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Second-Order Methods

• Up to now, we focused on first-order methods, i.e., algorithms
that rely on gradient information.

• Starting today, we turn to second-order methods, which use both
the gradient and the Hessian (the matrix of second derivatives).

• For this discussion, we will restrict attention to unconstrained
problems of the form

min
x

f(x) with x ∈ Rn,

• where f(x) is assumed to be twice differentiable.

Newton’s method 0-2



Second-Order Taylor Approximation

At an iterate xt, a quadratic approximation of f is

f(x) ≈ f(xt) + ⟨∇f(xt), x − xt⟩ + 1
2⟨x − xt, ∇2f(xt)(x − xt)⟩.

• Compared to a linear model, the quadratic model can be a much
more faithful local approximation.

• Minimizing the quadratic model yields a closed-form step (when
∇2f(xt) is invertible).
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Newton Direction from the Quadratic Model

Differentiate the quadratic model w.r.t. x and set to zero:

∇f(xt)+∇2f(xt)(x−xt) = 0 =⇒ x = xt − [∇2f(xt)]−1∇f(xt).

Descent directions

Gradient direction: dt = −∇f(xt), Newton direction: dt = −[∇2f(xt)]−1∇f(xt).
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Newton as Preconditioning

• The Newton direction multiplies the negative gradient by an
inverse Hessian:

dt = − [∇2f(xt)]−1︸ ︷︷ ︸
preconditioner

∇f(xt).

• This is an example of preconditioning: reshaping the geometry of
the problem via curvature.

• One important consequence is affine invariance: under a
reparametrization x = Ay + b, the Newton direction transforms
consistently with the change of coordinates.
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Affine Invariance of Newton’s Method (Statement)
Consider an invertible affine change of variables

x = Ay + b, A ∈ Rn×n invertible, b ∈ Rn,

and define the reparametrized objective

g(y) := f(Ay + b).

Claim (affine invariance)
Let xt = Ayt + b. If Newton’s method is applied to f at xt and to g
at yt, then the iterates match under the change of variables:

xt+1 = Ayt+1 + b.

Equivalently, the Newton step in x-coordinates equals A times the
Newton step in y-coordinates.
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Affine Invariance (Proof): How Gradients and
Hessians Transform

Let x = Ay + b and g(y) = f(x) with x depending on y.

Gradient transformation (chain rule)

∇g(y) = A⊤∇f(Ay + b).

In particular, at yt with xt = Ayt + b,

∇g(yt) = A⊤∇f(xt).

Hessian transformation
Differentiate again:

∇2g(y) = A⊤∇2f(Ay + b) A,

hence
∇2g(yt) = A⊤∇2f(xt) A.Newton’s method 0-7



Affine Invariance (Proof): Newton Steps Match
Newton directions:

dt
x := −[∇2f(xt)]−1∇f(xt), dt

y := −[∇2g(yt)]−1∇g(yt).

Compute the Newton direction in y-space
Using ∇g(yt) = A⊤∇f(xt) and ∇2g(yt) = A⊤∇2f(xt)A,

dt
y = −

(
A⊤∇2f(xt)A

)−1
A⊤∇f(xt)

= −A−1 [∇2f(xt)]−1 (A⊤)−1 A⊤∇f(xt)
= −A−1 [∇2f(xt)]−1∇f(xt) = A−1dt

x.

Newton updates are
yt+1 = yt + dt

y, xt+1 = xt + dt
x.

Multiply the y-update by A and add b:
Ayt+1 + b = Ayt + b + Adt

y = xt + dt
x = xt+1.
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Affine Invariance: What Changes (and What
Doesn’t)

• The Newton step is coordinate-consistent: reparameterizing by
x = Ay + b produces the same sequence of points in Rn.

• In contrast, (plain) gradient descent is not affine invariant: under
x = Ay + b, the gradient direction transforms as
−∇g(y) = −A⊤∇f(x), which is not generally mapped to
−∇f(x) by a fixed linear map unless A is orthogonal (up to
scaling).
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Damped Newton and Newton’s Method

Damped Newton update

xt+1 = xt − η [∇2f(xt)]−1∇f(xt).

• η > 0 is a stepsize (damping).
• The choice η = 1 gives the classical Newton’s method.
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Failure Mode: Lack of Curvature

• Newton steps can be unstable when the Hessian is singular or
nearly singular.

• Near-zero curvature can lead to extremely large steps (via
[∇2f(xt)]−1), and the local quadratic model may be unreliable.

Illustrative example (1D)

f(x) = log
(
e2x + e−2x)

.

Newton’s method can converge very fast from some initial points, but
diverge from others that are relatively close.
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Example: When Newton Can Diverge

Consider the 1D function

f(x) = log
(
e2x + e−2x)

.

• Smooth, convex, symmetric, minimized at x⋆ = 0.
• Yet Newton’s method can behave very differently for nearby

initial points.
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Compute Gradient and Hessian

Write f(x) = log(e2x + e−2x).

f ′(x) = 2e2x − 2e−2x

e2x + e−2x
= 2 · e4x − 1

e4x + 1 .

f ′′(x) = 16e4x

(e4x + 1)2 .

• f ′(0) = 0 and f ′′(0) = 4.
• For large x, f ′(x) → 2 while f ′′(x) → 0 (curvature vanishes).
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Newton vs Gradient Descent Updates (1D)

Newton’s method:
xt+1 = xt − f ′(xt)

f ′′(xt)
.

Gradient descent with stepsize η:

xt+1 = xt − ηf ′(xt).

• Newton rescales the gradient by 1/f ′′(xt).
• When f ′′(xt) is tiny, the Newton step can become enormous.
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Run 1: Start at x0 = 0.5 (Newton is Extremely Fast)

Newton iterates (first few):

0.5000, −0.4067, 0.2047, −0.0237, 3.53 × 10−5, . . . → 0.

Gradient descent with η = 0.1 (first few):

0.5000, 0.3477, 0.2274, 0.1422, 0.0868, . . . → 0.

• Newton quickly enters a neighborhood where the quadratic
model is accurate, leading to very rapid (locally quadratic)
convergence.

• GD decreases steadily but much more slowly.
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Run 2: Start at x0 = 0.7 (Newton Blows Up)

Newton iterates (first few):

0.7000, −1.3480, 26.1045, −2.79 × 1044, diverged.

Gradient descent with η = 0.1 (first few):

0.7000, 0.5229, 0.3669, 0.2418, 0.1520, . . . → 0.

• A small change in initialization (0.5 → 0.7) radically changes
Newton’s behavior.

• GD remains stable because its step length is directly controlled
by η.
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Why Does Newton Diverge Here? (Mechanism)

Key observation: for large |x|,

f ′(x) ≈ 2 sign(x), f ′′(x) = 16e4x

(e4x + 1)2 ≈ 16e−4|x| (tiny).

So the Newton step size behaves like∣∣∣∣ f ′(x)
f ′′(x)

∣∣∣∣ ≈ 2
16e−4|x| = 1

8e4|x|,

which grows explosively once an iterate lands in a low-curvature
region.

• Newton is powerful near the minimizer (good curvature).
• Newton can be dangerous far away (near-flat curvature ⇒ huge

steps).
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Takeaway: Stabilizing Newton

This example motivates damping / safeguards:
• Damped Newton: xt+1 = xt − η f ′(xt)

f ′′(xt) with η ∈ (0, 1].
• Line search / trust region: accept a Newton-like step only if it

decreases f sufficiently.
• Regularization: replace f ′′(xt) by f ′′(xt) + λ (or use cubic

regularization).
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Key Lemma: Error Recursion for Damped Newton

Damped Newton:

xt+1 = xt − η [∇2f(xt)]−1∇f(xt), η > 0,

and let x⋆ be a local minimizer with ∇f(x⋆) = 0, and assume
∇2f(xt) invertible.

Lemma 1
Define

Ht := [∇2f(xt)]−1
∫ 1

0
∇2f

(
x⋆ + λ(xt − x⋆)

)
dλ.

Then
xt+1 − x⋆ = (I − ηHt)(xt − x⋆).
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Proof of the Newton Lemma (Simplified)

Using ∇f(x⋆) = 0, the fundamental theorem of calculus gives

∇f(xt) =
∫ 1

0
∇2f

(
x⋆ + λ(xt − x⋆)

)
(xt − x⋆) dλ.

Multiply both sides by [∇2f(xt)]−1 and define

Ht := [∇2f(xt)]−1
∫ 1

0
∇2f

(
x⋆ + λ(xt − x⋆)

)
dλ,

so that
[∇2f(xt)]−1∇f(xt) = Ht(xt − x⋆).

Plug into damped Newton:

xt+1 − x⋆ = (xt − x⋆) − η[∇2f(xt)]−1∇f(xt) = (I − ηHt)(xt − x⋆).
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Setup: Strong Curvature + Lipschitz Hessian

Let x⋆ be a local minimum of f with strong curvature:

∇f(x⋆) = 0, ∇2f(x⋆) ⪰ µI (µ > 0). (2)

Assume the Hessian is M -Lipschitz (in spectral norm):

∥∇2f(x) − ∇2f(y)∥s ≤ M∥x − y∥2. (3)

High-level idea: near x⋆, the Hessian stays well-conditioned and
cannot change too fast, so I − Ht becomes small. This will imply a
strong local contraction for Newton.
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Theorem (L17.2): Bounding ∥I − Ht∥s Locally
Recall

Ht := [∇2f(xt)]−1
∫ 1

0
∇2f

(
x⋆ + λ(xt − x⋆)

)
dλ.

Lemma 2
If (2) and (3) hold, then whenever

∥xt − x⋆∥2 ≤ µ

2M
,

we have the bound

∥I − Ht∥s ≤ M

µ
∥xt − x⋆∥2.

Interpretation: once xt is close enough to x⋆, Ht is close to I, and
the Newton map is strongly contractive.
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Local Analysis I: Bounding ∥I − Ht∥s via Lipschitz
Hessian

Assume near x⋆:

∇2f(x⋆) ⪰ µI, ∥∇2f(x) − ∇2f(y)∥s ≤ M∥x − y∥2.

Goal (for xt close enough to x⋆):

∥I − Ht∥s ≤ M

µ
∥xt − x⋆∥2.

This estimate plus the recursion implies very fast local contraction.
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Local Analysis II: Proof Sketch of ∥I − Ht∥s Bound
Rewrite I − Ht to expose a Hessian difference:

I − Ht = [∇2f(xt)]−1
∫ 1

0

(
∇2f(xt) − ∇2f(x⋆ + λ(xt − x⋆))

)
dλ.

Take spectral norms:

∥I−Ht∥s ≤ ∥[∇2f(xt)]−1∥s

∫ 1

0
∥∇2f(xt)−∇2f(x⋆+λ(xt−x⋆))∥s dλ.

Use Lipschitzness and ∥xt − (x⋆ + λ(xt − x⋆))∥2 = (1 − λ)∥xt − x⋆∥2:∫ 1

0
· · · dλ ≤

∫ 1

0
M(1 − λ) dλ ∥xt − x⋆∥2 = M

2 ∥xt − x⋆∥2.

If ∥xt − x⋆∥2 ≤ µ/(2M), then

∇2f(xt) ⪰ ∇2f(x⋆)−M∥xt−x⋆∥2I ⪰ µ

2 I ⇒ ∥[∇2f(xt)]−1∥s ≤ 2
µ

.

Combine the last two displays to get

∥I − Ht∥s ≤ M

µ
∥xt − x⋆∥2.Newton’s method 0-24



Quadratic Convergence of Newton’s Method

Theorem 3 (Local quadratic convergence)
Let f : Rn → R be twice differentiable with M -Lipschitz continuous
Hessian, and let x⋆ be a local minimum of f with strong curvature,
i.e.,

∇f(x⋆) = 0, ∇2f(x⋆) ⪰ µI

for some µ > 0. Then, as long as we start Newton’s method from a
point x0 with

∥x0 − x⋆∥2 ≤ µ

2M
,

the distance to optimality of the iterates xt generated by Newton’s
method decays as

∥xt+1 − x⋆∥2
µ/M

≤
(∥xt − x⋆∥2

µ/M

)2
.
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Proof

From the Newton lemma with η = 1:

∥xt+1 − x⋆∥2 ≤ ∥I − Ht∥s ∥xt − x⋆∥2.

Using ∥I − Ht∥s ≤ M
µ ∥xt − x⋆∥2 (valid when ∥xt − x⋆∥2 ≤ µ/(2M)),

∥xt+1 − x⋆∥2 ≤ M

µ
∥xt − x⋆∥2

2.

Equivalently,

M

µ
∥xt+1 − x⋆∥2 ≤

(M

µ
∥xt − x⋆∥2

)2
.
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Global Linear Convergence of Damped Newton

Theorem 4 (Corollary L17.1)
Let f : Rn → R be twice differentiable, µ-strongly convex, and
L-smooth. Then, the distance to optimality of the iterates xt

generated by damped Newton’s method with stepsize η ≤ µ/L decays
exponentially fast at the rates

∥xt+1 − x⋆∥2
2 ≤ L

µ

(
1 − η

µ

L

)t
∥x1 − x⋆∥2

2

and
f(xt+1) − f(x⋆) ≤

(
1 − η

µ

L

)t(
f(x1) − f(x⋆)

)
.
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Proof of Corollary L17.1: One-Step Decrease
L-smoothness gives, for any step,

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩ + L

2 ∥xt+1 − xt∥2
2.

Using ∇2f(xt) ⪰ µI, we have

∥xt+1 − xt∥2
2 ≤ 1

µ
⟨xt+1 − xt, ∇2f(xt)(xt+1 − xt)⟩.

Plug in and use the damped Newton step
xt+1 − xt = −η [∇2f(xt)]−1∇f(xt),

to obtain

f(xt+1) ≤ f(xt)−η
〈
∇f(xt), [∇2f(xt)]−1∇f(xt)

〉
+ L

2µ
η2

〈
∇f(xt), [∇2f(xt)]−1∇f(xt)

〉
.

If η ≤ µ/L, then

f(xt+1) ≤ f(xt) − η

2
〈
∇f(xt), [∇2f(xt)]−1∇f(xt)

〉
. (5)
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Proof of Corollary L17.1: Lower Bound via Strong
Convexity

µ-strong convexity gives, for all y ∈ Rn,

f(y) ≥ f(xt) + ⟨∇f(xt), y − xt⟩ + µ

2 ∥y − xt∥2
2.

Using ∇2f(xt) ⪯ LI (i.e., L-smoothness), we have

∥y − xt∥2
2 ≥ 1

L
⟨y − xt, ∇2f(xt)(y − xt)⟩,

hence
f(y) ≥ f(xt) + ⟨∇f(xt), y − xt⟩ + µ

2L
⟨y − xt, ∇2f(xt)(y − xt)⟩.

Minimizing the right-hand side over y yields the minimizer

y⋆ = xt − L

µ
[∇2f(xt)]−1∇f(xt),

and therefore

f(x⋆) ≥ f(xt) − L

2µ

〈
∇f(xt), [∇2f(xt)]−1∇f(xt)

〉
,

equivalently
1
2

〈
∇f(xt), [∇2f(xt)]−1∇f(xt)

〉
≥ µ

L

(
f(xt) − f(x⋆)

)
. (6)
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Proof of Corollary L17.1: Linear Rate (Function
Values and Distance)

Combine (5) and (6):

f(xt+1) ≤ f(xt) − η
µ

L

(
f(xt) − f(x⋆)

)
,

so

f(xt+1)−f(x⋆) ≤
(
1−η

µ

L

)(
f(xt)−f(x⋆)

)
≤

(
1−η

µ

L

)t(
f(x1)−f(x⋆)

)
.

Using strong convexity and smoothness:

f(xt+1)−f(x⋆) ≥ µ

2 ∥xt+1 −x⋆∥2
2, f(x1)−f(x⋆) ≤ L

2 ∥x1 −x⋆∥2
2,

we obtain

∥xt+1 − x⋆∥2
2 ≤ L

µ

(
1 − η

µ

L

)t
∥x1 − x⋆∥2

2.
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