

Convex Sets

Cong Ma

University of Chicago, Winter 2026

Outline

- Definition and examples of convex sets
- Convex hulls and convex cones
- Operations that preserve convexity

Convex Set

Definition 1

A set $C \subseteq \mathbb{R}^n$ is called **convex** if for any $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in [0, 1]$, the point $\lambda\mathbf{x} + (1 - \lambda)\mathbf{y}$ belongs to C .

- ▶ The above definition is equivalent to saying that for any $\mathbf{x}, \mathbf{y} \in C$, the line segment $[\mathbf{x}, \mathbf{y}]$ is also in C .

Examples of Convex Sets

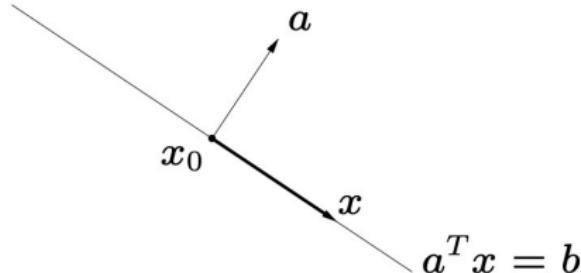
- ▶ \emptyset, \mathbb{R}^n .
- ▶ **Lines:** A line in \mathbb{R}^n is a set of the form

$$L = \{z + t\mathbf{d} : t \in \mathbb{R}\},$$

where $z, \mathbf{d} \in \mathbb{R}^n$ and $\mathbf{d} \neq \mathbf{0}$.

Hyperplane

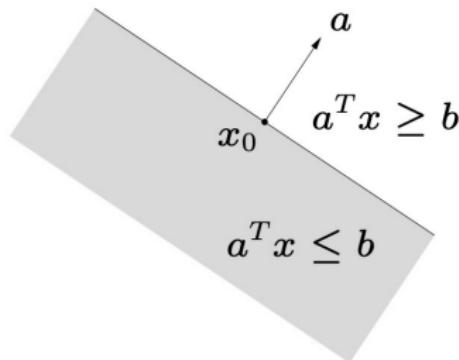
set of the form $\{x \mid a^\top x = b\}$ ($a \neq 0$)



- a is the normal vector
- hyperplanes are affine and convex

Halfspace

set of the form $\{x \mid a^\top x \leq b\}$ ($a \neq 0$)



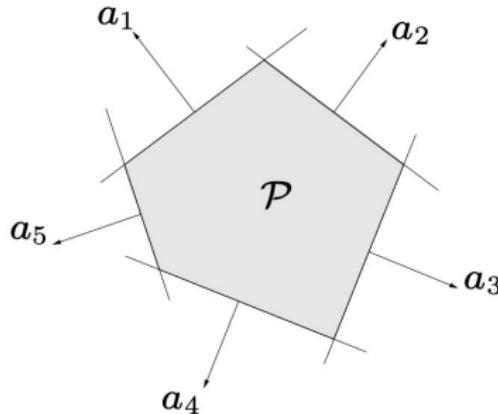
- a is the normal vector
- halfspaces are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \preceq b, \quad Cx = d$$

($A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \preceq is componentwise inequality)



polyhedron is intersection of finite number of halfspaces and hyperplanes

Convexity of Balls

Lemma 2

Let $\mathbf{c} \in \mathbb{R}^n$ and $r > 0$. Then the open ball

$$B(\mathbf{c}, r) = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{c}\| < r\}$$

and the closed ball

$$B[\mathbf{c}, r] = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{c}\| \leq r\}$$

are convex.

Note that the norm is an arbitrary norm defined over \mathbb{R}^n .

Norm balls

norm: a function $\|\cdot\|_{\text{norm}}$ that satisfies

- $\|x\|_{\text{norm}} \geq 0$; $\|x\|_{\text{norm}} = 0$ if and only if $x = 0$
- $\|tx\|_{\text{norm}} = |t| \|x\|_{\text{norm}}$ for $t \in \mathbb{R}$
- $\|x + y\|_{\text{norm}} \leq \|x\|_{\text{norm}} + \|y\|_{\text{norm}}$

notation: $\|\cdot\|_{\text{norm}}$ is general (unspecified) norm

norm ball with center x_c and radius r : $\{x \mid \|x - x_c\|_{\text{norm}} \leq r\}$

Convexity of Ellipsoids

An **ellipsoid** is a set of the form

$$E = \{x \in \mathbb{R}^n : x^T Q x + 2b^T x + c \leq 0\},$$

where $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Lemma 3

E is convex.

Proof

- ▶ Write E as $E = \{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \leq 0\}$ where $f(\mathbf{x}) \equiv \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$.
- ▶ Take $\mathbf{x}, \mathbf{y} \in E$ and $\lambda \in [0, 1]$. Then $f(\mathbf{x}) \leq 0, f(\mathbf{y}) \leq 0$.
- ▶ The vector $\mathbf{z} = \lambda\mathbf{x} + (1 - \lambda)\mathbf{y}$ satisfies $\mathbf{z}^T \mathbf{Q} \mathbf{z} = \lambda^2 \mathbf{x}^T \mathbf{Q} \mathbf{x} + (1 - \lambda)^2 \mathbf{y}^T \mathbf{Q} \mathbf{y} + 2\lambda(1 - \lambda)\mathbf{x}^T \mathbf{Q} \mathbf{y}$.
- ▶ $\mathbf{x}^T \mathbf{Q} \mathbf{y} \leq \|\mathbf{Q}^{1/2} \mathbf{x}\| \cdot \|\mathbf{Q}^{1/2} \mathbf{y}\| = \sqrt{\mathbf{x}^T \mathbf{Q} \mathbf{x}} \sqrt{\mathbf{y}^T \mathbf{Q} \mathbf{y}} \leq \frac{1}{2}(\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{y}^T \mathbf{Q} \mathbf{y})$
- ▶ $\mathbf{z}^T \mathbf{Q} \mathbf{z} \leq \lambda \mathbf{x}^T \mathbf{Q} \mathbf{x} + (1 - \lambda) \mathbf{y}^T \mathbf{Q} \mathbf{y}$

$$\begin{aligned} f(\mathbf{z}) &= \mathbf{z}^T \mathbf{Q} \mathbf{z} + 2\mathbf{b}^T \mathbf{z} + c \\ &\leq \lambda \mathbf{x}^T \mathbf{Q} \mathbf{x} + (1 - \lambda) \mathbf{y}^T \mathbf{Q} \mathbf{y} + 2\lambda \mathbf{b}^T \mathbf{x} + 2(1 - \lambda) \mathbf{b}^T \mathbf{y} + \lambda c + (1 - \lambda) c \\ &= \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}) \leq 0, \end{aligned}$$

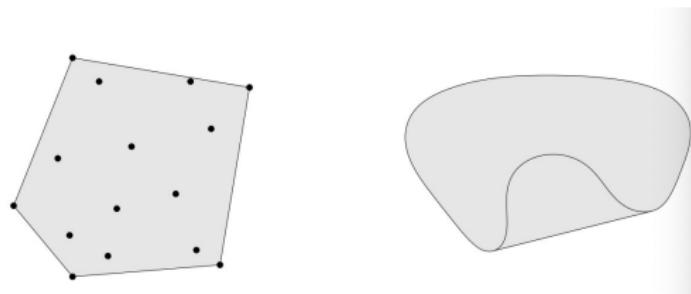
Convex combination and convex hull

convex combination of x_1, \dots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \dots + \theta_k = 1$, $\theta_i \geq 0$

convex hull $\text{conv}(S)$: set of all convex combinations of points in S



The Probability Simplex: Definition

The **unit simplex** (or probability simplex) in \mathbb{R}^n is the set of all probability distributions over n discrete outcomes.

Definition 4

The probability simplex Δ_{n-1} is defined as:

$$\Delta_{n-1} = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 1, \quad x_i \geq 0 \text{ for } i = 1, \dots, n \right\}.$$

- **Dimension:** Although it lives in \mathbb{R}^n , it is an $(n - 1)$ -dimensional object because of the equality constraint $\mathbf{1}^T \mathbf{x} = 1$.

Geometry of the Simplex

Visualizing the simplex helps students understand how constraints "shape" space:

- $n = 2$ (Δ_1): A line segment in \mathbb{R}^2 connecting $(1, 0)$ and $(0, 1)$.
- $n = 3$ (Δ_2): An equilateral triangle in \mathbb{R}^3 with vertices at $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$.

Key Observation

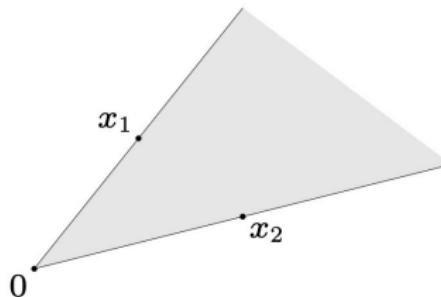
The simplex is the **convex hull** of the standard basis vectors $\{e_1, e_2, \dots, e_n\}$.

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0, \theta_2 \geq 0$



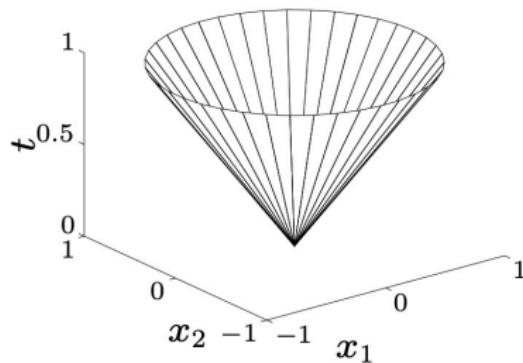
convex cone: set that contains all conic combinations of points in the set

Norm cones

norm cone: $\{(x, t) \mid \|x\|_{\text{norm}} \leq t\}$

Euclidean-norm cone $\{(x, t) \mid \|x\| \leq t\}$ is called **second-order cone**

norm balls and norm cones are convex



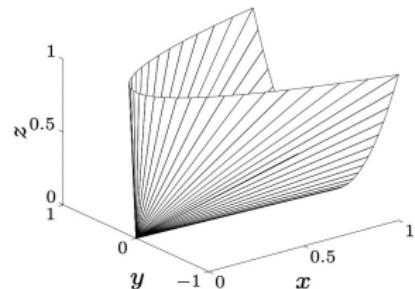
Positive semidefinite cone

- \mathbb{S}^n is set of symmetric $n \times n$ matrices
- $\mathbb{S}_+^n = \{X \in \mathbb{S}^n \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbb{S}_+^n \iff z^\top X z \geq 0 \text{ for all } z$$

- \mathbb{S}_+^n is a convex cone
- $\mathbb{S}_{++}^n = \{X \in \mathbb{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices }

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}_+^2$



boundary of \mathbb{S}_+^2

The Normal Cone: Definition

The normal cone describes the set of all vectors that are "outward-pointing" and perpendicular to a supporting hyperplane at a specific point.

Definition 5

Let $C \subseteq \mathbb{R}^n$ be a set. The **normal cone** to C at a point $x \in C$ is defined as:

$$N_C(x) = \{g \in \mathbb{R}^n \mid g^T(y - x) \leq 0, \quad \forall y \in C\}$$

- **Intuition:** For any vector $y \in C$, the vector $(y - x)$ points "into" the set. A normal vector g must make an **obtuse angle** ($\geq 90^\circ$) with every such inward-pointing vector.
- If x is in the **interior** of C , then $N_C(x) = \{0\}$.

Geometry of the Normal Cone

The shape of the normal cone depends on the "sharpness" of the boundary at x :

- **Smooth Boundary:** If the boundary is smooth at x , the normal cone is simply a **ray** (a line from the origin) pointing in the direction of the outward normal.
- **Corners/Vertices:** If x is a corner (like in a polyhedron), the normal cone is "fat"—it contains all vectors that lie between the normals of the adjacent faces.

Key Property

$N_C(x)$ is always a **closed convex cone**, regardless of whether C is smooth or not.

Intersection

intersection of (any number of) convex sets is convex

example: positive semidefinite cone \mathbb{S}_+^n

note that \mathbb{S}_+^n can be expressed as

$$\mathbb{S}_+^n = \bigcap_{z \neq 0} \{X \in \mathbb{S}^n \mid z^\top X z \geq 0\}$$

for each $z \neq 0$, $z^\top X z$ is linear function of X , so

$$S_z := \{X \in \mathbb{S}^n \mid z^\top X z \geq 0\} \quad \text{is convex}$$

therefore, $\mathbb{S}_+^n = \bigcap_{z \neq 0} S_z$ is also convex

Another example: polyhedra

Affine function

suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is affine (i.e., $f(x) = Ax + b$ with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$)

- the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\} \text{ convex}$$

Solution Set to LMI is Convex

A **Linear Matrix Inequality (LMI)** in $x \in \mathbb{R}^n$ is an expression of the form:

$$\mathbf{A}(x) = x_1 \mathbf{A}_1 + x_2 \mathbf{A}_2 + \cdots + x_n \mathbf{A}_n \preceq \mathbf{B}$$

where $\mathbf{B}, \mathbf{A}_i \in \mathbb{S}^m$ are symmetric matrices, and \preceq denotes matrix inequality ($M \preceq N \iff N - M \in \mathbb{S}_+^m$).

Lemma 6

The solution set $S = \{x \in \mathbb{R}^n \mid \mathbf{A}(x) \preceq \mathbf{B}\}$ is convex.

Proof using Affine Mapping:

- ① Define the function $f : \mathbb{R}^n \rightarrow \mathbb{S}^m$ as $f(x) = \mathbf{B} - \sum_{i=1}^n x_i \mathbf{A}_i$.
- ② Note that f is an **affine function** of x .
- ③ The set S can be rewritten as the **inverse image** of the PSD cone:

$$S = \{x \mid f(x) \in \mathbb{S}_+^m\} = f^{-1}(\mathbb{S}_+^m)$$

- ④ Since the PSD cone \mathbb{S}_+^m is convex and the inverse image of a convex set under an affine mapping is convex, S is convex.