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Definition and Subclasses

Definition 1
f:C — R is convex if C is a convex set and

fl0x+ (1—0)y) <Of(x)+ (1—6)f(y)

forall z,yeCand 0 <0 < 1.

Strict Convexity: The inequality is strict (<) for  # y and
6 € (0,1), implying the graph lies strictly below the chord.

Strong Convexity: f is strongly convex (m > 0) if f(x) — Z||x|]3 is
convex. Geometrically, f is lower-bounded by a quadratic bowl.
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Catalogue of Convexity

On R: e*®, 2P (p > 1 or p < 0), and zlog = (negative entropy).
On R™:

e Affine: f(x) =a'z + b (both convex and concave).

e Norms: ||z|, (p > 1) and ||x||oc = maxy |x|.

e Least Squares: || Az — b||? is convex (V2f = ATA >~ 0).
On R™*":

e Affine: f(X)=1tr(ATX) +0.

e Matrix Norms: Spectral norm || X |2 and Frobenius norm
1 X[

e Log-Det: f(X) =logdet X is concave on S} .
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Convexity Restricted to a Line

Theorem 2

A function f : R™ — R is convex if and only if it is convex when
restricted to any line that intersects its domain.

Specifically, f is convex if and only if for all x € dom f and all
vectors v € R", the univariate function

g(t) = f(z +tv)

is convex on its domain {t:  + tv € dom f}.
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Restriction of a convex function to a line

example: f:S" — R with f(X) =logdet X, dom(f) =S,

g(t) =logdet(X +tV) = logdet X + logdet (I +tX~1/2V X ~1/2)

=logdet X + Y log(1 + tA;)
i=1

where ); are the eigenvalues of X ~1/2y x—1/2

g is concave in t (for any choice of X = 0, V); hence f is concave
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Epigraph

epigraph of f: R” — R:

epi(f) = {(2.t) € R"*! | & € dom(f), f(a) < ¢}

epi f

Theorem 3
f is convex if and only if epi(f) is a convex set
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First-order condition

1st-order condition: differentiable f with convex domain is convex if

fy) > f@)+ V@) (y—z) forall z,y € dom(f)

/f(w) + V(@) (y — =)

e f()

first-order approximation of f is global underestimator
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Proof

e Suppose first that f is convex. Let &,y € C and X € (0,1]. If
x =y, then (1) trivially holds. We will therefore assume that

T Fy.
o f(m+/\(y:\m))—f(m) < fly) — f(

e Taking A — 0™, we obtain

flxy —x) < f(y) — flx).

e Since f is continuously differentiable,
f(z;y —x) =Vf(z) (y — x), and (1) follows.
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Proof Contd.

e To prove the reverse direction, assume that that the gradient
inequality holds.

o Let z,w e C, and let A € (0,1). We will show that
fAz+ (1= Nw) <Af(z) + (1 - A)f(w).

o letu=Az+ (1 -XN)weC. Then

T (M
e We have
Flw) + V@) (=~ w) < f(2),
flw) — 2 Vi) (2~ w) < f(w)
e Thus,
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Second-order conditions

2nd-order conditions: for twice differentiable f

e fis convex if and only if
V2f(z) =0 forall z € dom(f)

o if V2f(z) = 0 for all z € domf, then f is strictly convex
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Proof

Suppose that V2f(x) = 0 Vx € C. Let ¢,y € C, then
Jz e x,y|l € C:

fly) = F(@) + V@) (g~ 2) + 5y~ )V f(=)(y — ).

(y—2)'Vf(2)(y—z) > 0= f(y) > f(z) + V(@) (y—z)= f

convex.



Proof

Suppose that f is convex over C'. Let € C and let y € R™.
C'is open = Je > 0 such that x + \y € C VA € (0,¢).

fl@+Xy) > f(x) + AV f(z)"y.

fl@+Xy) = f(@) +AVF(@)"y + 5y V2 (@)y + oWy [?).
Thus, 2 y"V2f(2)y + o(X2||y||?) > 0 for any A € (0, ¢).
Dividing by A%, $yTV2f(z)y + % > 0.

Taking A — 07, we have yTV2f(x)y > 0 Yy € R".

Hence V2f(x) = 0 for any z € C.
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Log-sum-exp

log-sum-exp: f(z) =log (> }_; exp(zy)) is convex

V2f(r) = 1 diog(2) - (IQ)T (2% = exp(ax))

to show V2 f(x) = 0, we must verify that v V2 f(x)v > 0 for all v:

STV () = 2ok 2k0f) (S ) — (S ver)” -

( 2k Zk)2

since (X vrzr)” < (Th 2,v2) (3% 2) (Cauchy-Schwarz inequality)
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Jensen’s Inequality

Theorem 4

Let f: C — R be a convex function where C' C R" is a convex set.
Then for any x1,x3,...,x; € C and XA € Ay, the following inequality

holds: i
f (Z )\imi> < Z i f (24).

Note: The domain C must be a convex set to ensure that the convex
combination Ele A;x; remains within the domain where f is defined.
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Operations Preserving Convexity

Nonnegative Combinations: f =" a;f; is convex if a; > 0 and f;
convex.

Pointwise Maximum: f(x) = sup,cg fs(x) is convex if each f is
convex. Examples include the sum of r largest components and the
maximum eigenvalue \pax(X).

Composition with Affine Map: f(Ax + b) is convex if f is convex.

Partial Minimization: g(x) = infycc f(,y) is convex if f is jointly
convex in (x,y) and C'is a convex set.
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Nonnegative Linear Combinations and Affine
Composition

Nonnegative Linear Combination: f = >""", «;f; is convex if all f;
are convex and «; > 0. This property extends to infinite sums and

integrals.

Composition with Affine Function: f(Ax + b) is convex if f is
convex.

Examples:
Log barrier for linear inequalities: f(x) = — Y7, log(b; — a, )
on dom(f) = {x | a/ x < b;}.
Norm of affine function: f(x) = || Az + b|| for any norm || - ||.
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Pointwise Maximum and Supremum

If fs is convex for each s € S, then f(x) = sup,cg fs(x) is convex.

Examples:
Piecewise-linear function: f(x) = maxl-:17,.,,m(a;a: + b;).

Sum of r largest components: f(z) =z + -+ |, is the
maximum of all () combinations of r components.

Support function of a set C: S¢(x) = supyec y'x.
Distance to farthest point in a set C: f(x) = supycc | —y|.

Maximum eigenvalue of symmetric matrix X:
)\max(X) = Sup||yH2:1 yTXy
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Minimization and Distance to Sets

Partial Minimization: If f(x,y) is jointly convex in (x,y) and C'is
a convex set, then g(x) = infycc f(x,y) is convex.

Examples:
Schur Complement: For f(z,y) =x' Az +2z' By +y'Cy
with [E‘;‘T g} = 0 and C > 0, the function
g(x) = infy, f(z,y) =2 (A — BC 'BT)x is convex.
Distance to a set: d(x,S) = infycg || — y|| is convex if S is
convex.
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