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Outline

• Convex optimization: two equivalent forms
• Equivalent convex problems (reformulations)
• Linear programming (LP) and an application (compressed

sensing)
• Quadratic programming (QP) and an application (SVM)
• Quadratically constrained QP (QCQP) and hidden convexity

(TRS)
• Semidefinite programming (SDP) and applications (eigenvalue /

norms / NNM)
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Convex Optimization: General Form

A convex optimization problem (or convex problem) has the form

min
x

f(x)

s.t. x ∈ C,

where
• C ⊆ Rn is a convex set,
• f : C → R is a convex function.

Convex Optimization Problems 0-3



Convex Optimization: Functional Form

A common representation is

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , p,

where f, g1, . . . , gm : Rn → R are convex, and h1, . . . , hp : Rn → R
are affine.

Key fact
The feasible set {x : gi(x) ≤ 0, hj(x) = 0} is convex.
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Key Property of Convex Problems

Theorem 1
Let C ⊆ Rn be convex and f : C → R be convex. If x⋆ ∈ C is a local
minimum of f over C, then x⋆ is a global minimum.
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Equivalent Convex Problems

Two problems are (informally) equivalent if the solution of one can
be readily obtained from the solution of the other.

Common convexity-preserving transformations:
• eliminate affine equality constraints,
• introduce slack variables,
• epigraph reformulations,
• introduce auxiliary variables for affine compositions,
• partial minimization.
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Equivalent Convex Problems: Variable
Transformations

1. Eliminating Equality Constraints Minimize f0(x) s.t. fi(x) ≤ 0
and Ax = b is equivalent to:

min
z

f0(Fz + x0) s.t. fi(Fz + x0) ≤ 0

where x = Fz + x0 parameterizes the affine set {x | Ax = b}.

2. Introducing Slack Variables Replacing linear inequalities
a⊤

i x ≤ bi with equalities:

min
x,s

f0(x) s.t. a⊤
i x + si = bi, si ≥ 0
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Equivalent Convex Problems: Functional Forms
3. Epigraph Form Standard form is equivalent to minimizing a linear
objective over the epigraph:

min
x,t

t s.t. f0(x) − t ≤ 0, fi(x) ≤ 0, Ax = b

4. Introducing Equality Constraints Transforming fi(Aix + bi) by
letting yi = Aix + bi:

min
x,yi

f0(y0) s.t. fi(yi) ≤ 0, yi = Aix + bi

5. Partial Minimization If f0(x1,x2) is convex in (x1,x2) and C is
a convex set:

min f0(x1,x2) s.t. x1 ∈ C ⇐⇒ min f̃0(x1) s.t. x1 ∈ C

where f̃0(x1) = infx2 f0(x1,x2) is the partial minimization.
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Linear Program (LP)

min
x

c⊤x + d

s.t. Gx ≤ h,

Ax = b.

• objective and constraint functions are affine,
• feasible set is a polyhedron.
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Compressed Sensing and Linear Programming
Problem Setting. Recover a sparse signal x ∈ Rn from a small
number of linear measurements y ∈ Rm with m ≪ n:

y = Ax.

Key Assumptions:
• Sparsity: x has at most k nonzero entries, with k ≪ n.
• Incoherence / RIP: The measurement matrix A satisfies

suitable conditions (e.g., Restricted Isometry Property).

Convex Relaxation (Basis Pursuit). Direct ℓ0-minimization is
NP-hard. Instead, solve the convex problem

min
x

∥x∥1

s.t. Ax = y.
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Reformulation as a Linear Program

The ℓ1 minimization problem can be rewritten as a linear program
by introducing auxiliary variables u ∈ Rn:

Equivalent LP Form:

min
x,u

n∑
i=1

ui

s.t. − ui ≤ xi ≤ ui, i = 1, . . . , n,

Ax = y.

• The objective and constraints are affine ⇒ this is a convex LP.
• Any local optimum is therefore a global optimum.
• Enables the use of highly efficient LP solvers for large-scale signal

recovery.
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Quadratic Program (QP)

min
x

1
2x

⊤Px + q⊤x + r

s.t. Gx ≤ h,

Ax = b.

• P ∈ Sn
+ so the objective is convex quadratic,

• minimizing a convex quadratic over a polyhedron.
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Linear Classifier and Margins

Given labeled data {(xi, yi)}m
i=1 with yi ∈ {−1, 1}, a linear classifier

uses a hyperplane
w⊤x + b = 0.

Functional margin of a single example:

γ̂(i) = yi
(
w⊤xi + b

)
.

Geometric margin: distance of (xi, yi) to the hyperplane is

γ(i) =
yi

(
w⊤xi + b

)
∥w∥2

.

This is invariant to scaling of (w, b) and thus the meaningful measure
of confidence.
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Maximum Margin Optimization

The minimum geometric margin over all training points is

γ = min
i=1,...,m

γ(i) = min
i

yi(w⊤xi + b)
∥w∥2

.

To find the best separating hyperplane, we maximize this minimum
margin:

max
w,b

γ s.t. yi(w⊤xi + b) ≥ γ, i = 1, . . . , m.

However, this is not yet a standard convex program because ∥w∥2
appears in the denominator and in the objective.
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Scaling and Canonical Constraints
Because geometric margin is invariant to scaling of (w, b), we can fix
the functional margin to 1 at the support vectors:

yi(w⊤xi + b) ≥ 1, i = 1, . . . , m.

Under this constraint, the geometric margin becomes

γ = 1
∥w∥2

.

Thus maximizing γ is equivalent to minimizing ∥w∥2, which we write
as minimizing the squared norm for smoothness:

min
w,b

1
2∥w∥2

2 s.t. yi(w⊤xi + b) ≥ 1.

This is a classical formulation of the hard-margin support vector
machine.
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SVM as a Quadratic Program

The hard-margin SVM optimization problem is

min
w,b

1
2w

⊤w

s.t. yi(w⊤xi + b) ≥ 1, i = 1, . . . , m.

Why this is a QP:
• The objective 1

2w
⊤w is a convex quadratic form.

• The constraints yi(w⊤xi + b) ≥ 1 are affine in (w, b).

Thus the SVM problem fits the standard convex QP template:

min
x

1
2x

⊤Px + q⊤x s.t. affine constraints,

with x = (w, b).
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Quadratically Constrained Quadratic Program
(QCQP)

min
x

1
2x

⊤P0x + q⊤
0 x + r0

s.t. 1
2x

⊤Pix + q⊤
i x + ri ≤ 0, i = 1, . . . , m,

Ax = b.

• if Pi ∈ Sn
+, then objective/constraints are convex quadratics,

• if Pi ∈ Sn
++, feasible region is an intersection of ellipsoids and an

affine set.
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Hidden Convexity in Trust Region Subproblems
Problem Formulation (TRS)

min{x⊤Ax + 2b⊤x + c : ∥x∥2 ≤ 1}
where b ∈ Rn, c ∈ R and A ∈ Sn. Generally non-convex.

Spectral Decomposition
Let A = UDU⊤ with orthogonal U and diagonal
D = diag(d1, . . . , dn). Substituting into (TRS) and using
∥U⊤x∥2 = ∥x∥2:

min{x⊤UDU⊤x + 2b⊤UU⊤x + c : ∥U⊤x∥2 ≤ 1}

Change of Variables
Set y = U⊤x and f = U⊤b. The problem reduces to:

min
n∑

i=1
diy

2
i + 2

n∑
i=1

fiyi + c

s.t.
n∑

i=1
y2

i ≤ 1
(2)
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Hidden Convexity in Trust Region Subproblems
Contd.

Lemma 2
Let y∗ be an optimal solution of (2). Then fiy

∗
i ≤ 0 for all

i = 1, 2, . . . , n.

Proof. Denote the objective function of (2) by
g(y) ≡

∑n
i=1 diy

2
i + 2

∑n
i=1 fiyi + c. Let i ∈ {1, 2, . . . , n}. Define ỹ

as

ỹj =
{

y∗
j j ̸= i,

−y∗
i j = i.

ỹ is feasible and g(y∗) ≤ g(ỹ).
n∑

i=1
di(y∗

i )2 + 2
n∑

i=1
fiy

∗
i + c ≤

n∑
i=1

di(ỹi)2 + 2
n∑

i=1
fiỹi + c.

After cancellation of terms, 2fiy
∗
i ≤ 2fi(−y∗

i ), implying the desired
inequality fiy

∗
i ≤ 0.Convex Optimization Problems 0-19



Back to the TRS problem
Using the lemma fiy

∗
i ≤ 0, we make the change of variable:

yi = −sgn(fi)
√

zi (zi ≥ 0).

Problem (2) then becomes:

min
n∑

i=1
dizi − 2

n∑
i=1

|fi|
√

zi + c

s.t.
n∑

i=1
zi ≤ 1,

z1, z2, . . . , zn ≥ 0.

This is now a convex optimization problem because:
• The term −√

zi is a convex function for zi ≥ 0.
• The constraints define a convex set (a simplex-like region).
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Semidefinite Program (SDP)

Standard form:

min
X

tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . , m,

X ⪰ 0,

X, C, Ai ∈ Sn

• Optimization variable is a matrix.
• Linear objective + affine constraints.
• PSD constraint defines a convex cone.

Geometry
Linear function minimized over an affine slice of the PSD cone.
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LMI Formulation

Equivalent SDP form:

min
x

c⊤x

s.t. F (x) ⪯ 0,

Ax = b,

F (x) = G +
n∑

i=1
xiFi

with Fi, G ∈ Sk.

• F (x) ⪯ 0 is a linear matrix inequality (LMI).
• Decision variable is now a vector.
• Same convex geometry.
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Standard Form vs LMI Form
Standard SDP:

min
X

tr(CX) s.t. X ∈ F , X ⪰ 0

where
F = {X : tr(AiX) = bi}

Any X ∈ F can be written as

X = G +
∑

j

xjFj

Substitute into constraint:

G +
∑

j

xjFj ⪰ 0

Key Idea
LMI form is a coordinate parameterization of the affine feasible set.
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Multiple LMI Constraints

minimize c⊤x

subject to x1F1 + x2F2 + · · · + xnFn + G ⪯ 0
Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · · + xnF̂n + Ĝ ⪯ 0, x1F̃1 + · · · + xnF̃n + G̃ ⪯ 0

is equivalent to single LMI

x1

[
F̂1

F̃1

]
+x2

[
F̂2

F̃2

]
+· · ·+xn

[
F̂n

F̃n

]
+

[
Ĝ

G̃

]
⪯ 0
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LP as a Special Case of SDP (LMI View)
Consider the linear program

min
x

c⊤x s.t. Ax ≤ b

Each scalar constraint
a⊤

i x ≤ bi

can be written as the 1 × 1 LMI:[
a⊤

i x − bi

]
⪯ 0

since S1 = R.
Stacking all constraints gives a diagonal LMI:

diag(Ax − b) ⪯ 0

Conclusion
LP is an SDP with only diagonal symmetric matrix variables.Convex Optimization Problems 0-25



Important SDP Modeling Examples

• Eigenvalue optimization
• Matrix norm minimization
• Nuclear norm minimization
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Eigenvalue minimization

minimize λmax
(
A(x)

)
where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Sk)

equivalent SDP

minimize t

subject to A(x) ⪯ tI

• variables x ∈ Rn, t ∈ R

• follows from

λmax(A) ≤ t ⇐⇒ A ⪯ tI
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Matrix norm minimization

minimize ∥A(x)∥ =
(
λmax

(
A(x)⊤A(x)

))1/2

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Rp×q)

equivalent SDP
minimize t

subject to
[

tI A(x)
A(x)⊤ tI

]
⪰ 0

• variables x ∈ Rn, t ∈ R

• constraint follows from
∥A∥ ≤ t ⇐⇒ A⊤A ⪯ t2I, t ≥ 0

⇐⇒
[

tI A
A⊤ tI

]
⪰ 0
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Why Nuclear Norm Minimization?

Goal: recover a low-rank matrix

min
X

rank(X) s.t. A(X) = y

Problems:
• Rank minimization is nonconvex and NP-hard
• Hard to optimize directly

Convex relaxation:

min
X

∥X∥∗ s.t. A(X) = y

where
∥X∥∗ =

∑
i

σi(X)
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Why Nuclear Norm Minimization Is an SDP

Key identity:

∥X∥∗ = min
W1,W2

1
2(tr W1 + tr W2) s.t.

[
W1 X
X⊤ W2

]
⪰ 0

Therefore NNM

min
X

∥X∥∗ s.t. A(X) = y

is equivalent to the SDP

min
X,W1,W2

1
2(tr W1 + tr W2)

s.t.
[

W1 X
X⊤ W2

]
⪰ 0, A(X) = y
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Nuclear Norm SDP Identity

Claim: For any X ∈ Rm×n,

∥X∥∗ = min
W1,W2

1
2(tr W1 + tr W2)

subject to [
W1 X
X⊤ W2

]
⪰ 0

We prove by showing:
• (Upper bound) Construct feasible (W1, W2) achieving ∥X∥∗

• (Lower bound) Any feasible solution has objective ≥ ∥X∥∗
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Proof (Upper Bound)
Let SVD of X be

X = UΣV ⊤, Σ = diag(σ1, . . . , σr)
Choose

W1 = UΣU⊤, W2 = V ΣV ⊤

Then [
W1 X
X⊤ W2

]
=

[
U

√
Σ

V
√

Σ

] [
U

√
Σ

V
√

Σ

]⊤

⪰ 0

and

1
2(tr W1 + tr W2) = tr(Σ) = ∥X∥∗

So the SDP value is at most ∥X∥∗.
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Proof (Lower Bound)
Let [

W1 X
X⊤ W2

]
⪰ 0

Then by PSD block matrix property:

u⊤Xv ≤ 1
2

(
u⊤W1u + v⊤W2v

)
for all vectors u, v.
Take u, v to be singular vector pairs of X and sum over all singular
values:

∑
i

σi(X) ≤ 1
2(tr W1 + tr W2)

Therefore every feasible point satisfies

objective ≥ ∥X∥∗Convex Optimization Problems 0-33


