns

e Detailed Balanced Equations are easier to solve than the
Balanced Equations as the former ones involve only two
unknowns in each equation

e One can start by solving the detailed balanced equations for the
stationary distribution. If you can find one, it'll also be the

solution for the balanced equations. That also proves the Markov
chain if positive recurrent if it's irreducible (2nd limit theorem).

e However, if the detailed balanced equations have no solutions, it
doesn't prove the Markov chain to be null current or transient
since the balanced equations might still have a solution.
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Example 4.35

Consider a random walk with states 0,1,..., M and transition
probabilities

Pimi=a;j=1—-PF;, fori=1,...,M—1,
Pop=ap=1- Ry,

Pyy =oapmy=1—Pyy—1

0-29% 1 Mo s M—1"M3 N

N

(03 P e RPN VR V)
-«

1 0

Reversible Markov Chains

1-10



Example 4.35 (Cont’d)

The stationary distribution 7 can be solved via the detailed balanced
equation

miP i1 =mi(l — o) =m1 P = 10—
So

Q-1 T = _ Qj—10G—2 ... QQ o
" (1—ai)(1—ai_1)...(1—a1)

T, =
1—051'

Since Zé\/[ m; = 1, one can solve m via

M
;10592 ...00
m |1+ =1
0 ; 1—a)(1—ci1)...(1—a1)
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A Non-Time-Reversible Markov Chain

In Exercise 4.34 (a flea moving around the vertices of a triangle),

1 1
p3 p1 q1 q2
Va N N4 N where p; +¢; =1
3 & 2 R (N

the transition probabilities, and the stationary distribution are
respectively

1 2 3
1/0
L L —pags 1 —p3q1 1 —pigo
21 g 0 po|, andm=( , , )
C C C
3\p3 g3 O

where C' = 3 — pags — p3q1 — p1g2. One can easily verify that
m Prg = mp1 # maPo1 = m2qo

The chain is NOT time reversible.
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Other Non-Time-Reversible Markov Chains

e A Markov chain with transient states cannot be time-reversible
because then running forward and backward in time will not be
equivalent.

o If there exists two states ¢ and j such that
P;j>0 but P;=0

then the Markov chain cannot be time-reversible because then
when running backward in time

;i Pji

7

Qij = = =0+ Py
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Theorem 4.2

An ergodic Markov chain for which P;; = 0 whenever P;; = 0 is time
reversible if and only if starting in state ¢, any path back to 7 has the
same probability as the reversed path. That is, if

P Py ... Py = Py, Piiy - Piyi

for all states 7, 11,..., 1.
/ N\ vd N
g1 11 k-1 i1
N v N\ /
— 19 — 12
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Theorem 4.2 — Proof of Necessity

If a Markov chain is time reversible, we have
WiPij = ij)jia Wkpkj = ij)jk'
implying (if P;; Pj, > 0) that

mi _ Lol
- b
mx PP

but m; P, = 7y Py; also implies m; /7, = Py;/ Pyi.. Thus
Pij P Pji = PijPj Pr;.

This proves for the case i — 7 — k — 7. The general case for longer
cycle can be proved similarly
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Theorem 4.2 — Proof of Sufficiency

Consider the cycle i — i1 —i0 — ... = i — j —> 1.

Piiy Piyiy - - - Piijji = PZJPJ% Tgig—1 " " Py

Summing the preceding over all states i1, ..., yields
k) p  _ (k)
Pij Pji _Pijpji
Letting k£ — oo yields
: (k) _ : (k)
dm By Pji = B \lim B
— —r
=T =Ty

in which limy, o0 P
This proves the theorem.

Reversible Markov Chains

) = m; for all j since the Markov chain is ergodic.
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Example 4.36 Random Walk on a Weighted Graph
(p-241)

A graph = a set of vertices (or nodes) + a set of arcs (or edges)
connecting some pairs of vertices. We consider random walk on a
connected graph such that

each pair (i, j) of vertices are connected by at most one arc;
all arcs are undirected: arc (i, j) = arc (j,1);

there is a path consists of arcs connecting any pair of vertices;
each arc (4, j) is associated with a weight w;; > 0

o w;; = 0 if there is not arc connecting (3, j)
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Example 4.36 Random Walk on a Weighted Graph
(p-241)

A particle moving from vertices to vertices that if at any time the
particle is at node %, then it will next move to node j with probability
W4
P.. =
Y ok Wi,
E.g., in the graph below, there are two arcs from vertices B with
weights wp4 = 2 and Wpe = 1 respectively. So,

WBA 2 2 PBC _ wpBpc 1 1

Ppa =

wBA+ch:2+1:§’ wBA—i—ch:Z—&-l:g'
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Random Walk on a Weighted Graph is Reversible

Solving the detailed balanced equation:
T Wi4 W45
oy J_ Wi
D Wik D Wik

or, equivalently, since w;; = wj;,

=m;jPj; foralli,j

Yy _ ﬂ'j
Dok Wik Dop Wik
T

E:kuhk

for all 4, 7,

which means

is a constant ¢ for all 7, i.e.,

T = cZwik.
k
Since 1 =37, mj = c37; > ) wjk, we know ¢ = 1/(32; >y wjx), and

hence
o 2k Wik
;=
25 2ok Wik
is a solution to the detailed balanced eq. The process is therefore

firfEtrearsivre: e



Random Walk on a Weighted Graph

Vertices i >k Wik T

A 2+2=4 14=4/200
B 2+1=3 mp=3/200
C 1+1+486=88 mc =88/200
D 24+1+1=4 wp=4/200
E 14248 =89 =g =289/200
F 241+1=4 mp=4/200
G 1+3=4 g =4/200
H 14+3=4 7 =4/200
Sum Do 2ok Wik = 200
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Random Khnight on a Chessboard

e The Knight moves in an L shape in any
-+~ direction.

e At the blue square, the Knight can move to

-t
-t s

any of the 8 red squares.

e From a square near the boundary, the

Knight has fewer possible moves as it
cannot move out of the Chessboard (see the
3 graphs below.)
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Random Khnight on a Chessboard

e A Knight moves randomly on an empty chessboard.

e In each step, it's equally like to take any of its legal moves. E.g.,
at the corner, it has prob. 1/2 each to move to either of the two
red squares, from which it has prob. 1/6 each to move to any of
the 6 possible squares.

™

=

e Each move is indep. of the history of moves up to that time.
e The position of on knight after nth move is a Markov chain

where states are the 64 squares on the chessboard.
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Random Khnight on a Chessboard

The Knight's random walk on a Chessboard is also a random walk on
weighted graph where

e the vertices are the 64 squares on the chessboard;

e there is an arc between any two squares that Knight can move in
1 step;

e all the arcs have weight w;; = 1.
The transition probability of a random walk on weighted graph from
square ¢ to square j is

Wi 1

P‘ p— pu—
Y S wik  # of squares that connected with square 7 with an arc

1
~ # of legal moves from square i

which is exactly the random walk of the knight.
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Random Khnight on a Chessboard

Using the property of random walks on a graph, the stationary
distribution of the Knight's random walk is

> L Wik # of legal moves from square 7
‘ > kwik  >.;(# of legal moves from square j)

The numbers of legal moves from the squares are as follows:

The sum of the number of possible
moves over all squares is

2x44+3%x8+4x20
+6 x 16+ 8 x 16 = 336.

The long run proportion of time that the Knight is in a specific square
is simply the counts in the table above divided by 336.
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Return Time of a Random Knight

Recall that 1/7; = E[T;] is the expected time between two visits of
the Markov chain to state .

= =
Starting from one of the four corners, it takes
1/m = 336/2 = 168 moves on average for a
Knight to return to its initial position.

= =

Starting from the center of the chessboard, it
takes 1/m; = 336/8 = 42 moves on average for a
Knight to return to its initial position
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More Questions

e Is this Markov chain irreducible? That is, can the Knight visit
every square from every square?

e What is the period of this Markov chain?

Reversible Markov Chains
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More Questions

e |s this Markov chain irreducible? That is, can the Knight visit
every square from every square?

e What is the period of this Markov chain?
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More Questions

e Is this Markov chain irreducible? That is, can the Knight visit
every square from every square?

e What is the period of this Markov chain?

Every “L" move can only from a gray square to a white square or
a white square to a gray square.
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