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Second-Order Methods

e Up to now, we focused on first-order methods, i.e., algorithms
that rely on gradient information.

e Starting today, we turn to second-order methods, which use both
the gradient and the Hessian (the matrix of second derivatives).

e For this discussion, we will restrict attention to unconstrained
problems of the form

min f(x) with z € R",

e where f(z) is assumed to be twice differentiable.
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Second-Order Taylor Approximation

At an iterate 2f, a quadratic approximation of f is

F() = F@t) +(VFah), 2 - o)+ Sl -t V) @ - ),

e Compared to a linear model, the quadratic model can be a much
more faithful local approximation.

e Minimizing the quadratic model yields a closed-form step (when
V2 f(x) is invertible).
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Newton Direction from the Quadratic Model

Differentiate the quadratic model w.r.t. x and set to zero:

Vi) +V2ifa)(z—2) =0 = z=2a'—[Vif(a)]"Vf(zh).

Descent directions

Gradient direction: d; = —V f(z!), Newton direction: dy = —[V?f(z"
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Newton as Preconditioning

e The Newton direction multiplies the negative gradient by an
inverse Hessian:

dy = = [V2f(")]™! Vf(a").
—_————
preconditioner
e This is an example of preconditioning: reshaping the geometry of
the problem via curvature.

e One important consequence is affine invariance: under a
reparametrization x = Ay + b, the Newton direction transforms
consistently with the change of coordinates.
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Affine Invariance of Newton’s Method (Statement)

Consider an invertible affine change of variables
x = Ay +0, A € R™" invertible, b € R",
and define the reparametrized objective

9(y) == f(Ay +b).

Claim (affine invariance)

Let 2! = Ay’ + b. If Newton's method is applied to f at 2! and to g
at 4%, then the iterates match under the change of variables:

It+1 _ Ayt—l—l _I_b

Equivalently, the Newton step in z-coordinates equals A times the
Newton step in y-coordinates.
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Affine Invariance (Proof): How Gradients and
Hessians Transform

Let x = Ay + b and g(y) = f(x) with = depending on y.

Gradient transformation (chain rule)

Va(y) = ATV f(Ay +b).
In particular, at y* with 2t = Ay’ + b,

Vg(y') = ATV f(ah).

Hessian transformation

Differentiate again:
Vg(y) = ATV f(Ay +b) A,

hence
Newton's method V2g(yt) = ATVQf(fL‘t) A 0-7




Affine Invariance (Proof): Newton Steps Match

Newton directions:
df = —[V2f(@)] 7'V Y, d = —VPgyh)] T Ve(yh).

Compute the Newton direction in y-space
Using Vg(y') = ATV f(a') and Vg(y') = ATV?f(a")
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d, = —(ATV2 F@)A) ATV f(at)
= 1[V2( DTN AT) ATV ()
= AT V)]V (Y = AT

Newton updates are
Y=yt +d, T =al+dl.
Multiply the y-update by A and add b:
Ayt 4 b= Ayt + b+ Adyy = o' + d, = 2"
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Affine Invariance: What Changes (and What
Doesn’t)

e The Newton step is coordinate-consistent: reparameterizing by
x = Ay + b produces the same sequence of points in R".

e In contrast, (plain) gradient descent is not affine invariant: under
x = Ay + b, the gradient direction transforms as
—Vg(y) = —ATV f(x), which is not generally mapped to

—V f(z) by a fixed linear map unless A is orthogonal (up to
scaling).
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Damped Newton and Newton’s Method

Damped Newton update

et =gt - [V2f(a")] TV f(2h).

e 1 > 0 is a stepsize (damping).
e The choice n = 1 gives the classical Newton's method.
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Failure Mode: Lack of Curvature

e Newton steps can be unstable when the Hessian is singular or
nearly singular.

o Near-zero curvature can lead to extremely large steps (via
[V2f(z")]71), and the local quadratic model may be unreliable.

lllustrative example (1D)

f(z) = log(e** + e~ ).

Newton’s method can converge very fast from some initial points, but
diverge from others that are relatively close.

Newton's method



Example: When Newton Can Diverge

Consider the 1D function

f(x) = log(e** + e™2%).

e Smooth, convex, symmetric, minimized at 2* = 0.

e Yet Newton's method can behave very differently for nearby
initial points.
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Compute Gradient and Hessian

Write f(z) = log(e?® + e~2%).

f/( ) B 262a: _ 26—290 . 6430 -1
)= e2T | g2 - edr 11"
16e**
" _
f (.T)— (64I—|—1)2.

e f/(0)=0and f"(0) =4.
e For large z, f'(x) — 2 while f”(x) — 0 (curvature vanishes).
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Newton vs Gradient Descent Updates (1D)

Newton's method: ,
Li+1 = Tt — S )
[ ()

Gradient descent with stepsize 7:

Ti4+1 = Tt — Uf/(l’t)-

e Newton rescales the gradient by 1/f"(xy).
e When f”(x;) is tiny, the Newton step can become enormous.
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Run 1: Start at ) = 0.5 (Newton is Extremely Fast)

Newton iterates (first few):
0.5000, —0.4067, 0.2047, —0.0237, 3.53x 107°, ... — 0.
Gradient descent with 7 = 0.1 (first few):

0.5000, 0.3477, 0.2274, 0.1422, 0.0868, ... — 0.

e Newton quickly enters a neighborhood where the quadratic
model is accurate, leading to very rapid (locally quadratic)
convergence.

e GD decreases steadily but much more slowly.
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Run 2: Start at o = 0.7 (Newton Blows Up)

Newton iterates (first few):

0.7000, —1.3480, 26.1045, —2.79 x 10**, diverged.

Gradient descent with 7 = 0.1 (first few):

0.7000, 0.5229, 0.3669, 0.2418, 0.1520, ... — 0.

e A small change in initialization (0.5 — 0.7) radically changes
Newton’s behavior.

e GD remains stable because its step length is directly controlled
by 7.
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Why Does Newton Diverge Here? (Mechanism)

Key observation: for large |z|,

_ 16e4® _ .
f'(z) ~ 2sign(z), f(x) = 1) ~ 16e~ 4l (tiny).
So the Newton step size behaves like
‘ Pl 2 1
f"(zx) 16e—4lel 8 ’

which grows explosively once an iterate lands in a low-curvature
region.
e Newton is powerful near the minimizer (good curvature).

e Newton can be dangerous far away (near-flat curvature = huge
steps).
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Takeaway: Stabilizing Newton

This example motivates damping / safeguards:
e Damped Newton: z;; = x; — 7 ]{,/(( )) with n € (0,1].

e Line search / trust region: accept a Newton-like step only if it
decreases f sufficiently.

e Regularization: replace f”(x:) by f”(x) + X (or use cubic
regularization).
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Key Lemma: Error Recursion for Damped Newton

Damped Newton:

=o' —n[VPfE TV EED,  n>0,

and let z* be a local minimizer with V f(z*) = 0, and assume
V2 f(x') invertible.

Lemma 1
Define

H = [V2f(a' / V2 f(2* 1A' — 2*)) dA.
Then
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Proof of the Newton Lemma (Simplified)

Using V f(2*) = 0, the fundamental theorem of calculus gives
Vit = /01 V2 f(x* + Mt — 2%)) (2" — 2*) d).
Multiply both sides by [V2f(z?)]~! and define
— [V2f(a! / V2 f(e* + Aot — o)) dA,
so that

[V2f @IV @' = Hi(a' - 2%),

Plug into damped Newton:

2 = = ('~ 2”) = VAN TV () = (T - nHy) (2" - a).

Newton's method
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Setup: Strong Curvature + Lipschitz Hessian

Let «* be a local minimum of f with strong curvature:
Vf*) =0,  Vf(z*)=ul (u>0). (2)
Assume the Hessian is M-Lipschitz (in spectral norm):

IV2£(2) = V2F()lls < Mllz = y]la- (3)

High-level idea: near x*, the Hessian stays well-conditioned and
cannot change too fast, so I — H; becomes small. This will imply a
strong local contraction for Newton.
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Theorem (L17.2): Bounding ||/ — H;||s Locally

Recall

= [V2f(z, /v2 o + Az — 7¥)) dA.

Lemma 2
If (2) and (3) hold, then whenever

n
— *ll, <«
lze =22 < 577

we have the bound

M
17 = Hills < = lle = z*l2-

Interpretation: once x4 is close enough to z*, H; is close to I, and
the Newton map is strongly contractive.
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Local Analysis I: Bounding ||/ — H,||s via Lipschitz
Hessian

Assume near z*;
VA f(a¥) = ul, IV2f(z) = V2 f(y)lls < Mz — yl|2-

Goal (for 2! close enough to z*):
M
I = Hills < m " = 2*[l2-

This estimate plus the recursion implies very fast local contraction.
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Local Analysis Il: Proof Sketch of ||/ — H;||; Bound

Rewrite I — H; to expose a Hessian difference:
1
I— H= [V [ (T2~ V2 + A~ a%)) dA.
0
Take spectral norms:
11—Hylls < IV 1||s/ IV2f (2") = V2 f(a* (@' =2™))[|s dA.
Use Lipschitzness and ||zt — (2* + A(z! — 2%))|]2 = (1 = \)||z* — 2*||2:
1 1 M
/ A< / M1 = N dA ot — o[l = oot — 7o
0 0 2
If ||zt — 2*||2 < p/(2M), then

V() £ V)Mt =atleT = 5T = 9P < 2

=

Combine the last two displays to get

M
Newton's method ||I - Ht”s é ;th - $*||2 0-24



Quadratic Convergence of Newton’s Method

Theorem 3 (Local quadratic convergence)
Let f : R™ — R be twice differentiable with M -Lipschitz continuous
Hessian, and let x* be a local minimum of f with strong curvature,
ie.,
V() =0, VA f(a*) = pl
for some . > 0. Then, as long as we start Newton's method from a
point xg with
— ", < K

lwo = 2%[l2 < 577
the distance to optimality of the iterates x; generated by Newton's
method decays as

[zer1 — 2%z _ <!$t - 33*\2>2
p/M- =\ p/M
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Proof

From the Newton lemma with n = 1:

2+t = 2*ll2 < T = Hylly o' = o2

Using ||T — Hy||s < %th — 2*||2 (valid when ||zt — 2*||2 < p/(2M)),

M

2t =2l < = [la* — 2™[13.

Equivalently,

M
“

Newton's method
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et =ty < (St - )
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Global Linear Convergence of Damped Newton

Theorem 4 (Corollary L17.1)

Let f: R™ — R be twice differentiable, ji-strongly convex, and
L-smooth. Then, the distance to optimality of the iterates x;
generated by damped Newton'’s method with stepsize n < u/L decays
exponentially fast at the rates

L oyt
e = a3 < (1 =) s = o

and

Fla) — 1) < (1-n8) (@) - f).
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Proof of Corollary L17.1: One-Step Decrease

L-smoothness gives, for any step,
f(@er) < f@e) + (VS (@), @1 — @) + g”xt—&-l — a3
Using V2f(x4) = pul, we have
s =l < (orer =21, V2 F ) (@ = o0).

Plug in and use the damped Newton step
T — xp = —n [V f ()] TV f(0),

to obtain
Far1a) < )= (V0 [V H ]V 1) 5 (V) [V
If n < u/L, then

Faen) < fla) = 5 (VH@). V2T @] 'V @) ()
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Proof of Corollary L17.1: Lower Bound via Strong
Convexity

u-strong convexity gives, for all y € R™,
I
Fy) = flae) +{V flze),y —ae) + Sy — 3.

Using V2f(z4) =< LI (i.e., L-smoothness), we have

ly 2l > 7 g — a0 V() — 22),

hence

F() 2 Fw) + (VI )y = @) + 57 — a0 V2 @) (y - @0).

Minimizing the right-hand side over y yields the minimizer
L
Y= — ;[VQf(l‘t)]_IVf(xt),

and therefore

sesoie (@) 2 J1) = - (V@) (V@) VI @), o



Proof of Corollary L17.1: Linear Rate (Function
Values and Distance)

Combine (5) and (6):

Fleen) < fle) =% (F@) - F@),

so
t
Fa)=f*) < (1=n5) (Fla)—f() < (1-n%) (Fla)=F(")).
Using strong convexity and smoothness:
L

P =16 2 o —213, Fe)—f@) < Slle -2 1B,
we obtain

e — 13 < 2 (1 =022 oy — 2”2

Li41 — T 2_M UL L1 — T |2
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