

Convex Functions

Cong Ma

University of Chicago, Winter 2026

Definition and Subclasses

Definition 1

$f : \mathcal{C} \rightarrow \mathbb{R}$ is **convex** if \mathcal{C} is a convex set and

$$f(\theta \mathbf{x} + (1 - \theta) \mathbf{y}) \leq \theta f(\mathbf{x}) + (1 - \theta) f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and $0 \leq \theta \leq 1$.

Strict Convexity: The inequality is strict ($<$) for $\mathbf{x} \neq \mathbf{y}$ and $\theta \in (0, 1)$, implying the graph lies strictly below the chord.

Strong Convexity: f is strongly convex ($m > 0$) if $f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|_2^2$ is convex. Geometrically, f is lower-bounded by a quadratic bowl.

Catalogue of Convexity

On \mathbb{R} : e^{ax} , x^p ($p \geq 1$ or $p \leq 0$), and $x \log x$ (negative entropy).

On \mathbb{R}^n :

- **Affine:** $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} + b$ (both convex and concave).
- **Norms:** $\|\mathbf{x}\|_p$ ($p \geq 1$) and $\|\mathbf{x}\|_\infty = \max_k |x_k|$.
- **Least Squares:** $\frac{1}{2}\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ is convex ($\nabla^2 f = \mathbf{A}^\top \mathbf{A} \succeq \mathbf{0}$).

On $\mathbb{R}^{m \times n}$:

- **Affine:** $f(\mathbf{X}) = \text{tr}(\mathbf{A}^\top \mathbf{X}) + b$.
- **Matrix Norms:** Spectral norm $\|\mathbf{X}\|_2$ and Frobenius norm $\|\mathbf{X}\|_\text{F}$.
- **Log-Det:** $f(\mathbf{X}) = \log \det \mathbf{X}$ is **concave** on \mathbb{S}_{++}^n .

Convexity Restricted to a Line

Theorem 2

A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if and only if it is convex when restricted to any line that intersects its domain.

Specifically, f is convex if and only if for all $\mathbf{x} \in \text{dom } f$ and all vectors $\mathbf{v} \in \mathbb{R}^n$, the univariate function

$$g(t) = f(\mathbf{x} + t\mathbf{v})$$

is convex on its domain $\{t : \mathbf{x} + t\mathbf{v} \in \text{dom } f\}$.

Restriction of a convex function to a line

example: $f : \mathbb{S}^n \rightarrow \mathbb{R}$ with $f(X) = \log \det X$, $\text{dom}(f) = \mathbb{S}_{++}^n$

$$\begin{aligned} g(t) &= \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2}) \\ &= \log \det X + \sum_{i=1}^n \log(1 + t\lambda_i) \end{aligned}$$

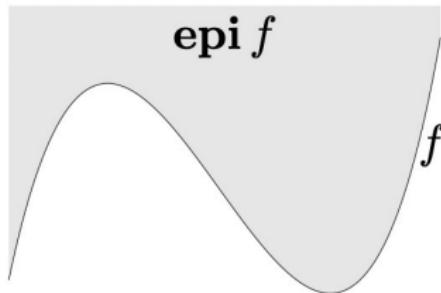
where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Epigraph

epigraph of $f: \mathbb{R}^n \rightarrow \mathbb{R}$:

$$\text{epi}(f) = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom}(f), f(x) \leq t\}$$



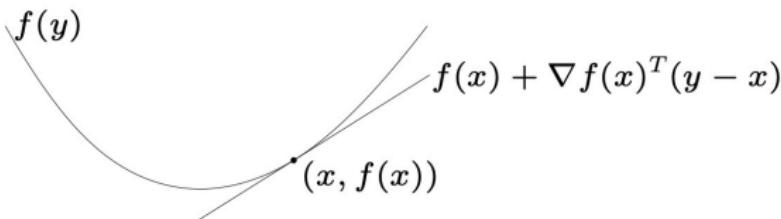
Theorem 3

f is convex if and only if $\text{epi}(f)$ is a convex set

First-order condition

1st-order condition: differentiable f with convex domain is convex if

$$f(y) \geq f(x) + \nabla f(x)^\top (y - x) \quad \text{for all } x, y \in \text{dom}(f)$$



first-order approximation of f is global underestimator

Proof

- Suppose first that f is convex. Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in (0, 1]$. If $\mathbf{x} = \mathbf{y}$, then (1) trivially holds. We will therefore assume that $\mathbf{x} \neq \mathbf{y}$.
- $\frac{f(\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\lambda} \leq f(\mathbf{y}) - f(\mathbf{x})$.
- Taking $\lambda \rightarrow 0^+$, we obtain

$$f'(\mathbf{x}; \mathbf{y} - \mathbf{x}) \leq f(\mathbf{y}) - f(\mathbf{x}).$$

- Since f is continuously differentiable, $f'(\mathbf{x}; \mathbf{y} - \mathbf{x}) = \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x})$, and (1) follows.

Proof Contd.

- To prove the reverse direction, assume that the gradient inequality holds.
- Let $\mathbf{z}, \mathbf{w} \in C$, and let $\lambda \in (0, 1)$. We will show that $f(\lambda\mathbf{z} + (1 - \lambda)\mathbf{w}) \leq \lambda f(\mathbf{z}) + (1 - \lambda)f(\mathbf{w})$.
- Let $\mathbf{u} = \lambda\mathbf{z} + (1 - \lambda)\mathbf{w} \in C$. Then

$$\mathbf{z} - \mathbf{u} = \frac{\mathbf{u} - (1 - \lambda)\mathbf{w}}{\lambda} - \mathbf{u} = -\frac{1 - \lambda}{\lambda}(\mathbf{w} - \mathbf{u}).$$

- We have

$$f(\mathbf{u}) + \nabla f(\mathbf{u})^T(\mathbf{z} - \mathbf{u}) \leq f(\mathbf{z}),$$

$$f(\mathbf{u}) - \frac{\lambda}{1 - \lambda} \nabla f(\mathbf{u})^T(\mathbf{z} - \mathbf{u}) \leq f(\mathbf{w}).$$

- Thus,

$$f(\mathbf{u}) \leq \lambda f(\mathbf{z}) + (1 - \lambda)f(\mathbf{w}).$$

Second-order conditions

2nd-order conditions: for twice differentiable f

- f is convex if and only if

$$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom}(f)$$

- if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom} f$, then f is strictly convex

Proof

Suppose that $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ $\forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then
 $\exists \mathbf{z} \in [\mathbf{x}, \mathbf{y}] \in C$:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{z})(\mathbf{y} - \mathbf{x}).$$

$(\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{z})(\mathbf{y} - \mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) \Rightarrow f$
convex.

Proof

Suppose that f is convex over C . Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^n$.
 C is open $\Rightarrow \exists \varepsilon > 0$ such that $\mathbf{x} + \lambda \mathbf{y} \in C \ \forall \lambda \in (0, \varepsilon)$.

$$f(\mathbf{x} + \lambda \mathbf{y}) \geq f(\mathbf{x}) + \lambda \nabla f(\mathbf{x})^T \mathbf{y}.$$

$$f(\mathbf{x} + \lambda \mathbf{y}) = f(\mathbf{x}) + \lambda \nabla f(\mathbf{x})^T \mathbf{y} + \frac{\lambda^2}{2} \mathbf{y}^T \nabla^2 f(\mathbf{x}) \mathbf{y} + o(\lambda^2 \|\mathbf{y}\|^2).$$

Thus, $\frac{\lambda^2}{2} \mathbf{y}^T \nabla^2 f(\mathbf{x}) \mathbf{y} + o(\lambda^2 \|\mathbf{y}\|^2) \geq 0$ for any $\lambda \in (0, \varepsilon)$.

Dividing by λ^2 , $\frac{1}{2} \mathbf{y}^T \nabla^2 f(\mathbf{x}) \mathbf{y} + \frac{o(\lambda^2 \|\mathbf{y}\|^2)}{\lambda^2} \geq 0$.

Taking $\lambda \rightarrow 0^+$, we have $\mathbf{y}^T \nabla^2 f(\mathbf{x}) \mathbf{y} \geq 0 \ \forall \mathbf{y} \in \mathbb{R}^n$.

Hence $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Log-sum-exp

log-sum-exp: $f(x) = \log(\sum_{k=1}^n \exp(x_k))$ is convex

$$\nabla^2 f(x) = \frac{1}{1^\top z} \text{diag}(z) - \frac{1}{(1^\top z)^2} z z^\top \quad (z_k = \exp(x_k))$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^\top \nabla^2 f(x) v \geq 0$ for all v :

$$v^\top \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (Cauchy-Schwarz inequality)

Jensen's Inequality

Theorem 4

Let $f : C \rightarrow \mathbb{R}$ be a convex function where $C \subseteq \mathbb{R}^n$ is a convex set. Then for any $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in C$ and $\boldsymbol{\lambda} \in \Delta_k$, the following inequality holds:

$$f\left(\sum_{i=1}^k \lambda_i \mathbf{x}_i\right) \leq \sum_{i=1}^k \lambda_i f(\mathbf{x}_i).$$

Note: The domain C must be a convex set to ensure that the convex combination $\sum_{i=1}^k \lambda_i \mathbf{x}_i$ remains within the domain where f is defined.

Operations Preserving Convexity

Nonnegative Combinations: $f = \sum a_i f_i$ is convex if $a_i \geq 0$ and f_i convex.

Pointwise Maximum: $f(\mathbf{x}) = \sup_{s \in S} f_s(\mathbf{x})$ is convex if each f_s is convex. Examples include the sum of r largest components and the maximum eigenvalue $\lambda_{\max}(\mathbf{X})$.

Composition with Affine Map: $f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex if f is convex.

Partial Minimization: $g(\mathbf{x}) = \inf_{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y})$ is convex if f is jointly convex in (\mathbf{x}, \mathbf{y}) and C is a convex set.

Nonnegative Linear Combinations and Affine Composition

Nonnegative Linear Combination: $f = \sum_{i=1}^m \alpha_i f_i$ is convex if all f_i are convex and $\alpha_i \geq 0$. This property extends to infinite sums and integrals.

Composition with Affine Function: $f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex if f is convex.

Examples:

Log barrier for linear inequalities: $f(\mathbf{x}) = -\sum_{i=1}^m \log(b_i - \mathbf{a}_i^\top \mathbf{x})$ on $\text{dom}(f) = \{\mathbf{x} \mid \mathbf{a}_i^\top \mathbf{x} < b_i\}$.

Norm of affine function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} + \mathbf{b}\|$ for any norm $\|\cdot\|$.

Pointwise Maximum and Supremum

If f_s is convex for each $s \in S$, then $f(\mathbf{x}) = \sup_{s \in S} f_s(\mathbf{x})$ is convex.

Examples:

Piecewise-linear function: $f(\mathbf{x}) = \max_{i=1,\dots,m} (\mathbf{a}_i^\top \mathbf{x} + b_i)$.

Sum of r largest components: $f(\mathbf{x}) = x_{[1]} + \dots + x_{[r]}$ is the maximum of all $\binom{n}{r}$ combinations of r components.

Support function of a set C : $S_C(\mathbf{x}) = \sup_{\mathbf{y} \in C} \mathbf{y}^\top \mathbf{x}$.

Distance to farthest point in a set C : $f(\mathbf{x}) = \sup_{\mathbf{y} \in C} \|\mathbf{x} - \mathbf{y}\|$.

Maximum eigenvalue of symmetric matrix \mathbf{X} :

$\lambda_{\max}(\mathbf{X}) = \sup_{\|\mathbf{y}\|_2=1} \mathbf{y}^\top \mathbf{X} \mathbf{y}$.

Minimization and Distance to Sets

Partial Minimization: If $f(\mathbf{x}, \mathbf{y})$ is jointly convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then $g(\mathbf{x}) = \inf_{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y})$ is convex.

Examples:

Schur Complement: For $f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top \mathbf{A} \mathbf{x} + 2\mathbf{x}^\top \mathbf{B} \mathbf{y} + \mathbf{y}^\top \mathbf{C} \mathbf{y}$ with $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{C} \end{bmatrix} \succeq \mathbf{0}$ and $\mathbf{C} \succ \mathbf{0}$, the function $g(\mathbf{x}) = \inf_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top (\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^\top) \mathbf{x}$ is convex.

Distance to a set: $d(\mathbf{x}, S) = \inf_{\mathbf{y} \in S} \|\mathbf{x} - \mathbf{y}\|$ is convex if S is convex.