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Outline

e Convex optimization: two equivalent forms
e Equivalent convex problems (reformulations)

e Linear programming (LP) and an application (compressed
sensing)

e Quadratic programming (QP) and an application (SVM)

e Quadratically constrained QP (QCQP) and hidden convexity
(TRS)

e Semidefinite programming (SDP) and applications (eigenvalue /
norms / NNM)
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Convex Optimization: General Form

A convex optimization problem (or convex problem) has the form
min  f(x)
st. xelC,

where
e C C R" is a convex set,

e f:C — R is a convex function.
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Convex Optimization: Functional Form

A common representation is

st. gi(x) <0, i=1,...,m,
hj(a:):(), jZl,...,p,

where f,g1,...,9m : R" — R are convex, and hy,...,h, : R" - R
are affine.

The feasible set {x : g;(x) < 0, h;(x) =0} is convex.
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Key Property of Convex Problems

Theorem 1

Let C C R"™ be convex and f : C — R be convex. If x* € C is a local
minimum of f over C, then x* is a global minimum.
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Equivalent Convex Problems

Two problems are (informally) equivalent if the solution of one can
be readily obtained from the solution of the other.
Common convexity-preserving transformations:

e eliminate affine equality constraints,

e introduce slack variables,

epigraph reformulations,

introduce auxiliary variables for affine compositions,

partial minimization.
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Equivalent Convex Problems: Variable
Transformations

1. Eliminating Equality Constraints Minimize fy(x) s.t. fi(x) <0
and Ax = b is equivalent to:

min fo(Fz+xy) st fi(Fz+x) <0

where x = F'z + x( parameterizes the affine set {x | Az = b}.

2. Introducing Slack Variables Replacing linear inequalities
a; © < b; with equalities:

min fo(x) st. a;x+s;=0b;, s >0
x,s
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Equivalent Convex Problems: Functional Forms

3. Epigraph Form Standard form is equivalent to minimizing a linear
objective over the epigraph:

mitn t st folxg)—t<0, filx)<0, Az =0»b

)

4. Introducing Equality Constraints Transforming f;(A;x + b;) by
letting y; = A;x + b;:

glgl Jo(yo) st fi(y) <0, y;i=Aix+b;
5. Partial Minimization If fy(x;,x2) is convex in (z1,22) and C is
a convex set:
min fo(1, 22) s.t. €1 € C <= min fo(z1) st. ¢ € C

where fo(1) = infy, fo(1,x2) is the partial minimization.
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Linear Program (LP)

min ¢z +d
T
st. Gz < h,

Ax =b.

e objective and constraint functions are affine,

e feasible set is a polyhedron
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Compressed Sensing and Linear Programming

Problem Setting. Recover a sparse signal € R"™ from a small
number of linear measurements y € R™ with m < n:

y = Ax.
Key Assumptions:

e Sparsity: x has at most k£ nonzero entries, with k < n.

e Incoherence / RIP: The measurement matrix A satisfies
suitable conditions (e.g., Restricted Isometry Property).

Convex Relaxation (Basis Pursuit). Direct {y-minimization is
NP-hard. Instead, solve the convex problem

min ||z
xr
st. Ax=y.
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Reformulation as a Linear Program

The £1 minimization problem can be rewritten as a linear program
by introducing auxiliary variables u € R":

Equivalent LP Form:

n
min E U
w7u .
=1
st. —uw; <z <u, t=1,...,n,

Ax =y.

e The objective and constraints are affine = this is a convex LP.
e Any local optimum is therefore a global optimum.

e Enables the use of highly efficient LP solvers for large-scale signal
recovery.
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Quadratic Program (QP)

1
min -z Pr+q x+7
z 2
s.t. Gx < h,
Ax =b.
e P € 8" so the objective is convex quadratic,
e minimizing a convex quadratic over a polyhedron.

—V fo(z*)
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Linear Classifier and Margins

Given labeled data {(z;, y;)}/*, with y; € {—1,1}, a linear classifier
uses a hyperplane
w'x+b=0.

Functional margin of a single example:

A0 = yi(w i +b).

Geometric margin: distance of (x;,y;) to the hyperplane is

o _ Yilw'zi+b)

g
[wll2

This is invariant to scaling of (w,b) and thus the meaningful measure
of confidence.
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Maximum Margin Optimization

The minimum geometric margin over all training points is

. (w'x: +b
v = min ’Y(Z) = min —yl(w Ti + )
i=1,...m i lw]|2

To find the best separating hyperplane, we maximize this minimum
margin:

max v st y(w' xi+b) >y, i=1,...,m.

w,b

However, this is not yet a standard convex program because ||w||2
appears in the denominator and in the objective.
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Scaling and Canonical Constraints

Because geometric margin is invariant to scaling of (w, b), we can fix
the functional margin to 1 at the support vectors:

yi(w'ax;+b)>1, i=1,...,m.

Under this constraint, the geometric margin becomes

1
lwll2

Thus maximizing - is equivalent to minimizing ||w||2, which we write
as minimizing the squared norm for smoothness:

1
min ~|wl? st yi(w' 'z +0) > 1.
wb 2
This is a classical formulation of the hard-margin support vector
machine.
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SVM as a Quadratic Program

The hard-margin SVM optimization problem is

min %w w
w,b

st yi(w 'z +b)>1, i=1,...,m.

Why this is a QP:

e The objective %w
e The constraints y;(w ' x; + b) > 1 are affine in (w,b).

Taw is a convex quadratic form.

Thus the SVM problem fits the standard convex QP template:

min %mTPa: +q'x s.t. affine constraints,
X

with & = (w, b).
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Quadratically Constrained Quadratic Program

(QCQP)

1
min inPom + qOTa: + 10

1
s.t. inPi:c+qiT:B+ri§0, i1=1,...,m,

Ax =b.

e if P, € S, then objective/constraints are convex quadratics,

o if P, €S, feasible region is an intersection of ellipsoids and an
affine set.
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Hidden Convexity in Trust Region Subproblems

Problem Formulation (TRS)

min{z' Az +2b"x+c: ||z|? <1}
where b € R", c € R and A € S™. Generally non-convex.
Spectral Decomposition
Let A=UDU" with orthogonal U and diagonal

D = diag(dy,...,dy,). Substituting into (TRS) and using
U7 2] = [l

min{z UDU "'z +2b'UU "z +¢: |U z|?> <1}

Change of Variables
Set y=U'"x and f =U"b. The problem reduces to:

n n
min Zdzyf + 22 fivi + ¢

n
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Hidden Convexity in Trust Region Subproblems
Contd.

Lemma 2

Let y* be an optimal solution of (2). Then f;y* <0 for all
1=1,2,...,n

Proof. Denote the objective function of (2) by
g(y) =0 diy? + 230 fiyi +c. Leti € {1,2,...,n}. Define g

as
o {y; j#i,
g=<", .
Yy J=t
y is feasible and g(y*) < g(9).

> diy;)? +2Zfzy, +c<Zd +2Zfzyl+c
=1

=1

After cancellation of terms, 2f;y* < 2fi(—yi ), implying the desired
Frrecp@adityetify Hitoiad). 0-19



Back to the TRS problem

Using the lemma f;y7 < 0, we make the change of variable:

yi = —sgn(fi)vzi (22 0).
Problem (2) then becomes:

n n
min Zdizi — QZ | fil\/zi + ¢
i=1 i=1

n
s.t. Zzi <1,
i=1

21,29, ..., 2n > 0.

This is now a convex optimization problem because:
e The term —,/z; is a convex function for z; > 0.
e The constraints define a convex set (a simplex-like region).
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Semidefinite Program (SDP)

Standard form:
min tr(CX)
X

s.t. tr(AZX) = bi, 1= 1,...,m, X7 Ca AZ € s"
X =0,

e Optimization variable is a matrix.
e Linear objective + affine constraints.

e PSD constraint defines a convex cone.

Linear function minimized over an affine slice of the PSD cone.

Convex Optimization Problems 0-21




LMI Formulation

Equivalent SDP form:

mgn c'T .
s.t F( )j(), F(x):G+szFz
Az = b, =
with F;, G € Sk,

e F(z) <0 is a linear matrix inequality (LMI).
e Decision variable is now a vector.

e Same convex geometry.
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Standard Form vs LMI Form

Standard SDP:
n}gn tr(CX) st. XeF, X>0

where
Any X € F can be written as
X =G+ Z IL‘jF’j
J
Substitute into constraint:

G—szij =0

Key Idea

LMI form is a coordinate parameterization of the affine feasible set.
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Multiple LMI Constraints

minimize ¢'x

subject to a1 F) +x0Fo+ -+ b + G X0
Axr =10

with F;, G € SF
e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,
o F 4+ 4z, Fy+G =<0, 2Py +- 42, +G=0
is equivalent to single LMI

F,

+T2 2
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LP as a Special Case of SDP (LMI View)

Consider the linear program

min ¢’ x st. Az <b
X
Each scalar constraint
aj © <b;

can be written as the 1 x 1 LMI:

{a;-rx — bz} <0

since St = R.

Stacking all constraints gives a diagonal LMI:

diag(Ax —b) <0

oPeiSER=SDP{ith only diagonal symmetric matrix variables.



Important SDP Modeling Examples

e Eigenvalue optimization
e Matrix norm minimization

e Nuclear norm minimization
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Eigenvalue minimization

minimize  Amax (A(2))
where A(x) = Ag + 21 A1 + --- + 2, A, (with given A; € S¥)
equivalent SDP
minimize t
subject to  A(x) <t

e variables x € R™, t € R

e follows from

Amax(A) <t — A=<tI
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Matrix norm minimization

minimize ||A(z)| = ()\maX(A($)TA($)))1/2
where A(z) = Ag + x1A1 + -+ - + zp 4, (with given A; € RP*9)
equivalent SDP

minimize t

bject t ¢
subject to A(

e variables z €¢ R™, t € R
e constraint follows from
Al <t — ATA<I, t>0

tI A

AT I =0

= |
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Why Nuclear Norm Minimization?

Goal: recover a low-rank matrix
H}}n rank(X) st AX)=y

Problems:
e Rank minimization is nonconvex and NP-hard

e Hard to optimize directly

Convex relaxation:
m)}n | X[« st AX)=y
where
1X]. = Y 0i(X)

Convex Optimization Problems 0-29



Why Nuclear Norm Minimization Is an SDP

Key identity:

=0

W, X
X W,

1
||X||*:m£11171‘/1[1/2 i(trW1+trW2) s.t. l

Therefore NNM
n}}nHXH* st. A(X)=y

is equivalent to the SDP

1
i —(t t
sy, gl

W X -
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Nuclear Norm SDP Identity

Claim: For any X € R™*"™,

1
| Xl = V[r/rll’ivri}2 §(trW1 + tr Ws)

subject to

=0

W, X
XT Wy

We prove by showing:
e (Upper bound) Construct feasible (W7, W) achieving || X/«
e (Lower bound) Any feasible solution has objective > || X ||
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Proof (Upper Bound)

Let SVD of X be

X=UxV", ¥ = diag(oy,...,0,)

Choose

Wy, =U3U", We=VXVT
Then

mo x| _[uvE] [uvE]

XU Wy vVl lVVE] T
and

1
§(tr Wi +tr W) =tr(X) = || X«

So the SDP value is at most || X]|..
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Proof (Lower Bound)

Let

-
bdl Wa =0

Then by PSD block matrix property:

[wq X

1
qﬁxvggmﬁ%u+dWw@
for all vectors u, v.

Take u, v to be singular vector pairs of X and sum over all singular
values:

Zo’l tI‘ W1 + tr Wa)

Therefore every feasible point satisfies

objective > || X ||«
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