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Definition and Subclasses

Definition 1
f : C → R is convex if C is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x,y ∈ C and 0 ≤ θ ≤ 1.

Strict Convexity: The inequality is strict (<) for x ̸= y and
θ ∈ (0, 1), implying the graph lies strictly below the chord.
Strong Convexity: f is strongly convex (m > 0) if f(x) − m

2 ∥x∥2
2 is

convex. Geometrically, f is lower-bounded by a quadratic bowl.

Convex Functions 0-2



Catalogue of Convexity

On R: eax, xp (p ≥ 1 or p ≤ 0), and x log x (negative entropy).

On Rn:
• Affine: f(x) = a⊤x + b (both convex and concave).
• Norms: ∥x∥p (p ≥ 1) and ∥x∥∞ = maxk |xk|.
• Least Squares: 1

2∥Ax − b∥2 is convex (∇2f = A⊤A ⪰ 0).

On Rm×n:
• Affine: f(X) = tr(A⊤X) + b.
• Matrix Norms: Spectral norm ∥X∥2 and Frobenius norm

∥X∥F.
• Log-Det: f(X) = log detX is concave on Sn

++.
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Convexity Restricted to a Line

Theorem 2
A function f : Rn → R is convex if and only if it is convex when
restricted to any line that intersects its domain.

Specifically, f is convex if and only if for all x ∈ dom f and all
vectors v ∈ Rn, the univariate function

g(t) = f(x + tv)

is convex on its domain {t : x + tv ∈ dom f}.
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Restriction of a convex function to a line

example: f : Sn → R with f(X) = log det X, dom(f) = Sn
++

g(t) = log det(X + tV ) = log det X + log det
(
I + tX−1/2V X−1/2)

= log det X +
n∑

i=1
log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X ≻ 0, V ); hence f is concave
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Epigraph

epigraph of f : Rn → R:

epi(f) =
{
(x, t) ∈ Rn+1 | x ∈ dom(f), f(x) ≤ t

}

Theorem 3
f is convex if and only if epi(f) is a convex set
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First-order condition

1st-order condition: differentiable f with convex domain is convex if

f(y) ≥ f(x) + ∇f(x)⊤(y − x) for all x, y ∈ dom(f)
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Proof

• Suppose first that f is convex. Let x,y ∈ C and λ ∈ (0, 1]. If
x = y, then (1) trivially holds. We will therefore assume that
x ̸= y.

• f(x+λ(y−x))−f(x)
λ ≤ f(y) − f(x).

• Taking λ → 0+, we obtain

f ′(x;y − x) ≤ f(y) − f(x).

• Since f is continuously differentiable,
f ′(x;y − x) = ∇f(x)T (y − x), and (1) follows.
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Proof Contd.

• To prove the reverse direction, assume that that the gradient
inequality holds.

• Let z,w ∈ C, and let λ ∈ (0, 1). We will show that
f(λz + (1 − λ)w) ≤ λf(z) + (1 − λ)f(w).

• Let u = λz + (1 − λ)w ∈ C. Then

z − u = u − (1 − λ)w
λ

− u = −1 − λ

λ
(w − u).

• We have

f(u) + ∇f(u)T (z − u) ≤ f(z),

f(u) − λ

1 − λ
∇f(u)T (z − u) ≤ f(w).

• Thus,
f(u) ≤ λf(z) + (1 − λ)f(w).
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Second-order conditions

2nd-order conditions: for twice differentiable f

• f is convex if and only if

∇2f(x) ⪰ 0 for all x ∈ dom(f)

• if ∇2f(x) ≻ 0 for all x ∈ domf , then f is strictly convex
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Proof

Suppose that ∇2f(x) ⪰ 0 ∀x ∈ C. Let x,y ∈ C, then
∃z ∈ [x,y] ∈ C:

f(y) = f(x) + ∇f(x)T (y − x) + 1
2(y − x)T ∇2f(z)(y − x).

(y − x)T ∇2f(z)(y − x) ≥ 0 ⇒ f(y) ≥ f(x) + ∇f(x)T (y − x) ⇒ f
convex.
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Proof

Suppose that f is convex over C. Let x ∈ C and let y ∈ Rn.
C is open ⇒ ∃ε > 0 such that x + λy ∈ C ∀λ ∈ (0, ε).

f(x + λy) ≥ f(x) + λ∇f(x)Ty.

f(x + λy) = f(x) + λ∇f(x)Ty + λ2

2 yT ∇2f(x)y + o(λ2∥y∥2).
Thus, λ2

2 yT ∇2f(x)y + o(λ2∥y∥2) ≥ 0 for any λ ∈ (0, ε).

Dividing by λ2, 1
2y

T ∇2f(x)y + o(λ2∥y∥2)
λ2 ≥ 0.

Taking λ → 0+, we have yT ∇2f(x)y ≥ 0 ∀y ∈ Rn.
Hence ∇2f(x) ⪰ 0 for any x ∈ C.
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Log-sum-exp

log-sum-exp: f(x) = log
(∑n

k=1 exp(xk)
)

is convex

∇2f(x) = 1
1⊤z

diag(z) − 1
(1⊤z)2 zz⊤ (zk = exp(xk))

to show ∇2f(x) ⪰ 0, we must verify that v⊤∇2f(x)v ≥ 0 for all v:

v⊤∇2f(x)v =
(∑

k zkv2
k

)(∑
k zk

)
−
(∑

k vkzk

)2(∑
k zk

)2 ≥ 0

since
(∑

k vkzk

)2 ≤
(∑

k zkv2
k

)(∑
k zk

)
(Cauchy-Schwarz inequality)
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Jensen’s Inequality

Theorem 4
Let f : C → R be a convex function where C ⊆ Rn is a convex set.
Then for any x1,x2, . . . ,xk ∈ C and λ ∈ ∆k, the following inequality
holds:

f

(
k∑

i=1
λixi

)
≤

k∑
i=1

λif(xi).

Note: The domain C must be a convex set to ensure that the convex
combination

∑k
i=1 λixi remains within the domain where f is defined.
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Operations Preserving Convexity

Nonnegative Combinations: f =
∑

aifi is convex if ai ≥ 0 and fi

convex.
Pointwise Maximum: f(x) = sups∈S fs(x) is convex if each fs is
convex. Examples include the sum of r largest components and the
maximum eigenvalue λmax(X).
Composition with Affine Map: f(Ax + b) is convex if f is convex.
Partial Minimization: g(x) = infy∈C f(x,y) is convex if f is jointly
convex in (x,y) and C is a convex set.
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Nonnegative Linear Combinations and Affine
Composition

Nonnegative Linear Combination: f =
∑m

i=1 αifi is convex if all fi

are convex and αi ≥ 0. This property extends to infinite sums and
integrals.

Composition with Affine Function: f(Ax + b) is convex if f is
convex.

Examples:
Log barrier for linear inequalities: f(x) = −

∑m
i=1 log(bi −a⊤

i x)
on dom(f) = {x | a⊤

i x < bi}.
Norm of affine function: f(x) = ∥Ax + b∥ for any norm ∥ · ∥.
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Pointwise Maximum and Supremum

If fs is convex for each s ∈ S, then f(x) = sups∈S fs(x) is convex.

Examples:
Piecewise-linear function: f(x) = maxi=1,...,m(a⊤

i x + bi).
Sum of r largest components: f(x) = x[1] + · · · + x[r] is the
maximum of all

(n
r

)
combinations of r components.

Support function of a set C: SC(x) = supy∈C y⊤x.
Distance to farthest point in a set C: f(x) = supy∈C ∥x−y∥.
Maximum eigenvalue of symmetric matrix X:
λmax(X) = sup∥y∥2=1 y

⊤Xy.
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Minimization and Distance to Sets

Partial Minimization: If f(x,y) is jointly convex in (x,y) and C is
a convex set, then g(x) = infy∈C f(x,y) is convex.

Examples:
Schur Complement: For f(x,y) = x⊤Ax + 2x⊤By + y⊤Cy

with
[

A B
B⊤ C

]
⪰ 0 and C ≻ 0, the function

g(x) = infy f(x,y) = x⊤(A − BC−1B⊤)x is convex.
Distance to a set: d(x, S) = infy∈S ∥x − y∥ is convex if S is
convex.
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